1
|
Yuan H, Huang P, Yu J, Wang P, Jiang HB, Jiang Y, Deng S, Huang Z, Yu J, Zhu W. Efficient wastewater treatment and biomass co-production using energy microalgae to fix C, N, and P. RSC Adv 2025; 15:14030-14041. [PMID: 40309126 PMCID: PMC12042080 DOI: 10.1039/d5ra00281h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2025] [Accepted: 04/15/2025] [Indexed: 05/02/2025] Open
Abstract
Distillery wastewater (DWW), characterized by high organic and nutrient loads, represents a significant environmental challenge, requiring effective and sustainable treatment solutions. This study investigates an innovative approach that integrates microalgae cultivation with DWW treatment for simultaneous bioremediation and biomass production, while also exploring carbon sequestration. We analyzed the growth characteristics, nutrient removal efficiency, protein accumulation, and ultrastructural changes of Chlamydomonas reinhardtii and Scenedesmus dimorphus under varying nitrogen-to-phosphorus (N/P) ratios in diluted DWW. Optimal nutrient removal and biomass accumulation were achieved at N/P concentrations of 46/11.5 mg L-1. C. reinhardtii showed particularly high nutrient removal rates, with significantly high removal rates for total nitrogen, total phosphorus, and chemical oxygen demand. S. dimorphus, under the same conditions, demonstrated exceptional protein accumulation and also effectively removed pollutants. Both species showed enhanced performance under these conditions, with microalgal cell organelles remaining structurally intact, and chloroplasts and thylakoid layers well-developed. The study also explored carbon sequestration potential using varying CO2 concentrations, where C. reinhardtii exhibited enhanced biomass accumulation at 3000 ppm CO2. This integrated approach offers an effective and economically feasible solution for distillery wastewater treatment, simultaneously enabling biomass production and carbon capture. The dual benefits of bioremediation and bioenergy generation position this technology as a promising pathway for sustainable resource management and environmental protection.
Collapse
Affiliation(s)
- Han Yuan
- Department of Environmental Science and Engineering, College of Architecture and Environment, Sichuan University Chengdu 610065 PR China
- Institute of New Energy and Low Carbon Technology, Sichuan University Chengdu 610065 PR China
| | - Pengxinyue Huang
- Department of Environmental Science and Engineering, College of Architecture and Environment, Sichuan University Chengdu 610065 PR China
| | - Jiang Yu
- Department of Environmental Science and Engineering, College of Architecture and Environment, Sichuan University Chengdu 610065 PR China
- Institute of New Energy and Low Carbon Technology, Sichuan University Chengdu 610065 PR China
- Yibin Institute of Industrial Technology, Sichuan University Yibin 644000 PR China
| | - Pu Wang
- Suining Ecological Environmental Monitoring Centre of Sichuan Province Suining Sichuan 629000 China
| | - Hong Bin Jiang
- Suining Ecological Environmental Monitoring Centre of Sichuan Province Suining Sichuan 629000 China
| | - Yinying Jiang
- Department of Environmental Science and Engineering, College of Architecture and Environment, Sichuan University Chengdu 610065 PR China
- Institute of New Energy and Low Carbon Technology, Sichuan University Chengdu 610065 PR China
| | - Siwei Deng
- Department of Environmental Science and Engineering, College of Architecture and Environment, Sichuan University Chengdu 610065 PR China
- Soil and Groundwater Pollution Prevention Research Institute, Sichuan Academy of Eco-Environmental Sciences 610046 Chengdu P. R. China
| | - Zhi Huang
- Department of Environmental Science and Engineering, College of Architecture and Environment, Sichuan University Chengdu 610065 PR China
- Institute of New Energy and Low Carbon Technology, Sichuan University Chengdu 610065 PR China
| | - Jie Yu
- Department of Environmental Science and Engineering, College of Architecture and Environment, Sichuan University Chengdu 610065 PR China
| | - Weiwei Zhu
- Department of Environmental Science and Engineering, College of Architecture and Environment, Sichuan University Chengdu 610065 PR China
| |
Collapse
|
2
|
Hu Z, Li J, Qian J, Liu J, Zhou W. Efficacy and mechanisms of rotating algal biofilm system in remediation of soy sauce wastewater. BIORESOURCE TECHNOLOGY 2024; 406:131047. [PMID: 38942212 DOI: 10.1016/j.biortech.2024.131047] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Revised: 06/19/2024] [Accepted: 06/25/2024] [Indexed: 06/30/2024]
Abstract
This study investigated the efficacy of the rotating algal biofilm (RAB) for treating soy sauce wastewater (SW) and its related treatment mechanisms. The RAB system demonstrated superior nutrient removal (chemical oxygen demand, ammonium nitrogen, total nitrogen, and phosphorus for 92 %, 94 %, 91 %, and 82 %, respectively) and biofilm productivity (14 g m-2 d-1) at optimized 5-day harvest time and 2-day hydraulic retention time. This was mainly attributed to the synergistic interactions within the algae-fungi (Apiotrichum)-bacteria (Acinetobacter and Rhizobia) consortium, which effectively assimilated certain extracellular polymeric substances into biomass to enhance algal biofilm growth. Increased algal productivity notably improved protein and essential amino acid contents in the biomass, suggesting a potential for animal feed applications. This study not only demonstrates a sustainable approach for managing SW but also provides insight into the nutrient removal and biomass conversion, offering a viable strategy for large-scale applications in nutrient recovery and wastewater treatment.
