1
|
Tamburino R, Docimo T, Sannino L, Gualtieri L, Palomba F, Valletta A, Ruocco M, Scotti N. Enzyme-Based Biostimulants Influence Physiological and Biochemical Responses of Lactuca sativa L. Biomolecules 2023; 13:1765. [PMID: 38136636 PMCID: PMC10742310 DOI: 10.3390/biom13121765] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2023] [Revised: 12/07/2023] [Accepted: 12/07/2023] [Indexed: 12/24/2023] Open
Abstract
Biostimulants (BSs) are natural materials (i.e., organic or inorganic compounds, and/or microorganisms) having beneficial effects on plant growth and productivity, and able to improve resilience/tolerance to biotic and abiotic stresses. Therefore, they represent an innovative alternative to the phyto- and agrochemicals, being environmentally friendly and a valuable tool to cope with extreme climate conditions. The objective of this study was to investigate the effects of several biomolecules (i.e., Xylanase, β-Glucosidase, Chitinase, and Tramesan), alone or in combinations, on lettuce plant growth and quality. With this aim, the influence of these biomolecules on biomass, pigment content, and antioxidant properties in treated plants were investigated. Our results showed that Xylanase and, to a lesser extent, β-Glucosidase, have potentially biostimulant activity for lettuce cultivation, positively influencing carotenoids, total polyphenols, and ascorbic acid contents; similar effects were found with respect to antioxidative properties. Furthermore, the effect of the more promising molecules (Xylanase and β-Glucosidase) was also evaluated in kiwifruit cultured cells to test their putative role as sustainable input for plant cell biofactories. The absence of phytotoxic effects of both molecules at low doses (0.1 and 0.01 µM), and the significantly enhanced cell biomass growth, indicates a positive impact on kiwifruit cells.
Collapse
Affiliation(s)
- Rachele Tamburino
- Istituto di Bioscienze e BioRisorse (CNR-IBBR), 80055 Portici, Italy; (R.T.); (T.D.); (L.S.)
| | - Teresa Docimo
- Istituto di Bioscienze e BioRisorse (CNR-IBBR), 80055 Portici, Italy; (R.T.); (T.D.); (L.S.)
| | - Lorenza Sannino
- Istituto di Bioscienze e BioRisorse (CNR-IBBR), 80055 Portici, Italy; (R.T.); (T.D.); (L.S.)
| | - Liberata Gualtieri
- Istituto per la Protezione Sostenibile delle Piante (CNR-IPSP), 80055 Portici, Italy; (L.G.); (F.P.); (M.R.)
| | - Francesca Palomba
- Istituto per la Protezione Sostenibile delle Piante (CNR-IPSP), 80055 Portici, Italy; (L.G.); (F.P.); (M.R.)
| | - Alessio Valletta
- Department of Environmental Biology, Sapienza University of Rome, 00185 Rome, Italy;
| | - Michelina Ruocco
- Istituto per la Protezione Sostenibile delle Piante (CNR-IPSP), 80055 Portici, Italy; (L.G.); (F.P.); (M.R.)
| | - Nunzia Scotti
- Istituto di Bioscienze e BioRisorse (CNR-IBBR), 80055 Portici, Italy; (R.T.); (T.D.); (L.S.)
