1
|
Gulbronson CI, Jahanian S, Gransee HM, Sieck GC, Mantilla CB. Chloroquine Causes Aging-like Changes in Diaphragm Neuromuscular Junction Morphology in Mice. Cells 2025; 14:390. [PMID: 40136639 PMCID: PMC11941613 DOI: 10.3390/cells14060390] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2025] [Revised: 03/04/2025] [Accepted: 03/05/2025] [Indexed: 03/27/2025] Open
Abstract
Autophagy impairments have been implicated in various aging conditions. Previous studies in cervical motor neurons show an age-dependent increase in the key autophagy proteins LC3 and p62, reflecting autophagy impairment and autophagosome accumulation. Chloroquine is commonly used to inhibit autophagy by preventing autophagosome-lysosome fusion and may thus emulate the effects of aging on the neuromuscular system. Indeed, acute chloroquine administration in old mice decreases maximal transdiaphragmatic pressure generation, consistent with aging effects. We hypothesized that chloroquine alters diaphragm muscle neuromuscular junction (NMJ) morphology and increases denervation. Adult male and female C57BL/6 × 129J mice between 5 and 8 months of age were used to examine diaphragm muscle NMJ morphology and denervation following daily intraperitoneal injections of chloroquine (10 mg/kg/d) or vehicle for 7 days. The motor end-plates and pre-synaptic terminals were fluorescently labeled with α-bungarotoxin and anti-synaptophysin, respectively. Confocal microscopy was used to assess pre- and post-synaptic morphology and denervation. At diaphragm NMJs, chloroquine treatment decreased pre-synaptic volume by 12% compared to the vehicle (p < 0.05), with no change in post-synaptic volume. Chloroquine treatment increased the proportion of partially denervated NMJs by 2.7-fold compared to vehicle treatment (p < 0.05). The morphological changes observed were similar to those previously reported in the diaphragm muscles of 18-month-old mice. These findings highlight the importance of autophagy in the maintenance of the structural properties at adult NMJs in vivo.
Collapse
Affiliation(s)
- Chloe I. Gulbronson
- Department of Anesthesiology & Perioperative Medicine, Mayo Clinic, 200 First Street SW, Rochester, MN 55905, USA; (C.I.G.); (S.J.); (H.M.G.); (G.C.S.)
| | - Sepideh Jahanian
- Department of Anesthesiology & Perioperative Medicine, Mayo Clinic, 200 First Street SW, Rochester, MN 55905, USA; (C.I.G.); (S.J.); (H.M.G.); (G.C.S.)
| | - Heather M. Gransee
- Department of Anesthesiology & Perioperative Medicine, Mayo Clinic, 200 First Street SW, Rochester, MN 55905, USA; (C.I.G.); (S.J.); (H.M.G.); (G.C.S.)
| | - Gary C. Sieck
- Department of Anesthesiology & Perioperative Medicine, Mayo Clinic, 200 First Street SW, Rochester, MN 55905, USA; (C.I.G.); (S.J.); (H.M.G.); (G.C.S.)
- Department of Physiology & Biomedical Engineering, Mayo Clinic, 200 First Street SW, Rochester, MN 55905, USA
| | - Carlos B. Mantilla
- Department of Anesthesiology & Perioperative Medicine, Mayo Clinic, 200 First Street SW, Rochester, MN 55905, USA; (C.I.G.); (S.J.); (H.M.G.); (G.C.S.)
- Department of Physiology & Biomedical Engineering, Mayo Clinic, 200 First Street SW, Rochester, MN 55905, USA
| |
Collapse
|
2
|
Zhang Q, Cao S, Qiu F, Kang N. Incomplete autophagy: Trouble is a friend. Med Res Rev 2022; 42:1545-1587. [PMID: 35275411 DOI: 10.1002/med.21884] [Citation(s) in RCA: 32] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2021] [Revised: 01/26/2022] [Accepted: 02/22/2022] [Indexed: 01/18/2023]
Abstract
Incomplete autophagy is an impaired self-eating process of intracellular macromolecules and organelles in which accumulated autophagosomes do not fuse with lysosomes for degradation, resulting in the blockage of autophagic flux. In this review, we summarized the literature over the past decade describing incomplete autophagy, and found that different from the double-edged sword effect of general autophagy on promoting cell survival or death, incomplete autophagy plays a crucial role in disrupting cellular homeostasis, and promotes only cell death. What matters is that incomplete autophagy is closely relevant to the pathogenesis and progression of various human diseases, which, meanwhile, intimately linking to the pharmacologic and toxicologic effects of several compounds. Here, we comprehensively reviewed the latest progress of incomplete autophagy on molecular mechanisms and signaling pathways. Moreover, implications of incomplete autophagy for pharmacotherapy are also discussed, which has great relevance for our understanding of the distinctive role of incomplete autophagy in cellular physiology and disease. Consequently, targeting incomplete autophagy may contribute to the development of novel generation therapeutic agents for diverse human diseases.
Collapse
Affiliation(s)
- Qiang Zhang
- Department of Biochemistry, School of Integrative Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, People's Republic of China
| | - Shijie Cao
- State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, People's Republic of China
| | - Feng Qiu
- State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, People's Republic of China.,Department of Medicinal Chemistry, Tianjin University of Traditional Chinese Medicine, Tianjin, People's Republic of China
| | - Ning Kang
- Department of Biochemistry, School of Integrative Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, People's Republic of China
| |
Collapse
|
3
|
Cereulide and Deoxynivalenol Increase LC3 Protein Levels in HepG2 Liver Cells. Toxins (Basel) 2022; 14:toxins14020151. [PMID: 35202179 PMCID: PMC8880806 DOI: 10.3390/toxins14020151] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2022] [Accepted: 02/14/2022] [Indexed: 02/05/2023] Open
Abstract
Food contaminants of bacterial or fungal origin frequently contaminate staple foods to various extents. Among others, the bacterial toxin cereulide (CER) and the mycotoxin deoxynivalenol (DON) co-occur in a mixed diet and are absorbed by the human body. Both toxins exert dis-tinctive mitotoxic potential. As damaged mitochondria are removed via autophagy, mitochondrial and lysosomal toxicity were assessed by applying low doses of single and combined toxins (CER 0.1-50 ng/mL; DON 0.01-5 µg/mL) to HepG2 liver cells. In addition to cytotoxicity assays, RT-qPCR was performed to investigate genes involved in lysosomal biogenesis and autophagy. CER and DON caused significant cytotoxicity on HepG2 cells after 5 and 24 h over a broad concentration range. CER, alone and in combination with DON, increased the transcription of the autophagy related genes coding for the microtubule associated protein 1A/1B light chain 3 (LC3) and sequestome 1 (SQSTM1) as well as LC3 protein expression which was determined using immunocytochemistry. DON increased LC3 protein expression without induction of gene transcription, hence it seems plausible that CER and DON act on different pathways. The results support the hypothesis that CER induces autophagy via the LC3 pathway and damaged mitochondria are therefore eliminated.
Collapse
|
4
|
A Decade of Mighty Lipophagy: What We Know and What Facts We Need to Know? OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2021; 2021:5539161. [PMID: 34777688 PMCID: PMC8589519 DOI: 10.1155/2021/5539161] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/22/2021] [Revised: 09/30/2021] [Accepted: 10/15/2021] [Indexed: 12/24/2022]
Abstract
Lipids are integral cellular components that act as substrates for energy provision, signaling molecules, and essential constituents of biological membranes along with a variety of other biological functions. Despite their significance, lipid accumulation may result in lipotoxicity, impair autophagy, and lysosomal function that may lead to certain diseases and metabolic syndromes like obesity and even cell death. Therefore, these lipids are continuously recycled and redistributed by the process of selective autophagy specifically termed as lipophagy. This selective form of autophagy employs lysosomes for the maintenance of cellular lipid homeostasis. In this review, we have reviewed the current literature about how lipid droplets (LDs) are recruited towards lysosomes, cross-talk between a variety of autophagy receptors present on LD surface and lysosomes, and lipid hydrolysis by lysosomal enzymes. In addition to it, we have tried to answer most of the possible questions related to lipophagy regulation at different levels. Moreover, in the last part of this review, we have discussed some of the pathological states due to the accumulation of these LDs and their possible treatments under the light of currently available findings.
