1
|
Simionov IA, Barbu M, Vasiliev I, Condrachi L, Titica M, Ifrim G, Cristea D, Nuță FM, Petrea ȘM. Prospective technical and technological insights into microalgae production using aquaculture wastewater effluents. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2025; 377:124537. [PMID: 40020375 DOI: 10.1016/j.jenvman.2025.124537] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/05/2024] [Revised: 02/01/2025] [Accepted: 02/10/2025] [Indexed: 03/03/2025]
Abstract
Microalgae biomass is a promising resource addressing climate change and play a role in energy transition for generating biofuels. Due to their ability to produce higher yield per year, biofuels obtained from microalgae are considered 3rd generation-advanced biofuels. The industrial production of microalgae mitigates the effects of CO2 emissions and can be used for wastewater bioremediation since most effluents are rich in nutrients. Using wastewater as growth media for microalgae promotes the principles of circular economy and nutrient recovery. The aquaculture wastewater effluent contains high levels of nitrogenous compounds, as well as phosphates and dissolved organic carbon. The current review aims to identify, centralize, and provide extensive information on the decisive technological and technical factors involved in the growth process of different microalgae species in aquaculture wastewater. The study focuses on technological growth performance indicators, as well as specific control strategies applied to achieve pH control, since it has been highlighted to be one of the most important growth-related cofactors. A bibliometric framework was developed to identify future trends in integrated microalgae production. The scientific literature analysis highlighted the great potential of aquaculture wastewater effluents to be used as growth media for microalgae biomass production, due to superior performance in lipid and carbohydrate productivity. Most control strategies developed for microalgae production systems found in the literature aim at controlling the pH in the bioreactor by injecting CO2, while few other papers consider manipulating the dissolved oxygen. The need for higher-level control arises to not only track pH or DO references but also to maximize the treatment efficiency of the bioreactor.
Collapse
Affiliation(s)
- Ira-Adeline Simionov
- Department of Food Science, Food Engineering, Biotechnologies and Aquaculture, "Dunarea de Jos" University Galati, 800008, Galati, Romania; Department of Automatic Control and Electrical Engineering, "Dunarea de Jos" University Galati, 800008, Galati, Romania; Rexdan Research Infrastructure, "Dunarea de Jos" University Galati, 800008, Galati, Romania
| | - Marian Barbu
- Department of Automatic Control and Electrical Engineering, "Dunarea de Jos" University Galati, 800008, Galati, Romania
| | - Iulian Vasiliev
- Department of Automatic Control and Electrical Engineering, "Dunarea de Jos" University Galati, 800008, Galati, Romania
| | - Larisa Condrachi
- Department of Automatic Control and Electrical Engineering, "Dunarea de Jos" University Galati, 800008, Galati, Romania
| | - Mariana Titica
- GEPEA, CNRS-UMR 6144, Nantes University Saint-Nazaire, France
| | - George Ifrim
- Department of Automatic Control and Electrical Engineering, "Dunarea de Jos" University Galati, 800008, Galati, Romania
| | - Dragos Cristea
- Department of Business Administration, "Dunarea de Jos" University Galati, 800008, Galati, Romania
| | - Florian Marcel Nuță
- Human and Social Sciences Doctoral School, "Ştefan Cel Mare" University of Suceava, Suceava, Romania.
| | - Ștefan-Mihai Petrea
- Department of Food Science, Food Engineering, Biotechnologies and Aquaculture, "Dunarea de Jos" University Galati, 800008, Galati, Romania; Rexdan Research Infrastructure, "Dunarea de Jos" University Galati, 800008, Galati, Romania; Department of Business Administration, "Dunarea de Jos" University Galati, 800008, Galati, Romania.
| |
Collapse
|
2
|
Kurniawan SB, Ahmad A, Imron MF, Abdullah SRS, Othman AR, Hasan HA. Achieving a Biocircular Economy in the Aquaculture Sector Through Waste Valorization. TOXICS 2025; 13:131. [PMID: 39997946 PMCID: PMC11860438 DOI: 10.3390/toxics13020131] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/20/2024] [Revised: 02/05/2025] [Accepted: 02/11/2025] [Indexed: 02/26/2025]
Abstract
Aquaculture wastewater treatment not only assists in alleviating the scarcity of clean water for daily usage and environmental pollution, but also generates valuable byproducts. This paper aims to review the generation of wastewater from the aquaculture sector, its characteristics, and available treatment technologies, while comprehensively discussing the adoption of a biocircular economy approach through waste valorization. With rich nutrients, such as nitrogenous compounds, and the presence of phosphorus in the aquaculture effluent, these aspects could be explored and valorized into biofertilizers, broadening their application in aquaponics and hydroponics, as well as in algae and daphnid cultivation. Biofertilizer can also be used in agriculture because it contains essential elements needed by plants. Thus, methods of converting nutrients into biofertilizers in terms of sludge recovery can be accomplished via anaerobic and aerobic digestion, drying, composting, and vermicomposting. Moving forward, aquaculture effluent recovery is addressed under the biocircular economy by re-engaging aquaculture wastewater effluents into the production cycle. The enhancement of aquaculture effluents and biomass for uses such as aquaponics, hydroponics, algae cultivation, daphnid co-cultivation, and biofertilizers presents valuable opportunities for nutrient recovery while ensuring that non-toxic wastewater can be safely discharged into external water bodies. This approach has the potential to revolutionize wastewater treatment in aquaculture, shifting the economic model of wastewater management from a linear system to a circular, more sustainable one.
