1
|
Liran M, Fischer I, Elboim M, Rahamim N, Gordon T, Urshansky N, Assaf Y, Barak B, Barak S. Long-Term Excessive Alcohol Consumption Enhances Myelination in the Mouse Nucleus Accumbens. J Neurosci 2025; 45:e0280242025. [PMID: 39909566 PMCID: PMC11968546 DOI: 10.1523/jneurosci.0280-24.2025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2024] [Revised: 12/15/2024] [Accepted: 01/08/2025] [Indexed: 02/07/2025] Open
Abstract
Chronic excessive alcohol (ethanol) consumption induces neuroadaptations in the brain's reward system, including biochemical and structural abnormalities in white matter that are implicated in addiction phenotypes. Here, we demonstrate that long-term (12 week) voluntary ethanol consumption enhances myelination in the nucleus accumbens (NAc) of female and male adult mice, as evidenced by molecular, ultrastructural, and cellular alterations. Specifically, transmission electron microscopy analysis showed increased myelin thickness in the NAc following long-term ethanol consumption, while axon diameter remained unaffected. These changes were paralleled by increased mRNA transcript levels of key transcription factors essential for oligodendrocyte (OL) differentiation, along with elevated expression of critical myelination-related genes. In addition, diffusion tensor imaging revealed increased connectivity between the NAc and the prefrontal cortex, reflected by a higher number of tracts connecting these regions. We also observed ethanol-induced effects on OL lineage cells, with a reduction in the number of mature OLs after 3 weeks of ethanol consumption, followed by an increase after 6 weeks. These findings suggest that ethanol alters OL development prior to increasing myelination in the NAc. Finally, chronic administration of the promyelination drug clemastine to mice with a history of heavy ethanol consumption further elevated ethanol intake and preference, suggesting that increased myelination may contribute to escalated drinking behavior. Together, these findings suggest that heavy ethanol consumption disrupts OL development, induces enhanced myelination in the NAc, and may drive further ethanol intake, reinforcing addictive behaviors.
Collapse
Affiliation(s)
- Mirit Liran
- Department of Neurobiology, Faculty of Life Sciences, Tel Aviv University, Tel Aviv 69978, Israel
| | - Inbar Fischer
- Sagol School of Neuroscience, Tel Aviv University, Tel Aviv 69978, Israel
| | - May Elboim
- Sagol School of Neuroscience, Tel Aviv University, Tel Aviv 69978, Israel
| | - Nofar Rahamim
- Sagol School of Neuroscience, Tel Aviv University, Tel Aviv 69978, Israel
| | - Tamar Gordon
- Sagol School of Neuroscience, Tel Aviv University, Tel Aviv 69978, Israel
| | - Nataly Urshansky
- School of Psychological Sciences, Tel Aviv University, Tel Aviv 69978, Israel
| | - Yaniv Assaf
- Department of Neurobiology, Faculty of Life Sciences, Tel Aviv University, Tel Aviv 69978, Israel
- Sagol School of Neuroscience, Tel Aviv University, Tel Aviv 69978, Israel
| | - Boaz Barak
- Department of Neurobiology, Faculty of Life Sciences, Tel Aviv University, Tel Aviv 69978, Israel
- Sagol School of Neuroscience, Tel Aviv University, Tel Aviv 69978, Israel
- School of Psychological Sciences, Tel Aviv University, Tel Aviv 69978, Israel
| | - Segev Barak
- Department of Neurobiology, Faculty of Life Sciences, Tel Aviv University, Tel Aviv 69978, Israel
- Sagol School of Neuroscience, Tel Aviv University, Tel Aviv 69978, Israel
- School of Psychological Sciences, Tel Aviv University, Tel Aviv 69978, Israel
| |
Collapse
|
2
|
van Koppen S, Minnaard AM, Smeets JAS, Buzatouiu I, Ramakers GMJ, Adan RAH, Vanderschuren LJMJ, Lesscher HMB. Seeking under threat of adversity: assessing control over reward pursuit in rats. Psychopharmacology (Berl) 2025; 242:803-816. [PMID: 39653798 DOI: 10.1007/s00213-024-06729-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/21/2024] [Accepted: 11/26/2024] [Indexed: 03/09/2025]
Abstract
RATIONALE Substance use disorder (SUD) is a chronic relapsing brain disorder that is characterised by loss of control over substance use. A variety of rodent models employing punishment setups have been developed to assess loss of control over substance use, i.e. persistent substance use despite negative consequences, to facilitate the translation of findings from animal studies to the human situation. OBJECTIVES Since the negative consequences of addictive behaviour are typically unpredictable, we here present the Seeking under Threat of Adversity (STA) task in rats, that incorporates cued, probabilistic and response-contingent punishment of reward seeking. METHODS Male rats were trained to lever press for sucrose, alcohol or cocaine and were subsequently tested in the STA task. In this task, a tone cue is presented during reward seeking which functions as a warning signal, since responding during tone presentation results in a probabilistic foot shock punishment. We first determined the optimal shock intensity to induce a moderate suppression of seeking. Next, we assessed the stability of punished reward seeking over repeated tests. Finally, we compared the development of loss of control over substance seeking for sucrose, alcohol and cocaine. (Loss of) control over substance seeking would be evident as the (in)ability to refrain from lever pressing to obtain a reward, despite the threat of a negative outcome. RESULTS Parametric experiments revealed suppression of responding for both sucrose and alcohol in the STA task at shock intensities between 0.25 and 0.35 mA. The suppression of responding was stable with repeated testing. Furthermore, less control over alcohol and cocaine seeking, when compared to sucrose seeking, was observed in male rats using the STA task. CONCLUSIONS The STA task is a novel behavioural task that includes two important aspects of human substance use despite negative consequences, i.e. response contingency and unpredictability of adversity. Combined with other behavioural tasks and neural manipulations, the STA task can further our understanding of the psychopathology of substance use disorders.
Collapse
Affiliation(s)
- Sofie van Koppen
- Department of Population Health Sciences, Unit of Animals in Science and Society, Faculty of Veterinary Medicine, Utrecht University, Utrecht, The Netherlands
- Neuroscience of Addiction (NofA) Lab, Department of Psychology, Education & Child Studies, Erasmus University Rotterdam, Rotterdam, The Netherlands
| | - A Maryse Minnaard
- Department of Population Health Sciences, Unit of Animals in Science and Society, Faculty of Veterinary Medicine, Utrecht University, Utrecht, The Netherlands
- Department of Translational Neuroscience, Brain Center, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Johanna A S Smeets
- Department of Population Health Sciences, Unit of Animals in Science and Society, Faculty of Veterinary Medicine, Utrecht University, Utrecht, The Netherlands
- Department of Translational Neuroscience, Brain Center, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Iulia Buzatouiu
- Department of Population Health Sciences, Unit of Animals in Science and Society, Faculty of Veterinary Medicine, Utrecht University, Utrecht, The Netherlands
| | - Geert M J Ramakers
- Department of Translational Neuroscience, Brain Center, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Roger A H Adan
- Department of Translational Neuroscience, Brain Center, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Louk J M J Vanderschuren
- Department of Population Health Sciences, Unit of Animals in Science and Society, Faculty of Veterinary Medicine, Utrecht University, Utrecht, The Netherlands
| | - Heidi M B Lesscher
- Department of Population Health Sciences, Unit of Animals in Science and Society, Faculty of Veterinary Medicine, Utrecht University, Utrecht, The Netherlands.
| |
Collapse
|
3
|
Yoon HJ, Doyle MA, Altemus ME, Bethi R, Lago SH, Winder DG, Calipari ES. Operant ethanol self-administration behaviors do not predict sex differences in continuous access home cage drinking. Alcohol 2025; 123:87-99. [PMID: 39218047 PMCID: PMC12034132 DOI: 10.1016/j.alcohol.2024.08.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2024] [Revised: 07/03/2024] [Accepted: 08/12/2024] [Indexed: 09/04/2024]
Abstract
Understanding sex differences in disease prevalence is critical to public health, particularly in the context of alcohol use disorder (AUD). The goal of this study was to understand sex differences in ethanol drinking behavior and define the precise conditions under which sex differences emerge. Consistent with prior work, C57BL/6J females drank more than males under continuous access two-bottle choice conditions. However, using ethanol self-administration - where an operant response results in access to an ethanol sipper for a fixed time period - we found no sex differences in operant response rates or ethanol consumption (volume per body weight consumed, as well as lick behavior). This remained true across a wide range of parameters including acquisition, when the ethanol sipper access period was manipulated, and when the concentration of the ethanol available was scaled. The only sex differences observed were in total ethanol consumption, which was explained by differences in body weight between males and females, rather than by sex differences in motivation to drink. Using dimensionality reduction approaches, we found that drinking behavior in the operant context did not cluster by sex, but rather clustered by high and low drinking phenotypes. Interestingly, these high and low drinking phenotypes in the operant context showed no correlation with those same categorizations in the home cage context within the same animals. These data underscore the complexity of sex differences in ethanol consumption, highlighting the important role that drinking conditions/context plays in the expression of these differences.
Collapse
Affiliation(s)
- Hye Jean Yoon
- Department of Pharmacology, Vanderbilt University, Nashville, TN, USA; Vanderbilt Center for Addiction Research, Vanderbilt University, Nashville, TN, USA
| | - Marie A Doyle
- Vanderbilt Brain Institute, Vanderbilt University, Nashville, TN, USA; Vanderbilt Center for Addiction Research, Vanderbilt University, Nashville, TN, USA; Department of Molecular Physiology and Biophysics, Vanderbilt University, Nashville, TN, USA; Department of Neurobiology, UMass Chan Medical School, Worcester, MA, USA
| | - Megan E Altemus
- Department of Pharmacology, Vanderbilt University, Nashville, TN, USA; Vanderbilt Center for Addiction Research, Vanderbilt University, Nashville, TN, USA; Department of Molecular Physiology and Biophysics, Vanderbilt University, Nashville, TN, USA; Department of Psychiatry and Behavioral Sciences, Vanderbilt University, Nashville, TN, USA
| | - Rishik Bethi
- Department of Pharmacology, Vanderbilt University, Nashville, TN, USA; Vanderbilt Center for Addiction Research, Vanderbilt University, Nashville, TN, USA
| | - Sofia H Lago
- Department of Pharmacology, Vanderbilt University, Nashville, TN, USA; Vanderbilt Center for Addiction Research, Vanderbilt University, Nashville, TN, USA
| | - Danny G Winder
- Vanderbilt Center for Addiction Research, Vanderbilt University, Nashville, TN, USA; Department of Molecular Physiology and Biophysics, Vanderbilt University, Nashville, TN, USA; Department of Neurobiology, UMass Chan Medical School, Worcester, MA, USA
| | - Erin S Calipari
- Department of Pharmacology, Vanderbilt University, Nashville, TN, USA; Vanderbilt Brain Institute, Vanderbilt University, Nashville, TN, USA; Vanderbilt Center for Addiction Research, Vanderbilt University, Nashville, TN, USA; Department of Molecular Physiology and Biophysics, Vanderbilt University, Nashville, TN, USA; Department of Psychiatry and Behavioral Sciences, Vanderbilt University, Nashville, TN, USA.