Collapse
|
5
|
Guo W, Zhong W, Hao L, Dong H, Sun X, Yue R, Li T, Zhou Z. Fatty Acids Inhibit LAMP2-Mediated Autophagy Flux via Activating ER Stress Pathway in Alcohol-Related Liver Disease. Cell Mol Gastroenterol Hepatol 2021; 12:1599-1615. [PMID: 34284164 PMCID: PMC8536789 DOI: 10.1016/j.jcmgh.2021.07.002] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/30/2021] [Revised: 06/30/2021] [Accepted: 07/01/2021] [Indexed: 02/08/2023]
Abstract
BACKGROUND & AIMS Alcohol-related liver disease (ALD) is characterized by accumulation of hepatic free fatty acids (FFAs) and triglyceride (TG)-enriched lipid droplets and cell death. The present study aimed to investigate how FFA or TG induces hepatocyte injury, thereby contributing to the development of ALD. METHODS Hepatocyte-specific DGAT1 knockout (DGAT1Δhep) mice and lysosome-associated membrane protein 2 (LAMP2) overexpression mice were generated and subjected to chronic alcohol feeding. Cell studies were conducted to define the causal role and underlying mechanism of FFA-induced hepatocellular injury. RESULTS Hepatocyte-specific DGAT1 deletion exacerbated alcohol-induced liver injury by increasing lipid accumulation and endoplasmic reticulum (ER) stress, reducing LAMP2 protein levels, and impairing autophagy function. Cell studies revealed that FFAs, rather than TG, induced ER stress via ATF4 activation, which, in turn, down-regulated LAMP2, thereby impairing autophagy flux. LAMP2 overexpression in the liver restored autophagy function and ameliorated alcohol-induced liver injury in mice. Reducing hepatic FFAs by peroxisome proliferator-activated receptor α activation attenuated ER stress, restored LAMP2 protein levels, and improved autophagy flux. In addition, suppression of LAMP2 and autophagy function was also detected in the liver of patients with severe alcoholic hepatitis. CONCLUSIONS This study demonstrates that accumulation of hepatic FFAs, rather than TG, plays a crucial role in the pathogenesis of ALD by suppressing LAMP2-autophagy flux pathway through ER stress signaling, which represents an important mechanism of FFA-induced hepatocellular injury in ALD.
Collapse
Affiliation(s)
- Wei Guo
- Center for Translational Biomedical Research, Kannapolis, North Carolina
| | - Wei Zhong
- Center for Translational Biomedical Research, Kannapolis, North Carolina,Department of Nutrition, University of North Carolina at Greensboro, North Carolina Research Campus, Kannapolis, North Carolina
| | - Liuyi Hao
- Center for Translational Biomedical Research, Kannapolis, North Carolina
| | - Haibo Dong
- Center for Translational Biomedical Research, Kannapolis, North Carolina
| | - Xinguo Sun
- Center for Translational Biomedical Research, Kannapolis, North Carolina
| | - Ruichao Yue
- Center for Translational Biomedical Research, Kannapolis, North Carolina
| | - Tianjiao Li
- Department of Nutrition, University of North Carolina at Greensboro, North Carolina Research Campus, Kannapolis, North Carolina
| | - Zhanxiang Zhou
- Center for Translational Biomedical Research, Kannapolis, North Carolina,Department of Nutrition, University of North Carolina at Greensboro, North Carolina Research Campus, Kannapolis, North Carolina,Correspondence Address correspondence to: Zhanxiang Zhou, PhD, Center for Translational Biomedical Research, University of North Carolina at Greensboro, 600 Laureate Way, Suite 2203, Kannapolis, North Carolina 28081.fax: (704) 250-5809.
| |
Collapse
|
6
|
Wang Q, Chang B, Li X, Zou Z. Role of ALDH2 in Hepatic Disorders: Gene Polymorphism and Disease Pathogenesis. J Clin Transl Hepatol 2021; 9:90-98. [PMID: 33604259 PMCID: PMC7868706 DOI: 10.14218/jcth.2020.00104] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/09/2020] [Revised: 12/14/2020] [Accepted: 12/18/2020] [Indexed: 02/07/2023] Open
Abstract
Aldehyde dehydrogenase 2 (ALDH2) is a key enzyme of alcohol metabolism and it is involved in the cellular mechanism of alcohol liver disease. ALDH2 gene mutations exist in about 8% of the world's population, with the incidence reaching 45% in East Asia. The mutations will result in impairment of enzyme activity and accumulation of acetaldehyde, facilitating the progression of other liver diseases, including non-alcoholic fatty liver diseases, viral hepatitis and hepatocellular carcinoma, through adduct formation and inflammatory responses. In this review, we seek to summarize recent research progress on the correlation between ALDH2 gene polymorphism and multiple liver diseases, with an attempt to provide clues for better understanding of the disease mechanism and for strategy making.
Collapse
Affiliation(s)
- Qiaoling Wang
- Peking University, 302 Clinical Medical School, Beijing, China
- Diagnosis and Treatment Center for Non-Infectious Liver Diseases, Fifth Medical Center of Chinese PLA General Hospital, Beijing, China
| | - Binxia Chang
- Diagnosis and Treatment Center for Non-Infectious Liver Diseases, Fifth Medical Center of Chinese PLA General Hospital, Beijing, China
| | - Xiaoyan Li
- Anhui Medical University, Hefei, Anhui, China
| | - Zhengsheng Zou
- Peking University, 302 Clinical Medical School, Beijing, China
- Diagnosis and Treatment Center for Non-Infectious Liver Diseases, Fifth Medical Center of Chinese PLA General Hospital, Beijing, China
- Correspondence to: Zhengsheng Zou, The Center for Diagnosis and Treatment of Non-Infectious Liver Disease, The General Hospital of Chinese People’s Liberation Army No. 5 Medical Science Center, No. 100 Xisihuan Middle Road, Beijing 100039, China. E-mail:
| |
Collapse
|
7
|
Xu H, Zhang L, Xu D, Deng W, Yang W, Tang F, Da M. Knockout of calpain-1 protects against high-fat diet-induced liver dysfunction in mouse through inhibiting oxidative stress and inflammation. Food Sci Nutr 2021; 9:367-374. [PMID: 33473299 PMCID: PMC7802557 DOI: 10.1002/fsn3.2002] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2020] [Revised: 10/20/2020] [Accepted: 10/27/2020] [Indexed: 12/25/2022] Open
Abstract
The present study was designed to investigate the significance of calpain-1 in the high-fat diet (HFD)-induced liver dysfunction and to explore the possible mechanism. C57 mice and calpain-1 knockout (KO) mice were fed with standard diet (SD) or HFD, respectively, for 16 weeks. The activities of calpain, aspartate aminotransferase (AST), alanine aminotransferase (ALT), and superoxide dismutase (SOD) in serum and/or liver of mouse were measured. Lipid profiles in the serum and liver were examined. Contents of oxidized low-density lipoprotein (oxLDL), malondialdehyde (MDA), tumor necrosis factor (TNF-α), and interleukin-6 (IL-6) in serum or/and liver were detected. The results showed that compared with C57 mice fed with SD, HFD-fed C57 mice showed the increased activities of AST and ALT in the serum, which was decreased in calpain-1 KO mice fed with HFD. In addition, knockout of calpain-1 decreased the contents of oxLDL, MDA, TNF-α, and IL-6, while increased SOD activity, in serum and/or liver. However, knockout of calpain-1 had no effects on lipid profiles in both serum and liver. When fed with SD, all these parameters of C57 and calpain-1 KO mice were comparable except for decreased calpain activity in the liver of calpain-1 KO mice. The results suggested that knockout of calpain-1 protects against HFD-induced liver dysfunction through inhibiting oxidative stress and inflammation.