Collapse
Affiliation(s)
- Zimin Hu
- Key Laboratory of Poyang Lake Environment and Resource Utilization, Ministry of Education, School of Resources & Environment, Nanchang University, Nanchang 330031, China
| | - Jingjing Li
- Key Laboratory of Poyang Lake Environment and Resource Utilization, Ministry of Education, School of Resources & Environment, Nanchang University, Nanchang 330031, China; Center for Algae Innovation & Engineering Research, Nanchang University, Nanchang 330031, China; School of Infrastructure Engineering, Nanchang University, Nanchang 330031, China
| | - Jun Qian
- Key Laboratory of Poyang Lake Environment and Resource Utilization, Ministry of Education, School of Resources & Environment, Nanchang University, Nanchang 330031, China; Center for Algae Innovation & Engineering Research, Nanchang University, Nanchang 330031, China.
| | - Jin Liu
- Key Laboratory of Poyang Lake Environment and Resource Utilization, Ministry of Education, School of Resources & Environment, Nanchang University, Nanchang 330031, China; Center for Algae Innovation & Engineering Research, Nanchang University, Nanchang 330031, China
| | - Wenguang Zhou
- Key Laboratory of Poyang Lake Environment and Resource Utilization, Ministry of Education, School of Resources & Environment, Nanchang University, Nanchang 330031, China; Center for Algae Innovation & Engineering Research, Nanchang University, Nanchang 330031, China.
| |
Collapse
|
3
|
Arias DM, Olvera Vargas P, Vidal Sánchez AN, Olvera-Vargas H. Integrating electro-Fenton and microalgae for the sustainable management of real food processing wastewater. CHEMOSPHERE 2024; 360:142372. [PMID: 38768783 DOI: 10.1016/j.chemosphere.2024.142372] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/08/2024] [Revised: 04/24/2024] [Accepted: 05/16/2024] [Indexed: 05/22/2024]
Abstract
The present study demonstrates, for the first time, the feasibility of a two-step process consisting of Electro-Fenton (EF) followed by microalgae to treat highly loaded real food processing wastewater along with resource recovery. In the first step, EF with a carbon felt cathode and Ti/RuO2-IrO2 anode was applied at different current densities (3.16 mA cm-2, 4.74 mA cm-2 and 6.32 mA cm-2) to decrease the amount of organic matter and turbidity and enhance biodegradability. In the second step, the EF effluents were submitted to microalgal treatment for 15 days using a mixed culture dominated by Scenedesmus sp., Chlorosarcinopsis sp., and Coelastrum sp. Results showed that current density impacted the amount of COD removed by EF, achieving the highest COD removal of 77.5% at 6.32 mA cm-2 with >95% and 74.3% of TSS and PO43- removal, respectively. With respect to microalgae, the highest COD removal of 85% was obtained by the culture in the EF effluent treated at 6.32 mA cm-2. Remarkably, not only 85% of the remaining organic matter was removed by microalgae, but also the totality of inorganic N and P compounds, as well as 65% of the Fe catalyst that was left after EF. The removal of inorganic species also demonstrates the high complementarity of both processes, since EF does not have the capacity to remove such compounds, while microalgae do not grow in the raw wastewater. Furthermore, a maximum of 0.8 g L-1 of biomass was produced after cultivation, with an accumulation of 32.2% of carbohydrates and 25.9% of lipids. The implementation of the two processes represents a promising sustainable approach for the management of industrial effluents, incorporating EF in a water and nutrient recycling system to produce biomass that could be valorized into clean fuels.
Collapse
Affiliation(s)
- Dulce María Arias
- Instituto de Energías Renovables, Universidad Nacional Autónoma de México (IER-UNAM), Priv. Xochicalco S/N, Col. Centro, Temixco, Morelos, 62580, Mexico
| | - Patricia Olvera Vargas
- Instituto de Energías Renovables, Universidad Nacional Autónoma de México (IER-UNAM), Priv. Xochicalco S/N, Col. Centro, Temixco, Morelos, 62580, Mexico
| | - Andrea Noemí Vidal Sánchez
- Instituto de Energías Renovables, Universidad Nacional Autónoma de México (IER-UNAM), Priv. Xochicalco S/N, Col. Centro, Temixco, Morelos, 62580, Mexico
| | - Hugo Olvera-Vargas
- Instituto de Energías Renovables, Universidad Nacional Autónoma de México (IER-UNAM), Priv. Xochicalco S/N, Col. Centro, Temixco, Morelos, 62580, Mexico.
| |
Collapse
|
4
|
Zhao S, Zheng Q, Wang H, Fan X. Nitrogen in landfills: Sources, environmental impacts and novel treatment approaches. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 924:171725. [PMID: 38492604 DOI: 10.1016/j.scitotenv.2024.171725] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/08/2024] [Revised: 02/05/2024] [Accepted: 03/13/2024] [Indexed: 03/18/2024]
Abstract
Nitrogen (N) accumulation in landfills is a pressing environmental concern due to its diverse sources and significant environmental impacts. However, there is relatively limited attention and research focus on N in landfills as it is overshadowed by other more prominent pollutants. This study comprehensively examines the sources of N in landfills, including food waste contributing to 390 million tons of N annually, industrial discharges, and sewage treatment plant effluents. The environmental impacts of N in landfills are primarily manifested in N2O emissions and leachate with high N concentrations. To address these challenges, this study presents various mitigation and management strategies, including N2O reduction measures and novel NH4+ removal techniques, such as electrochemical technologies, membrane separation processes, algae-based process, and other advanced oxidation processes. However, a more in-depth understanding of the complexities of N cycling in landfills is required, due to the lack of long-term monitoring data and the presence of intricate interactions and feedback mechanisms. To ultimately achieve optimized N management and minimized adverse environmental impacts in landfill settings, future prospects should emphasize advancements in monitoring and modeling technologies, enhanced understanding of microbial ecology, implementation of circular economy principles, application of innovative treatment technologies, and comprehensive landfill design and planning.
