1
|
Duan Y, Chen L, Ma L, Amin FR, Zhai Y, Chen G, Li D. From lignocellulosic biomass to single cell oil for sustainable biomanufacturing: Current advances and prospects. Biotechnol Adv 2024; 77:108460. [PMID: 39383979 DOI: 10.1016/j.biotechadv.2024.108460] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2024] [Revised: 09/12/2024] [Accepted: 09/29/2024] [Indexed: 10/11/2024]
Abstract
As global temperatures rise and arid climates intensify, the reserves of Earth's resources and the future development of humankind are under unprecedented pressure. Traditional methods of food production are increasingly inadequate in meeting the demands of human life while remaining environmentally sustainable and resource-efficient. Consequently, the sustainable supply of lipids is expected to become a pivotal area for future food development. Lignocellulose biomass (LB), as the most abundant and cost-effective renewable resource, has garnered significant attention from researchers worldwide. Thus, bioprocessing based on LB is appearing as a sustainable model for mitigating the depletion of energy reserves and reducing carbon footprints. Currently, the transformation of LB primarily focuses on producing biofuels, such as bioethanol, biobutanol, and biodiesel, to address the energy crisis. However, there are limited reports on the production of single cell oil (SCO) from LB. This review, therefore, provides a comprehensive summary of the research progress in lignocellulosic pretreatment. Subsequently, it describes how the capability for lignocellulosic use can be conferred to cells through genetic engineering. Additionally, the current status of saccharification and fermentation of LB is outlined. The article also highlights the advances in synthetic biology aimed at driving the development of oil-producing microorganism (OPM), including genetic transformation, chassis modification, and metabolic pathway optimization. Finally, the limitations currently faced in SCO production from straw are discussed, and future directions for achieving high SCO yields from various perspectives are proposed. This review aims to provide a valuable reference for the industrial application of green SCO production.
Collapse
Affiliation(s)
- Yu Duan
- School of Marine Science and Technology, Harbin Institute of Technology (Weihai), Weihai 264209, PR China; School of Environment, Harbin Institute of Technology, Harbin 150090, PR China; Tianjin Key Laboratory for Industrial Biological System and Bioprocessing Engineering, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin 300308, China
| | - Limei Chen
- Tianjin Key Laboratory for Industrial Biological System and Bioprocessing Engineering, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin 300308, China
| | - Longxue Ma
- Tianjin Key Laboratory for Industrial Biological System and Bioprocessing Engineering, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin 300308, China
| | - Farrukh Raza Amin
- Tianjin Key Laboratory for Industrial Biological System and Bioprocessing Engineering, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin 300308, China
| | - Yida Zhai
- School of Marine Science and Technology, Harbin Institute of Technology (Weihai), Weihai 264209, PR China; School of Environment, Harbin Institute of Technology, Harbin 150090, PR China; Tianjin Key Laboratory for Industrial Biological System and Bioprocessing Engineering, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin 300308, China
| | - Guofu Chen
- School of Marine Science and Technology, Harbin Institute of Technology (Weihai), Weihai 264209, PR China.
| | - Demao Li
- Tianjin Key Laboratory for Industrial Biological System and Bioprocessing Engineering, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin 300308, China.
| |
Collapse
|
2
|
Pang Y, Duan L, Song B, Cui Y, Liu X, Wang T. A Review of Fucoxanthin Biomanufacturing from Phaeodactylum tricornutum. Bioprocess Biosyst Eng 2024; 47:1951-1972. [PMID: 38884655 DOI: 10.1007/s00449-024-03039-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2024] [Accepted: 06/02/2024] [Indexed: 06/18/2024]
Abstract
Microalgae, compared to macroalgae, exhibit advantages such as rapid growth rates, feasible large-scale cultivation, and high fucoxanthin content. Among these microalgae, Phaeodactylum tricornutum emerges as an optimal source for fucoxanthin production. This paper comprehensively reviews the research progress on fucoxanthin production using Phaeodactylum tricornutum from 2012 to 2022, offering detailed insights into various aspects, including strain selection, media optimization, nutritional requirements, lighting conditions, cell harvesting techniques, extraction solvents, extraction methodologies, as well as downstream separation and purification processes. Additionally, an economic analysis is performed to assess the costs of fucoxanthin production from Phaeodactylum tricornutum, with a comparative perspective to astaxanthin production from Haematococcus pluvialis. Lastly, this paper discusses the current challenges and future opportunities in this research field, serving as a valuable resource for researchers, producers, and industry managers seeking to further advance this domain.