Collapse
Affiliation(s)
- Hao Xu
- Department of Oncology SurgeryGansu Provincial People's HospitalLanzhouGansu ProvinceChina
- School of Clinical MedicineNingxia Medical UniversityYinchuanNingxia Hui Autonomous RegionChina
| | - Li Zhang
- Pharmacy DepartmentShaanxi Aerospace HospitalXi'anShaanxi ProvinceChina
| | - Duowen Xu
- Pharmacy DepartmentWuwei Medical AcademyWuweiGansu ProvinceChina
| | - Weibo Deng
- School of Clinical MedicineNingxia Medical UniversityYinchuanNingxia Hui Autonomous RegionChina
| | - Wenbao Yang
- School of Clinical MedicineGansu University of Traditional Chinese MedicineLanzhouGansu ProvinceChina
| | - Futian Tang
- Key Laboratory of Digestive System Tumor of Gansu Province and Department of Cardiovascular DiseasesLanzhou University Second HospitalLanzouGansu ProvinceChina
| | - Mingxu Da
- Department of Oncology SurgeryGansu Provincial People's HospitalLanzhouGansu ProvinceChina
| |
Collapse
|
8
|
Homma T, Fujii J. Emerging connections between oxidative stress, defective proteolysis, and metabolic diseases. Free Radic Res 2020; 54:931-946. [PMID: 32308060 DOI: 10.1080/10715762.2020.1734588] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Takujiro Homma
- Department of Biochemistry and Molecular Biology, Graduate School of Medical Science, Yamagata University, Yamagata, Japan
| | - Junichi Fujii
- Department of Biochemistry and Molecular Biology, Graduate School of Medical Science, Yamagata University, Yamagata, Japan
| |
Collapse
|
9
|
Babuta M, Furi I, Bala S, Bukong TN, Lowe P, Catalano D, Calenda C, Kodys K, Szabo G. Dysregulated Autophagy and Lysosome Function Are Linked to Exosome Production by Micro-RNA 155 in Alcoholic Liver Disease. Hepatology 2019; 70:2123-2141. [PMID: 31090940 PMCID: PMC7453183 DOI: 10.1002/hep.30766] [Citation(s) in RCA: 154] [Impact Index Per Article: 25.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/30/2018] [Accepted: 05/07/2019] [Indexed: 12/17/2022]
Abstract
Cellular homeostais, that is normally maintained through autophagy, is disrupted in alcoholic liver disease (ALD). Because autophagy and exosome biogenesis share common elements, we hypothesized that increased exosome production in ALD may be linked to disruption of autophagic function. We found impaired autophagy both in ALD and alcoholic hepatitis (AH) mouse models and human livers with ALD as indicated by increased hepatic p62 and LC3-II levels. Alcohol reduced autophagy flux in vivo in chloroquine-treated mice as well as in vitro in hepatocytes and macrophages treated with bafilomycin A. Our results revealed that alcohol targets multiple steps in the autophagy pathway. Alcohol-related decrease in mechanistic target of rapamycin (mTOR) and Ras homolog enriched in brain (Rheb), that initiate autophagy, correlated with increased Beclin1 and autophagy-related protein 7 (Atg7), proteins involved in phagophore-autophagosome formation, in ALD. We found that alcohol disrupted autophagy function at the lysosomal level through decreased lysosomal-associated membrane protein 1 (LAMP1) and lysosomal-associated membrane protein 2 (LAMP2) in livers with ALD. We identified that micro-RNA 155 (miR-155), that is increased by alcohol, targets mTOR, Rheb, LAMP1, and LAMP2 in the authophagy pathway. Consistent with this, miR-155-deficient mice were protected from alcohol-induced disruption of autophagy and showed attenuated exosome production. Mechanistically, down-regulation of LAMP1 or LAMP2 increased exosome release in hepatocytes and macrophages in the presence and absence of alcohol. These results suggested that the alcohol-induced increase in exosome production was linked to disruption of autophagy and impaired autophagosome and lysosome function. Conclusion: Alcohol affects multiple genes in the autophagy pathway and impairs autophagic flux at the lysosome level in ALD. Inhibition of LAMP1 and LAMP2 promotes exosome release in ALD. We identified miR-155 as a mediator of alcohol-related regulation of autophagy and exosome production in hepatocytes and macrophages.
Collapse
Affiliation(s)
- Mrigya Babuta
- Department of Medicine, University of Massachusetts Medical School, Worcester, MA
| | - Istvan Furi
- Department of Medicine, University of Massachusetts Medical School, Worcester, MA
| | - Shashi Bala
- Department of Medicine, University of Massachusetts Medical School, Worcester, MA
| | - Terence N Bukong
- Department of Medicine, University of Massachusetts Medical School, Worcester, MA
| | - Patrick Lowe
- Department of Medicine, University of Massachusetts Medical School, Worcester, MA
| | - Donna Catalano
- Department of Medicine, University of Massachusetts Medical School, Worcester, MA
| | - Charles Calenda
- Department of Medicine, University of Massachusetts Medical School, Worcester, MA
| | - Karen Kodys
- Department of Medicine, University of Massachusetts Medical School, Worcester, MA
| | - Gyongyi Szabo
- Department of Medicine, University of Massachusetts Medical School, Worcester, MA
| |
Collapse
|
10
|
Ma Y, Chai H, Ding Q, Qian Q, Yan Z, Ding B, Dou X, Li S. Hepatic SIRT3 Upregulation in Response to Chronic Alcohol Consumption Contributes to Alcoholic Liver Disease in Mice. Front Physiol 2019; 10:1042. [PMID: 31474877 PMCID: PMC6707764 DOI: 10.3389/fphys.2019.01042] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2019] [Accepted: 07/30/2019] [Indexed: 12/20/2022] Open
Abstract
Background Alcoholic liver disease (ALD) is a type of chronic liver disease caused by chronic ethanol overconsumption. The pathogenesis of ALD is complex and there is no effective clinical treatment thus far. SIRT3 is an NAD+-dependent deacetylase primarily located inside mitochondria, and reports on the effect of chronic alcohol exposure on liver SIRT3 expression are scarce. This study aims to investigate the effect of chronic alcohol consumption on hepatic SIRT3 expression and its role in alcoholic-induced liver injury. Methods Using the Lieber-DeCarli mouse model of ALD, we analyzed the regulation of SIRT3 and the effect of liver-specific knocking-down of SIRT3 on alcohol-induced liver injury. HepG2 and AML12 hepatocytes were employed to detect the biological function of SIRT3 on alcohol-induced hepatic cytotoxicity and its potential mechanism. Results Chronic alcohol exposure led to hepatic SIRT3 upregulation and liver-specific SIRT3 knockdown alleviated alcoholic feeding-induced liver injury and lipid accumulation, which is associated with improved autophagy induction. In addition, autophagy induction contributed to the cytoprotective effect of SIRT3 knockdown on ethanol-induced hepatocyte cell death. Conclusion In summary, our data suggest that hepatic SIRT3 upregulation in response to chronic alcohol exposure and liver-specific SIRT3 knockdown, induced autophagy activation further alleviating alcoholic-induced liver injury, which represents a novel mechanism in this process.