| |
Collapse
|
2
|
Subbiah V, Xie C, Dunshea FR, Barrow CJ, Suleria HAR. The Quest for Phenolic Compounds from Seaweed: Nutrition, Biological Activities and Applications. FOOD REVIEWS INTERNATIONAL 2022. [DOI: 10.1080/87559129.2022.2094406] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Affiliation(s)
- Vigasini Subbiah
- Centre for Chemistry and Biotechnology, School of Life and Environmental Sciences, Deakin University, Waurn Ponds, VIC, Australia
- School of Agriculture and Food, Faculty of Veterinary and Agricultural Sciences, The University of Melbourne, Parkville, VIC, Australia
| | - Cundong Xie
- School of Agriculture and Food, Faculty of Veterinary and Agricultural Sciences, The University of Melbourne, Parkville, VIC, Australia
| | - Frank R. Dunshea
- School of Agriculture and Food, Faculty of Veterinary and Agricultural Sciences, The University of Melbourne, Parkville, VIC, Australia
| | - Colin J. Barrow
- Centre for Chemistry and Biotechnology, School of Life and Environmental Sciences, Deakin University, Waurn Ponds, VIC, Australia
| | - Hafiz A. R. Suleria
- Centre for Chemistry and Biotechnology, School of Life and Environmental Sciences, Deakin University, Waurn Ponds, VIC, Australia
- School of Agriculture and Food, Faculty of Veterinary and Agricultural Sciences, The University of Melbourne, Parkville, VIC, Australia
| |
Collapse
|
3
|
Phloroglucinol promotes fucoxanthin synthesis by activating the cis-zeatin and brassinolide pathways in Thalassiosira pseudonana. Appl Environ Microbiol 2022; 88:e0216021. [PMID: 35108066 DOI: 10.1128/aem.02160-21] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Phloroglucinol improves shoot formation and somatic embryogenesis in several horticultural and grain crops, but its function in microalgae remains unclear. Here, we found that sufficiently high concentrations of phloroglucinol significantly increased fucoxanthin synthesis, growth, and photosynthetic efficiency in the microalga Thalassiosira pseudonana. These results suggested that the role of phloroglucinol is conserved across higher plants and microalgae. Further analysis showed that, after phloroglucinol treatment, the contents of cis-zeatin and brassinolide in T. pseudonana increased significantly, while the contents of trans-zeatin, iP, auxin, or gibberellin were unaffected. Indeed, functional studies showed that the effects of cis-zeatin and brassinolide in T. pseudonana were similar to those of phloroglucinol. Knockout of key enzyme genes in the cis-zeatin synthesis pathway of T. pseudonana or treatment of T. pseudonana with a brassinolide synthesis inhibitor (brassinazole) significantly reduced growth and fucoxanthin content in T. pseudonana, and phloroglucinol treatment partially alleviated these inhibitory effects. However, phloroglucinol treatment was ineffective when the cis-zeatin and brassinolide pathways were simultaneously inhibited. These results suggested that the cis-zeatin and brassinolide signaling pathways are independent regulators of fucoxanthin synthesis in T. pseudonana, and that phloroglucinol affects both pathways. Thus, this study not only characterizes the mechanism by which phloroglucinol promotes fucoxanthin synthesis, but also demonstrates the roles of cis-zeatin and brassinolide in T. pseudonana. IMPORTANCE Here, we demonstrate that phloroglucinol, a growth promoter in higher plants, also increases growth and fucoxanthin synthesis in the microalga Thalassiosira pseudonana, and therefore may have substantial practical application for industrial fucoxanthin production. Phloroglucinol treatment also induced the synthesis of cis-zeatin and brassinolide in T. pseudonana, and the cis-zeatin and brassinolide signaling pathways were implicated in the phloroglucinol-driven increases in T. pseudonana growth and fucoxanthin synthesis. Thus, our work clarified the molecular mechanism of phloroglucinol promoting the growth and fucoxanthin synthesis of Thalassiosira pseudonana, and suggested that cis-zeatin and brassinolide, in addition to phloroglucinol, had potential utility as inducers of increased microalgal fucoxanthin production.
Collapse
|
4
|
Civelek Yoruklu H, Ozkaya B, Demir A. Optimization of liquid fertilizer production from waste seaweed: A design of experiment based statistical approach. CHEMOSPHERE 2022; 286:131885. [PMID: 34411930 DOI: 10.1016/j.chemosphere.2021.131885] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/31/2020] [Revised: 08/09/2021] [Accepted: 08/11/2021] [Indexed: 06/13/2023]
Abstract
In Istanbul, which is surrounded by the sea on 3 sides, thousands of tons of seaweed that have formed naturally every year are washed ashore. In this study, the usability of these seaweeds which are landfilling already in fertilizer production was discussed. Liquid fertilizer production was carried out using 3 different physical and 4 different biological methods, and the produced fertilizers were diluted in 5 different ratios (1%, 10%, 25%, 50%, and 100%) and applied to cress seed. The effect of each fertilizer and its concentration on seed germination, plant length, number of leaves, and soil moisture-holding capacity was studied. The data obtained were analyzed using Response Surface Methodology (RSM). The results showed that if seaweed was fermented with anaerobic seed sludge for 15 days and applied to the plant by diluting it to 15-25%, plant growth will be supported at an optimum level. It has also been shown that if the seaweed was fermented with yeast culture for 18 days and fed with a concentration of >90%, the moisture-holding capacity of the soil could be increased by up to 27%.