| |
Collapse
|
4
|
Favoretto CA, Righi T, Fernandes GJD, Bertagna NB, Rodolpho BT, Janisset NDRLDL, Jovita-Farias C, Costa GVL, Anjos-Santos AD, Romualdo da Silva FB, Leão RM, Cruz FC. Animal models for studying therapeutic targets and treatments for alcohol use disorder. INTERNATIONAL REVIEW OF NEUROBIOLOGY 2024; 178:355-381. [PMID: 39523060 DOI: 10.1016/bs.irn.2024.08.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2024]
Abstract
Over the decades, preclinical models have been developed and refined to investigate the rewarding effects of addictive substances and the neurobiological underpinnings of alcohol and other drug use disorders. This chapter delves into the methodological foundations, advantages, and limitations of leading animal models used to study alcohol use disorders (AUDs). Some models focus on the early stages of alcohol use and abuse. For instance, conditioned place preference assesses associative learning between a specific context and the effects of the drug, while locomotor sensitization measures increased locomotor activity following repeated drug exposure. In contrast, contingent models such as operant and non-operant alcohol self-administration protocols gauge voluntary intake, preference, motivation, and seeking behavior for alcohol solutions among experimental subjects. Additionally, we discuss the chronic intermittent alcohol vapor model, extensively utilized to induce a phenotype resembling dependence through non-contingent inhalation of alcohol vapor, resulting in elevated blood alcohol concentrations. Given the focus on pharmacological treatments for AUDs, we explore how different animal models can be employed to evaluate potential therapies and extrapolate findings to alcohol-related behaviors in humans. This chapter aims to provide readers with a comprehensive understanding of various animal models for AUDs, aiding in the interpretation of preclinical studies and the selection of suitable models for future research endeavors.
Collapse
Affiliation(s)
- Cristiane Aparecida Favoretto
- Molecular and Behavioral Neuroscience Laboratory, Department of Pharmacology, Universidade Federal de São Paulo (UNIFESP), São Paulo, São Paulo, Brazil; Department of Molecular Medicine, The Scripps Research Institute, La Jolla, CA, United States
| | - Thamires Righi
- Molecular and Behavioral Neuroscience Laboratory, Department of Pharmacology, Universidade Federal de São Paulo (UNIFESP), São Paulo, São Paulo, Brazil
| | - Gustavo Juliate Damaceno Fernandes
- Molecular and Behavioral Neuroscience Laboratory, Department of Pharmacology, Universidade Federal de São Paulo (UNIFESP), São Paulo, São Paulo, Brazil
| | - Natalia Bonetti Bertagna
- Molecular and Behavioral Neuroscience Laboratory, Department of Pharmacology, Universidade Federal de São Paulo (UNIFESP), São Paulo, São Paulo, Brazil
| | - Ben Tagami Rodolpho
- Molecular and Behavioral Neuroscience Laboratory, Department of Pharmacology, Universidade Federal de São Paulo (UNIFESP), São Paulo, São Paulo, Brazil
| | - Nilma do Rocio Lara de Lima Janisset
- Molecular and Behavioral Neuroscience Laboratory, Department of Pharmacology, Universidade Federal de São Paulo (UNIFESP), São Paulo, São Paulo, Brazil
| | - Caio Jovita-Farias
- Molecular and Behavioral Neuroscience Laboratory, Department of Pharmacology, Universidade Federal de São Paulo (UNIFESP), São Paulo, São Paulo, Brazil
| | - Giovanna Victória Lopes Costa
- Molecular and Behavioral Neuroscience Laboratory, Department of Pharmacology, Universidade Federal de São Paulo (UNIFESP), São Paulo, São Paulo, Brazil
| | - Alexia Dos Anjos-Santos
- Molecular and Behavioral Neuroscience Laboratory, Department of Pharmacology, Universidade Federal de São Paulo (UNIFESP), São Paulo, São Paulo, Brazil
| | | | - Rodrigo Molini Leão
- Laboratory of Pharmacology, Biomedical Sciences Institute, Department of Pharmacology, Federal University of Uberlândia, Uberlândia, MG, Brazil
| | - Fábio Cardoso Cruz
- Molecular and Behavioral Neuroscience Laboratory, Department of Pharmacology, Universidade Federal de São Paulo (UNIFESP), São Paulo, São Paulo, Brazil.
| |
Collapse
|
5
|
Lyu Z, Gong Z, Huang M, Xin S, Zou M, Ding Y. Benefits of exercise on cognitive impairment in alcohol use disorder following alcohol withdrawal. FEBS Open Bio 2024; 14:1540-1558. [PMID: 39054261 PMCID: PMC11492329 DOI: 10.1002/2211-5463.13865] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Revised: 06/21/2024] [Accepted: 07/11/2024] [Indexed: 07/27/2024] Open
Abstract
Although most cognitive impairments induced by prolonged alcohol consumption tend to improve within the initial months of abstinence, there is evidence suggesting certain cognitive deficits may persist. This study aimed to investigate the impact of aerobic exercise on learning and memory in alcohol use disorder (AUD) mice following a period of abstinence from alcohol. We also sought to assess the levels of monoamine neurotransmitters in the hippocampus. To this end, we established an AUD mouse model through a two-bottle choice (sucrose fading mode and normal mode) and chronic intermittent alcohol vapor (combined with intraperitoneal injection) and randomly allocated mice into exercise groups to undergo treadmill training. Learning and memory abilities were assessed through the Morris water maze test and spontaneous activity was evaluated using the open field test. The levels of dopamine, norepinephrine, serotonin, and brain-derived neurotrophic factor in the hippocampus were quantified using enzyme-linked immunoassay (ELISA) kits. The findings reveal that after cessation of alcohol consumption, learning and memory abilities in AUD mice did not completely return to normal levels. The observed enhancement of cognitive functions in AUD mice through aerobic exercise may be attributed to restoring levels of monoamine neurotransmitters in the hippocampus, boosting brain-derived neurotrophic factor (BDNF) concentrations, and facilitating an increase in hippocampal mass. These results offer empirical evidence to support aerobic exercise as a viable therapeutic strategy to alleviate cognitive deficits associated with AUD.
Collapse
Affiliation(s)
- Zhen Lyu
- Key Lab of Aquatic Sports Training Monitoring and Intervention of General Administration of Sport of China, Faculty of Physical EducationJiangxi Normal UniversityNanchangChina
- School of PsychologyShanghai University of SportChina
| | - Zhi‐Gang Gong
- Key Lab of Aquatic Sports Training Monitoring and Intervention of General Administration of Sport of China, Faculty of Physical EducationJiangxi Normal UniversityNanchangChina
| | - Min‐Xia Huang
- Science and Technology College of Nanchang Hangkong UniversityJiujiangChina
| | - Si‐Ping Xin
- Key Lab of Aquatic Sports Training Monitoring and Intervention of General Administration of Sport of China, Faculty of Physical EducationJiangxi Normal UniversityNanchangChina
| | - Mao‐Zhong Zou
- Key Lab of Aquatic Sports Training Monitoring and Intervention of General Administration of Sport of China, Faculty of Physical EducationJiangxi Normal UniversityNanchangChina
| | - Yu‐Quan Ding
- Key Lab of Aquatic Sports Training Monitoring and Intervention of General Administration of Sport of China, Faculty of Physical EducationJiangxi Normal UniversityNanchangChina
| |
Collapse
|
6
|
Rahamim N, Liran M, Aronovici C, Flumin H, Gordon T, Urshansky N, Barak S. Inhibition of ERK1/2 or CRMP2 Disrupts Alcohol Memory Reconsolidation and Prevents Relapse in Rats. Int J Mol Sci 2024; 25:5478. [PMID: 38791516 PMCID: PMC11122309 DOI: 10.3390/ijms25105478] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2024] [Revised: 05/07/2024] [Accepted: 05/13/2024] [Indexed: 05/26/2024] Open
Abstract
Relapse to alcohol abuse, often caused by cue-induced alcohol craving, is a major challenge in alcohol addiction treatment. Therefore, disrupting the cue-alcohol memories can suppress relapse. Upon retrieval, memories transiently destabilize before they reconsolidate in a process that requires protein synthesis. Evidence suggests that the mammalian target of rapamycin complex 1 (mTORC1), governing the translation of a subset of dendritic proteins, is crucial for memory reconsolidation. Here, we explored the involvement of two regulatory pathways of mTORC1, phosphoinositide 3-kinase (PI3K)-AKT and extracellular regulated kinase 1/2 (ERK1/2), in the reconsolidation process in a rat (Wistar) model of alcohol self-administration. We found that retrieval of alcohol memories using an odor-taste cue increased ERK1/2 activation in the amygdala, while the PI3K-AKT pathway remained unaffected. Importantly, ERK1/2 inhibition after alcohol memory retrieval impaired alcohol-memory reconsolidation and led to long-lasting relapse suppression. Attenuation of relapse was also induced by post-retrieval administration of lacosamide, an inhibitor of collapsin response mediator protein-2 (CRMP2)-a translational product of mTORC1. Together, our findings indicate the crucial role of ERK1/2 and CRMP2 in the reconsolidation of alcohol memories, with their inhibition as potential treatment targets for relapse prevention.
Collapse
Affiliation(s)
- Nofar Rahamim
- Sagol School of Neuroscience, Tel Aviv University, Tel Aviv 69978, Israel; (N.R.)
- School of Psychological Sciences, Tel Aviv University, Tel Aviv 69978, Israel (N.U.)
| | - Mirit Liran
- School of Psychological Sciences, Tel Aviv University, Tel Aviv 69978, Israel (N.U.)
- Faculty of Life Sciences, Department of Neurobiology, Tel Aviv University, Tel Aviv 69978, Israel
| | - Coral Aronovici
- Sagol School of Neuroscience, Tel Aviv University, Tel Aviv 69978, Israel; (N.R.)
- School of Psychological Sciences, Tel Aviv University, Tel Aviv 69978, Israel (N.U.)
| | - Hila Flumin
- Sagol School of Neuroscience, Tel Aviv University, Tel Aviv 69978, Israel; (N.R.)
- School of Psychological Sciences, Tel Aviv University, Tel Aviv 69978, Israel (N.U.)
| | - Tamar Gordon
- Sagol School of Neuroscience, Tel Aviv University, Tel Aviv 69978, Israel; (N.R.)
- School of Psychological Sciences, Tel Aviv University, Tel Aviv 69978, Israel (N.U.)
| | - Nataly Urshansky
- School of Psychological Sciences, Tel Aviv University, Tel Aviv 69978, Israel (N.U.)
| | - Segev Barak
- Sagol School of Neuroscience, Tel Aviv University, Tel Aviv 69978, Israel; (N.R.)
- School of Psychological Sciences, Tel Aviv University, Tel Aviv 69978, Israel (N.U.)