Collapse
Affiliation(s)
- Shan Zhao
- College of Ocean Science and Engineering, Shanghai Maritime University, Shanghai 201306, China; College of Civil Engineering, Tongji University, Shanghai 200092, China
| | - Qiteng Zheng
- College of Civil Engineering, Tongji University, Shanghai 200092, China
| | - Hao Wang
- College of Ocean Science and Engineering, Shanghai Maritime University, Shanghai 201306, China
| | - Xinyao Fan
- College of Ocean Science and Engineering, Shanghai Maritime University, Shanghai 201306, China
| |
Collapse
|
5
|
Song H, Li J, Su Q, Li H, Guo X, Shao S, Fan L, Xu P, Zhou W, Qian J. Insight into the mechanism of nitrogen sufficiency conversion strategy for microalgae-based ammonium-rich wastewater treatment. CHEMOSPHERE 2024; 349:140904. [PMID: 38070604 DOI: 10.1016/j.chemosphere.2023.140904] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/03/2023] [Revised: 11/09/2023] [Accepted: 12/03/2023] [Indexed: 01/10/2024]
Abstract
The strategy of nitrogen sufficiency conversion can improve ammonium nitrogen (NH4+-N) removal with microalgal cells from ammonium-rich wastewater. We selected and identified one promising isolated algal strain, NCU-7, Chlorella sorokiniana, which showed a high algal yield and tolerance to ammonium in wastewater, as well as strong adaptability to N deprivation. The transition from N deprivation through mixotrophy (DN, M) to N sufficiency through autotrophy (SN, P) achieved the highest algal yields (optical density = 1.18 and 1.59) and NH4+-N removal rates (2.5 and 4.2 mg L-1 d-1) from synthetic wastewaters at two NH4+-N concentrations (160 and 320 mg L-1, respectively). Algal cells in DN, M culture obtained the lowest protein content (20.6%) but the highest lipid content (34.0%) among all cultures at the end of the stage 2. After transferring to stage 3, the lowest protein content gradually recovered to almost the same level as SN, P culture on the final day. Transmission electron microscopy and proteomics analysis demonstrated that algal cells had reduced intracellular protein content but accumulated lipids under N deprivation by regulating the reduction in synthesis of protein, carbohydrate, and chloroplast, while enhancing lipid synthesis. After transferring to N sufficiency, algal cells accelerated their growth by recovering protein synthesis, leading to excessive uptake of NH4+-N from wastewater. This study provides specific insights into a nitrogen sufficiency conversion strategy to enhance algal growth and NH4+-N removal/uptake during microalgae-based ammonium-rich wastewater treatment.
Collapse
Affiliation(s)
- Hanwu Song
- Key Laboratory of Poyang Lake Environment and Resource Utilization, Ministry of Education, and Center for Algae Innovation & Engineering Research, School of Resources & Environment, Nanchang University, Nanchang, 330031, China
| | - Jingjing Li
- Key Laboratory of Poyang Lake Environment and Resource Utilization, Ministry of Education, and Center for Algae Innovation & Engineering Research, School of Resources & Environment, Nanchang University, Nanchang, 330031, China
| | - Qihui Su
- Xinjiang Rao River Hydrological and Water Resources Monitoring Center, Shangrao, 334000, China
| | - Hongwu Li
- Faculty of Science and Engineering, Soka University, Tokyo, 1928577, Japan
| | - Xujie Guo
- Nanchang Environmental Science Research Institute Co., Ltd, Nanchang, 330031, China
| | - Shengxi Shao
- Key Laboratory of Poyang Lake Environment and Resource Utilization, Ministry of Education, and Center for Algae Innovation & Engineering Research, School of Resources & Environment, Nanchang University, Nanchang, 330031, China
| | - Liangliang Fan
- Key Laboratory of Poyang Lake Environment and Resource Utilization, Ministry of Education, and Center for Algae Innovation & Engineering Research, School of Resources & Environment, Nanchang University, Nanchang, 330031, China
| | - Peilun Xu
- Key Laboratory of Poyang Lake Environment and Resource Utilization, Ministry of Education, and Center for Algae Innovation & Engineering Research, School of Resources & Environment, Nanchang University, Nanchang, 330031, China
| | - Wenguang Zhou
- Key Laboratory of Poyang Lake Environment and Resource Utilization, Ministry of Education, and Center for Algae Innovation & Engineering Research, School of Resources & Environment, Nanchang University, Nanchang, 330031, China.
| | - Jun Qian
- Key Laboratory of Poyang Lake Environment and Resource Utilization, Ministry of Education, and Center for Algae Innovation & Engineering Research, School of Resources & Environment, Nanchang University, Nanchang, 330031, China.
| |
Collapse
|
6
|
Hong Y, Yang L, You X, Zhang H, Xin X, Zhang Y, Zhou X. Effects of light quality on microalgae cultivation: bibliometric analysis, mini-review, and regulation approaches. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023:10.1007/s11356-023-31192-2. [PMID: 38015404 DOI: 10.1007/s11356-023-31192-2] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/09/2023] [Accepted: 11/19/2023] [Indexed: 11/29/2023]
Abstract
The ever-increasing concern for energy shortages and greenhouse effect has triggered the development of sustainable green technologies. Microalgae have received more attention due to the characteristics of biofuel production and CO2 fixation. From the perspective of autotrophic growth, the optimization of light quality has the potential to promote biomass production and bio-component accumulation in microalgae at low cost. In this study, bibliometric analysis was used to describe the basic features, identify the hotspots, and predict future trends of the research related to the light quality on microalgae cultivation. In addition, a mini-review referring to regulation methods of light quality was provided to optimize the framework of research. Results demonstrated that China has the greatest interest in this area. The destination of most research was to obtain biofuels and high-value-added products. Both blue and red lights were identified as the crucial spectrums for microalgae cultivation. However, sunlight is the most affordable light resource, which could not be fully utilized by microalgae through the photosynthetic process. Hence, some regulation approaches (e.g., dyes, plasmonic scattering, and carbon-based quantum dots) are proposed to increase the proportion of beneficial spectrum for enhancement of photosynthetic efficiency. In summary, this review introduces state-of-the-art research and provides theoretical guidance for light quality optimization in microalgae cultivation to obtain more benefits.