Collapse
Affiliation(s)
- Yue Ma
- College of Life Sciences, Zhejiang Chinese Medical University, Hangzhou, China.,Laboratory Animal Center, Zhejiang Academy of Medical Sciences, Hangzhou, China
| | - Hui Chai
- College of Life Sciences, Zhejiang Chinese Medical University, Hangzhou, China.,Molecular Medicine Institute, Zhejiang Chinese Medical University, Hangzhou, China
| | - Qinchao Ding
- College of Life Sciences, Zhejiang Chinese Medical University, Hangzhou, China
| | - Qianyu Qian
- College of Life Sciences, Zhejiang Chinese Medical University, Hangzhou, China
| | - Zhaoyuan Yan
- College of Life Sciences, Zhejiang Chinese Medical University, Hangzhou, China
| | - Bin Ding
- College of Life Sciences, Zhejiang Chinese Medical University, Hangzhou, China.,Molecular Medicine Institute, Zhejiang Chinese Medical University, Hangzhou, China
| | - Xiaobing Dou
- College of Life Sciences, Zhejiang Chinese Medical University, Hangzhou, China.,Molecular Medicine Institute, Zhejiang Chinese Medical University, Hangzhou, China
| | - Songtao Li
- Molecular Medicine Institute, Zhejiang Chinese Medical University, Hangzhou, China.,College of Basic Medicine and Public Health, Zhejiang Chinese Medical University, Hangzhou, China
| |
Collapse
|
11
|
Quercetin ameliorates autophagy in alcohol liver disease associated with lysosome through mTOR-TFEB pathway. J Funct Foods 2019. [DOI: 10.1016/j.jff.2018.10.033] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
|
12
|
Homma T, Fujii J. Oxidative Stress and Dysfunction of the Intracellular Proteolytic Machinery. DIETARY INTERVENTIONS IN LIVER DISEASE 2019:59-70. [DOI: 10.1016/b978-0-12-814466-4.00005-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2025]
|
13
|
Hikita H, Sakane S, Takehara T. Mechanisms of the autophagosome-lysosome fusion step and its relation to non-alcoholic fatty liver disease. LIVER RESEARCH 2018. [DOI: 10.1016/j.livres.2018.09.003] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/15/2023]
|
14
|
Zhou C, Huang J, Li Q, Zhan C, He Y, Liu J, Wen Z, Wang DW. Pharmacological Inhibition of Soluble Epoxide Hydrolase Ameliorates Chronic Ethanol-Induced Cardiac Fibrosis by Restoring Autophagic Flux. Alcohol Clin Exp Res 2018; 42:1970-1978. [PMID: 30047995 DOI: 10.1111/acer.13847] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2018] [Accepted: 07/09/2018] [Indexed: 12/19/2022]
Abstract
BACKGROUND Chronic drinking leads to myocardial contractile dysfunction and dilated cardiomyopathy, and cardiac fibrosis is a consequence of these alcoholic injuries. Soluble epoxide hydrolase (sEH) hydrolyzes epoxyeicosatrienoic acids (EETs) to less bioactive diols, and EETs have cardioprotective properties. However, the effects of sEH inhibition in ethanol (EtOH)-induced cardiac fibrosis are unknown. METHODS This study was designed to investigate the role and underlying mechanisms of sEH inhibition in chronic EtOH feeding-induced cardiac fibrosis. C57BL/6J mice were fed a 4% Lieber-DeCarli EtOH diet for 8 weeks, and the sEH inhibitor 1-trifluoromethoxyphenyl-3-(1-propionylpiperidin-4-yl) urea (TPPU) was administered throughout the experimental period. RESULTS The results showed that chronic EtOH intake led to cardiac dilatation, collagen deposition, and autophagosome accumulation, while TPPU administration ameliorated these effects. In vitro, treating primary cardiac fibroblasts (CFs) with EtOH resulted in CF activation, including alpha smooth muscle actin overexpression, collagen synthesis, and cell migration. Moreover, EtOH disturbed CF autophagic flux, as evidenced by the increased LC3 II/I ratio and SQSTM1 expression, and by the enhanced autophagosome accumulation. TPPU treatment prevented the activation of CF induced by EtOH and restored the impaired autophagic flux by suppressing mTOR activation. CONCLUSIONS Taken together, these findings suggest that sEH pharmacological inhibition may be a unique therapeutic strategy for treating EtOH-induced cardiac fibrosis.
Collapse
Affiliation(s)
- Chi Zhou
- Division of Cardiology, Department of Internal Medicine, Tongji Hospital, Tongji Medical College of Huazhong University of Science and Technology, and Hubei Key Laboratory of Genetics and Molecular Mechanisms of Cardiological Disorders, Wuhan, China
| | - Jin Huang
- Division of Hematology, Department of Internal Medicine, Tongji Hospital, Tongji Medical College of Huazhong University of Science and Technology, Wuhan, China
| | - Qing Li
- Division of Cardiology, Department of Internal Medicine, Tongji Hospital, Tongji Medical College of Huazhong University of Science and Technology, and Hubei Key Laboratory of Genetics and Molecular Mechanisms of Cardiological Disorders, Wuhan, China
| | - Chenao Zhan
- Division of Cardiology, Department of Internal Medicine, Tongji Hospital, Tongji Medical College of Huazhong University of Science and Technology, and Hubei Key Laboratory of Genetics and Molecular Mechanisms of Cardiological Disorders, Wuhan, China
| | - Ying He
- Division of Cardiology, Department of Internal Medicine, Tongji Hospital, Tongji Medical College of Huazhong University of Science and Technology, and Hubei Key Laboratory of Genetics and Molecular Mechanisms of Cardiological Disorders, Wuhan, China
| | - Jinyan Liu
- Division of Cardiology, Department of Internal Medicine, Tongji Hospital, Tongji Medical College of Huazhong University of Science and Technology, and Hubei Key Laboratory of Genetics and Molecular Mechanisms of Cardiological Disorders, Wuhan, China
| | - Zheng Wen
- Division of Cardiology, Department of Internal Medicine, Tongji Hospital, Tongji Medical College of Huazhong University of Science and Technology, and Hubei Key Laboratory of Genetics and Molecular Mechanisms of Cardiological Disorders, Wuhan, China
| | - Dao Wen Wang
- Division of Cardiology, Department of Internal Medicine, Tongji Hospital, Tongji Medical College of Huazhong University of Science and Technology, and Hubei Key Laboratory of Genetics and Molecular Mechanisms of Cardiological Disorders, Wuhan, China
| |
Collapse
|
15
|
Liuzzi JP, Narayanan V, Doan H, Yoo C. Effect of zinc intake on hepatic autophagy during acute alcohol intoxication. Biometals 2018; 31:217-232. [PMID: 29392448 DOI: 10.1007/s10534-018-0077-7] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2017] [Accepted: 01/26/2018] [Indexed: 01/20/2023]
Abstract
Autophagy is a conserved mechanism that plays a housekeeping role by eliminating protein aggregates and damaged organelles. Recent studies have demonstrated that acute ethanol intoxication induces hepatic autophagy in mice. The effect of dietary zinc intake on hepatic autophagic flux during ethanol intoxication has not been evaluated using animal models. Herein, we investigated whether zinc deficiency and excess can affect autophagic flux in the liver in mice and in human hepatoma cells acutely exposed to ethanol. A mouse model of binge ethanol feeding was utilized to analyze the effect of low, adequate, and high zinc intake on hepatic autophagic flux during ethanol intoxication. Autophagic flux was inferred by analyzing LC3II/LC3I ratio, protein levels of p62/SQSTM1, Beclin1 and Atg7, and phosphorylation of 4EBP1. In addition, the degradation of the fusion protein LC3-GFP and the formation of autophagosomes and autolysosomes were evaluated in cells. Ethanol treatment stimulated autophagy in mice and cells. High zinc intake resulted in enhanced autophagy in mice exposed to ethanol. Conversely, zinc deficiency was consistently associated with impaired ethanol-induced autophagy in mice and cells. Zinc-deficient mice exhibited a high degree of ethanol-driven steatosis. Furthermore, zinc depletion increased apoptosis in cells exposed to ethanol. The results of this study suggest that adequate zinc intake is necessary for proper stimulation of autophagy by ethanol. Poor zinc status is commonly found among alcoholics and could likely contribute to faulty autophagy.