- Faculty of Life Sciences, Department of Neurobiology, Tel Aviv University, Tel Aviv 69978, Israel
| |
Collapse
|
7
|
Liu W, Wang Z, Wang W, Wang Z, Xing Y, Hölscher C. Liraglutide Reduces Alcohol Consumption, Anxiety, Memory Impairment, and Synapse Loss in Alcohol Dependent Mice. Neurochem Res 2024; 49:1061-1075. [PMID: 38267691 DOI: 10.1007/s11064-023-04093-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2023] [Revised: 12/02/2023] [Accepted: 12/22/2023] [Indexed: 01/26/2024]
Abstract
Glucagon-like peptide 1 (GLP-1) analogues have been commercialized for the management of type 2 diabetes. Recent studies have underscored GLP-1's role as a modulator of alcohol-related behavior. However, the role of the GLP-1 analogue liraglutide on alcohol-withdrawal responses have not been fully elucidated. Liraglutide binds to the G-protein-coupled receptor and activates an adenylyl cyclase and the associated classic growth factor signaling pathway, which acts growth factor-like and neuroprotective properties. The underlying neurobiological mechanisms of liraglutide on alcohol withdrawal remains unknown. This study endeavored to explore the effects of liraglutide on the emotion and memory ability of alcohol-withdrawal mice, and synaptic morphology in the medial prefrontal cortex (mPFC) and the hippocampus (HP), and thus affects the relapse-like drinking of alcohol-withdrawal mice. The alcohol-withdrawal group was reintroduced to a 20% v/v alcohol and water through the two-bottle choice for four consecutive days, a period referred to as alcohol re-drinking. Male C57BL/6J mice were exposed to a regimen of 20% alcohol and water for a duration of 6 weeks. This regimen established the two-bottle choice model of alcohol exposure. Learning capabilities, memory proficiency, and anxiety-like behavior were evaluated using the Morris water maze, open field, and elevated plus maze paradigms. Furthermore, synaptic morphology and the levels of synaptic transport-related proteins were assessed via Golgi staining and Western Blot analysis after a two-week alcohol deprivation period. Alcohol re-drinking of alcohol-withdrawal mice was also evaluated using a two-bottle choice paradigm. Our findings indicate that liraglutide can substantially decrease alcohol consumption and preference (p < 0.05) in the alcohol group and enhance learning and memory performance (p < 0.01), as well as alleviate anxiety-like behavior (p < 0.01) of alcohol-withdrawal mice. Alcohol consumption led to a reduction in dendritic spine density in the mPFC and HP, which was restored to normal levels by liraglutide (p < 0.001). Furthermore, liraglutide was found to augment the levels of synaptic transport-related proteins in mice subjected to alcohol withdrawal (p < 0.01). The study findings corroborate that liraglutide has the potential to mitigate alcohol consumption and ameliorate the memory impairments and anxiety induced by alcohol withdrawal. The therapeutic efficacy of liraglutide might be attributed to its role in counteracting synapse loss in the mPFC and HP regions and thus prevented relapse-like drinking in alcohol-withdrawal mice.
Collapse
Affiliation(s)
- Weizhen Liu
- Department of Physiology and Neurobiology, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, 450001, Henan, China
- The Academy of Medical Sciences of Zhengzhou University, Zhengzhou, 450001, Henan, China
| | - Ziliang Wang
- Department of Physiology and Neurobiology, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, 450001, Henan, China
- The Academy of Medical Sciences of Zhengzhou University, Zhengzhou, 450001, Henan, China
| | - Wang Wang
- Department of Physiology and Neurobiology, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, 450001, Henan, China
- The Academy of Medical Sciences of Zhengzhou University, Zhengzhou, 450001, Henan, China
| | - Zhiju Wang
- Department of Physiology and Neurobiology, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, 450001, Henan, China
| | - Ying Xing
- Department of Physiology and Neurobiology, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, 450001, Henan, China.
| | - Christian Hölscher
- Henan Academy of Innovation in Medical Science, XinZheng, 451100, Henan, China.
| |
Collapse
|
8
|
Aguilar J, De Carvalho LM, Chen H, Condon R, Lasek AW, Pradhan AA. Histone deacetylase inhibitor decreases hyperalgesia in a mouse model of alcohol withdrawal-induced hyperalgesia. ALCOHOL, CLINICAL & EXPERIMENTAL RESEARCH 2024; 48:478-487. [PMID: 38378262 PMCID: PMC10940188 DOI: 10.1111/acer.15273] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Revised: 01/09/2024] [Accepted: 01/09/2024] [Indexed: 02/22/2024]
Abstract
BACKGROUND Alcohol withdrawal-induced hyperalgesia (AWH) is characterized as an increased pain sensitivity observed after cessation of chronic alcohol use. Alcohol withdrawal-induced hyperalgesia can contribute to the negative affective state associated with abstinence and can increase susceptibility to relapse. We aimed to characterize pain sensitivity in mice during withdrawal from two different models of alcohol exposure: chronic drinking in the dark (DID) and the Lieber-DeCarli liquid diet. We also investigated whether treatment with a histone deacetylase (HDAC) inhibitor, suberoylanilide hydroxamic acid (SAHA), could ameliorate AWH in mice treated with the Lieber-DeCarli diet. METHODS Male and female C57BL/6J mice were used for these studies. In the DID model, mice received bottles of 20% ethanol or water during the dark cycle for 4 h per day on four consecutive days per week for 6 weeks. Peripheral mechanical sensitivity was measured weekly the morning of Day 5 using von Frey filaments. In the Lieber-DeCarli model, mice received ethanol (5% v/v) or control liquid diet for 10 days, along with a single binge ethanol gavage (5 g/kg) or control gavage, respectively, on Day 10. Peripheral mechanical sensitivity was measured during the liquid diet administration and at 24 and 72 h into ethanol withdrawal. An independent group of mice that received the Lieber-DeCarli diet were administered SAHA (50 mg/kg, i.p.) during withdrawal. RESULTS Male mice exhibited mechanical hypersensitivity after consuming ethanol for 5 weeks in the DID procedure. In the Lieber-DeCarli model, ethanol withdrawal led to hyperalgesia in both sexes. Suberoylanilide hydroxamic acid treatment during withdrawal from the ethanol liquid diet alleviated AWH. CONCLUSIONS These results demonstrate AWH in mice after chronic binge drinking in males and after Lieber-DeCarli liquid diet administration in both sexes. Like previous findings in rats, HDAC inhibition reduced AWH in mice, suggesting that epigenetic mechanisms are involved in AWH.
Collapse
Affiliation(s)
- Jhoan Aguilar
- Center for Alcohol Research in Epigenetics, Department of Psychiatry, University of Illinois at Chicago, Chicago IL USA
| | - Luana Martins De Carvalho
- Center for Alcohol Research in Epigenetics, Department of Psychiatry, University of Illinois at Chicago, Chicago IL USA
| | - Hu Chen
- Center for Alcohol Research in Epigenetics, Department of Psychiatry, University of Illinois at Chicago, Chicago IL USA
| | - Ryan Condon
- Center for Alcohol Research in Epigenetics, Department of Psychiatry, University of Illinois at Chicago, Chicago IL USA
| | - Amy W. Lasek
- Center for Alcohol Research in Epigenetics, Department of Psychiatry, University of Illinois at Chicago, Chicago IL USA
| | - Amynah A. Pradhan
- Center for Alcohol Research in Epigenetics, Department of Psychiatry, University of Illinois at Chicago, Chicago IL USA
| |
Collapse
|
9
|
Grinchii D, Levin-Greenwald M, Lezmy N, Gordon T, Paliokha R, Khoury T, Racicky M, Herburg L, Grothe C, Dremencov E, Barak S. FGF2 activity regulates operant alcohol self-administration and mesolimbic dopamine transmission. Drug Alcohol Depend 2023; 248:109920. [PMID: 37224676 DOI: 10.1016/j.drugalcdep.2023.109920] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/24/2022] [Revised: 04/21/2023] [Accepted: 05/10/2023] [Indexed: 05/26/2023]
Abstract
Fibroblast growth factor 2 (FGF2) is involved in the development and maintenance of the brain dopamine system. We previously showed that alcohol exposure alters the expression of FGF2 and its receptor, FGF receptor 1 (FGFR1) in mesolimbic and nigrostriatal brain regions, and that FGF2 is a positive regulator of alcohol drinking. Here, we determined the effects of FGF2 and of FGFR1 inhibition on alcohol consumption, seeking and relapse, using a rat operant self-administration paradigm. In addition, we characterized the effects of FGF2-FGFR1 activation and inhibition on mesolimbic and nigrostriatal dopamine neuron activation using in vivo electrophysiology. We found that recombinant FGF2 (rFGF2) increased the firing rate and burst firing activity of dopaminergic neurons in the mesolimbic and nigrostriatal systems and led to increased operant alcohol self-administration. In contrast, the FGFR1 inhibitor PD173074 suppressed the firing rate of these dopaminergic neurons, and reduced operant alcohol self-administration. Alcohol seeking behavior was not affected by PD173074, but this FGFR1 inhibitor reduced post-abstinence relapse to alcohol consumption, albeit only in male rats. The latter was paralleled by the increased potency and efficacy of PD173074 in inhibiting dopamine neuron firing. Together, our findings suggest that targeting the FGF2-FGFR1 pathway can reduce alcohol consumption, possibly via altering mesolimbic and nigrostriatal neuronal activity.
Collapse
Affiliation(s)
- Daniil Grinchii
- Institute of Molecular Physiology and Genetics, Center of Biosciences, Slovak Academy of Sciences, Bratislava, Slovakia
| | | | - Noa Lezmy
- The Sagol School of Neuroscience, Tel Aviv University, Tel Aviv69978, Israel
| | - Tamar Gordon
- The Sagol School of Neuroscience, Tel Aviv University, Tel Aviv69978, Israel
| | - Ruslan Paliokha
- Institute of Molecular Physiology and Genetics, Center of Biosciences, Slovak Academy of Sciences, Bratislava, Slovakia
| | - Talah Khoury
- Institute of Molecular Physiology and Genetics, Center of Biosciences, Slovak Academy of Sciences, Bratislava, Slovakia
| | - Matej Racicky
- Institute of Molecular Physiology and Genetics, Center of Biosciences, Slovak Academy of Sciences, Bratislava, Slovakia
| | - Leonie Herburg
- Institute of Neuroanatomy and Cell Biology, Hannover Medical School, Carl-Neuberg-Straße 1, Hanover30625, Germany; Center for Systems Neuroscience (ZSN), Hanover, Germany
| | - Claudia Grothe
- Institute of Neuroanatomy and Cell Biology, Hannover Medical School, Carl-Neuberg-Straße 1, Hanover30625, Germany; Center for Systems Neuroscience (ZSN), Hanover, Germany
| | - Eliyahu Dremencov
- Institute of Molecular Physiology and Genetics, Center of Biosciences, Slovak Academy of Sciences, Bratislava, Slovakia.
| | - Segev Barak
- School of Psychological Sciences, Tel Aviv University, Tel Aviv69978, Israel; The Sagol School of Neuroscience, Tel Aviv University, Tel Aviv69978, Israel.
| |
Collapse
|
10
|
Heilig M. Stress-related neuropeptide systems as targets for treatment of alcohol addiction: A clinical perspective. J Intern Med 2023; 293:559-573. [PMID: 37052145 DOI: 10.1111/joim.13636] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 04/14/2023]
Abstract
Alcohol use is a major cause of disability and death globally. These negative consequences disproportionately affect people who develop alcohol addiction, a chronic relapsing condition characterized by increased motivation to use alcohol, choice of alcohol over healthy, natural rewards, and continued use despite negative consequences. Available pharmacotherapies for alcohol addiction are few, have effect sizes in need of improvement, and remain infrequently prescribed. Research aimed at developing novel therapeutics has in large part focused on attenuating pleasurable or "rewarding" properties of alcohol, but this targets processes that primarily play a role as initiation factors. As clinical alcohol addiction develops, long-term changes in brain function result in a shift of affective homeostasis, and rewarding alcohol effects become progressively reduced. Instead, increased stress sensitivity and negative affective states emerge in the absence of alcohol and create powerful incentives for relapse and continued use through negative reinforcement, or "relief." Based on research in animal models, several neuropeptide systems have been proposed to play an important role in this shift, suggesting that these systems could be targeted by novel medications. Two mechanisms in this category, antagonism at corticotropin-releasing factor type 1, and neurokinin 1/substance P receptors, have been subject to initial evaluation in humans. A third, kappa-opioid receptor antagonism, has been evaluated in nicotine addiction and could soon be tested for alcohol. This paper discusses findings with these mechanisms to date, and their prospects as future targets for novel medications.