Collapse
Affiliation(s)
- Yongyuan Hong
- State Key Laboratory of Pollution Control and Resource Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai, 200092, China
| | - Libin Yang
- State Key Laboratory of Pollution Control and Resource Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai, 200092, China.
| | - Xiaogang You
- State Key Laboratory of Pollution Control and Resource Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai, 200092, China
| | - Haigeng Zhang
- Fishery Machinery and Instrument Research Institute, Chinese Academy of Fishery Sciences, Shanghai, 200092, China
| | - Xiaying Xin
- Department of Civil Engineering, Queen's University, Kingston, ON, K7L 3N6, Canada
| | - Yalei Zhang
- State Key Laboratory of Pollution Control and Resource Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai, 200092, China
| | - Xuefei Zhou
- State Key Laboratory of Pollution Control and Resource Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai, 200092, China
| |
Collapse
|
7
|
Song H, Li J, Zhou M, Li H, Fan L, Xu P, Shao S, Li J, Xu C, Zhou W, Qian J. Improving algal growth in an anaerobic digestion piggery effluent by fungal pretreatment: Process optimization, the underlying mechanism of fungal decolorization, and nitrogen removal. CHEMOSPHERE 2023; 337:139416. [PMID: 37414296 DOI: 10.1016/j.chemosphere.2023.139416] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/20/2023] [Revised: 06/26/2023] [Accepted: 07/02/2023] [Indexed: 07/08/2023]
Abstract
Anaerobic digestion piggery effluent (ADPE) shows high chromaticity and ammonium levels, severely inhibiting algal growth. Fungal pretreatment has great potential for decolorization and nutrient removal from wastewater, which coupled with microalgal cultivation may be a reliable strategy for sustainable ADPE resource utilization. In this study, we selected and identified two locally isolated eco-friendly fungal strains for ADPE pretreatment, and fungal culture conditions were optimized for decolorization and ammonium nitrogen (NH4+-N) removal. Subsequently, the underlying mechanisms of fungal decolorization and nitrogen removal were investigated, and the feasibility of using pretreated ADPE for algal cultivation was explored. The results showed that two fungal strains were identified as Trichoderma harzianum and Trichoderma afroharzianum, respectively, presenting good growth and decolorization performance for ADPE pretreatment. The optimized culture conditions were as follows: 20% ADPE, 8 g L-1 glucose, initial pH 6, 160 rpm, 25-30 °C, and 0.15 g L-1 initial dry-weight. ADPE decolorization was mainly caused by fungal biodegradation of color-related humic substances through manganese peroxidase secretion. The removed nitrogen was completely converted into fungal biomass as nitrogen assimilated, ca. 90% of which was attributed to NH4+-N removal. The pretreated ADPE significantly improved algal growth and nutrient removal, demonstrating the feasibility of developing an eco-friendly fungi-based pretreatment technology.
Collapse
Affiliation(s)
- Hanwu Song
- Key Laboratory of Poyang Lake Environment and Resource Utilization, Ministry of Education, and School of Resources & Environment, Nanchang University, Nanchang, 330031, China
| | - Jun Li
- Key Laboratory of Poyang Lake Environment and Resource Utilization, Ministry of Education, and School of Resources & Environment, Nanchang University, Nanchang, 330031, China
| | - Mi Zhou
- Xinjiang Rao River Hydrological and Water Resources Monitoring Center, Shangrao, 334000, China
| | - Hongwu Li
- Faculty of Science and Engineering, Soka University, Tokyo, 1928577, Japan
| | - Liangliang Fan
- Key Laboratory of Poyang Lake Environment and Resource Utilization, Ministry of Education, and School of Resources & Environment, Nanchang University, Nanchang, 330031, China
| | - Peilun Xu
- Key Laboratory of Poyang Lake Environment and Resource Utilization, Ministry of Education, and School of Resources & Environment, Nanchang University, Nanchang, 330031, China
| | - Shengxi Shao
- Key Laboratory of Poyang Lake Environment and Resource Utilization, Ministry of Education, and School of Resources & Environment, Nanchang University, Nanchang, 330031, China
| | - Jingjing Li
- Key Laboratory of Poyang Lake Environment and Resource Utilization, Ministry of Education, and School of Resources & Environment, Nanchang University, Nanchang, 330031, China
| | - Chengyu Xu
- Key Laboratory of Poyang Lake Environment and Resource Utilization, Ministry of Education, and School of Resources & Environment, Nanchang University, Nanchang, 330031, China
| | - Wenguang Zhou
- Key Laboratory of Poyang Lake Environment and Resource Utilization, Ministry of Education, and School of Resources & Environment, Nanchang University, Nanchang, 330031, China.
| | - Jun Qian
- Key Laboratory of Poyang Lake Environment and Resource Utilization, Ministry of Education, and School of Resources & Environment, Nanchang University, Nanchang, 330031, China.