Collapse
Affiliation(s)
- Juan P Liuzzi
- Department of Dietetics and Nutrition, Robert Stempel College of Public Health and Social Work, Florida International University, 11200 SW, 8ST, AHC5-325, Miami, FL, 33199, USA.
| | - Vijaya Narayanan
- Department of Dietetics and Nutrition, Robert Stempel College of Public Health and Social Work, Florida International University, 11200 SW, 8ST, AHC5-325, Miami, FL, 33199, USA
| | - Huong Doan
- Department of Dietetics and Nutrition, Robert Stempel College of Public Health and Social Work, Florida International University, 11200 SW, 8ST, AHC5-325, Miami, FL, 33199, USA
| | - Changwon Yoo
- Department of Biostatistics, Robert Stempel College of Public Health and Social Work, Florida International University, Miami, FL, USA
| |
Collapse
|
16
|
Shi X, Sun R, Zhao Y, Fu R, Wang R, Zhao H, Wang Z, Tang F, Zhang N, Tian X, Yao J. Promotion of autophagosome–lysosome fusion via salvianolic acid A-mediated SIRT1 up-regulation ameliorates alcoholic liver disease. RSC Adv 2018; 8:20411-20422. [PMID: 35541657 PMCID: PMC9080827 DOI: 10.1039/c8ra00798e] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2018] [Accepted: 05/17/2018] [Indexed: 12/20/2022] Open
Abstract
Autophagosome and lysosome fusion was restored by salvianolic acid A-mediated SIRT1 up-regulation and protected against chronic ethanol-induced liver injury.
Collapse
|
17
|
Zhang Z, Yao Z, Chen Y, Qian L, Jiang S, Zhou J, Shao J, Chen A, Zhang F, Zheng S. Lipophagy and liver disease: New perspectives to better understanding and therapy. Biomed Pharmacother 2017; 97:339-348. [PMID: 29091883 DOI: 10.1016/j.biopha.2017.07.168] [Citation(s) in RCA: 50] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2017] [Revised: 07/10/2017] [Accepted: 07/30/2017] [Indexed: 02/07/2023] Open
Abstract
Intracellular lipid droplets (LDs) are remarkably dynamic and complex organelles that enact regulated storage and release of lipids to fulfil their fundamental roles in energy metabolism, membrane synthesis and provision of lipid-derived signaling molecules. The recent finding that LDs can be selectively degraded by the lysosomal pathway of autophagy through a process termed lipophagy has opened up a new understanding of how lipid metabolism regulates cellular physiology and pathophysiology. Many new functions for autophagic lipid metabolism have now been defined in various diseases including liver disease. Lipophagy was originally described in hepatocytes, where it is critical for maintaining cellular energy homeostasis in obesity and metabolic syndrome. In vitro and in vivo studies have demonstrated the selective uptake of LDs by autophagosomes, and inhibition of autophagy has been shown to reduce the β-oxidation of free fatty acids due to the increased accumulation of lipids and LDs. The identification of lipophagy as a new process dedicated to cellular lipid removal has mapped autophagy as an emerging player in cellular lipid metabolism. Pharmacological or genetic modulation of lipophagy might point to possible therapeutic strategies for combating a broad range of liver diseases. This review summarizes recent work focusing on lipophagy and liver disease as well as highlighting challenges and future directions of research. On the other hand, it also offers a glimpse into different strategies that have been used in experimental models to counteract excessive pathological lipophagy in the prevention and treatment of liver disease.
Collapse
Affiliation(s)
- Zili Zhang
- Department of Pharmacology, School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Zhen Yao
- Department of Pharmacology, School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Yifan Chen
- Department of Pharmacology, School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Lei Qian
- Department of Pharmacology, School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Shuoyi Jiang
- Department of Pharmacology, School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Jingyi Zhou
- Department of Pharmacology, School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Jiangjuan Shao
- Department of Pharmacology, School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Anping Chen
- Department of Pathology, School of Medicine, Saint Louis University, St Louis, MO 63104, USA
| | - Feng Zhang
- Department of Pharmacology, School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing 210023, China; Jiangsu Key Laboratory for Pharmacology and Safety Evaluation of Chinese Materia Medica, Nanjing University of Chinese Medicine, Nanjing 210023, China; Jiangsu Key Laboratory of Therapeutic Material of Chinese Medicine, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Shizhong Zheng
- Department of Pharmacology, School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing 210023, China; Jiangsu Key Laboratory for Pharmacology and Safety Evaluation of Chinese Materia Medica, Nanjing University of Chinese Medicine, Nanjing 210023, China; Jiangsu Key Laboratory of Therapeutic Material of Chinese Medicine, Nanjing University of Chinese Medicine, Nanjing 210023, China.
| |
Collapse
|
18
|
Wan T, Wang S, Ye M, Ling W, Yang L. Cyanidin-3-O-β-glucoside protects against liver fibrosis induced by alcohol via regulating energy homeostasis and AMPK/autophagy signaling pathway. J Funct Foods 2017. [DOI: 10.1016/j.jff.2017.07.033] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
|
19
|
2-Methoxyestradiol protects against ischemia/reperfusion injury in alcoholic fatty liver by enhancing sirtuin 1-mediated autophagy. Biochem Pharmacol 2017; 131:40-51. [DOI: 10.1016/j.bcp.2017.02.008] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2016] [Accepted: 02/07/2017] [Indexed: 12/31/2022]
|
20
|
Qiu P, Dong Y, Li B, Kang XJ, Gu C, Zhu T, Luo YY, Pang MX, Du WF, Ge WH. Dihydromyricetin modulates p62 and autophagy crosstalk with the Keap-1/Nrf2 pathway to alleviate ethanol-induced hepatic injury. Toxicol Lett 2017; 274:31-41. [PMID: 28419832 DOI: 10.1016/j.toxlet.2017.04.009] [Citation(s) in RCA: 64] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2017] [Revised: 03/31/2017] [Accepted: 04/13/2017] [Indexed: 02/07/2023]
Abstract
Increasing evidence has demonstrated that dihydromyricetin (DMY) contains highly effective antioxidative, anti-inflammatory, anti-microbial and anti-diabetic properties. Nevertheless, the underlying hepatoprotective mechanisms of DMY have infrequently been reported thus far. In the present study, C57BL/6 mice were fed with the Lieber-DeCarli diet containing alcohol or isocaloric maltose dextrin as a control diet with or without DMY (75 and 150mg/kg/d bw) for 6 weeks. DMY significantly attenuated hepatic enzyme release, hepatic lipid peroxidation and triglyceride deposition induced by chronic alcohol exposure. In addition, DMY dramatically attenuated the alcohol-triggered elevation of the level of inflammatory cytokines and partially recovered hepatic pathological changes. Notably, DMY remarkably modified aberrant expression of CYP2E1, Keap-1 and HO-1 in the liver and simultaneously ameliorated disordered nuclear localization of NF-κB and Nrf2 to exert its hepatoprotective effects. Further mechanistic exploration suggested that DMY activated Nrf2, possibly mediated through the autophagy pathway. Analysis of the crosstalk among p62, Keap-1 and Nrf2 demonstrated that the p62 upregulation caused by DMY contributes to a positive feedback loop in Nrf2 activation. In summary, DMY likely modulates p62 and autophagy crosstalk with the Keap-1/Nrf2 pathway to alleviate liver steatosis and the inflammatory response in the pathological progression of ALD.