Collapse
Affiliation(s)
- Setyo Budi Kurniawan
- Department of Chemical and Process Engineering, Faculty of Engineering and Built Environment, Universiti Kebangsaan Malaysia, UKM Bangi 43600, Selangor, Malaysia; (S.B.K.); (S.R.S.A.); (A.R.O.); (H.A.H.)
- Research Center for Environment and Clean Technology, National Research and Innovation Agency (BRIN), Jakarta Pusat 10340, Indonesia
| | - Azmi Ahmad
- Department of Petrochemical Engineering, Politeknik Tun Syed Nasir Syed Ismail, Pagoh 84600, Johor, Malaysia;
| | - Muhammad Fauzul Imron
- Study Program of Environmental Engineering, Department of Biology, Faculty of Science and Technology, Universitas Airlangga, Campus C UNAIR, Jalan Mulyorejo, Surabaya 60115, Indonesia
- Sanitary Engineering Section, Department of Water Management, Faculty of Civil Engineering and Geosciences, Delft University of Technology, Stevinweg 1, 2628 CN Delft, The Netherlands
| | - Siti Rozaimah Sheikh Abdullah
- Department of Chemical and Process Engineering, Faculty of Engineering and Built Environment, Universiti Kebangsaan Malaysia, UKM Bangi 43600, Selangor, Malaysia; (S.B.K.); (S.R.S.A.); (A.R.O.); (H.A.H.)
| | - Ahmad Razi Othman
- Department of Chemical and Process Engineering, Faculty of Engineering and Built Environment, Universiti Kebangsaan Malaysia, UKM Bangi 43600, Selangor, Malaysia; (S.B.K.); (S.R.S.A.); (A.R.O.); (H.A.H.)
| | - Hassimi Abu Hasan
- Department of Chemical and Process Engineering, Faculty of Engineering and Built Environment, Universiti Kebangsaan Malaysia, UKM Bangi 43600, Selangor, Malaysia; (S.B.K.); (S.R.S.A.); (A.R.O.); (H.A.H.)
- Research Centre for Sustainable Process Technology (CESPRO), Faculty of Engineering and Built Environment, Universiti Kebangsaan Malaysia, UKM Bangi 43600, Selangor, Malaysia
| |
Collapse
|
3
|
Shitu A, Tadda MA, Zhao J, Danhassan UA, Ye Z, Liu D, Chen W, Zhu S. Review of recent advances in utilising aquaculture wastewater for algae cultivation and microalgae-based bioproduct recovery. ENVIRONMENTAL GEOCHEMISTRY AND HEALTH 2024; 46:485. [PMID: 39508916 DOI: 10.1007/s10653-024-02286-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/18/2024] [Accepted: 10/24/2024] [Indexed: 11/15/2024]
Abstract
Aquaculture operations produce large amounts of wastewater contaminated with organic matter, nitrogenous compounds, and other emerging contaminants; when discharged into natural water bodies, it could result in ecological problems and severely threaten aquatic habitats and human health. However, using aquaculture wastewater in biorefinery systems is becoming increasingly crucial as advancements in valuable bioproduct production continue to improve economic feasibility. Research on utilising microalgae as an alternative to producing biomass and removing nutrients from aquaculture wastewater has been extensively studied over the past decades. Microalgae have the potential to use carbon dioxide (CO2) effectively and significantly reduce carbon footprint, and the harvested biomass can also be used as aquafeed. Furthermore, aquaculture wastewater enriched with phosphorus (P) is a potential resource for P recovery for the production of biofertiliser. This will reduce the P supply shortage and eliminate the environmental consequences of eutrophication. In this context, the present review aims to provide a comprehensive overview of the current state of the art in a generation, as well as the characteristics and environmental impact of aquaculture wastewater reported by the most recent research. Furthermore, the review synthesized recent developments in algal biomass cultivation using aquaculture wastewater and its utilisation as biorefinery feedstocks for producing value-added products, such as aquafeeds, bioethanol, biodiesel, biomethane, and bioenergy. This integrated process provides a sustainable method for recovering biomass and water, fully supporting the framework of a circular economy in aquaculture wastewater treatment via resource recovery.