| |
Collapse
|
8
|
Lee JC, Moon K, Lee N, Ryu S, Song SH, Kim YJ, Lee SM, Kim HW, Joo JH. Biodiesel production and simultaneous treatment of domestic and livestock wastewater using indigenous microalgae, Chlorella sorokiniana JD1-1. Sci Rep 2023; 13:15190. [PMID: 37709845 PMCID: PMC10502075 DOI: 10.1038/s41598-023-42453-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2023] [Accepted: 09/11/2023] [Indexed: 09/16/2023] Open
Abstract
In this study, the potential of Chlorella sorokiniana JD1-1 for biodiesel production was evaluated using domestic wastewater (DWW) as a diluent for locally-generated livestock wastewater (LWW). This strategy aimed to provide sustainable wastewater treatment, reduce environmental impacts, enhance cost-effectiveness, and promote biodiesel production. LWW was diluted with tap water and DWW at ratios of 75%, 50%, and 25% (v/v), and the effects on microalgal growth, nutrient removal efficiency, and lipid yield were evaluated. Although the maximum biomass concentration was observed in the artificial growth medium (BG-11) (1170 mg L-1), 75% dilution using tap water (610 mg L-1) and DWW (780 mg L-1) yielded results comparable to the exclusive use of DWW (820 mg L-1), suggesting a potential for substitution. Total nitrogen (TN) removal rates were consistently high under all conditions, particularly in samples with higher concentrations of LWW. Conversely, total phosphorus (TP) concentrations decreased under most conditions, although some displayed large increases. Further studies are necessary to optimize the nutrient balance while maintaining economic feasibility and maximizing biodiesel production.
Collapse
Affiliation(s)
- Jae-Cheol Lee
- Division of Environmental Materials, Honam National Institute of Biological Resources (HNIBR), Mokpo, 58762, Republic of Korea
| | - Kira Moon
- Division of Environmental Materials, Honam National Institute of Biological Resources (HNIBR), Mokpo, 58762, Republic of Korea
| | - Nakyeong Lee
- Division of Environmental Materials, Honam National Institute of Biological Resources (HNIBR), Mokpo, 58762, Republic of Korea
| | - Sangdon Ryu
- Division of Environmental Materials, Honam National Institute of Biological Resources (HNIBR), Mokpo, 58762, Republic of Korea
| | - Seung Hui Song
- Division of Environmental Materials, Honam National Institute of Biological Resources (HNIBR), Mokpo, 58762, Republic of Korea
| | - Yun Ji Kim
- Division of Environmental Materials, Honam National Institute of Biological Resources (HNIBR), Mokpo, 58762, Republic of Korea
| | - Sung Moon Lee
- Division of Environmental Materials, Honam National Institute of Biological Resources (HNIBR), Mokpo, 58762, Republic of Korea
| | - Hyun-Woo Kim
- Department of Environmental Engineering, Division of Civil, Environmental, Mineral Resource and Energy Engineering, Soil Environment Research Center, Jeonbuk National University, 567 Baekje-Daero, Deokjin-Gu, Jeonju, 54896, Republic of Korea.
| | - Jae-Hyoung Joo
- Division of Environmental Materials, Honam National Institute of Biological Resources (HNIBR), Mokpo, 58762, Republic of Korea.
| |
Collapse
|
9
|
Qian J, Xu C, Song H, Zhou W, Toda T, Li H, Takayama Y, Sekine M, Koga S, Li J, Liu J. Enhancing algal growth and nutrient recovery from anaerobic digestion piggery effluent by an integrated pretreatment strategy of ammonia stripping and flocculation. Front Bioeng Biotechnol 2023; 11:1219103. [PMID: 37456717 PMCID: PMC10339316 DOI: 10.3389/fbioe.2023.1219103] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2023] [Accepted: 05/23/2023] [Indexed: 07/18/2023] Open
Abstract
Anaerobic digestion piggery effluent (ADPE) with a quite high ammonium (NH4 +) concentration and turbidity (dark brown color) generally requires high dilution before microalgae cultivation, owing to its NH4 + toxicity and color inhibition to algal growth. An integrated pretreatment strategy of ammonia stripping and chemical flocculation may be a more practical pretreatment procedure for enhancing algae yield and nutrient recovery from anaerobic digestion piggery effluent. In this study, we determined the optimum pretreatment strategy of anaerobic digestion piggery effluent for subsequent microalgae cultivation and nutrient recovery. The results showed that the integrated anaerobic digestion piggery effluent pretreatment strategy of high-temperature ammonia stripping and chemical flocculation at a mixed dosage of 2 g L-1 polyaluminum chloride (PAC) and 40 mg L-1 cationic polyacrylamide (C-PAM), and 50 mg L-1 ammonium nitrogen (NH4 +-N) enrichment provided maximum algal yield (optical density = 1.8) and nutrient removal (95.2%, 98.7%, 99.3%, and 78.5% for the removal efficiencies of total nitrogen, NH4 +-N, total phosphorus, and chemical oxygen demand, respectively) from anaerobic digestion piggery effluent. The integrated pretreatment strategy is expected to become a more practical pretreatment procedure for enhancing algae yield and nutrient recovery from anaerobic digestion piggery effluent.