Collapse
Affiliation(s)
- Hulya Civelek Yoruklu
- Yildiz Technical University, Department of Environmental Engineering, 34220, Esenler, Istanbul, Turkey.
| | - Bestami Ozkaya
- Yildiz Technical University, Department of Environmental Engineering, 34220, Esenler, Istanbul, Turkey.
| | - Ahmet Demir
- Yildiz Technical University, Department of Environmental Engineering, 34220, Esenler, Istanbul, Turkey.
| |
Collapse
|
5
|
Li F, Yu H, Li Y, Wang Y, Shen Resource J, Hu D, Feng B, Han Y. The quality of compost was improved by low concentrations of fulvic acid owing to its optimization of the exceptional microbial structure. BIORESOURCE TECHNOLOGY 2021; 342:125843. [PMID: 34530250 DOI: 10.1016/j.biortech.2021.125843] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/10/2021] [Revised: 08/19/2021] [Accepted: 08/21/2021] [Indexed: 06/13/2023]
Abstract
The influence of different concentrations of fulvic acid at 0, 100, 200, and 400 mg/kg was evaluated during the course of composting with straw and mushroom residues as substrates. The optimal concentration of fulvic acid is 100 mg/Kg based on microbial characteristics, chemical parameters, and germination index testing. Nearly 80% of the microbial taxa responded significantly to fulvic acid over the composting period, with a dynamic change of the co-occurrence network from complex to simple and then to complex. Fulvic acid accelerated the progress of composting and reduced the emission of gases at the thermophilic phase. The optimal concentration of fulvic acid enriched the beneficial microorganisms Aeribacillus, Oceanobacillus, and Rhodospirillaceae, and decreased the abundances of pathogenic microorganisms Corynebacterium, Elizabethkingia, and Sarcocystidae. This study indicates a new strategy to optimize the composting process using the biostimulant fulvic acid.
Collapse
Affiliation(s)
- Fang Li
- College of Resources and Environment Science, Henan Agricultural University, Zhengzhou 450002, PR China
| | - Haiyou Yu
- Henan University of Animal Husbandry and Economy, Zhengzhou 450002, PR China
| | - Yue Li
- College of Resources and Environment Science, Henan Agricultural University, Zhengzhou 450002, PR China
| | - Yi Wang
- College of Resources and Environment Science, Henan Agricultural University, Zhengzhou 450002, PR China
| | - Jinwen Shen Resource
- College of Life Sciences, Henan Agricultural University, Zhengzhou 450002, PR China
| | - Desheng Hu
- College of Resources and Environment Science, Henan Agricultural University, Zhengzhou 450002, PR China
| | - Biao Feng
- College of Resources and Environment Science, Henan Agricultural University, Zhengzhou 450002, PR China
| | - Yanlai Han
- College of Resources and Environment Science, Henan Agricultural University, Zhengzhou 450002, PR China.
| |
Collapse
|
6
|
Heo SY, Jeong MS, Lee HS, Park WS, Choi IW, Yi M, Jung WK. Dieckol induces cell cycle arrest by down-regulating CDK2/cyclin E in response to p21/p53 activation in human tracheal fibroblasts. Cell Biochem Funct 2021; 40:71-78. [PMID: 34708431 DOI: 10.1002/cbf.3675] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2021] [Revised: 09/11/2021] [Accepted: 10/02/2021] [Indexed: 01/05/2023]
Abstract
The phlorotannin derivative dieckol isolated from Ecklonia cava has been shown to exhibit anti-inflammatory, anti-bacterial, anti-oxidative anti-adipogenic and anti-stenosis activity. However, the role of dieckol in cyclin-dependent kinase 2 (CDK2)/cyclin E signalling, which regulates fibrosis development, has not yet been determined. In this study, we report that dieckol-suppressed cell proliferation through the cell cycle arrest of Hs680.Tr human tracheal fibroblasts. Following consecutive purification, dieckol was identified as a potent bioactive compound. The results showed that dieckol had significant anti-proliferative activity against Hs680.Tr human tracheal fibroblastsWestern blotting analysis also found that dieckol dose-dependently induced the cell cycle arrest of Hs680.Tr fibroblasts in the G0/G1 phase, accompanied by the downregulation of CDK2 and cyclin E and the upregulation of p21 and p53. As attested by molecular docking study, the dieckol interacted with the core interface residues in transforming growth factor-β receptor with high affinity. These findings suggest that dieckol from E. cava inhibits the cell proliferation of Hs680.Tr, potentially through p21- and p53-mediated G0/G1 cell cycle arrest.