Collapse
Affiliation(s)
- Ping Qiu
- Zhejiang Chinese Medical University, Hangzhou, Zhejiang Province 310053, China
| | - Yu Dong
- Department of Medicine, Zhejiang Academy of Traditional Chinese Medicine, Hangzhou, Zhejiang Province 310007, China
| | - Bo Li
- Zhejiang Chinese Medical University, Hangzhou, Zhejiang Province 310053, China
| | - Xian-Jie Kang
- Zhejiang Chinese Medical University, Hangzhou, Zhejiang Province 310053, China
| | - Chao Gu
- Zhejiang Chinese Medical University, Hangzhou, Zhejiang Province 310053, China
| | - Tao Zhu
- Zhejiang Chinese Medical University, Hangzhou, Zhejiang Province 310053, China
| | - Yun-Yun Luo
- Zhejiang Chinese Medical University, Hangzhou, Zhejiang Province 310053, China
| | - Min-Xia Pang
- Zhejiang Chinese Medical University, Hangzhou, Zhejiang Province 310053, China
| | - Wei-Feng Du
- Zhejiang Chinese Medical University, Hangzhou, Zhejiang Province 310053, China
| | - Wei-Hong Ge
- Zhejiang Chinese Medical University, Hangzhou, Zhejiang Province 310053, China.
| |
Collapse
|
21
|
Schulze RJ, Rasineni K, Weller SG, Schott MB, Schroeder B, Casey CA, McNiven MA. Ethanol exposure inhibits hepatocyte lipophagy by inactivating the small guanosine triphosphatase Rab7. Hepatol Commun 2017; 1:140-152. [PMID: 29404450 PMCID: PMC5721426 DOI: 10.1002/hep4.1021] [Citation(s) in RCA: 52] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/24/2016] [Accepted: 01/29/2017] [Indexed: 12/20/2022] Open
Abstract
Alcohol consumption is a well-established risk factor for the onset and progression of fatty liver disease. An estimated 90% of heavy drinkers are thought to develop significant liver steatosis. For these reasons, an increased understanding of the molecular basis for alcohol-induced hepatic steatosis is important. It has become clear that autophagy, a catabolic process of intracellular degradation and recycling, plays a key role in hepatic lipid metabolism. We have shown that Rab7, a small guanosine triphosphatase known to regulate membrane trafficking, acts as a key orchestrator of hepatocellular lipophagy, a selective form of autophagy in which lipid droplets (LDs) are specifically targeted for turnover by the autophagic machinery. Nutrient starvation results in Rab7 activation on the surface of the LD and lysosomal compartments, resulting in the mobilization of triglycerides stored within the LDs for energy production. Here, we examine whether the steatotic effects of alcohol exposure are a result of perturbations to the Rab7-mediated lipophagic pathway. Rats chronically fed an ethanol-containing diet accumulated significantly higher levels of fat in their hepatocytes. Interestingly, hepatocytes isolated from these ethanol-fed rats contained juxtanuclear lysosomes that exhibited impaired motility. These changes are similar to those we observed in Rab7-depleted hepatocytes. Consistent with these defects in the lysosomal compartment, we observed a marked 80% reduction in Rab7 activity in cultured hepatocytes as well as a complete block in starvation-induced Rab7 activation in primary hepatocytes isolated from chronic ethanol-fed animals. Conclusion: A mechanism is supported whereby ethanol exposure inhibits Rab7 activity, resulting in the impaired transport, targeting, and fusion of the autophagic machinery with LDs, leading to an accumulation of hepatocellular lipids and hepatic steatosis. (Hepatology Communications 2017;1:140-152).
Collapse
Affiliation(s)
- Ryan J. Schulze
- Department of Biochemistry and Molecular Biology and the Center for Digestive DiseasesMayo ClinicRochesterMN
| | - Karuna Rasineni
- Department of Internal MedicineUniversity of Nebraska Medical CenterOmahaNE
| | - Shaun G. Weller
- Department of Biochemistry and Molecular Biology and the Center for Digestive DiseasesMayo ClinicRochesterMN
| | - Micah B. Schott
- Department of Biochemistry and Molecular Biology and the Center for Digestive DiseasesMayo ClinicRochesterMN
| | - Barbara Schroeder
- Department of Biochemistry and Molecular Biology and the Center for Digestive DiseasesMayo ClinicRochesterMN
- Present address:
Helmholtz Zentrum München, Institute of Biological and Medical ImagingNeuherbergGermany
| | - Carol A. Casey
- Department of Internal MedicineUniversity of Nebraska Medical CenterOmahaNE
- Research Service, VA Nebraska‐Western Iowa Health Care SystemOmahaNE
| | - Mark A. McNiven
- Department of Biochemistry and Molecular Biology and the Center for Digestive DiseasesMayo ClinicRochesterMN
| |
Collapse
|
22
|
Girault V, Gilard V, Marguet F, Lesueur C, Hauchecorne M, Ramdani Y, Laquerrière A, Marret S, Jégou S, Gonzalez BJ, Brasse-Lagnel C, Bekri S. Prenatal alcohol exposure impairs autophagy in neonatal brain cortical microvessels. Cell Death Dis 2017; 8:e2610. [PMID: 28182007 PMCID: PMC5386476 DOI: 10.1038/cddis.2017.29] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2016] [Revised: 12/31/2016] [Accepted: 01/10/2017] [Indexed: 02/06/2023]
Abstract
Brain developmental lesions are a devastating consequence of prenatal alcohol exposure (PAE). We recently showed that PAE affects cortical vascular development with major effects on angiogenesis and endothelial cell survival. The underlying molecular mechanisms of these effects remain poorly understood. This study aimed at characterizing the ethanol exposure impact on the autophagic process in brain microvessels in human fetuses with fetal alcohol syndrome (FAS) and in a PAE mouse model. Our results indicate that PAE induces an increase of autophagic vacuole number in human fetal and neonatal mouse brain cortical microvessels. Subsequently, ex vivo studies using green fluorescent protein (GFP)-LC3 mouse microvessel preparations revealed that ethanol treatment alters autophagy in endothelial cells. Primary cultures of mouse brain microvascular endothelial cells were used to characterize the underlying molecular mechanisms. LC3 and p62 protein levels were significantly increased in endothelial cells treated with 50 mM ethanol. The increase of autophagic vacuole number may be due to excessive autophagosome formation associated with the partial inhibition of the mammalian target of rapamycin pathway upon ethanol exposure. In addition, the progression from autophagosomes to autolysosomes, which was monitored using autophagic flux inhibitors and mRFP-EGFP vector, showed a decrease in the autolysosome number. Besides, a decrease in the Rab7 protein level was observed that may underlie the impairment of autophagosome-lysosome fusion. In addition, our results showed that ethanol-induced cell death is likely to be mediated by decreased mitochondrial integrity and release of apoptosis-inducing factor. Interestingly, incubation of cultured cells with rapamycin prevented ethanol effects on autophagic flux, ethanol-induced cell death and vascular plasticity. Taken together, these results are consistent with autophagy dysregulation in cortical microvessels upon ethanol exposure, which could contribute to the defects in angiogenesis observed in patients with FAS. Moreover, our results suggest that rapamycin represents a potential therapeutic strategy to reduce PAE-related brain developmental disorders.