Collapse
Affiliation(s)
- Abubakar Shitu
- Institute of Agricultural Bio-Environmental Engineering, College of Bio-Systems Engineering and Food Science, Zhejiang University, Hangzhou, 310058, China.
- Department of Agricultural and Environmental Engineering, Faculty of Engineering, Bayero University, Kano, 700241, Nigeria.
| | - Musa Abubakar Tadda
- Institute of Agricultural Bio-Environmental Engineering, College of Bio-Systems Engineering and Food Science, Zhejiang University, Hangzhou, 310058, China
- Department of Agricultural and Environmental Engineering, Faculty of Engineering, Bayero University, Kano, 700241, Nigeria
| | - Jian Zhao
- Institute of Agricultural Bio-Environmental Engineering, College of Bio-Systems Engineering and Food Science, Zhejiang University, Hangzhou, 310058, China
| | - Umar Abdulbaki Danhassan
- Institute of Agricultural Bio-Environmental Engineering, College of Bio-Systems Engineering and Food Science, Zhejiang University, Hangzhou, 310058, China
| | - Zhangying Ye
- Institute of Agricultural Bio-Environmental Engineering, College of Bio-Systems Engineering and Food Science, Zhejiang University, Hangzhou, 310058, China
- Ocean Academy, Zhejiang University, Zhoushan, 316000, China
| | - Dezhao Liu
- Institute of Agricultural Bio-Environmental Engineering, College of Bio-Systems Engineering and Food Science, Zhejiang University, Hangzhou, 310058, China
| | - Wei Chen
- Department of Food Science and Nutrition, College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou, 310058, China
| | - Songming Zhu
- Institute of Agricultural Bio-Environmental Engineering, College of Bio-Systems Engineering and Food Science, Zhejiang University, Hangzhou, 310058, China.
- Ocean Academy, Zhejiang University, Zhoushan, 316000, China.
| |
Collapse
|
4
|
Moschos S, Ar Kormas K, Karayanni H. Ciliate diversity and growth rates in experimental recirculating aquaculture and aquaponics systems using microscopy. Eur J Protistol 2024; 95:126113. [PMID: 39197291 DOI: 10.1016/j.ejop.2024.126113] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2024] [Revised: 08/07/2024] [Accepted: 08/08/2024] [Indexed: 09/01/2024]
Abstract
The function of recirculating aquaculture systems (RAS) relies on microbial communities, which convert toxic, fish-excreted ammonia into substances that can provide nutrients to plants as in the case of aquaponics systems. In the present study, heterotrophic protist communities of experimental sea water RAS and freshwater aquaponics systems were investigated using microscopy to characterize their diversity, natural abundance, and potential growth rates. Heterotrophic protist abundance was low (732 ± 21 to 5451 ± 118 ciliates L-1 and 58 ± 8 to 147 ± 18 nanoflagellates mL-1 in the aquaponics system and 78 ± 28 to 203 ± 48 ciliates L-1 in the RAS), which is in line with values typically reported for rivers. In the aquaponics system, ciliates grew faster in the fish rearing tanks (1.9 ± 0.01 to 1.21 ± 0.03 d-1 compared to 0.54 ± 0.03 to 0.79 ± 0.05 d-1 in the other compartments), while heterotrophic nanoflagellates grew slower in drain tanks downstream of the hydroponics compartment (0.5 ± 0.3 to 1.37 ± 0.05 d-1 and 4.09 ± 0.11 d-1 to 6.03 ± 0.34 d-1in the other compartments). Results indicated distinct niches and reduced microeukaryotic diversity at the end of the system's operation cycle.