Collapse
Affiliation(s)
- Yunlong Pang
- Weihai Vocational College, Weihai, 264200, China.
- Institute of Oceanography, Chinese Academy of Sciences, Qingdao, 266071, China.
- Shandong Haizhibao Marine Technology Co., LTD. Postdoctoral Innovation Practice Base, Weihai, 264200, China.
| | - LiQin Duan
- Institute of Oceanography, Chinese Academy of Sciences, Qingdao, 266071, China
| | - Bo Song
- Weihai Ocean Development Research Institute, Weihai, 264200, China
| | - YuLin Cui
- Binzhou Medical College, Yantai, 264003, China
| | - XiaoYong Liu
- Shandong Haizhibao Marine Technology Co., LTD. Postdoctoral Innovation Practice Base, Weihai, 264200, China
| | | |
Collapse
|
3
|
Anjana K, Arunkumar K. Brown algae biomass for fucoxanthin, fucoidan and alginate; update review on structure, biosynthesis, biological activities and extraction valorisation. Int J Biol Macromol 2024; 280:135632. [PMID: 39299435 DOI: 10.1016/j.ijbiomac.2024.135632] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2024] [Revised: 08/17/2024] [Accepted: 09/12/2024] [Indexed: 09/22/2024]
Abstract
Natural compounds promoting human health are the main focus of research nowadays. Fucoxanthin, fucoidan and alginate are such bioactive compounds that are extracted from marine brown algae. Extracting these 3 compounds through successive extraction enhances the commercial value of the brown algae biomass. There are studies on successive extraction of fucoidan and alginate but not with fucoxanthin which displays various biological bioactivities. Alginate, a polysaccharide presents 45 % in the cell wall of brown algae. Fucoidan, a sulphated polysaccharide proved showing various bioactivities. These bioproducts yield are vary depending on the species. Dictyota species recorded high fucoxanthin content of 7 %. Ascophyllum nodosum was found with high fucoidan of 16.08 % by direct extraction. Maximum alginate of 45.79 % was recorded from the brown alga Sargassum cymosum and by successive extraction 44 % was recorded from Ecklonia radiata. Fucoxanthin exits in two isomers as trans and cis forms. Based on linkage, fucoidan structure is found in 3 forms as 1,3- or 1,4- or alternating 1,3- and 1,4-linked fucose in the polysaccharide residues. Fucoidan composition varys depending on the degree of sulphation, composition of monosaccharides and location of collection. In alginate, its property relies on the mannuronic acid and guluronic acid composition. Biosynthesis of these 3 compounds is not much explored. Keeping this view which signify sequential extraction towards biomass valorisation, fucoxanthin, fucoidan and alginate extracted from the brown algae species focusing yield, extraction, characterisation, biosynthesis and biological activities were compiled and critically analysed and discussed in this review.
Collapse
Affiliation(s)
- K Anjana
- Phycoscience Lab, Department of Plant Science, Central University of Kerala, Periye 671 320, Kasaragod, Kerala, India
| | - K Arunkumar
- Phycoscience Lab, Department of Plant Science, Central University of Kerala, Periye 671 320, Kasaragod, Kerala, India.