Collapse
Affiliation(s)
- Jun Qian
- Key Laboratory of Poyang Lake Environment and Resource Utilization, Ministry of Education, and School of Resources and Environment, Nanchang University, Nanchang, China
| | - Chengyu Xu
- Key Laboratory of Poyang Lake Environment and Resource Utilization, Ministry of Education, and School of Resources and Environment, Nanchang University, Nanchang, China
| | - Hanwu Song
- Key Laboratory of Poyang Lake Environment and Resource Utilization, Ministry of Education, and School of Resources and Environment, Nanchang University, Nanchang, China
| | - Wenguang Zhou
- Key Laboratory of Poyang Lake Environment and Resource Utilization, Ministry of Education, and School of Resources and Environment, Nanchang University, Nanchang, China
| | - Tatsuki Toda
- Faculty of Science and Engineering, Soka University, Tokyo, Japan
| | - Hongwu Li
- Faculty of Science and Engineering, Soka University, Tokyo, Japan
| | - Yoshiki Takayama
- Faculty of Science and Engineering, Soka University, Tokyo, Japan
| | - Mutsumi Sekine
- Faculty of Science and Engineering, Soka University, Tokyo, Japan
| | - Shinichi Koga
- Faculty of Science and Engineering, Soka University, Tokyo, Japan
| | - Jun Li
- Key Laboratory of Poyang Lake Environment and Resource Utilization, Ministry of Education, and School of Resources and Environment, Nanchang University, Nanchang, China
| | - Jin Liu
- Key Laboratory of Poyang Lake Environment and Resource Utilization, Ministry of Education, and School of Resources and Environment, Nanchang University, Nanchang, China
| |
Collapse
|
10
|
Ersahin ME, Cicekalan B, Cengiz AI, Zhang X, Ozgun H. Nutrient recovery from municipal solid waste leachate in the scope of circular economy: Recent developments and future perspectives. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2023; 335:117518. [PMID: 36841005 DOI: 10.1016/j.jenvman.2023.117518] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Revised: 02/11/2023] [Accepted: 02/12/2023] [Indexed: 06/18/2023]
Abstract
Holistically considering the current situation of the commercial synthetic fertilizer (CSF) market, recent global developments, and future projection studies, dependency on CSFs in agricultural production born significant risks, especially to the food security of foreign-dependent countries. The foreign dependency of countries in terms of CSFs can be reduced by the concepts such as the circular economy and resource recovery. Recently, waste streams are considered as a source in order to produce recovery-based fertilizers (RBF). RBFs produced from different waste streams can be substituted with CSFs as input for agricultural applications. Municipal solid waste leachate (MSWL) is one of the waste streams that have a high potential for RBF production. Distribution of the published papers over the years shows that this potential was noticed by more researchers in the millennium. MSWL contains a remarkable amount of nitrogen and phosphorus which are the main nutrients required for agricultural production. These nutrients can be recovered with many different methods such as microalgae cultivation, chemical precipitation, ammonia stripping, membrane separation, etc. MSWL can be generated within the different phases of municipal solid waste (MSW) management. Although it is mainly composed of landfill leachate (LL), composting plant leachate (CPL), incineration plant leachate (IPL), and transfer station leachate (TSL) should be considered as potential sources to produce RBF. This study compiles studies conducted on MSWL from the perspective of nitrogen and phosphorus recovery. Moreover, recent developments and limitations of the subject were extensively discussed and future perspectives were introduced by considering the entire MSW management. Investigated studies in this review showed that the potential of MSWL to produce RBF is significant. The outcomes of this paper will serve the countries for ensuring their food security by implementing the resource recovery concept to produce RBF. Thus, the risks born with the recent global developments could be overcome in this way besides the positive environmental outcomes of resource recovery.
Collapse
Affiliation(s)
- Mustafa Evren Ersahin
- Istanbul Technical University, Civil Engineering Faculty, Environmental Engineering Department, Ayazaga Campus, Maslak, 34469, Istanbul, Turkey; National Research Center on Membrane Technologies, Istanbul Technical University, Ayazaga Campus, Maslak, 34469, Istanbul, Turkey.
| | - Busra Cicekalan
- Istanbul Technical University, Civil Engineering Faculty, Environmental Engineering Department, Ayazaga Campus, Maslak, 34469, Istanbul, Turkey
| | - Ali Izzet Cengiz
- Istanbul Technical University, Civil Engineering Faculty, Environmental Engineering Department, Ayazaga Campus, Maslak, 34469, Istanbul, Turkey
| | - Xuedong Zhang
- Jiangsu Key Laboratory of Anaerobic Biotechnology, School of Environmental and Civil Engineering, Jiangnan University, Wuxi, 214122, China
| | - Hale Ozgun
- Istanbul Technical University, Civil Engineering Faculty, Environmental Engineering Department, Ayazaga Campus, Maslak, 34469, Istanbul, Turkey; National Research Center on Membrane Technologies, Istanbul Technical University, Ayazaga Campus, Maslak, 34469, Istanbul, Turkey
| |
Collapse
|
11
|
Salgado EM, Esteves AF, Gonçalves AL, Pires JCM. Microalgal cultures for the remediation of wastewaters with different nitrogen to phosphorus ratios: Process modelling using artificial neural networks. ENVIRONMENTAL RESEARCH 2023; 231:116076. [PMID: 37156357 DOI: 10.1016/j.envres.2023.116076] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Revised: 05/04/2023] [Accepted: 05/05/2023] [Indexed: 05/10/2023]
Abstract
Microalgae have remarkable potential for wastewater bioremediation since they can efficiently uptake nitrogen and phosphorus in a sustainable and environmentally friendly treatment system. However, wastewater composition greatly depends on its source and has a significant seasonal variability. This study aimed to evaluate the impact of different N:P molar ratios on the growth of Chlorella vulgaris and nutrient removal from synthetic wastewater. Furthermore, artificial neural network (ANN) threshold models, optimised by genetic algorithms (GAs), were used to model biomass productivity (BP) and nitrogen/phosphorus removal rates (RRN/RRP). The impact of various inputs culture variables on these parameters was evaluated. Microalgal growth was not nutrient limited since the average biomass productivities and specific growth rates were similar between the experiments. Nutrient removal efficiencies/rates reached 92.0 ± 0.6%/6.15 ± 0.01 mgN L-1 d-1 for nitrogen and 98.2 ± 0.2%/0.92 ± 0.03 mgP L-1 d-1 for phosphorus. Low nitrogen concentration limited phosphorus uptake for low N:P ratios (e.g., 2 and 3, yielding 36 ± 2 mgDW mgP-1 and 39 ± 3 mgDW mgP-1, respectively), while low phosphorus concentration limited nitrogen uptake with high ratios (e.g., 66 and 67, yielding 9.0 ± 0.4 mgDW mgN-1 and 8.8 ± 0.3 mgDW mgN-1, respectively). ANN models showed a high fitting performance, with coefficients of determination of 0.951, 0.800, and 0.793 for BP, RRN, and RRP, respectively. In summary, this study demonstrated that microalgae could successfully grow and adapt to N:P molar ratios between 2 and 67, but the nutrient uptake was impacted by these variations, especially for the lowest and highest N:P molar ratios. Furthermore, GA-ANN models demonstrated to be relevant tools for microalgal growth modelling and control. Their high fitting performance in characterising this biological system can contribute to reducing the experimental effort for culture monitoring (human resources and consumables), thus decreasing the costs of microalgae production.