Collapse
Affiliation(s)
- Stefanos Moschos
- Department of Biological Applications and Technology, University of Ioannina, 45110 Ioannina, Greece
| | - Konstantinos Ar Kormas
- Department of Ichthyology and Aquatic Environment, University of Thessaly, 38446 Volos, Greece
| | - Hera Karayanni
- Department of Biological Applications and Technology, University of Ioannina, 45110 Ioannina, Greece.
| |
Collapse
|
5
|
Pompei CME, Ruas G, Bolzani HR, Fernandes LM, Silva GHRD. The influence of light intensities and micropollutants on the removal of total coliforms and E. coli from wastewater in a flat-panel photobioreactor. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 349:123935. [PMID: 38599269 DOI: 10.1016/j.envpol.2024.123935] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/18/2024] [Revised: 03/25/2024] [Accepted: 04/05/2024] [Indexed: 04/12/2024]
Abstract
The presence of micropollutants and pathogens in sanitary wastewater and surface water is a growing concern that impacts public health, environmental balance and the maintenance of water supply services. To improve sanitary wastewater treatment, it is necessary to develop and improve sustainable technologies. Among the available options, microalgae-based systems stand out for their efficiency and generation of value-added byproducts. To study the impact of luminosity and the presence of micropollutants (13 selected) on the removal of E. coli and total coliforms from real anaerobically treated wastewater, a pilot flat-panel photobioreactor (50 L) was operated in batch mode in a tropical climate region. This is the first study to evaluate whether micropollutants interfere with coliform groups, considering a microalgae-based system and an experiment in a tropical climate region. E. coli had better removal (from 104 to 101 CFU 100 mL-1) than did total coliforms (from 104 to 103 CFU 100 mL-1). The removal of E. coli was more strongly linked to luminosity and temperature, while the removal of total coliforms was influenced by the presence of the selected micropollutants.
Collapse
Affiliation(s)
- Caroline Moço Erba Pompei
- São Paulo State University (UNESP), School of Engineering Bauru, Department of Civil and Environmental Engineering, Bauru, SP, Brazil.
| | - Graziele Ruas
- São Paulo State University (UNESP), School of Engineering Bauru, Department of Civil and Environmental Engineering, Bauru, SP, Brazil.
| | - Hugo Renan Bolzani
- São Paulo State University (UNESP), School of Engineering Bauru, Department of Civil and Environmental Engineering, Bauru, SP, Brazil.
| | - Luiza Maria Fernandes
- São Paulo State University (UNESP), School of Sciences, Department of Biological Sciences, Brazil.
| | - Gustavo Henrique Ribeiro da Silva
- São Paulo State University (UNESP), School of Engineering Bauru, Department of Civil and Environmental Engineering, Bauru, SP, Brazil.
| |
Collapse
|
6
|
Jakhwal P, Daneshvar E, Skalska K, Matsakas L, Patel A, Park Y, Bhatnagar A. Nutrient removal and biomass production of marine microalgae cultured in recirculating aquaculture systems (RAS) water with low phosphate concentration. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2024; 358:120859. [PMID: 38615398 DOI: 10.1016/j.jenvman.2024.120859] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/06/2024] [Revised: 04/02/2024] [Accepted: 04/04/2024] [Indexed: 04/16/2024]
Abstract
This study was conducted to investigate the feasibility of microalgal biomass production and nutrient removal from recirculating aquaculture systems (RAS) water (RASW) with low phosphate concentration. For this purpose, Nannochloropsis oculata, Pavlova gyrans, Tetraselmis suecica, Phaeodactylum tricornutum, and their consortium were cultivated in RASW and RASW supplemented with vitamins (+V). Among them, N. oculata showed the maximum biomass production of 0.4 g/L in RASW. Vitamins supplementation significantly increased the growth of T. suecica from 0.16 g/L in RASW to 0.33 g/L in RASW + V. Additionally, T. suecica showed the highest nitrate (NO3-N) removal efficiency of 80.88 ± 2.08 % in RASW and 83.82 ± 2.08 % in RASW + V. Accordingly, T. suecica was selected for scaling up study of microalgal cultivation in RASW and RASW supplemented with nitrate (RASW + N) in 4-L airlift photobioreactors. Nitrate supplementation enhanced the growth of T. suecica up to 2.2-fold (day 15). The fatty acid nutritional indices in T. suecica cultivated in RASW and RASW + N showed optimal polyunsaturated fatty acids (PUFAs)/saturated fatty acid (SFAs), omega-6 fatty acid (n-6)/omega-3 fatty acid (n-3), indices of atherogenicity (IA), and thrombogenicity (IT)). Overall, the findings of this study revealed that despite low phosphate concentration, marine microalgae can grow in RASW and relatively reduce the concentration of nitrate. Furthermore, the microalgal biomass cultivated in RASW consisting of pigments and optimal fatty acid nutritional profile can be used as fish feed, thus contributing to a circular bioeconomy.