Collapse
Affiliation(s)
- Virginie Girault
- Normandie University, UNIROUEN, INSERM U1245, NeoVasc Team, Rouen, France
| | - Vianney Gilard
- Normandie University, UNIROUEN, INSERM U1245, NeoVasc Team, Rouen, France
- Department of Neurosurgery, Rouen University Hospital, Rouen, France
| | - Florent Marguet
- Normandie University, UNIROUEN, INSERM U1245, NeoVasc Team, Rouen, France
- Pathology Laboratory, Rouen University Hospital, Rouen, France
| | - Céline Lesueur
- Normandie University, UNIROUEN, INSERM U1245, NeoVasc Team, Rouen, France
- Department of Metabolic Biochemistry, Rouen University Hospital, Rouen, France
| | | | - Yasmina Ramdani
- Normandie University, UNIROUEN, INSERM U1245, NeoVasc Team, Rouen, France
| | - Annie Laquerrière
- Normandie University, UNIROUEN, INSERM U1245, NeoVasc Team, Rouen, France
- Pathology Laboratory, Rouen University Hospital, Rouen, France
| | - Stéphane Marret
- Normandie University, UNIROUEN, INSERM U1245, NeoVasc Team, Rouen, France
- Department of Neonatal Pediatrics and Intensive Care and Neuropediatrics, Rouen University Hospital, Rouen, France
| | - Sylvie Jégou
- Normandie University, UNIROUEN, INSERM U1245, NeoVasc Team, Rouen, France
| | | | | | - Soumeya Bekri
- Normandie University, UNIROUEN, INSERM U1245, NeoVasc Team, Rouen, France
- Department of Metabolic Biochemistry, Rouen University Hospital, Rouen, France
| |
Collapse
|
23
|
Hong JM, Kim SJ, Lee SM. Role of necroptosis in autophagy signaling during hepatic ischemia and reperfusion. Toxicol Appl Pharmacol 2016; 308:1-10. [DOI: 10.1016/j.taap.2016.08.010] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2016] [Revised: 07/14/2016] [Accepted: 08/09/2016] [Indexed: 01/23/2023]
|
24
|
Autophagic flux regulates microglial phenotype according to the time of oxygen-glucose deprivation/reperfusion. Int Immunopharmacol 2016; 39:140-148. [DOI: 10.1016/j.intimp.2016.06.030] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2015] [Revised: 06/11/2016] [Accepted: 06/27/2016] [Indexed: 12/29/2022]
|
25
|
Renon M, Legrand B, Blanc E, Daubigney F, Bokobza C, Mortreux M, Paul JL, Delabar JM, Rouach H, Andreau K, Janel N. Impact of Dyrk1A level on alcohol metabolism. BIOCHIMICA ET BIOPHYSICA ACTA 2016; 1862:1495-503. [PMID: 27216978 DOI: 10.1016/j.bbadis.2016.05.011] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/25/2015] [Revised: 05/09/2016] [Accepted: 05/18/2016] [Indexed: 12/15/2022]
Abstract
Alcoholic liver diseases arise from complex phenotypes involving many genetic factors. It is quite common to find hyperhomocysteinemia in chronic alcoholic liver diseases, mainly due to deregulation of hepatic homocysteine metabolism. Dyrk1A, involved in homocysteine metabolism at different crossroads, is decreased in liver of hyperhomocysteinemic mice. Here, we hypothesized that Dyrk1A contributes to alcohol-induced hepatic impairment in mice. Control, hyperhomocysteinemic and mice overexpressing Dyrk1A were fed using a Lieber-DeCarli liquid diet with or without ethanol (5% v/v ethanol) for one month, and liver histological examination and liver biochemical function tests were performed. Plasma alanine aminotransferase and homocysteine levels were significantly decreased in mice overexpressing Dyrk1A compared to control mice with or without alcohol administration. On the contrary, the mean plasma alanine aminotransferase and homocysteine levels were significantly higher in hyperhomocysteinemic mice than that of control mice after alcohol administration. Paraoxonase 1 and CYP2E1, two phase I xenobiotic metabolizing enzymes, were found increased in the three groups of mice after alcohol administration. However, NQO1, a phase II enzyme, was only found increased in hyperhomocysteinemic mice after alcohol exposure, suggesting a greater effect of alcohol in liver of hyperhomocysteinemic mice. We observed positive correlations between hepatic alcohol dehydrogenase activity, Dyrk1A and ADH4 protein levels. Importantly, a deleterious effect of alcohol consumption on hepatic Dyrk1A protein level was found. Our study reveals on the one hand a role of Dyrk1A in ethanol metabolism and on the other hand a deleterious effect of alcohol administration on hepatic Dyrk1A level.
Collapse
Affiliation(s)
- Marjorie Renon
- Univ Paris Diderot, Sorbonne Paris Cité, Unité de Biologie Fonctionnelle et Adaptative (BFA), UMR 8251 CNRS, F-75205 Paris, France
| | - Béatrice Legrand
- Univ René Descartes, Sorbonne Paris Cité, Unité de Pharmacologie, Toxicologie et Signalisation Cellulaire, INSERM UMR-S 1124, Paris, France
| | - Etienne Blanc
- Univ René Descartes, Sorbonne Paris Cité, Unité de Pharmacologie, Toxicologie et Signalisation Cellulaire, INSERM UMR-S 1124, Paris, France
| | - Fabrice Daubigney
- Univ Paris Diderot, Sorbonne Paris Cité, Unité de Biologie Fonctionnelle et Adaptative (BFA), UMR 8251 CNRS, F-75205 Paris, France
| | - Cindy Bokobza
- Univ Paris Diderot, Sorbonne Paris Cité, Unité de Biologie Fonctionnelle et Adaptative (BFA), UMR 8251 CNRS, F-75205 Paris, France
| | - Marie Mortreux
- Univ Paris Diderot, Sorbonne Paris Cité, Unité de Biologie Fonctionnelle et Adaptative (BFA), UMR 8251 CNRS, F-75205 Paris, France
| | - Jean-Louis Paul
- AP-HP, Hôpital Européen Georges Pompidou, Service de Biochimie, 75015 Paris, France
| | - Jean-Maurice Delabar
- Inserm U 1127, CNRS UMR 7225, Sorbonne Universités, UPMC Univ Paris 06, UMR S 1127, Institut du Cerveau et de la Moelle épinière, ICM, Paris, France
| | - Hélène Rouach
- Univ René Descartes, Sorbonne Paris Cité, Unité de Pharmacologie, Toxicologie et Signalisation Cellulaire, INSERM UMR-S 1124, Paris, France
| | - Karine Andreau
- Univ René Descartes, Sorbonne Paris Cité, Unité de Pharmacologie, Toxicologie et Signalisation Cellulaire, INSERM UMR-S 1124, Paris, France
| | - Nathalie Janel
- Univ Paris Diderot, Sorbonne Paris Cité, Unité de Biologie Fonctionnelle et Adaptative (BFA), UMR 8251 CNRS, F-75205 Paris, France.
| |
Collapse
|
26
|
Abstract
Preclinical studies revealed contribution of N-methyl-D-aspartate receptors (NMDARs) to a variety of neuropsychiatric diseases including alcoholism, but development of NMDAR antagonists for therapeutic use has been a challenge, in part due to severe side effects. One of the key intracellular events resulting from stimulation of NMDAR is activation of calpains-calcium-dependent cysteine proteases. Here we studied whether inhibition of calpains would produce therapeutic-like effects of NMDAR antagonists but without their NMDAR-mediated side-effect profile. The calpain inhibitor A-705253 (3-10 mg/kg) was tested in a model of cue-induced reinstatement of alcohol-seeking behavior in post-dependent Wistar rats and in an alcohol deprivation effect (ADE) model in long-term alcohol drinking Wistar rats, two behavioral models for alcohol-seeking and relapse, respectively. We also tested the effect of A-705253 on the saccharine deprivation effect (SDE) as a selectivity measure. Acute treatment with A-705253 dose-dependently reduced cue-induced reinstatement of alcohol-seeking behavior. Repeated administration of A-705253 caused significant reductions of relapse-like excessive alcohol intake during the post-abstinence drinking days, an effect that persisted during two more successive drug-free drinking weeks, which was selective for the ADE as the SDE was unaffected. However, A-705253 did not produce psychostimulant, cognition impairing (delayed-matching-to-position), or psychotomimetic effects (specifically, phencyclidine discriminative stimulus effects). Taken together, these results demonstrate the involvement of calpains in alcohol-seeking and relapse and present a rationale for a novel pharmacological intervention that may reduce craving and relapse with minimal side effects in alcohol-dependent patients.