Collapse
Affiliation(s)
- Markus Heilig
- Center for Social and Affective Neuroscience, BKV, Linköping University and Department of Psychiatry, Linköping University Hospital, Linköping, Sweden
| |
Collapse
|
11
|
Brown AR, Branthwaite HE, Farahbakhsh ZZ, Mukerjee S, Melugin PR, Song K, Noamany H, Siciliano CA. Structured tracking of alcohol reinforcement (STAR) for basic and translational alcohol research. Mol Psychiatry 2023; 28:1585-1598. [PMID: 36849824 PMCID: PMC10208967 DOI: 10.1038/s41380-023-01994-4] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/05/2022] [Revised: 01/26/2023] [Accepted: 02/07/2023] [Indexed: 03/01/2023]
Abstract
There is inherent tension between methodologies developed to address basic research questions in model species and those intended for preclinical to clinical translation: basic investigations require flexibility of experimental design as hypotheses are rapidly tested and revised, whereas preclinical models emphasize standardized protocols and specific outcome measures. This dichotomy is particularly relevant in alcohol research, which spans a diverse range of basic sciences in addition to intensive efforts towards understanding the pathophysiology of alcohol use disorder (AUD). To advance these goals there is a great need for approaches that facilitate synergy across basic and translational areas of nonhuman alcohol research. In male and female mice, we establish a modular alcohol reinforcement paradigm: Structured Tracking of Alcohol Reinforcement (STAR). STAR provides a robust platform for quantitative assessment of AUD-relevant behavioral domains within a flexible framework that allows direct crosstalk between translational and mechanistically oriented studies. To achieve cross-study integration, despite disparate task parameters, a straightforward multivariate phenotyping analysis is used to classify subjects based on propensity for heightened alcohol consumption and insensitivity to punishment. Combining STAR with extant preclinical alcohol models, we delineate longitudinal phenotype dynamics and reveal putative neuro-biomarkers of heightened alcohol use vulnerability via neurochemical profiling of cortical and brainstem tissues. Together, STAR allows quantification of time-resolved biobehavioral processes essential for basic research questions simultaneous with longitudinal phenotyping of clinically relevant outcomes, thereby providing a framework to facilitate cohesion and translation in alcohol research.
Collapse
Affiliation(s)
- Alex R Brown
- Department of Pharmacology, Vanderbilt Brain Institute, Vanderbilt Center for Addiction Research, Vanderbilt University, Nashville, TN, 37232, USA
| | - Hannah E Branthwaite
- Department of Pharmacology, Vanderbilt Brain Institute, Vanderbilt Center for Addiction Research, Vanderbilt University, Nashville, TN, 37232, USA
| | - Zahra Z Farahbakhsh
- Department of Pharmacology, Vanderbilt Brain Institute, Vanderbilt Center for Addiction Research, Vanderbilt University, Nashville, TN, 37232, USA
| | - Snigdha Mukerjee
- Department of Pharmacology, Vanderbilt Brain Institute, Vanderbilt Center for Addiction Research, Vanderbilt University, Nashville, TN, 37232, USA
| | - Patrick R Melugin
- Department of Pharmacology, Vanderbilt Brain Institute, Vanderbilt Center for Addiction Research, Vanderbilt University, Nashville, TN, 37232, USA
| | - Keaton Song
- Department of Pharmacology, Vanderbilt Brain Institute, Vanderbilt Center for Addiction Research, Vanderbilt University, Nashville, TN, 37232, USA
| | - Habiba Noamany
- Department of Neurobiology, Harvard Medical School, Boston, MA, USA
| | - Cody A Siciliano
- Department of Pharmacology, Vanderbilt Brain Institute, Vanderbilt Center for Addiction Research, Vanderbilt University, Nashville, TN, 37232, USA.
| |
Collapse
|
12
|
Larnerd C, Adhikari P, Valdez A, Del Toro A, Wolf FW. Rapid and Chronic Ethanol Tolerance Are Composed of Distinct Memory-Like States in Drosophila. J Neurosci 2023; 43:2210-2220. [PMID: 36750369 PMCID: PMC10039739 DOI: 10.1523/jneurosci.1348-22.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2022] [Revised: 01/24/2023] [Accepted: 01/27/2023] [Indexed: 02/09/2023] Open
Abstract
Ethanol tolerance is the first type of behavioral plasticity and neural plasticity that is induced by ethanol intake, and yet its molecular and circuit bases remain largely unexplored. Here, we characterize the following three distinct forms of ethanol tolerance in male Drosophila: rapid, chronic, and repeated. Rapid tolerance is composed of two short-lived memory-like states, one that is labile and one that is consolidated. Chronic tolerance, induced by continuous exposure, lasts for 2 d, induces ethanol preference, and hinders the development of rapid tolerance through the activity of histone deacetylases (HDACs). Unlike rapid tolerance, chronic tolerance is independent of the immediate early gene Hr38/Nr4a Chronic tolerance is suppressed by the sirtuin HDAC Sirt1, whereas rapid tolerance is enhanced by Sirt1 Moreover, rapid and chronic tolerance map to anatomically distinct regions of the mushroom body learning and memory centers. Chronic tolerance, like long-term memory, is dependent on new protein synthesis and it induces the kayak/c-fos immediate early gene, but it depends on CREB signaling outside the mushroom bodies, and it does not require the Radish GTPase. Thus, chronic ethanol exposure creates an ethanol-specific memory-like state that is molecularly and anatomically different from other forms of ethanol tolerance.SIGNIFICANCE STATEMENT The pattern and concentration of initial ethanol exposure causes operationally distinct types of ethanol tolerance to form. We identify separate molecular and neural circuit mechanisms for two forms of ethanol tolerance, rapid and chronic. We also discover that chronic tolerance forms an ethanol-specific long-term memory-like state that localizes to learning and memory circuits, but it is different from appetitive and aversive long-term memories. By contrast, rapid tolerance is composed of labile and consolidated short-term memory-like states. The multiple forms of ethanol memory-like states are genetically tractable for understanding how initial forms of ethanol-induced neural plasticity form a substrate for the longer-term brain changes associated with alcohol use disorder.
Collapse
Affiliation(s)
- Caleb Larnerd
- Quantitative and Systems Biology, University of California, Merced, California 95343
| | - Pratik Adhikari
- Quantitative and Systems Biology, University of California, Merced, California 95343
| | - Ashley Valdez
- Biological Sciences, University of California, Merced, California 95343
| | | | - Fred W Wolf
- Quantitative and Systems Biology, University of California, Merced, California 95343
- Molecular and Cell Biology, University of California, Merced, California 95343
| |
Collapse
|
13
|
Domi E, Barchiesi R, Barbier E. Epigenetic Dysregulation in Alcohol-Associated Behaviors: Preclinical and Clinical Evidence. Curr Top Behav Neurosci 2023. [PMID: 36717533 DOI: 10.1007/7854_2022_410] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
Alcohol use disorder (AUD) is characterized by loss of control over intake and drinking despite harmful consequences. At a molecular level, AUD is associated with long-term neuroadaptations in key brain regions that are involved in reward processing and decision-making. Over the last decades, a great effort has been made to understand the neurobiological basis underlying AUD. Epigenetic mechanisms have emerged as an important mechanism in the regulation of long-term alcohol-induced gene expression changes. Here, we review the literature supporting a role for epigenetic processes in AUD. We particularly focused on the three most studied epigenetic mechanisms: DNA methylation, Histone modification and non-coding RNAs. Clinical studies indicate an association between AUD and DNA methylation both at the gene and global levels. Using behavioral paradigms that mimic some of the characteristics of AUD, preclinical studies demonstrate that changes in epigenetic mechanisms can functionally impact alcohol-associated behaviors. While many studies support a therapeutic potential for targeting epigenetic enzymes, more research is needed to fully understand their role in AUD. Identification of brain circuits underlying alcohol-associated behaviors has made major advances in recent years. However, there are very few studies that investigate how epigenetic mechanisms can affect these circuits or impact the neuronal ensembles that promote alcohol-associated behaviors. Studies that focus on the role of circuit-specific and cell-specific epigenetic changes for clinically relevant alcohol behaviors may provide new insights on the functional role of epigenetic processes in AUD.
Collapse
Affiliation(s)
- Esi Domi
- Department of Biomedical and Clinical Sciences, Center for Social and Affective Neuroscience, Linköping University, Linköping, Sweden
- School of Pharmacy, Pharmacology Unit, Center for Neuroscience, University of Camerino, Camerino, Italy
| | - Riccardo Barchiesi
- Department of Neuroscience, Waggoner Center for Alcohol and Alcohol Addiction Research, University of Texas at Austin, Austin, TX, USA
| | - Estelle Barbier
- Department of Biomedical and Clinical Sciences, Center for Social and Affective Neuroscience, Linköping University, Linköping, Sweden.
| |
Collapse
|
14
|
Jarczak J, Miszczak M, Radwanska K. Is DNA methylation in the brain a mechanism of alcohol use disorder? Front Behav Neurosci 2023; 17:957203. [PMID: 36778133 PMCID: PMC9908583 DOI: 10.3389/fnbeh.2023.957203] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2022] [Accepted: 01/09/2023] [Indexed: 01/27/2023] Open
Abstract
Alcohol use disorder (AUD) is a worldwide problem. Unfortunately, the molecular mechanisms of alcohol misuse are still poorly understood, therefore successful therapeutic approaches are limited. Accumulating data indicate that the tendency for compulsive alcohol use is inherited, suggesting a genetic background as an important factor. However, the probability to develop AUD is also affected by life experience and environmental factors. Therefore, the epigenetic modifications that are altered over lifetime likely contribute to increased risk of alcohol misuse. Here, we review the literature looking for the link between DNA methylation in the brain, a common epigenetic modification, and AUD-related behaviors in humans, mice and rats. We sum up the main findings, identify the existing gaps in our knowledge and indicate future directions of the research.