Collapse
Affiliation(s)
- Parul Jakhwal
- Department of Separation Science, LUT School of Engineering Science, LUT University, Sammonkatu 12, FI-50130, Mikkeli, Finland.
| | - Ehsan Daneshvar
- Department of Separation Science, LUT School of Engineering Science, LUT University, Sammonkatu 12, FI-50130, Mikkeli, Finland
| | - Kinga Skalska
- Department of Separation Science, LUT School of Engineering Science, LUT University, Sammonkatu 12, FI-50130, Mikkeli, Finland
| | - Leonidas Matsakas
- Biochemical Process Engineering, Division of Chemical Engineering, Department of Civil, Environmental, and Natural Resources Engineering, Luleå University of Technology, 971-87, Luleå, Sweden
| | - Alok Patel
- Biochemical Process Engineering, Division of Chemical Engineering, Department of Civil, Environmental, and Natural Resources Engineering, Luleå University of Technology, 971-87, Luleå, Sweden
| | - Yuri Park
- Department of Environmental Engineering, Seoul National University of Science and Technology, Seoul, 01811, South Korea
| | - Amit Bhatnagar
- Department of Separation Science, LUT School of Engineering Science, LUT University, Sammonkatu 12, FI-50130, Mikkeli, Finland
| |
Collapse
|
7
|
Cultivation of the PHB-producing cyanobacterium Synechococcus leopoliensis in a pilot-scale open system using nitrogen from waste streams. ALGAL RES 2023. [DOI: 10.1016/j.algal.2023.103013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/18/2023]
|
8
|
Process optimization of aquaculture wastewater treatment using a mycoalgae biofilm. ALGAL RES 2023. [DOI: 10.1016/j.algal.2023.103020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/22/2023]
|
9
|
Thurn AL, Stock A, Gerwald S, Weuster-Botz D. Simultaneous photoautotrophic production of DHA and EPA by Tisochrysis lutea and Microchloropsis salina in co-culture. BIORESOUR BIOPROCESS 2022; 9:130. [PMID: 38647795 PMCID: PMC10991112 DOI: 10.1186/s40643-022-00612-5] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2022] [Accepted: 11/18/2022] [Indexed: 12/23/2022] Open
Abstract
Marine microalgae have received much attention as a sustainable source of the two health beneficial omega-3-fatty acids docosahexaenoic acid (DHA, C22:6) and eicosapentaenoic acid (EPA, C20:5). However, photoautotrophic monocultures of microalgae can only produce either DHA or EPA enriched biomass. An alternative may be the photoautotrophic co-cultivation of Tisochrysis lutea as DHA-producer with Microchloropsis salina for simultaneous EPA production to obtain EPA- and DHA-rich microalgae biomass in a nutritionally balanced ratio. Photoautotrophic co-cultivation processes of T. lutea and M. salina were studied, applying scalable and fully controlled lab-scale gas-lift flat-plate photobioreactors with LED illumination for dynamic climate simulation of a repeated sunny summer day in Australia [day-night cycles of incident light (PAR) and temperature]. Monocultures of both marine microalgae were used as reference batch processes. Differences in the autofluorescence of both microalgae enabled the individual measurement, of cell distributions in co-culture, by flow cytometry. The co-cultivation of T. lutea and M. salina in artificial sea water with an inoculation ratio of 1:3 resulted in a balanced biomass production of both microalgae simultaneously with a DHA:EPA ratio of almost 1:1 (26 mgDHA gCDW-1, and 23 mgEPA gCDW-1, respectively) at harvest after depletion of the initially added fertilizer. Surprisingly, more microalgae biomass was produced within 8 days in co-cultivation with an increase in the cell dry weight (CDW) concentration by 31%, compared to the monocultures with the same amount of light and fertilizer. What is more, DHA-content of the microalgae biomass was enhanced by 33% in the co-culture, whereas EPA-content remained unchanged compared to the monocultures.
Collapse
Affiliation(s)
- Anna-Lena Thurn
- School of Engineering and Design, Chair of Biochemical Engineering, Technical University of Munich, Boltzmannstr. 15, 85748, Garching, Germany
| | - Anna Stock
- School of Engineering and Design, Chair of Biochemical Engineering, Technical University of Munich, Boltzmannstr. 15, 85748, Garching, Germany
| | - Sebastian Gerwald
- School of Engineering and Design, Chair of Biochemical Engineering, Technical University of Munich, Boltzmannstr. 15, 85748, Garching, Germany
| | - Dirk Weuster-Botz
- School of Engineering and Design, Chair of Biochemical Engineering, Technical University of Munich, Boltzmannstr. 15, 85748, Garching, Germany.