Collapse
|
27
|
Cholesterol Enhances the Toxic Effect of Ethanol and Acetaldehyde in Primary Mouse Hepatocytes. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2015; 2016:9209825. [PMID: 26788255 PMCID: PMC4691636 DOI: 10.1155/2016/9209825] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/23/2015] [Accepted: 09/15/2015] [Indexed: 12/15/2022]
Abstract
Obesity and alcohol consumption are risk factors for hepatic steatosis, and both commonly coexist. Our objective was to evaluate the effect of ethanol and acetaldehyde on primary hepatocytes obtained from mice fed for two days with a high cholesterol (HC) diet. HC hepatocytes increased lipid and cholesterol content. HC diet sensitized hepatocytes to the toxic effect of ethanol and acetaldehyde. Cyp2E1 content increased with HC diet, as well as in those treated with ethanol or acetaldehyde, while the activity of this enzyme determined in microsomes increased in the HC and in all ethanol treated hepatocytes, HC and CW. Oxidized proteins were increased in the HC cultures treated or not with the toxins. Transmission electron microscopy showed endoplasmic reticulum (ER) stress and megamitochondria in hepatocytes treated with ethanol as in HC and the ethanol HC treated hepatocytes. ER stress determined by PERK content was increased in ethanol treated hepatocytes from HC mice and CW. Nuclear translocation of ATF6 was observed in HC hepatocytes treated with ethanol, results that indicate that lipids overload and ethanol treatment favor ER stress. Oxidative stress, ER stress, and mitochondrial damage underlie potential mechanisms for increased damage in steatotic hepatocyte treated with ethanol.
Collapse
|
28
|
Abstract
Autophagy is a conserved quality-control pathway that degrades cytoplasmic contents in lysosomes. Autophagy degrades lipid droplets through a process termed lipophagy. Starvation and an acute lipid stimulus increase autophagic sequestration of lipid droplets and their degradation in lysosomes. Accordingly, liver-specific deletion of the autophagy gene Atg7 increases hepatic fat content, mimicking the human condition termed nonalcoholic fatty liver disease. In this review, we provide insights into the molecular regulation of lipophagy, discuss fundamental questions related to the mechanisms by which autophagosomes recognize lipid droplets and how ATG proteins regulate membrane curvature for lipid droplet sequestration, and comment on the possibility of cross talk between lipophagy and cytosolic lipases in lipid mobilization. Finally, we discuss the contribution of lipophagy to the pathophysiology of human fatty liver disease. Understanding how lipophagy clears hepatocellular lipid droplets could provide new ways to prevent fatty liver disease, a major epidemic in developed nations.
Collapse
Affiliation(s)
- Nuria Martinez-Lopez
- Department of Medicine, Albert Einstein College of Medicine, Bronx, New York 10461
- Department of Molecular Pharmacology, Albert Einstein College of Medicine, Bronx, New York 10461
| | - Rajat Singh
- Department of Medicine, Albert Einstein College of Medicine, Bronx, New York 10461
- Department of Molecular Pharmacology, Albert Einstein College of Medicine, Bronx, New York 10461
- Diabetes Research Center, Albert Einstein College of Medicine, Bronx, New York 10461
- Institute for Aging Research, Albert Einstein College of Medicine, Bronx, New York 10461
| |
Collapse
|
29
|
Liu J, Li H, Zhou B, Xu L, Kang X, Yang W, Wu S, Sun H. PGRN induces impaired insulin sensitivity and defective autophagy in hepatic insulin resistance. Mol Endocrinol 2015; 29:528-41. [PMID: 25664864 DOI: 10.1210/me.2014-1266] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
Progranulin (PGRN) has recently emerged as an important regulator for glucose metabolism and insulin sensitivity. However, the underlying mechanisms of PGRN in the regulation of insulin sensitivity and autophagy remain elusive. In this study, we aimed to address the direct effects of PGRN in vivo and to evaluate the potential interaction of impaired insulin sensitivity and autophagic disorders in hepatic insulin resistance. We found that mice treated with PGRN for 21 days exhibited the impaired glucose tolerance and insulin tolerance and hepatic autophagy imbalance as well as defective insulin signaling. Furthermore, treatment of mice with TNF receptor (TNFR)-1 blocking peptide-Fc, a TNFR1 blocking peptide-Fc fusion protein to competitively block the interaction of PGRN and TNFR1, resulted in the restoration of systemic insulin sensitivity and the recovery of autophagy and insulin signaling in liver. Consistent with these findings in vivo, we also observed that PGRN treatment induced defective autophagy and impaired insulin signaling in hepatocytes, with such effects being drastically nullified by the addition of TNFR1 blocking peptide -Fc or TNFR1-small interference RNA via the TNFR1-nuclear factor-κB-dependent manner, indicating the causative role of PGRN in hepatic insulin resistance. In conclusion, our findings supported the notion that PGRN is a key regulator of hepatic insulin resistance and that PGRN may mediate its effects, at least in part, by inducing defective autophagy via TNFR1/nuclear factor-κB.
Collapse
Affiliation(s)
- Jiali Liu
- First Affiliated Hospital of the Medical School of Xi'an Jiaotong University, and Key Laboratory of Environment and Genes Related to Diseases, Ministry of Education, Medical School of Xi'an Jiaotong University, Xi'an, Shaanxi 710061, China
| | | | | | | | | | | | | | | |
Collapse
|
30
|
Esteban-Martínez L, Boya P. Autophagic flux determination in vivo and ex vivo. Methods 2015; 75:79-86. [PMID: 25644445 DOI: 10.1016/j.ymeth.2015.01.008] [Citation(s) in RCA: 67] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2014] [Revised: 01/19/2015] [Accepted: 01/19/2015] [Indexed: 12/31/2022] Open
Abstract
Autophagy is a highly dynamic process that mediates the degradation of cellular constituents inside lysosomes. It is characterized by the formation of autophagosomes, double membrane organelles that engulf cytosolic components and organelles and degrade their contents upon fusion with lysosomes. Upregulation of autophagy in response to specific stimuli can be determined by evaluating autophagic flux. This is achieved by comparing the number of autophagosomes in the absence and presence of lysosomal inhibitors. While the determination of autophagic flux in isolated cells is well-documented, few studies have described its determination in tissues or in vivo. Here, we describe the evaluation of autophagic flux both in vivo and ex vivo in several tissues, after treatment with lysosomal inhibitors and exposure to classical autophagy-inducing stimuli. This method uses LC3 lipidation, as determined by Western blot, fluorescence microscopy and flow cytometry. Our findings demonstrate that autophagic flux can be evaluated in vivo and ex vivo in several tissues.
Collapse
Affiliation(s)
- Lorena Esteban-Martínez
- Department of Cellular and Molecular Biology, Centro de Investigaciones Biológicas, Ramiro de Maeztu 9, 28040 Madrid, Spain.
| | - Patricia Boya
- Department of Cellular and Molecular Biology, Centro de Investigaciones Biológicas, Ramiro de Maeztu 9, 28040 Madrid, Spain.
| |
Collapse
|
31
|
Abstract
Ethanol metabolism in hepatocytes causes the generation of reactive oxygen species, endoplasmic reticulum stress and alterations in mitochondrial energy and REDOX metabolism. In ethanol-exposed liver disease, autophagy not only acts as a cleanser to remove damaged organelles and cytosolic components, but also selectively clears specific targets such as lipid droplets and damaged mitochondria. Moreover, ethanol appears to play a role in protecting hepatocytes from apoptosis at certain concentrations. This article describes the evidence, function and potential mechanism of autophagy in ethanol-exposed liver disease and the controversy surrounding the effects of ethanol on autophagy.
Collapse
Affiliation(s)
- Li-Ren Wang
- Department of Infection and Liver Diseases, Liver Research Center, the First Affiliated Hospital of Wenzhou Medical University, Wenzhou 325000, China
| | | | | | | | | |
Collapse
|