Collapse
Affiliation(s)
- Eva M Salgado
- LEPABE - Laboratory for Process Engineering, Environment, Biotechnology and Energy, Faculty of Engineering, University of Porto, Rua Dr. Roberto Frias, 4200-465, Porto, Portugal; ALICE - Associate Laboratory in Chemical Engineering, University of Porto, Rua Dr. Roberto Frias, 4200-465, Porto, Portugal.
| | - Ana F Esteves
- LEPABE - Laboratory for Process Engineering, Environment, Biotechnology and Energy, Faculty of Engineering, University of Porto, Rua Dr. Roberto Frias, 4200-465, Porto, Portugal; ALICE - Associate Laboratory in Chemical Engineering, University of Porto, Rua Dr. Roberto Frias, 4200-465, Porto, Portugal; LSRE-LCM - Laboratory of Separation and Reaction Engineering - Laboratory of Catalysis and Materials, Faculty of Engineering, University of Porto, Rua Dr. Roberto Frias, 4200-465, Porto, Portugal
| | - Ana L Gonçalves
- LEPABE - Laboratory for Process Engineering, Environment, Biotechnology and Energy, Faculty of Engineering, University of Porto, Rua Dr. Roberto Frias, 4200-465, Porto, Portugal; ALICE - Associate Laboratory in Chemical Engineering, University of Porto, Rua Dr. Roberto Frias, 4200-465, Porto, Portugal; CITEVE - Technological Centre for the Textile and Clothing Industries of Portugal, Rua Fernando Mesquita, 2785, 4760-034, Vila Nova de Famalicão, Portugal
| | - José C M Pires
- LEPABE - Laboratory for Process Engineering, Environment, Biotechnology and Energy, Faculty of Engineering, University of Porto, Rua Dr. Roberto Frias, 4200-465, Porto, Portugal; ALICE - Associate Laboratory in Chemical Engineering, University of Porto, Rua Dr. Roberto Frias, 4200-465, Porto, Portugal.
| |
Collapse
|
12
|
Qian J, Fu S, Li J, Toda T, Li H, Sekine M, Takayama Y, Koga S, Shao S, Fan L, Xu P, Zhang X, Cheng J, Jin Z, Zhou W. Effects of organic carbon sources on algal biofilm formation and insight into mechanism. ALGAL RES 2023. [DOI: 10.1016/j.algal.2023.103075] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/28/2023]
|
13
|
Chen F, Qian J, He Y, Leng Y, Zhou W. Could Chlorella pyrenoidosa be exploited as an alternative nutrition source in aquaculture feed? A study on the nutritional values and anti-nutritional factors. Front Nutr 2022; 9:1069760. [PMID: 36570144 PMCID: PMC9768438 DOI: 10.3389/fnut.2022.1069760] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2022] [Accepted: 11/21/2022] [Indexed: 12/12/2022] Open
Abstract
This work attempted to identify if microalgal biomass can be utilized as an alternative nutrition source in aquaculture feed by analyzing its nutritional value and the anti-nutritional factors (ANFs). The results showed that Chlorella pyrenoidosa contained high-value nutrients, including essential amino acids and unsaturated fatty acids. The protein content in C. pyrenoidosa reached 52.4%, suggesting that microalgal biomass can be a good protein source for aquatic animals. We also discovered that C. pyrenoidosa contained some ANFs, including saponin, phytic acid, and tannins, which may negatively impact fish productivity. The high-molecular-weight proteins in microalgae may not be effectively digested by aquatic animals. Therefore, based on the findings of this study, proper measures should be taken to pretreat microalgal biomass to improve the nutritional value of a microalgae-based fish diet.