| |
Collapse
|
4
|
Mohamed Abdoul-Latif F, Ainane A, Achenani L, Merito Ali A, Mohamed H, Ali A, Jutur PP, Ainane T. Production of Fucoxanthin from Microalgae Isochrysis galbana of Djibouti: Optimization, Correlation with Antioxidant Potential, and Bioinformatics Approaches. Mar Drugs 2024; 22:358. [PMID: 39195473 DOI: 10.3390/md22080358] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2024] [Revised: 07/30/2024] [Accepted: 08/03/2024] [Indexed: 08/29/2024] Open
Abstract
Fucoxanthin, a carotenoid with remarkable antioxidant properties, has considerable potential for high-value biotechnological applications in the pharmaceutical, nutraceutical, and cosmeceutical fields. However, conventional extraction methods of this molecule from microalgae are limited in terms of cost-effectiveness. This study focused on optimizing biomass and fucoxanthin production from Isochrysis galbana, isolated from the coast of Tadjoura (Djibouti), by testing various culture media. The antioxidant potential of the cultures was evaluated based on the concentrations of fucoxanthin, carotenoids, and total phenols. Different nutrient formulations were tested to determine the optimal combination for a maximum biomass yield. Using the statistical methodology of principal component analysis, Walne and Guillard F/2 media were identified as the most promising, reaching a maximum fucoxanthin yield of 7.8 mg/g. Multiple regression models showed a strong correlation between antioxidant activity and the concentration of fucoxanthin produced. A thorough study of the optimization of I. galbana growth conditions, using a design of experiments, revealed that air flow rate and CO2 flow rate were the most influential factors on fucoxanthin production, reaching a value of 13.4 mg/g. Finally, to validate the antioxidant potential of fucoxanthin, an in silico analysis based on molecular docking was performed, showing that fucoxanthin interacts with antioxidant proteins (3FS1, 3L2C, and 8BBK). This research not only confirmed the positive results of I. galbana cultivation in terms of antioxidant activity, but also provided essential information for the optimization of fucoxanthin production, opening up promising prospects for industrial applications and future research.
Collapse
Affiliation(s)
| | - Ayoub Ainane
- Superior School of Technology, University of Sultan Moulay Slimane, P.O. Box 170, Khenifra 54000, Morocco
| | - Laila Achenani
- Superior School of Technology, University of Sultan Moulay Slimane, P.O. Box 170, Khenifra 54000, Morocco
| | - Ali Merito Ali
- Medicinal Research Institute, Center for Research and Study of Djibouti, Djibouti City P.O. Box 486, Djibouti
| | - Houda Mohamed
- Medicinal Research Institute, Center for Research and Study of Djibouti, Djibouti City P.O. Box 486, Djibouti
- Peltier Hospital of Djibouti, Djibouti City P.O. Box 2123, Djibouti
| | - Ahmad Ali
- University Department of Life Sciences, University of Mumbai, Vidyanagari, Santacruz (East), Mumbai 400098, India
| | - Pannaga Pavan Jutur
- Omics of Algae Group, Industrial Biotechnology, International Centre for Genetic Engineering and Biotechnology, Aruna Asaf Ali Marg, New Delhi 110067, India
| | - Tarik Ainane
- Superior School of Technology, University of Sultan Moulay Slimane, P.O. Box 170, Khenifra 54000, Morocco
| |
Collapse
|
5
|
Zheng J, Park K, Jang J, Son D, Park J, Kim J, Yoo JE, You S, Kim IY. Utilizing stem cell-secreted molecules as a versatile toolbox for skin regenerative medicine. J Control Release 2024; 370:583-599. [PMID: 38729435 DOI: 10.1016/j.jconrel.2024.05.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Revised: 04/14/2024] [Accepted: 05/06/2024] [Indexed: 05/12/2024]
Abstract
Stem cells are recognized as an important target and tool in regenerative engineering. In this study, we explored the feasibility of engineering amniotic fluid-derived mesenchymal stem cell-secreted molecules (afMSC-SMs) as a versatile bioactive material for skin regenerative medicine applications in a time- and cost-efficient and straightforward manner. afMSC-SMs, obtained in powder form through ethanol precipitation, effectively contributed to preserving the self-renewal capacity and differentiation potential of primary human keratinocytes (pKCs) in a xeno-free environment, offering a potential alternative to traditional culture methods for their long-term in vitro expansion, and allowed them to reconstitute a fully stratified epithelium sheet on human dermal fibroblasts. Furthermore, we demonstrated the flexibility of afMSC-SMs in wound healing and hair regrowth through injectable hydrogel and nanogel-mediated transdermal delivery systems, respectively, expanding the pool of regenerative applications. This cell-free approach may offer several potential advantages, including streamlined manufacturing processes, scalability, controlled formulation, longer shelf lives, and mitigation of risks associated with living cell transplantation. Accordingly, afMSC-SMs could serve as a promising therapeutic toolbox for advancing cell-free regenerative medicine, simplifying their broad applicability in various clinical settings.