Collapse
Affiliation(s)
- Seong-Yeong Heo
- Research Center for Marine Integrated Bionics Technology, Pukyong National University, Busan, Republic of Korea.,Marine Integrated Biomedical Technology Center, The National Key Research Institutes in Universities, Pukyong National University, Busan, Republic of Korea.,Jeju Marine Research Center, Korea Institute of Ocean Science & Technology (KIOST), Jeju, Republic of Korea
| | - Min-Seon Jeong
- Department of Research and Development, EONE-DIAGNOMICS Genome Center (EDGC), Incheon, Republic of Korea
| | - Hyoung Shin Lee
- Department of Otolaryngology-Head and Neck Surgery, Kosin University College of Medicine, Busan, Republic of Korea
| | - Won Sun Park
- Department of Physiology, Institute of Medical Sciences, Kangwon National University, School of Medicine, Chuncheon, Republic of Korea
| | - Il-Whan Choi
- Department of Microbiology, Inje University College of Medicine, Busan, Republic of Korea
| | - Myunggi Yi
- Department of Biomedical Engineering, and New-Senior Healthcare Innovation Center (BK21 Plus), Pukyong National University, Busan, Republic of Korea
| | - Won-Kyo Jung
- Marine Integrated Biomedical Technology Center, The National Key Research Institutes in Universities, Pukyong National University, Busan, Republic of Korea.,Department of Biomedical Engineering, and New-Senior Healthcare Innovation Center (BK21 Plus), Pukyong National University, Busan, Republic of Korea
| |
Collapse
|
7
|
Lomartire S, Marques JC, Gonçalves AMM. An Overview to the Health Benefits of Seaweeds Consumption. Mar Drugs 2021; 19:341. [PMID: 34203804 PMCID: PMC8232781 DOI: 10.3390/md19060341] [Citation(s) in RCA: 52] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2021] [Revised: 06/05/2021] [Accepted: 06/08/2021] [Indexed: 12/22/2022] Open
Abstract
Currently, seaweeds are gaining major attention due to the benefits they give to our health. Recent studies demonstrate the high nutritional value of seaweeds and the powerful properties that seaweeds' bioactive compounds provide. Species of class Phaeophyceae, phylum Rhodophyta and Chlorophyta possess unique compounds with several properties that are potential allies of our health, which make them valuable compounds to be involved in biotechnological applications. In this review, the health benefits given by consumption of seaweeds as whole food or by assumption of bioactive compounds trough natural drugs are highlighted. The use of seaweeds in agriculture is also highlighted, as they assure soils and crops free from chemicals; thus, it is advantageous for our health. The addition of seaweed extracts in food, nutraceutical, pharmaceutical and industrial companies will enhance the production and consumption/usage of seaweed-based products. Therefore, there is the need to implement the research on seaweeds, with the aim to identify more bioactive compounds, which may assure benefits to human and animal health.
Collapse
Affiliation(s)
- Silvia Lomartire
- University of Coimbra, MARE-Marine and Environmental Sciences Centre, Department of Life Sciences, Calçada Martim de Freitas, 3000-456 Coimbra, Portugal; (S.L.); (J.C.M.)
| | - João Carlos Marques
- University of Coimbra, MARE-Marine and Environmental Sciences Centre, Department of Life Sciences, Calçada Martim de Freitas, 3000-456 Coimbra, Portugal; (S.L.); (J.C.M.)
| | - Ana M. M. Gonçalves
- University of Coimbra, MARE-Marine and Environmental Sciences Centre, Department of Life Sciences, Calçada Martim de Freitas, 3000-456 Coimbra, Portugal; (S.L.); (J.C.M.)