| |
Collapse
|
10
|
Wan Mahari WA, Wan Razali WA, Manan H, Hersi MA, Ishak SD, Cheah W, Chan DJC, Sonne C, Show PL, Lam SS. Recent advances on microalgae cultivation for simultaneous biomass production and removal of wastewater pollutants to achieve circular economy. BIORESOURCE TECHNOLOGY 2022; 364:128085. [PMID: 36220529 DOI: 10.1016/j.biortech.2022.128085] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/02/2022] [Revised: 10/02/2022] [Accepted: 10/04/2022] [Indexed: 06/16/2023]
Abstract
Microalgae are known for containing high value compounds and its significant role in sequestering carbon dioxide. This review mainly focuses on the emerging microalgae cultivation technologies such as nanomaterials technology that can improve light distribution during microalgae cultivation, attached cultivation and co-cultivation approaches that can improve growth and proliferation of algal cells, biomass yield and lipid accumulation in microalgal. This review includes a comprehensive discussion on the use of microbubbles technology to enhance aerated bubble capacity in photobioreactor to improve microalgal growth. This is followed by discussion on the role of microalgae as phycoremediation agent in removal of contaminants from wastewater, leading to better water quality and high productivity of shellfish. The review also includes techno-economic assessment of microalgae biorefinery technology, which is useful for scaling up the microalgal biofuel production system or integrated microalgae-shellfish cultivation system to support circular economy.
Collapse
Affiliation(s)
- Wan Adibah Wan Mahari
- Henan Province Engineering Research Center for Biomass Value-added Products, School of Forestry, Henan Agricultural University, Henan 450002, Zhengzhou, China; Higher Institution Centre of Excellence (HICoE), Institute of Tropical Aquaculture and Fisheries (AKUATROP), Universiti Malaysia Terengganu, Terengganu 21030, Kuala Nerus, Malaysia
| | - Wan Aizuddin Wan Razali
- Faculty of Fisheries & Food Science, Universiti Malaysia Terengganu, 21030 Kuala Nerus, Terengganu, Malaysia
| | - Hidayah Manan
- Higher Institution Centre of Excellence (HICoE), Institute of Tropical Aquaculture and Fisheries (AKUATROP), Universiti Malaysia Terengganu, Terengganu 21030, Kuala Nerus, Malaysia
| | - Mursal Abdulkadir Hersi
- Higher Institution Centre of Excellence (HICoE), Institute of Tropical Aquaculture and Fisheries (AKUATROP), Universiti Malaysia Terengganu, Terengganu 21030, Kuala Nerus, Malaysia
| | - Sairatul Dahlianis Ishak
- Higher Institution Centre of Excellence (HICoE), Institute of Tropical Aquaculture and Fisheries (AKUATROP), Universiti Malaysia Terengganu, Terengganu 21030, Kuala Nerus, Malaysia
| | - Wee Cheah
- Insitute of Ocean and Earth Sciences, Universiti Malaya, Kuala Lumpur, Malaysia
| | - Derek Juinn Chieh Chan
- School of Chemical Engineering, Engineering Campus, Universiti Sains Malaysia, 14300 Nibong Tebal, Pulau Pinang, Malaysia
| | - Christian Sonne
- Aarhus University, Department of Bioscience, Arctic Research Centre (ARC), Frederiksborgvej 399, PO Box 358, DK-4000 Roskilde, Denmark
| | - Pau Loke Show
- Department of Chemical Engineering, Faculty of Science and Engineering, University of Nottingham Malaysia, 43500 Selangor, Malaysia
| | - Su Shiung Lam
- Henan Province Engineering Research Center for Biomass Value-added Products, School of Forestry, Henan Agricultural University, Henan 450002, Zhengzhou, China; Higher Institution Centre of Excellence (HICoE), Institute of Tropical Aquaculture and Fisheries (AKUATROP), Universiti Malaysia Terengganu, Terengganu 21030, Kuala Nerus, Malaysia; Automotive Development Centre (ADC), Institute for Vehicle Systems and Engineering (IVeSE), Universiti Teknologi Malaysia (UTM), Johor Bahru, 81310, Johor, Malaysia; Sustainability Cluster, School of Engineering, University of Petroleum & Energy Studies, Dehradun, Uttarakhand 248007, India.