Collapse
|
15
|
Barak S, Goltseker K. New Approaches for Alcohol Use Disorder Treatment via Memory Retrieval and Reconsolidation Manipulations. Curr Top Behav Neurosci 2023. [PMID: 36627475 DOI: 10.1007/7854_2022_411] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
Relapse to alcohol seeking and drinking is a major clinical challenge in alcohol use disorder and is frequently brought about by cue-induced craving, caused by exposure to cues that evoke alcohol-related memories. It has been postulated that memories become labile for manipulation shortly after their retrieval and then restabilize in a "memory reconsolidation" process. Disruption or interference with the reconsolidation of drug-associated memories has been suggested as a possible strategy to reduce or even prevent cue-induced craving and relapse. Here, we review literature demonstrating the capacity of behavioral or pharmacological manipulations to reduce relapse in animal models and humans when applied after a short retrieval of memories associated with alcohol, suggestively disrupting the reconsolidation of such memories. We suggest that while there is a clear potential of using post-retrieval manipulations to target specific relapse-evoking memories, future research should be more systematic, standardized, and translational. Specifically, we discuss several critical limitations and boundary conditions, which should be addressed to improve consistency and replicability in the field and lead to the development of an efficient reconsolidation-based relapse prevention therapy.
Collapse
Affiliation(s)
- Segev Barak
- School of Psychological Sciences, Tel Aviv University, Tel Aviv, Israel.
- Sagol School of Neuroscience, Tel Aviv University, Tel Aviv, Israel.
| | - Koral Goltseker
- Zuckerman Mind Brain Behavior Institute, Columbia University, New York, NY, USA
| |
Collapse
|
16
|
Ardinger CE, Lapish CC, Czachowski CL, Grahame NJ. A critical review of front-loading: A maladaptive drinking pattern driven by alcohol's rewarding effects. Alcohol Clin Exp Res 2022; 46:1772-1782. [PMID: 36239713 PMCID: PMC9588658 DOI: 10.1111/acer.14924] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Revised: 08/09/2022] [Accepted: 08/14/2022] [Indexed: 01/31/2023]
Abstract
Front-loading is a drinking pattern in which alcohol intake is skewed toward the onset of reward access. This phenomenon has been reported across several different alcohol self-administration protocols in a wide variety of species, including humans. The hypothesis of the current review is that front-loading emerges in response to the rewarding effects of alcohol and can be used to measure the motivation to consume alcohol. Alternative or additional hypotheses that we consider and contrast with the main hypothesis are that: (1) front-loading is directed at overcoming behavioral and/or metabolic tolerance and (2) front-loading is driven by negative reinforcement. Evidence for each of these explanations is reviewed. We also consider how front-loading has been evaluated statistically in previous research and make recommendations for defining this intake pattern in future studies. Because front-loading may predict long-term maladaptive alcohol drinking patterns leading to the development of alcohol use disorder (AUD), several future directions are proposed to elucidate the relationship between front-loading and AUD.
Collapse
Affiliation(s)
- Cherish E. Ardinger
- Addiction Neuroscience, Department of Psychology and Indiana Alcohol Research CenterIndiana University – Purdue University IndianapolisIndianapolisIndianaUSA
| | - Christopher C. Lapish
- Addiction Neuroscience, Department of Psychology and Indiana Alcohol Research CenterIndiana University – Purdue University IndianapolisIndianapolisIndianaUSA,Stark Neuroscience Research InstituteIndiana University – Purdue University IndianapolisIndianapolisIndianaUSA
| | - Cristine L. Czachowski
- Addiction Neuroscience, Department of Psychology and Indiana Alcohol Research CenterIndiana University – Purdue University IndianapolisIndianapolisIndianaUSA
| | - Nicholas J. Grahame
- Addiction Neuroscience, Department of Psychology and Indiana Alcohol Research CenterIndiana University – Purdue University IndianapolisIndianapolisIndianaUSA
| |
Collapse
|
17
|
Nathan FM, Kibat C, Goel T, Stewart J, Claridge‐Chang A, Mathuru AS. Contingent stimulus delivery assay for zebrafish reveals a role for CCSER1 in alcohol preference. Addict Biol 2022; 27:e13126. [PMID: 35229935 DOI: 10.1111/adb.13126] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2021] [Revised: 10/02/2021] [Accepted: 12/03/2021] [Indexed: 12/21/2022]
Abstract
Alcohol use disorders are complex, multifactorial phenomena with a large footprint within the global burden of diseases. Here, we report the development of an accessible, two-choice self-administration zebrafish assay (SAZA) to study the neurobiology of addiction. Using this assay, we first demonstrated that, although zebrafish avoid higher concentrations of alcohol, they are attracted to low concentrations. Pre-exposure to alcohol did not change this relative preference, but acute exposure to an alcohol deterrent approved for human use decreased alcohol self-administration. A pigment mutant used in whole-brain imaging studies displayed a similar relative alcohol preference profile; however, mutants in CCSER1, a gene associated with alcohol dependence in human genetic studies, showed a reversal in relative preference. The presence of a biphasic response (hormesis) in zebrafish validated a key aspect of vertebrate responses to alcohol. SAZA adds a new dimension for discovering novel alcohol deterrents and studying the neurogenetics of addiction using the zebrafish.
Collapse
Affiliation(s)
| | - Caroline Kibat
- Department of Physiology, YLL School of Medicine National University of Singapore Singapore Singapore
| | - Tanisha Goel
- Department of Physiology, YLL School of Medicine National University of Singapore Singapore Singapore
| | - James Stewart
- Institute of Molecular and Cell Biology Singapore Singapore
- Duke‐NUS Medical School Singapore Singapore
| | - Adam Claridge‐Chang
- Institute of Molecular and Cell Biology Singapore Singapore
- Duke‐NUS Medical School Singapore Singapore
| | - Ajay S. Mathuru
- Yale‐NUS College Singapore Singapore
- Department of Physiology, YLL School of Medicine National University of Singapore Singapore Singapore
- Institute of Molecular and Cell Biology Singapore Singapore
| |
Collapse
|
18
|
Vornholt E, Drake J, Mamdani M, McMichael G, Taylor ZN, Bacanu S, Miles MF, Vladimirov VI. Identifying a novel biological mechanism for alcohol addiction associated with circRNA networks acting as potential miRNA sponges. Addict Biol 2021; 26:e13071. [PMID: 34164896 PMCID: PMC8590811 DOI: 10.1111/adb.13071] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2021] [Revised: 04/21/2021] [Accepted: 05/31/2021] [Indexed: 12/11/2022]
Abstract
Our lab and others have shown that chronic alcohol use leads to gene and miRNA expression changes across the mesocorticolimbic (MCL) system. Circular RNAs (circRNAs) are noncoding RNAs that form closed-loop structures and are reported to alter gene expression through miRNA sequestration, thus providing a potentially novel neurobiological mechanism for the development of alcohol dependence (AD). Genome-wide expression of circRNA was assessed in the nucleus accumbens (NAc) from 32 AD-matched cases/controls. Significant circRNAs (unadj. p ≤ 0.05) were identified via regression and clustered in circRNA networks via weighted gene co-expression network analysis (WGCNA). CircRNA interactions with previously generated mRNA and miRNA were detected via correlation and bioinformatic analyses. Significant circRNAs (N = 542) clustered in nine significant AD modules (FWER p ≤ 0.05), within which we identified 137 circRNA hubs. We detected 23 significant circRNA-miRNA-mRNA interactions (FDR ≤ 0.10). Among these, circRNA-406742 and miR-1200 significantly interact with the highest number of mRNA, including genes associated with neuronal functioning and alcohol addiction (HRAS, PRKCB, HOMER1, and PCLO). Finally, we integrate genotypic information that revealed 96 significant circRNA expression quantitative trait loci (eQTLs) (unadj. p ≤ 0.002) that showed significant enrichment within recent alcohol use disorder (AUD) and smoking genome-wide association study (GWAS). To our knowledge, this is the first study to examine the role of circRNA in the neuropathology of AD. We show that circRNAs impact mRNA expression by interacting with miRNA in the NAc of AD subjects. More importantly, we provide indirect evidence for the clinical importance of circRNA in the development of AUD by detecting a significant enrichment of our circRNA eQTLs among GWAS of substance abuse.
Collapse
Affiliation(s)
- Eric Vornholt
- Virginia Institute for Psychiatric and Behavioral GeneticsVirginia Commonwealth UniversityRichmondVirginiaUSA
- Integrative Life Sciences Doctoral ProgramVirginia Commonwealth UniversityRichmondVirginiaUSA
- Department of Genetics and Genomic SciencesIcahn School of Medicine at Mount SinaiNew YorkNew YorkUSA
| | - John Drake
- Department of Psychiatry and Behavioral SciencesTexas A&M UniversityCollege StationTexasUSA
| | - Mohammed Mamdani
- Virginia Institute for Psychiatric and Behavioral GeneticsVirginia Commonwealth UniversityRichmondVirginiaUSA
| | - Gowon McMichael
- Virginia Institute for Psychiatric and Behavioral GeneticsVirginia Commonwealth UniversityRichmondVirginiaUSA
| | - Zachary N. Taylor
- Virginia Institute for Psychiatric and Behavioral GeneticsVirginia Commonwealth UniversityRichmondVirginiaUSA
| | - Silviu‐Alin Bacanu
- Virginia Institute for Psychiatric and Behavioral GeneticsVirginia Commonwealth UniversityRichmondVirginiaUSA
- Department of PsychiatryVirginia Commonwealth UniversityRichmondVirginiaUSA
| | - Michael F. Miles
- Virginia Institute for Psychiatric and Behavioral GeneticsVirginia Commonwealth UniversityRichmondVirginiaUSA
- VCU‐Alcohol Research CenterVirginia Commonwealth UniversityRichmondVirginiaUSA
- Department of Pharmacology and ToxicologyVirginia Commonwealth UniversityRichmondVirginiaUSA
- Department of NeurologyVirginia Commonwealth UniversityRichmondVirginiaUSA
| | - Vladimir I. Vladimirov
- Virginia Institute for Psychiatric and Behavioral GeneticsVirginia Commonwealth UniversityRichmondVirginiaUSA
- Department of Genetics and Genomic SciencesIcahn School of Medicine at Mount SinaiNew YorkNew YorkUSA
- Center for Biomarker Research and Precision MedicineVirginia Commonwealth UniversityRichmondVirginiaUSA
- Department of Physiology & BiophysicsVirginia Commonwealth UniversityRichmondVirginiaUSA
- School of PharmacyVirginia Commonwealth UniversityRichmondVirginiaUSA
- Lieber Institute for Brain DevelopmentJohns Hopkins UniversityBaltimoreMarylandUSA
| |
Collapse
|
19
|
Vanderschuren LJMJ, Ahmed SH. Animal Models of the Behavioral Symptoms of Substance Use Disorders. Cold Spring Harb Perspect Med 2021; 11:cshperspect.a040287. [PMID: 32513674 PMCID: PMC8327824 DOI: 10.1101/cshperspect.a040287] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
To more effectively manage substance use disorders, it is imperative to understand the neural, genetic, and psychological underpinnings of addictive behavior. To contribute to this understanding, considerable efforts have been made to develop translational animal models that capture key behavioral characteristics of addiction on the basis of DSM5 criteria of substance use disorders. In this review, we summarize empirical evidence for the occurrence of addiction-like behavior in animals. These symptoms include escalation of drug use, neurocognitive deficits, resistance to extinction, exaggerated motivation for drugs, increased reinstatement of drug seeking after extinction, preference for drugs over nondrug rewards, and resistance to punishment. The occurrence of addiction-like behavior in laboratory animals has opened the opportunity to investigate the neural, genetic, and psychological background of key aspects of addiction, which may ultimately contribute to the prevention and treatment of substance use disorders.