- Department of Biology and CESAM, University of Aveiro, 3810-193 Aveiro, Portugal
| |
Collapse
|
8
|
Shahrajabian MH, Chaski C, Polyzos N, Petropoulos SA. Biostimulants Application: A Low Input Cropping Management Tool for Sustainable Farming of Vegetables. Biomolecules 2021; 11:biom11050698. [PMID: 34067181 PMCID: PMC8150747 DOI: 10.3390/biom11050698] [Citation(s) in RCA: 42] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2021] [Revised: 05/04/2021] [Accepted: 05/06/2021] [Indexed: 11/16/2022] Open
Abstract
Biostimulants, are a diverse class of compounds including substances or microorganism which have positive impacts on plant growth, yield and chemical composition as well as boosting effects to biotic and abiotic stress tolerance. The major plant biostimulants are hydrolysates of plant or animal protein and other compounds that contain nitrogen, humic substances, extracts of seaweeds, biopolymers, compounds of microbial origin, phosphite, and silicon, among others. The mechanisms involved in the protective effects of biostimulants are varied depending on the compound and/or crop and mostly related with improved physiological processes and plant morphology aspects such as the enhanced root formation and elongation, increased nutrient uptake, improvement in seed germination rates and better crop establishment, increased cation exchange, decreased leaching, detoxification of heavy metals, mechanisms involved in stomatal conductance and plant transpiration or the stimulation of plant immune systems against stressors. The aim of this review was to provide an overview of the application of plant biostimulants on different crops within the framework of sustainable crop management, aiming to gather critical information regarding their positive effects on plant growth and yield, as well as on the quality of the final product. Moreover, the main limitations of such practice as well as the future prospects of biostimulants research will be presented.
Collapse
|
9
|
Challenges and Opportunities in Wheat Flour, Pasta, Bread, and Bakery Product Production Chains: A Systematic Review of Innovations and Improvement Strategies to Increase Sustainability, Productivity, and Product Quality. SUSTAINABILITY 2021. [DOI: 10.3390/su13052608] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Pasta, bread, and bakery products are considered worldwide as essential foods for human nutrition. In particular, ancient wheats and whole wheat flours, despite being able to provide health benefits via bioactive compounds, present significant technological problems related to poorer dough rheological properties and final product characteristics. Moreover, both the food industry and consumers are increasingly sensitive to environmental impacts, highlighting the urgent need for sustainable innovations and improvement strategies, from cradle to grave, for the entire production chains, thus motivating this review. The aim of this review is to provide technological innovations and improvement strategies to increase the sustainability, productivity, and quality of flours, pasta, bread, and bakery products. This review is focused on the main operations of the production chains (i.e., wheat cultivation, wheat milling, dough processing, and, finally, the manufacturing of pasta, bread, and bakery products). To achieve this goal, the use of life-cycle assessment (LCA) analysis proved to be an effective tool that can be used, from early stages, for the development of eco-friendly improvement strategies. The correct management of the wheat cultivation stage was found to be essential since it represents the most impacting phase for the environment. Successively, particular attention needs to be paid to the milling process, the kneading phase, to breadmaking, and, finally, to the manufacturing of pasta. In this review, several specifically developed solutions for these essential phases were suggested. In conclusion, despite further investigations being necessary, this review provided several innovations and improvement strategies, using an approach “from cradle to grave”, able to increase the sustainability, productivity, and final quality of flour, semolina, pasta, bread, and bakery products.
Collapse
|
10
|
Mineral Composition of Subcritical Water Extracts of Saccorhiza Polyschides, a Brown Seaweed Used as Fertilizer in the North of Portugal. JOURNAL OF MARINE SCIENCE AND ENGINEERING 2020. [DOI: 10.3390/jmse8040244] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
The present work aimed at studying Saccorhiza polyschides extracts obtained by subcritical water extraction as a potential source of essential macro and trace elements, aiming for its potential application as a biofertilizer. The mineral composition, as well as sulfate, chlorine and iodine, total organic matter, and total nitrogen content, were determined on the extracts obtained from seaweeds harvested during low tide at the northern Portuguese coast. The selected parameters are important for a biofertilizer. Among the macronutrients, the most abundant was K (15.7 ± 0.2 g/L), followed by Na (5.46 ± 0.11 g/L), S (1.52 ± 0.06 g/L), Ca (1.09 ± 0.11 g/L), and Mg (1.02 ± 0.08 g/L). Several important micronutrients (Zn, B, Cl, P, Mo, V, Se, and I) have also been found in the extracts. The total organic matter was 34.1 ± 0.3 g/L. The extracts present low levels of toxic compounds such as Ni, Cd, and Pb. Considering the composition of the obtained extracts, these can find application in the development of fertilization products. The composition of subcritical water extracts of S. polyschides suggests that they may have important characteristics as a biofertilizer and can be an option in biofortification experiments with essential nutrients. The method can be easily scaled up which makes it attractive for agricultural applications.