| |
Collapse
|
11
|
Goswami RK, Agrawal K, Verma P. An exploration of natural synergy using microalgae for the remediation of pharmaceuticals and xenobiotics in wastewater. ALGAL RES 2022. [DOI: 10.1016/j.algal.2022.102703] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
|
12
|
Calderini ML, Stevčić Č, Taipale S, Pulkkinen K. Filtration of Nordic recirculating aquaculture system wastewater: Effects on microalgal growth, nutrient removal, and nutritional value. ALGAL RES 2021. [DOI: 10.1016/j.algal.2021.102486] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
13
|
Xue Z, Li S, Yu W, Gao X, Zheng X, Yu Y, Kou X. Research advancement and commercialization of microalgae edible oil: a review. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2021; 101:5763-5774. [PMID: 34148229 DOI: 10.1002/jsfa.11390] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/24/2021] [Revised: 06/14/2021] [Accepted: 06/19/2021] [Indexed: 06/12/2023]
Abstract
The global food crisis has led to a great deal of attention being given to microalgal oil as a sustainable natural food source. This article provides an overview of the progress and future directions in promoting the commercialization of microalgal edible oils, including microalgal triglyceride accumulation, suitable edible oil culture strategies for high nutritional value, metabolic engineering, production, and downstream technologies. The integration of the production process, biosafety, and the economic sustainability of microalgal oil production are analyzed for their critical roles in the commercialization of microalgal edible oil to provide a theoretical and scientific basis for the comprehensive development and utilization of microalgal edible oil. © 2021 Society of Chemical Industry.
Collapse
Affiliation(s)
- Zhaohui Xue
- Functional Food Laboratory, School of Chemical Engineering and Technology, Tianjin University, Tianjin, China
| | - Shihao Li
- Functional Food Laboratory, School of Chemical Engineering and Technology, Tianjin University, Tianjin, China
| | - Wancong Yu
- Medicinal Plant Laboratory, Biotechnology Research Institute, Tianjin Academy of Agricultural Sciences, Tianjin, China
| | - Xin Gao
- Functional Food Laboratory, School of Chemical Engineering and Technology, Tianjin University, Tianjin, China
| | - Xu Zheng
- Functional Food Laboratory, School of Chemical Engineering and Technology, Tianjin University, Tianjin, China
| | - Yue Yu
- Functional Food Laboratory, School of Chemical Engineering and Technology, Tianjin University, Tianjin, China
| | - Xiaohong Kou
- Functional Food Laboratory, School of Chemical Engineering and Technology, Tianjin University, Tianjin, China
| |
Collapse
|
14
|
Ansari FA, Guldhe A, Gupta SK, Rawat I, Bux F. Improving the feasibility of aquaculture feed by using microalgae. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2021; 28:43234-43257. [PMID: 34173144 DOI: 10.1007/s11356-021-14989-x] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/18/2021] [Accepted: 06/15/2021] [Indexed: 06/13/2023]
Abstract
The aquaculture industry is an efficient edible protein producer and grows faster than any other food sector. Therefore, it requires enormous amounts of fish feed. Fish feed directly affects the quality of produced fish, potential health benefits, and cost. Fish meal (FM), fis oil (FO), and plant-based supplements, predominantly used in fish feed, face challenges of low availability, low nutritional value, and high cost. The cost associated with aquaculture feed represents 40-75% of aquaculture production cost and one of the key market drivers for the thriving aquaculture industry. Microalgae are a primary producer in aquatic food chains. Microalgae are expanding continuously in renewable energy, pharmaceutical pigment, wastewater treatment, food, and feed industries. Major components of microalgal biomass are proteins with essential amino acids, lipids with polyunsaturated fatty acids (PUFA), carbohydrates, pigments, and other bioactive compounds. Thus, microalgae can be used as an essential, viable, and alternative feed ingredient in aquaculture feed. In recent times, live algae culture, whole algae, and lipid-extracted algae (LEA) have been tested in fish feed for growth, physiological activity, and nutritional value. The present review discusses the potential application of microalgae in aquaculture feed, its mode of application, nutritional value, and possible replacement of conventional feed ingredients, and disadvantages of plant-based feed. The review also focuses on integrated processes such as algae cultivation in aquaculture wastewater, aquaponics systems, challenges, and future prospects of using microalgae in the aquafeed industry.
Collapse
Affiliation(s)
- Faiz Ahmad Ansari
- Institute for Water and Wastewater Technology, Durban University of Technology, P O Box1334, Durban, 4000, South Africa
| | - Abhishek Guldhe
- Amity Institute of Biotechnology, Amity University, Mumbai, India
| | - Sanjay Kumar Gupta
- Environmental Engineering, Department of Civil Engineering, Indian Institute of Technology, Delhi, India
| | - Ismail Rawat
- Institute for Water and Wastewater Technology, Durban University of Technology, P O Box1334, Durban, 4000, South Africa
| | - Faizal Bux
- Institute for Water and Wastewater Technology, Durban University of Technology, P O Box1334, Durban, 4000, South Africa.