Collapse
Affiliation(s)
- Louk J M J Vanderschuren
- Department of Animals in Science and Society, Division of Behavioural Neuroscience, Faculty of Veterinary Medicine, Utrecht University, 3584 CM Utrecht, the Netherlands
| | - Serge H Ahmed
- Université de Bordeaux, Bordeaux Neurocampus, Institut des Maladies Neurodégénératives, CNRS UMR 5293, F-33000 Bordeaux, France
| |
Collapse
|
20
|
Goltseker K, Handrus H, Barak S. Disruption of relapse to alcohol seeking by aversive counterconditioning following memory retrieval. Addict Biol 2021; 26:e12935. [PMID: 32657509 DOI: 10.1111/adb.12935] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2020] [Revised: 06/10/2020] [Accepted: 06/15/2020] [Indexed: 12/18/2022]
Abstract
Relapse to alcohol abuse is often caused by exposure to potent alcohol-associated cues. Therefore, disruption of the cue-alcohol memory can prevent relapse. It is believed that memories destabilize and become prone for updating upon their reactivation through retrieval and then restabilize within 6 h during a "reconsolidation" process. We recently showed that relapse to cocaine seeking in a place-conditioning paradigm could be prevented by counterconditioning the cocaine cues with aversive outcomes following cocaine-memory retrieval. However, to better model addiction-related behaviors, self-administration models are necessary. Here, we demonstrate that relapse to alcohol seeking can be prevented by aversive counterconditioning conducted during alcohol-memory reconsolidation, in the place conditioning and operant self-administration paradigms, in mice and rats, respectively. We found that the reinstatement of alcohol-conditioned place preference was abolished only when aversive counterconditioning with water flooding was given shortly after alcohol-memory retrieval. Furthermore, rats trained to lever press for alcohol showed decreased context-induced renewal of alcohol-seeking responding when the lever pressing was punished with foot-shocks, shortly, but not 6 h, after memory retrieval. These results suggest that aversive counterconditioning can prevent relapse to alcohol seeking only when performed during alcohol-memory reconsolidation, presumably by updating, or replacing, the alcohol memory with aversive information. Finally, we found that aversive counterconditioning preceded by alcohol-memory retrieval was characterized by the upregulation of brain-derived neurotrophic factor (Bdnf) mRNA expression in the medial prefrontal cortex, suggesting that BDNF may play a role in the memory updating process.
Collapse
Affiliation(s)
- Koral Goltseker
- School of Psychological Sciences Tel Aviv University Tel Aviv Israel
| | - Hen Handrus
- School of Psychological Sciences Tel Aviv University Tel Aviv Israel
| | - Segev Barak
- School of Psychological Sciences Tel Aviv University Tel Aviv Israel
- School of Psychological Sciences, Sagol School of Neuroscience Tel Aviv University Tel Aviv Israel
| |
Collapse
|
21
|
McCane AM, Auterson CD, DeLory MJ, Lapish CC, Czachowski CL. Differential effects of quinine adulteration of alcohol on seeking and drinking. Alcohol 2021; 92:73-80. [PMID: 33465465 PMCID: PMC8026625 DOI: 10.1016/j.alcohol.2021.01.003] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2020] [Revised: 01/11/2021] [Accepted: 01/11/2021] [Indexed: 12/26/2022]
Abstract
Alcohol dependence is characterized by compulsive alcohol use. Alcohol-paired stimuli can drive compulsive alcohol use, induce craving, and lead to relapse. Alcohol dependence is highly heritable, and individuals with a family history are at elevated risk to develop an alcohol use disorder. Understanding the association between genetic vulnerability to alcohol dependence and neural alterations that promote an addiction phenotype are critical to the prevention and treatment of alcohol dependence. Here we use selectively bred alcohol-preferring P rats and their progenitor strain, Wistar rats, to investigate the relationship between genetic liability and alcohol-seeking and drinking behaviors in a discriminative stimuli paradigm. To further investigate strain differences in motivated responding, alcohol was adulterated with quinine, and intake and responding were assessed. While both strains learned to discriminate between stimuli that predicted alcohol availability, P rats learned faster and consumed more alcohol. Quinine adulteration reduced ethanol intake in both strains with no effect on ethanol-seeking measures. These data suggest genetic vulnerability to alcohol dependence is associated with increased motivated behaviors and highlight the utility of P rats in teasing apart the neural mechanisms associated with this phenotype. Additionally, these data suggest a dissociation between the neural systems that engage ethanol drinking versus compulsive ethanol seeking.
Collapse
Affiliation(s)
- Aqilah M McCane
- Department of Psychology, Indiana University Purdue University Indianapolis, Indianapolis, IN 46202, United States.
| | - Curtis D Auterson
- Department of Psychology, Indiana University Purdue University Indianapolis, Indianapolis, IN 46202, United States
| | - Michael J DeLory
- Department of Psychology, Indiana University Purdue University Indianapolis, Indianapolis, IN 46202, United States
| | - Christopher C Lapish
- Department of Psychology, Indiana University Purdue University Indianapolis, Indianapolis, IN 46202, United States; Stark Neuroscience Research Institute, Indiana University School of Medicine, Indianapolis, IN 46202, United States
| | - Cristine L Czachowski
- Department of Psychology, Indiana University Purdue University Indianapolis, Indianapolis, IN 46202, United States; Stark Neuroscience Research Institute, Indiana University School of Medicine, Indianapolis, IN 46202, United States
| |
Collapse
|
22
|
Targeting the Reconsolidation of Licit Drug Memories to Prevent Relapse: Focus on Alcohol and Nicotine. Int J Mol Sci 2021; 22:ijms22084090. [PMID: 33920982 PMCID: PMC8071281 DOI: 10.3390/ijms22084090] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2021] [Revised: 04/11/2021] [Accepted: 04/12/2021] [Indexed: 12/29/2022] Open
Abstract
Alcohol and nicotine are widely abused legal substances worldwide. Relapse to alcohol or tobacco seeking and consumption after abstinence is a major clinical challenge, and is often evoked by cue-induced craving. Therefore, disruption of the memory for the cue–drug association is expected to suppress relapse. Memories have been postulated to become labile shortly after their retrieval, during a “memory reconsolidation” process. Interference with the reconsolidation of drug-associated memories has been suggested as a possible strategy to reduce or even prevent cue-induced craving and relapse. Here, we surveyed the growing body of studies in animal models and in humans assessing the effectiveness of pharmacological or behavioral manipulations in reducing relapse by interfering with the reconsolidation of alcohol and nicotine/tobacco memories. Our review points to the potential of targeting the reconsolidation of these memories as a strategy to suppress relapse to alcohol drinking and tobacco smoking. However, we discuss several critical limitations and boundary conditions, which should be considered to improve the consistency and replicability in the field, and for development of an efficient reconsolidation-based relapse-prevention therapy.
Collapse
|
23
|
Abstract
Animal models of addictive behaviors are useful for uncovering neural mechanisms involved in the development of dependence and for identifying risk factors for drug abuse. One such risk factor is biological sex, which strongly moderates drug self-administration behavior in rodents. Female rodents are more likely to acquire drug self-administration behaviors, consume higher amounts of drug, and reinstate drug-seeking behavior more readily. Despite this female vulnerability, preclinical addiction research has largely been done in male animals. The study of sex differences in rodent models of addictive behavior is increasing, however, as more investigators are choosing to include both male and female animals in experiments. This commentary is meant to serve as an introductory guide for preclinical investigators new to the study of sex differences in addiction. We provide an overview of self-administration models, a broad view of female versus male self-administration behaviors, and suggestions for study design and implementation. Inclusion of female subjects in preclinical addiction research is timely, as problem drug and alcohol use in women is increasing. With proper attention, design, and analysis, the study of sex differences in addiction has the potential to uncover novel neural mechanisms and lead to greater translational success for addiction research. © 2021 Wiley Periodicals LLC.
Collapse
Affiliation(s)
- Anna K. Radke
- Department of Psychology and Center for Neuroscience and Behavior, Miami University, Oxford, Ohio
| | - Elizabeth A. Sneddon
- Department of Psychology and Center for Neuroscience and Behavior, Miami University, Oxford, Ohio
| | - Sean C. Monroe
- Department of Psychology and Center for Neuroscience and Behavior, Miami University, Oxford, Ohio
| |
Collapse
|
24
|
Carlson HN, Weiner JL. The neural, behavioral, and epidemiological underpinnings of comorbid alcohol use disorder and post-traumatic stress disorder. INTERNATIONAL REVIEW OF NEUROBIOLOGY 2020; 157:69-142. [PMID: 33648676 DOI: 10.1016/bs.irn.2020.09.006] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Alcohol use disorder (AUD) and (PTSD) frequently co-occur and individuals suffering from this dual diagnosis often exhibit increased symptom severity and poorer treatment outcomes than those with only one of these diseases. Although there have been significant advances in our understanding of the neurobiological mechanisms underlying each of these disorders, the neural underpinnings of the comorbid condition remain poorly understood. This chapter summarizes recent epidemiological findings on comorbid AUD and PTSD, with a focus on vulnerable populations, the temporal relationship between these disorders, and the clinical consequences associated with the dual diagnosis. We then review animal models of the comorbid condition and emerging human and non-human animal research that is beginning to identify maladaptive neural changes common to both disorders, primarily involving functional changes in brain reward and stress networks. We end by proposing a neural framework, based on the emerging field of affective valence encoding, that may better explain the epidemiological and neural findings on AUD and PTSD.