Collapse
Affiliation(s)
- Jie Zheng
- Department of Biotechnology, College of Life Sciences and Biotechnology, Korea University, Seoul 02841, Republic of Korea
| | - Kyoungmin Park
- Department of Biotechnology, College of Life Sciences and Biotechnology, Korea University, Seoul 02841, Republic of Korea
| | - Jihoon Jang
- Department of Biotechnology, College of Life Sciences and Biotechnology, Korea University, Seoul 02841, Republic of Korea
| | - Daryeon Son
- Department of Biotechnology, College of Life Sciences and Biotechnology, Korea University, Seoul 02841, Republic of Korea; Institute of Animal Molecular Biotechnology, Korea University, Seoul 02841, Republic of Korea
| | - Junghyun Park
- Department of Biotechnology, College of Life Sciences and Biotechnology, Korea University, Seoul 02841, Republic of Korea
| | - Jonggun Kim
- Institute of Regenerative Medicine, SL, Therapeutics Inc., Seoul 02841, Republic of Korea
| | - Jeong-Eun Yoo
- Institute of Regenerative Medicine, SL, Therapeutics Inc., Seoul 02841, Republic of Korea
| | - Seungkwon You
- Department of Biotechnology, College of Life Sciences and Biotechnology, Korea University, Seoul 02841, Republic of Korea; Institute of Animal Molecular Biotechnology, Korea University, Seoul 02841, Republic of Korea.
| | - In-Yong Kim
- Catholic High-Performance Cell Therapy Center & Department of Medical Life Science, College of Medicine, The Catholic University of Korea, Seoul 06591, Republic of Korea.
| |
Collapse
|
6
|
Liu H, Chen Y, Wang H, Huang Y, Hu Y, Zhao Y, Gong Y. Identification of Potential Factors for the Promotion of Fucoxanthin Synthesis by Methyl Jasmonic Acid Treatment of Phaeodactylum tricornutum. Mar Drugs 2023; 22:7. [PMID: 38276645 PMCID: PMC10817275 DOI: 10.3390/md22010007] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Revised: 12/01/2023] [Accepted: 12/06/2023] [Indexed: 01/27/2024] Open
Abstract
Fucoxanthin, a vital secondary metabolite produced by marine diatoms, has great economic value and research potential. However, its popularization and application have been greatly restricted due to its low content, difficult extraction, and high production cost. Methyl jasmonic acid (MeJA) exerts similar inductive hormones in the growth and development as well as metabolic processes of plants. In Phaeodactylum tricornutum (P. tricornutum), MeJA treatment can increase fucoxanthin content. In this study, the effects of different concentrations of MeJA on the cell growth and the fucoxanthin content of P. tricornutum were explored. Meanwhile, this study used high-throughput sequencing technology for transcriptome sequencing of P. tricornutum and subsequently performed differential gene expression analysis, gene ontology (GO) enrichment analysis, Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment analysis, and weighted gene co-expression network analysis (WGCNA) for screening the hub genes for the promotion of fucoxanthin synthesis with MeJA-treated P. tricornutum. On this basis, the functions of the hub genes for the promotion of fucoxanthin synthesis with MeJA-treated P. tricornutum were further analyzed. The results revealed that the carotenoid synthesis-related genes PHATRDRAFT_54800 and PHATRDRAFT_20677 were the hub genes for the promotion of fucoxanthin synthesis with MeJA-treated P. tricornutum. PHATRDRAFT_54800 may be a carotenoid isomerase, while PHATRDRAFT_20677 may be involved in the MeJA-stimulated synthesis of fucoxanthin by exerting the role of SDR family NAD(P)-dependent oxidoreductases.
Collapse
Affiliation(s)
- Hao Liu
- Key Laboratory of Marine Biotechnology of Zhejiang Province, School of Marine Sciences, Ningbo University, Ningbo 315200, China; (H.L.); (Y.C.)