Collapse
|
11
|
Sustainable Agronomic Strategies for Enhancing the Yield and Nutritional Quality of Wild Tomato, Solanum Lycopersicum (l) Var Cerasiforme Mill. AGRONOMY-BASEL 2019. [DOI: 10.3390/agronomy9060311] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Urbanization and global climate change have constrained plant development and yield. Utilization of wild gene pool, together with the application of sustainable and eco-friendly agronomic crop improvement strategies, is being focused on to tackle mounting food insecurity issues. In this aspect, the green seaweed, Ulva flexuosa, was assessed for plant biostimulant potential on cherry tomato, in terms of seed priming effects, nutrition and yield. SEM-EDX analysis of U. flexuosa presented the occurrence of cell wall elements (O, Na, Mg, S, Cl, K and Ca). The phytochemical analyses of liquid seaweed extract (EF-LSE) revealed the presence of carbohydrates, protein, phenols, flavonoids, saponins, tannins and coumarins. The EF-LSEs were found to stimulate seed germination in a dose-dependent manner, recording higher seed germination, and biomass and growth parameters. The seedlings of treated seeds altered the biochemical profile of the fruit, in terms of TSS (93%), phenol (92%), lycopene (12%) and ascorbic acid (86.8%). The EF-LSEs positively influenced fruit yield (97%). Henceforth, this investigation brings to light the plant biostimulant potential of the under-utilized seaweed source, U. flexuosa, to be useful as a bio fertilizer in agronomic fields for a cumulative enhancement of crop vigour as well as yields to meet the growing food demands.
Collapse
|
12
|
Soppelsa S, Kelderer M, Casera C, Bassi M, Robatscher P, Andreotti C. Use of Biostimulants for Organic Apple Production: Effects on Tree Growth, Yield, and Fruit Quality at Harvest and During Storage. FRONTIERS IN PLANT SCIENCE 2018; 9:1342. [PMID: 30298077 PMCID: PMC6160664 DOI: 10.3389/fpls.2018.01342] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/30/2018] [Accepted: 08/24/2018] [Indexed: 06/08/2023]
Abstract
The experiment was conducted during two consecutive seasons (years 2016 and 2017) in an organic apple orchard of the cultivar Jonathan. Several biostimulants were tested (10 in total), including humic acids, macro and micro seaweed extracts, alfalfa protein hydrolysate, amino acids alone or in combination with zinc, B-group vitamins, chitosan and a commercial product containing silicon. Treatments were performed at weekly intervals, starting from the end of May until mid-August. The macroseaweed extract was effective in stimulate tree growth potential in both years, as shown by a significantly larger leaf area (+20% as compared to control) and by an higher chlorophyll content and leaf photosynthetic rate in year 2016. As for the yield performances and apples quality traits at harvest (average fruit weight, soluble solids content, titratable acidity, and flesh firmness), they were generally affected by the different climatic conditions that characterized the two growing seasons (year 2017 being characterized by higher maximal and average temperatures and by limited rainfalls at the beginning of the season). Treatments with macroseaweed extract, B-group vitamins and alfalfa protein hydrolysate were able to significantly improve the intensity and extension of the red coloration of apples at harvest. Correspondingly, the anthocyanin content in the skin of apples treated with the same biostimulants resulted significantly higher than control, highlighting the potential influence of these substances on the synthesis of secondary metabolites in apple. The incidence of physiological disorders was also monitored during apple storage period. Amino acids plus zinc application was effective in reducing (more than 50%) the incidence of the "Jonathan spot," the main post-harvest disorder for this cultivar.
Collapse
Affiliation(s)
- Sebastian Soppelsa
- Faculty of Science and Technology, Free University of Bozen-Bolzano, Bolzano, Italy
| | | | | | | | | | - Carlo Andreotti
- Faculty of Science and Technology, Free University of Bozen-Bolzano, Bolzano, Italy
| |
Collapse
|