Collapse
Affiliation(s)
- Hannah N Carlson
- Department of Physiology and Pharmacology, Wake Forest School of Medicine, Winston-Salem, NC, United States
| | - Jeff L Weiner
- Department of Physiology and Pharmacology, Wake Forest School of Medicine, Winston-Salem, NC, United States.
| |
Collapse
|
25
|
Abstract
Sex differences may play a critical role in modulating how chronic or heavy alcohol use impacts the brain to cause the development of alcohol use disorder (AUD). AUD is a multifaceted and complex disorder driven by changes in key neurobiological structures that regulate executive function, memory, and stress. A three-stage framework of addiction (binge/intoxication; withdrawal/negative affect; preoccupation/anticipation) has been useful for conceptualizing the complexities of AUD and other addictions. Initially, alcohol drinking causes short-term effects that involve signaling mediated by several neurotransmitter systems such as dopamine, corticotropin releasing factor, and glutamate. With continued intoxication, alcohol leads to dysfunctional behaviors that are thought to be due in part to alterations of these and other neurotransmitter systems, along with alterations in neural pathways connecting prefrontal and limbic structures. Using the three-stage framework, this review highlights examples of research examining sex differences in drinking and differential modulation of neural systems contributing to the development of AUD. New insights addressing the role of sex differences in AUD are advancing the field forward by uncovering the complex interactions that mediate vulnerability.
Collapse
Affiliation(s)
| | - Heather N Richardson
- Department of Psychological and Brain Sciences at the University of Massachusetts, Amherst, Massachusetts
| |
Collapse
|
26
|
Siciliano CA, Noamany H, Chang CJ, Brown AR, Chen X, Leible D, Lee JJ, Wang J, Vernon AN, Vander Weele CM, Kimchi EY, Heiman M, Tye KM. A cortical-brainstem circuit predicts and governs compulsive alcohol drinking. Science 2020; 366:1008-1012. [PMID: 31754002 DOI: 10.1126/science.aay1186] [Citation(s) in RCA: 134] [Impact Index Per Article: 26.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2019] [Accepted: 10/04/2019] [Indexed: 12/31/2022]
Abstract
What individual differences in neural activity predict the future escalation of alcohol drinking from casual to compulsive? The neurobiological mechanisms that gate the transition from moderate to compulsive drinking remain poorly understood. We longitudinally tracked the development of compulsive drinking across a binge-drinking experience in male mice. Binge drinking unmasked individual differences, revealing latent traits in alcohol consumption and compulsive drinking despite equal prior exposure to alcohol. Distinct neural activity signatures of cortical neurons projecting to the brainstem before binge drinking predicted the ultimate emergence of compulsivity. Mimicry of activity patterns that predicted drinking phenotypes was sufficient to bidirectionally modulate drinking. Our results provide a mechanistic explanation for individual variance in vulnerability to compulsive alcohol drinking.
Collapse
Affiliation(s)
- Cody A Siciliano
- The Picower Institute for Learning and Memory, Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, MA 02139, USA. .,Department of Pharmacology, Vanderbilt University School of Medicine, Nashville, TN 37232, USA.,Vanderbilt Center for Addiction Research, Vanderbilt University School of Medicine, Nashville, TN 37232, USA
| | - Habiba Noamany
- The Picower Institute for Learning and Memory, Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Chia-Jung Chang
- The Picower Institute for Learning and Memory, Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Alex R Brown
- The Picower Institute for Learning and Memory, Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, MA 02139, USA.,Department of Pharmacology, Vanderbilt University School of Medicine, Nashville, TN 37232, USA.,Vanderbilt Center for Addiction Research, Vanderbilt University School of Medicine, Nashville, TN 37232, USA
| | - Xinhong Chen
- The Picower Institute for Learning and Memory, Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Daniel Leible
- The Picower Institute for Learning and Memory, Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Jennifer J Lee
- The Picower Institute for Learning and Memory, Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Joyce Wang
- The Picower Institute for Learning and Memory, Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Amanda N Vernon
- The Picower Institute for Learning and Memory, Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Caitlin M Vander Weele
- The Picower Institute for Learning and Memory, Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Eyal Y Kimchi
- The Picower Institute for Learning and Memory, Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Myriam Heiman
- The Picower Institute for Learning and Memory, Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Kay M Tye
- The Picower Institute for Learning and Memory, Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, MA 02139, USA. .,The Salk Institute for Biological Studies, La Jolla, CA 92037, USA
| |
Collapse
|
27
|
Nolli LM, de Oliveira DGR, Alves SS, von Zuben MV, Pic-Taylor A, Mortari MR, Caldas ED. Effects of the hallucinogenic beverage ayahuasca on voluntary ethanol intake by rats and on cFos expression in brain areas relevant to drug addiction. Alcohol 2020; 84:67-75. [PMID: 31698029 DOI: 10.1016/j.alcohol.2019.10.005] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2019] [Revised: 10/11/2019] [Accepted: 10/24/2019] [Indexed: 11/30/2022]
Abstract
Ayahuasca is a hallucinogenic infusion used in religious rituals that has serotoninergic properties and may be a potential therapeutic option for drug addiction. In this study, Wistar rats had intermittent access to ethanol for 8 weeks, receiving water (control), naltrexone (NTX, 2 mg/kg body weight [bw] intraperitoneally [i.p.]) or ayahuasca (Aya) at 0.5x, 1x, or 2x the ritual dose in the final 5 days. A naïve group had access only to water. Ethanol intake was estimated throughout the experiment, and cFos expression was evaluated in medial orbital cortex (MO), ventral orbital cortex (VO), lateral orbital cortex (LO), nucleus accumbens (NAc), and striatum. Treatment with either NTX or Aya (oral) did not decrease ethanol intake compared to the baseline level (5th to 7th week), but the NTX group intake was significantly lower than controls (p < 0.05). Ethanol significantly increased cFos expression in the MO region for control (p < 0.0001), NTX (p < 0.05), Aya1 (p < 0.001), and Aya2 (p < 0.0001) groups. This increase was also observed in the VO for the Aya1 group (p = 0.035), in the LO for the Aya2 group (p < 0.01), and in NAc for NTX and ayahuasca groups (p < 0.005). Furthermore, NTX and Aya0.5 treatment decreased cFos expression compared to controls in the MO region (p < 0.05 and p < 0.01, respectively), but only the ayahuasca group reached levels not significantly different from the naïve group. Studies using other protocols and dose regime are necessary to better investigate the impact of ayahuasca on alcohol intake by rats to support the observations in humans. Additionally, the role of ayahuasca in mediating cFos expression in other selected brain regions and its relationship with the serotoninergic/dopaminergic systems and drug addiction need further investigation.
Collapse
Affiliation(s)
- Luciana Marangni Nolli
- Laboratory of Toxicology, Department of Pharmacy, Faculty of Health Sciences, University of Brasilia, Brasilia, DF, Brazil
| | - Danilo Gustavo Rodrigues de Oliveira
- Laboratory of Neuropharmacology, Department of Physiological Sciences, Institute of Biological Sciences, University of Brasilia, Brasilia, DF, Brazil
| | - Stefany Sousa Alves
- Laboratory of Toxicology, Department of Pharmacy, Faculty of Health Sciences, University of Brasilia, Brasilia, DF, Brazil
| | | | - Aline Pic-Taylor
- Laboratory of Embryology and Developmental Biology, Department of Genetics and Morphology, Institute of Biology, University of Brasilia, Brasilia, DF, Brazil
| | - Marcia Renata Mortari
- Laboratory of Neuropharmacology, Department of Physiological Sciences, Institute of Biological Sciences, University of Brasilia, Brasilia, DF, Brazil
| | - Eloisa Dutra Caldas
- Laboratory of Toxicology, Department of Pharmacy, Faculty of Health Sciences, University of Brasilia, Brasilia, DF, Brazil.
| |
Collapse
|
28
|
Shaw GA, Bent MAM, Council KR, Pais AC, Amstadter A, Wolstenholme JT, Miles MF, Neigh GN. Chronic repeated predatory stress induces resistance to quinine adulteration of ethanol in male mice. Behav Brain Res 2020; 382:112500. [PMID: 31978491 PMCID: PMC7035990 DOI: 10.1016/j.bbr.2020.112500] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2019] [Revised: 01/17/2020] [Accepted: 01/20/2020] [Indexed: 02/06/2023]
Abstract
BACKGROUND Trauma related psychiatric disorders, such as posttraumatic stress disorder (PTSD), and alcohol use disorder (AUD) are highly comorbid illnesses that separately present an opposing, sex-specific pattern, with increased prevalence of PTSD in females and increased prevalence of AUD diagnoses in males. Likewise, PTSD is a risk factor in the development of AUD, with conflicting data on the impact of sex in the comorbid development of both disorders. Because the likelihood of experiencing more than one traumatic event is high, we aim to utilize chronic repeated predatory stress (CRPS) to query the extent to which sex interacts with CRPS to influence alcohol consumption, or cessation of consumption. METHODS Male (n = 16) and female (n = 15) C57BL/6 J mice underwent CRPS or daily handling for two weeks during adolescence (P35-P49) and two weeks during adulthood (P65-P79). Following the conclusion of two rounds of repeated stress, behavior was assessed in the open field. Mice subsequently underwent a two-bottle choice intermittent ethanol access (IEA) assessment (P90-131) with the options of 20 % ethanol or water. After establishing drinking behavior, increasing concentrations of quinine were added to the ethanol to assess the drinking response to adulteration of the alcohol. RESULTS CRPS increased fecal corticosterone concentrations and anxiety-like behaviors in the open field in both male and female mice as compared to control mice that had not been exposed to CRPS. Consistent with previous reports, we observed a sex difference in alcohol consumption such that females consumed more ethanol per gram of body mass than males. In addition, CRPS reduced alcohol aversion in male mice such that higher concentrations of quinine were necessary to reduce alcohol intake as compared to control mice. CRPS did not alter alcohol-related behaviors in female mice. CONCLUSION Collectively, we demonstrate that repeated CRPS can induce anxiety-like behavior in both sexes but selectively influences the response to ethanol adulteration in males.
Collapse
Affiliation(s)
- Gladys A Shaw
- Department of Anatomy and Neurobiology, Virginia Commonwealth University, Richmond, VA, United States
| | - Maria Alexis M Bent
- VCU-Alcohol Research Center, Virginia Commonwealth University, Richmond, Virginia, United States
| | - Kimaya R Council
- Department of Anatomy and Neurobiology, Virginia Commonwealth University, Richmond, VA, United States
| | - A Christian Pais
- VCU-Alcohol Research Center, Virginia Commonwealth University, Richmond, Virginia, United States
| | - Ananda Amstadter
- Virginia Institute of Psychiatric and Behavioral Genetics, Department of Psychiatry, Virginia Commonwealth University, Richmond, VA, United States
| | - Jennifer T Wolstenholme
- VCU-Alcohol Research Center, Virginia Commonwealth University, Richmond, Virginia, United States; Department of Pharmacology and Toxicology, Virginia Commonwealth University, Richmond, VA, United States
| | - Michael F Miles
- VCU-Alcohol Research Center, Virginia Commonwealth University, Richmond, Virginia, United States; Department of Pharmacology and Toxicology, Virginia Commonwealth University, Richmond, VA, United States; Department of Neurology, Virginia Commonwealth University, Richmond, VA, United States
| | - Gretchen N Neigh
- Department of Anatomy and Neurobiology, Virginia Commonwealth University, Richmond, VA, United States.