| |
Collapse
|
15
|
Kratzer R, Murkovic M. Food Ingredients and Nutraceuticals from Microalgae: Main Product Classes and Biotechnological Production. Foods 2021; 10:1626. [PMID: 34359496 PMCID: PMC8307005 DOI: 10.3390/foods10071626] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2021] [Revised: 07/09/2021] [Accepted: 07/12/2021] [Indexed: 12/11/2022] Open
Abstract
Microalgal products are an emerging class of food, feed, and nutraceuticals. They include dewatered or dried biomass, isolated pigments, and extracted fat. The oil, protein, and antioxidant-rich microalgal biomass is used as a feed and food supplement formulated as pastes, powders, tablets, capsules, or flakes designed for daily use. Pigments such as astaxanthin (red), lutein (yellow), chlorophyll (green), or phycocyanin (bright blue) are natural food dyes used as isolated pigments or pigment-rich biomass. Algal fat extracted from certain marine microalgae represents a vegetarian source of n-3-fatty acids (eicosapentaenoic acid (EPA), docosahexaenoic acid (DHA), γ-linolenic acid (GLA)). Gaining an overview of the production of microalgal products is a time-consuming task. Here, requirements and options of microalgae cultivation are summarized in a concise manner, including light and nutrient requirements, growth conditions, and cultivation systems. The rentability of microalgal products remains the major obstacle in industrial application. Key challenges are the high costs of commercial-scale cultivation, harvesting (and dewatering), and product quality assurance (toxin analysis). High-value food ingredients are commonly regarded as profitable despite significant capital expenditures and energy inputs. Improvements in capital and operational costs shall enable economic production of low-value food products going down to fishmeal replacement in the future economy.
Collapse
Affiliation(s)
- Regina Kratzer
- Institute of Biotechnology and Biochemical Engineering, Graz University of Technology, NAWI Graz, Petersgasse 10-12/I, 8010 Graz, Austria;
| | - Michael Murkovic
- Institute of Biochemistry, Graz University of Technology, NAWI Graz, Petersgasse 10-12/II, 8010 Graz, Austria
| |
Collapse
|
16
|
Yun HS, Kim YS, Yoon HS. Enhancement of Biomass Production in Colony-Forming Green Algae, Botryosphaerella sudetica, Under Mixotrophic Cultivation. Front Genet 2021; 12:669702. [PMID: 34149810 PMCID: PMC8212961 DOI: 10.3389/fgene.2021.669702] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2021] [Accepted: 04/26/2021] [Indexed: 11/13/2022] Open
Abstract
In this study, we characterized the potential of colony-forming green algae, Botryosphaerella sudetica KNUA107, isolated from Ulleung Island, South Korea, as a bioresource and analyzed the effects of mixotrophic cultivation on its bioresource production efficiency. Internal transcribed spacer (ITS) (ITS1, 5.8S, and ITS2), ribulose bisphosphate carboxylase large subunit (rbcL), and elongation factor Tu (tufa) regions were used for molecular identification and phylogenetic analysis. B. sudetica KNUA107 had a strong relationship with the green algae of Botryococcus and Botryosphaerella genera, which are colony-forming species, and was also associated with members of the Neochloris genus. To improve biomass productivity, we tested mixotrophic cultivation conditions using several organic carbon sources. Glucose supplementation stimulated B. sudetica KNUA107 growth and reduced the time needed to reach the stationary phase. In addition, the colony size was 1.5–2.0 times larger with glucose than in photoautotrophic cultures, and settleability improved in proportion to colony size. The total lipid content and biomass productivity were also higher in cultures supplemented with glucose. Among the lipid components, saturated fatty acids and monounsaturated fatty acids had the highest proportion. Our study suggests that B. sudetica KNUA107, which has enhanced efficiency in biomass production and lipid components under mixotrophic cultivation, has high potential as a bioresource.
Collapse
Affiliation(s)
- Hyun-Sik Yun
- Department of Biology, College of Natural Sciences, Kyungpook National University, Daegu, South Korea.,BK21 FOUR KNU Creative BioResearch Group, School of Life Sciences, Kyungpook National University, Daegu, South Korea
| | - Young-Saeng Kim
- Research Institute of Ulleung-do and Dok-do, Kyungpook National University, Daegu, South Korea
| | - Ho-Sung Yoon
- Department of Biology, College of Natural Sciences, Kyungpook National University, Daegu, South Korea.,BK21 FOUR KNU Creative BioResearch Group, School of Life Sciences, Kyungpook National University, Daegu, South Korea
| |
Collapse
|
17
|
Growth and bioactivity of two chlorophyte (Chlorella and Scenedesmus) strains co-cultured outdoors in two different thin-layer units using municipal wastewater as a nutrient source. ALGAL RES 2021. [DOI: 10.1016/j.algal.2021.102299] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
|