Collapse
Affiliation(s)
- Fufeng Chen
- Key Laboratory of Poyang Lake Environment and Resource Utilization, Ministry of Education, School of Resources and Environment, Nanchang University, Nanchang, China
| | - Jun Qian
- Key Laboratory of Poyang Lake Environment and Resource Utilization, Ministry of Education, School of Resources and Environment, Nanchang University, Nanchang, China,*Correspondence: Jun Qian
| | - Yu He
- Xinjiang Rao River Hydrological and Water Resources Monitoring Center, Shangrao, China
| | - Yunyue Leng
- Key Laboratory of Poyang Lake Environment and Resource Utilization, Ministry of Education, School of Resources and Environment, Nanchang University, Nanchang, China
| | - Wenguang Zhou
- Key Laboratory of Poyang Lake Environment and Resource Utilization, Ministry of Education, School of Resources and Environment, Nanchang University, Nanchang, China,Wenguang Zhou
| |
Collapse
|
14
|
Enhancing biomass yield, nutrient removal, and decolorization from soy sauce wastewater using an algae-fungus consortium. ALGAL RES 2022. [DOI: 10.1016/j.algal.2022.102878] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
15
|
Lee JC, Joo JH, Chun BH, Moon K, Song SH, Kim YJ, Lee SM, Lee AH. Isolation and screening of indigenous microalgae species for domestic and livestock wastewater treatment, biodiesel production, and carbon sequestration. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2022; 318:115648. [PMID: 35949094 DOI: 10.1016/j.jenvman.2022.115648] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/05/2022] [Revised: 06/22/2022] [Accepted: 06/27/2022] [Indexed: 06/15/2023]
Abstract
The use of indigenous microalgae strains for locally generated domestic (DWW) and livestock wastewater (LWW) treatment is essential for effective and economical applications. Phototrophic microalgae-based biofuel production also contributes to carbon sequestration via CO2 fixation. However, simultaneous consideration of both isolation and screening procedures for locally collected indigenous microalgae strains is not common in the literature. We aimed to isolate indigenous microalgae strains from locally collected samples on coastlines and islands in South Korea. Among five isolated strains, Chlorella sorokiniana JD1-1 was selected for DWW and LWW treatment due to its ability to grow in waste resources. This strain showed a higher specific growth rate in DWW than artificial growth medium (BG-11) with a range of 0.137-0.154 d-1. During cultivation, 96.5%-97.1% of total nitrogen in DWW and 89.2% in LWW was removed. Over 99% of total phosphorus in DWW and 96.4% in LWW was also removed. Finally, isolated C. sorokiniana JD1-1 was able to fix CO2 within a range of 0.0646-0.1043 g CO2 L-1 d-1. These results support the domestic applications of carbon sequestration-efficient microalgae in the waste-to-energy nexus.
Collapse
Affiliation(s)
- Jae-Cheol Lee
- Division of Environmental Materials, Honam National Institute of Biological Resources (HNIBR), Mokpo, 58762, Republic of Korea.
| | - Jae-Hyoung Joo
- Division of Environmental Materials, Honam National Institute of Biological Resources (HNIBR), Mokpo, 58762, Republic of Korea
| | - Byung Hee Chun
- Division of Environmental Materials, Honam National Institute of Biological Resources (HNIBR), Mokpo, 58762, Republic of Korea
| | - Kira Moon
- Division of Environmental Materials, Honam National Institute of Biological Resources (HNIBR), Mokpo, 58762, Republic of Korea
| | - Seung Hui Song
- Division of Environmental Materials, Honam National Institute of Biological Resources (HNIBR), Mokpo, 58762, Republic of Korea
| | - Yun Ji Kim
- Division of Environmental Materials, Honam National Institute of Biological Resources (HNIBR), Mokpo, 58762, Republic of Korea
| | - Sung Moon Lee
- Division of Environmental Materials, Honam National Institute of Biological Resources (HNIBR), Mokpo, 58762, Republic of Korea
| | - Aslan Hwanhwi Lee
- Division of Environmental Materials, Honam National Institute of Biological Resources (HNIBR), Mokpo, 58762, Republic of Korea
| |
Collapse
|
16
|
Enhancing algal growth and nutrient removal from nitrified anaerobic digestion piggery effluent through process optimization. ALGAL RES 2022. [DOI: 10.1016/j.algal.2022.102746] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
17
|
Enhancing Algal Yield and Nutrient Removal from Anaerobic Digestion Piggery Effluent by an Integrated Process-Optimization Strategy of Fungal Decolorization and Microalgae Cultivation. APPLIED SCIENCES-BASEL 2022. [DOI: 10.3390/app12094741] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/04/2022]
Abstract
The dark brown anaerobic digestion piggery effluent (ADPE) with a large amount of ammonium generally needs high dilution before microalgae cultivation due to its inhibiting effects on algal growth. Due to the strong decolorization of fungi by degrading organic compounds in wastewater, the process-optimization integrated strategy of fungal decolorization of ADPE and subsequent microalgae cultivation with ammonium-tolerant strain may be a more reliable procedure to reduce the dilution ratio and enhance algal biomass production, and nutrient removal from ADPE. This study determined a suitable fungal strain for ADPE decolorization, which was isolated and screened from a local biogas plant, and identified using 26s rRNA gene sequence analysis. Subsequently, ADPE was pretreated by fungal decolorization to make low-diluted ADPE suitable for the algal growth, and conditions of microalgae cultivation were optimized to achieve maximum algal yield and nutrient removal from the pretreated ADPE. The results showed one promising locally isolated fungal strain, Nanchang University-27, which was selected out of three candidates and identified as Lichtheimia ornata, presenting a high decolorization to ADPE through fungal pretreatment. Five-fold low-diluted ADPE pretreated by L. ornata was the most suitable medium for the algal growth at an initial concentration of ammonium nitrogen of 380 mg L−1 in all dilution treatments. Initial optical density of 0.3 and pH of 9.0 were optimal culture conditions for the algal strain to provide the maximum algal yield (optical density = 2.1) and nutrient removal (88%, 58%, 65%, and 77% for the removal rates of ammonium nitrogen, total nitrogen, total phosphorus, and chemical oxygen demand, respectively) from the pretreated ADPE. This study demonstrated that fungal decolorization and subsequent microalgae cultivation could be a promising approach to algal biomass production and nutrient removal from ADPE.
Collapse
|
18
|
Microalgae cultivation in domestic wastewater for wastewater treatment and high value-added production: species selection and comparison. Biochem Eng J 2022. [DOI: 10.1016/j.bej.2022.108493] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|