| |
Collapse
|
29
|
Kuhn BN, Kalivas PW, Bobadilla AC. Understanding Addiction Using Animal Models. Front Behav Neurosci 2019; 13:262. [PMID: 31849622 PMCID: PMC6895146 DOI: 10.3389/fnbeh.2019.00262] [Citation(s) in RCA: 90] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2019] [Accepted: 11/15/2019] [Indexed: 12/13/2022] Open
Abstract
Drug addiction is a neuropsychiatric disorder with grave personal consequences that has an extraordinary global economic impact. Despite decades of research, the options available to treat addiction are often ineffective because our rudimentary understanding of drug-induced pathology in brain circuits and synaptic physiology inhibits the rational design of successful therapies. This understanding will arise first from animal models of addiction where experimentation at the level of circuits and molecular biology is possible. We will review the most common preclinical models of addictive behavior and discuss the advantages and disadvantages of each. This includes non-contingent models in which animals are passively exposed to rewarding substances, as well as widely used contingent models such as drug self-administration and relapse. For the latter, we elaborate on the different ways of mimicking craving and relapse, which include using acute stress, drug administration or exposure to cues and contexts previously paired with drug self-administration. We further describe paradigms where drug-taking is challenged by alternative rewards, such as appetitive foods or social interaction. In an attempt to better model the individual vulnerability to drug abuse that characterizes human addiction, the field has also established preclinical paradigms in which drug-induced behaviors are ranked by various criteria of drug use in the presence of negative consequences. Separation of more vulnerable animals according to these criteria, along with other innate predispositions including goal- or sign-tracking, sensation-seeking behavior or impulsivity, has established individual genetic susceptibilities to developing drug addiction and relapse vulnerability. We further examine current models of behavioral addictions such as gambling, a disorder included in the DSM-5, and exercise, mentioned in the DSM-5 but not included yet due to insufficient peer-reviewed evidence. Finally, after reviewing the face validity of the aforementioned models, we consider the most common standardized tests used by pharmaceutical companies to assess the addictive potential of a drug during clinical trials.
Collapse
Affiliation(s)
| | - Peter W. Kalivas
- Department of Neuroscience, Medical University of South Carolina, Charleston, SC, United States
| | - Ana-Clara Bobadilla
- Department of Neuroscience, Medical University of South Carolina, Charleston, SC, United States
| |
Collapse
|
30
|
Heilig M, Augier E, Pfarr S, Sommer WH. Developing neuroscience-based treatments for alcohol addiction: A matter of choice? Transl Psychiatry 2019; 9:255. [PMID: 31594920 PMCID: PMC6783461 DOI: 10.1038/s41398-019-0591-6] [Citation(s) in RCA: 58] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/15/2019] [Revised: 07/05/2019] [Accepted: 08/08/2019] [Indexed: 12/15/2022] Open
Abstract
Excessive alcohol use is the cause of an ongoing public health crisis, and accounts for ~5% of global disease burden. A minority of people with recreational alcohol use develop alcohol addiction (hereafter equated with "alcohol dependence" or simply "alcoholism"), a condition characterized by a systematically biased choice preference for alcohol at the expense of healthy rewards, and continued use despite adverse consequences ("compulsivity"). Alcoholism is arguably the most pressing area of unmet medical needs in psychiatry, with only a small fraction of patients receiving effective, evidence-based treatments. Medications currently approved for the treatment of alcoholism have small effect sizes, and their clinical uptake is negligible. No mechanistically new medications have been approved since 2004, and promising preclinical results have failed to translate into novel treatments. This has contributed to a reemerging debate whether and to what extent alcohol addiction represents a medical condition, or reflects maladaptive choices without an underlying brain pathology. Here, we review this landscape, and discuss the challenges, lessons learned, and opportunities to retool drug development in this important therapeutic area.
Collapse
Affiliation(s)
- Markus Heilig
- Center for Social and Affective Neuroscience, Department of Clinical and Experimental Medicine, Linköping University, S-581 83, Linköping, Sweden.
| | - Eric Augier
- 0000 0001 2162 9922grid.5640.7Center for Social and Affective Neuroscience, Department of Clinical and Experimental Medicine, Linköping University, S-581 83 Linköping, Sweden
| | - Simone Pfarr
- 0000 0004 0477 2235grid.413757.3Institute of Psychopharmacology, Central Institute of Mental Health (CIMH), J 5, 68159 Mannheim, Germany
| | - Wolfgang H. Sommer
- 0000 0004 0477 2235grid.413757.3Institute of Psychopharmacology, Central Institute of Mental Health (CIMH), J 5, 68159 Mannheim, Germany ,0000 0004 0477 2235grid.413757.3Department of Addiction Medicine, Central Institute of Mental Health (CIMH), J 5, 68159 Mannheim, Germany
| |
Collapse
|
31
|
Sartor GC. Epigenetic pharmacotherapy for substance use disorder. Biochem Pharmacol 2019; 168:269-274. [PMID: 31306644 PMCID: PMC6733674 DOI: 10.1016/j.bcp.2019.07.012] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2019] [Accepted: 07/10/2019] [Indexed: 12/12/2022]
Abstract
Identifying novel therapeutics for the treatment of substance use disorder (SUD) is an area of intensive investigation. Prior strategies that have attempted to modify one or a few neurotransmitter receptors have had limited success, and currently there are no FDA-approved medications for the treatment of cocaine, methamphetamine, and marijuana use disorders. Because drugs of abuse are known to alter the expression of numerous genes in reward-related brain regions, epigenetic-based therapies have emerged as intriguing targets for therapeutic innovation. Here, I evaluate potential therapeutic approaches and challenges in targeting epigenetic factors for the treatment of SUD and highlight examples of promising strategies and future directions.
Collapse
Affiliation(s)
- Gregory C Sartor
- University of Connecticut, Department of Pharmaceutical Sciences, 69 N. Eagleville Road, Storrs, CT 06269, United States.
| |
Collapse
|
32
|
Wegner SA, Hu B, De Oliveira Sergio T, Darevsky D, Kwok CCY, Lei K, Hopf FW. A novel NMDA receptor-based intervention to suppress compulsion-like alcohol drinking. Neuropharmacology 2019; 157:107681. [PMID: 31251994 DOI: 10.1016/j.neuropharm.2019.107681] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2018] [Revised: 06/19/2019] [Accepted: 06/21/2019] [Indexed: 01/09/2023]
Abstract
Compulsive drives for alcohol, where intake persists despite adverse consequences, are substantial obstacles to treating Alcohol Use Disorder (AUD). However, there are limited treatment options and thus considerable interest in identifying new, potent and safe pharmacotherapies. We found that non-canonical N-methyl-d-aspartate receptors (NMDARs), active at hyperpolarized potentials, drive compulsion-like alcohol drinking in rats without affecting regular, alcohol-only intake. Congruent human studies suggest that NMDAR inhibition reduces alcohol drinking in treatment-seekers but not non-treatment-seekers and suppresses craving. These cross-species studies of consumption under conflict indicate that inhibiting non-canonical NMDARs could be of clinical value for AUD. d-serine activates NMDARs overall, but actually inhibits non-canonical NMDARs. Also, d-serine has been widely tested in humans as a moderate NMDAR modulator, but some nephrotoxicity concerns remain, and thus any strategy that reduces d-serine exposure could be of broad utility. Here, co-administration of sodium benzoate (NaBenz), which reduces d-serine breakdown, allowed subthreshold d-serine levels to suppress compulsion-like alcohol drinking without altering normal alcohol-only consumption, providing a novel intervention for AUD and underscoring the importance of non-canonical NMDARs for compulsion-like intake. Low NaBenz doses alone had no average effect on intake. NaBenz/d-serine reduced compulsion-like intake in nearly all animals, while higher d-serine alone decreased compulsion-like intake with less of an effect in lower-drinking subjects. Thus, combining subthreshold NaBenz and d-serine suppressed compulsion-like intake, helping both to alleviate some d-serine concerns, and, importantly, to reduce consequence-resistant consumption across nearly all individuals. Therefore, NaBenz/d-serine likely represents an FDA-approved and immediately-accessible pharmacotherapy to help counteract compulsion-like drives and treat AUD.
Collapse
Affiliation(s)
- Scott Andrew Wegner
- Alcohol and Addiction Research Group, Department of Neurology, University of California at San Francisco, San Francisco, CA, USA
| | - Bing Hu
- Alcohol and Addiction Research Group, Department of Neurology, University of California at San Francisco, San Francisco, CA, USA
| | - Thatiane De Oliveira Sergio
- Alcohol and Addiction Research Group, Department of Neurology, University of California at San Francisco, San Francisco, CA, USA
| | - David Darevsky
- Alcohol and Addiction Research Group, Department of Neurology, University of California at San Francisco, San Francisco, CA, USA
| | - Claudina Choi-Yan Kwok
- Alcohol and Addiction Research Group, Department of Neurology, University of California at San Francisco, San Francisco, CA, USA
| | - Kelly Lei
- Alcohol and Addiction Research Group, Department of Neurology, University of California at San Francisco, San Francisco, CA, USA
| | - Frederic Woodward Hopf
- Alcohol and Addiction Research Group, Department of Neurology, University of California at San Francisco, San Francisco, CA, USA; Wheeler Center for the Study of Addiction, University of California at San Francisco, USA.
| |
Collapse
|
33
|
Counterconditioning following memory retrieval diminishes the reinstatement of appetitive memories in humans. Sci Rep 2019; 9:9213. [PMID: 31239475 PMCID: PMC6592881 DOI: 10.1038/s41598-019-45492-6] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2018] [Accepted: 06/04/2019] [Indexed: 11/08/2022] Open
Abstract
Appetitive memories play a crucial role in learning and behavior, but under certain circumstances, such memories become maladaptive and play a vital role in addiction and other psychopathologies. Recent scientific research has demonstrated that memories can be modified following their reactivation through memory retrieval in a process termed memory reconsolidation. Several nonpharmacological behavioral manipulations yielded mixed results in their capacity to alter maladaptive memories in humans. Here, we aimed to translate the promising findings observed in rodents to humans. We constructed a novel three-day procedure using aversive counterconditioning to alter appetitive memories after short memory retrieval. On the first day, we used appetitive conditioning to form appetitive memories. On the second day, we retrieved these appetitive memories in one group (Retrieval group) but not in a second group. Subsequently, all participants underwent counterconditioning. On the third day, we attempted to reinstate the appetitive memories from day one. We observed a significant reduction in the reinstatement of the original appetitive memory when counterconditioning was induced following memory retrieval. Here, we provide a novel human paradigm that models several memory processes and demonstrate memory attenuation when counterconditioned after its retrieval. This paradigm can be used to study complex appetitive memory dynamics, e.g., memory reconsolidation and its underlying brain mechanisms.
Collapse
|
34
|
Ron D, Weiner J. Special issue on new technologies for alcohol research and treatment. Alcohol 2019; 74:1-2. [PMID: 30409742 DOI: 10.1016/j.alcohol.2018.06.003] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2018] [Accepted: 06/11/2018] [Indexed: 11/17/2022]
Affiliation(s)
- Dorit Ron
- Department of Neurology, University of California San Francisco, San Francisco, CA 94143 United States.
| | - Jeff Weiner
- Department of Physiology and Pharmacology, Wake Forest School of Medicine, Winston-Salem, North Carolina 27157 United States.
| |
Collapse
|