- College of Food and Pharmaceutical Sciences, Ningbo University, Ningbo 315200, China;
- Institute of Bioengineering, Biotrans Technology Co., Ltd., Shanghai 201500, China
- United New Drug Research and Development Center, Biotrans Technology Co., Ltd., Changsha 410000, China; (Y.H.); (Y.H.)
| | - Yawen Chen
- Key Laboratory of Marine Biotechnology of Zhejiang Province, School of Marine Sciences, Ningbo University, Ningbo 315200, China; (H.L.); (Y.C.)
| | - Heyu Wang
- College of Food and Pharmaceutical Sciences, Ningbo University, Ningbo 315200, China;
| | - Yaxuan Huang
- United New Drug Research and Development Center, Biotrans Technology Co., Ltd., Changsha 410000, China; (Y.H.); (Y.H.)
| | - Ying Hu
- United New Drug Research and Development Center, Biotrans Technology Co., Ltd., Changsha 410000, China; (Y.H.); (Y.H.)
| | - Yuxiang Zhao
- Institute of Bioengineering, Biotrans Technology Co., Ltd., Shanghai 201500, China
- United New Drug Research and Development Center, Biotrans Technology Co., Ltd., Changsha 410000, China; (Y.H.); (Y.H.)
| | - Yifu Gong
- Key Laboratory of Marine Biotechnology of Zhejiang Province, School of Marine Sciences, Ningbo University, Ningbo 315200, China; (H.L.); (Y.C.)
| |
Collapse
|
7
|
Zhuang G, Ye Y, Zhao J, Zhou C, Zhu J, Li Y, Zhang J, Yan X. Valorization of Phaeodactylum tricornutum for integrated preparation of diadinoxanthin and fucoxanthin. BIORESOURCE TECHNOLOGY 2023:129412. [PMID: 37390934 DOI: 10.1016/j.biortech.2023.129412] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/16/2023] [Revised: 06/26/2023] [Accepted: 06/27/2023] [Indexed: 07/02/2023]
Abstract
Integrated preparation of high-purity carotenoids from marine microalgae using green and efficient methods still faces enormous challenges. In this study, valorization of the economic Phaeodactylum tricornutum using integrated preparation of diadinoxanthin (Ddx) and fucoxanthin (Fx) was explored containing four steps including algae cultivation, solvent extraction, ODS open-column chromatography, and ethanol precipitation for the first time. Several essential key factors were optimized for simultaneously extracting Ddx and Fx from P. tricornutum. ODS open-column chromatography was used to isolate Ddx and Fx. Purification of Ddx and Fx was accomplished using ethanol precipitation. After optimization, the purity of Ddx and Fx was more than 95%, and the total recovery rates of Ddx and Fx were approximately 55% and 85%, respectively. The purified Ddx and Fx were identified as all-trans-diadinoxanthin and all-trans-fucoxanthin, respectively. The antioxidant capacity of the purified Ddx and Fx was assessed using two tests in vitro: DPPH and ABTS radical assays.
Collapse
Affiliation(s)
- GengJie Zhuang
- College of Food and Pharmaceutical Sciences, Ningbo University, Ningbo 315211, China
| | - Yuemei Ye
- College of Food and Pharmaceutical Sciences, Ningbo University, Ningbo 315211, China
| | - Junling Zhao
- College of Food and Pharmaceutical Sciences, Ningbo University, Ningbo 315211, China
| | - Chengxu Zhou
- College of Food and Pharmaceutical Sciences, Ningbo University, Ningbo 315211, China
| | - Junwang Zhu
- College of Food and Pharmaceutical Sciences, Ningbo University, Ningbo 315211, China
| | - Yanrong Li
- Ningbo Institute of Oceanography, Ningbo, Zhejiang 315832, China
| | - Jinrong Zhang
- College of Food and Pharmaceutical Sciences, Ningbo University, Ningbo 315211, China.
| | - Xiaojun Yan
- Key Laboratory of Applied Marine Biotechnology of Ministry of Education, Ningbo University, Ningbo 315211, China
| |
Collapse
|
8
|
Chen W, Li T, Du S, Chen H, Wang Q. Microalgal polyunsaturated fatty acids: Hotspots and production techniques. Front Bioeng Biotechnol 2023; 11:1146881. [PMID: 37064250 PMCID: PMC10102661 DOI: 10.3389/fbioe.2023.1146881] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2023] [Accepted: 03/23/2023] [Indexed: 04/03/2023] Open
Abstract
Algae play a crucial role in the earth’s primary productivity by producing not only oxygen but also a variety of high-value nutrients. One such nutrient is polyunsaturated fatty acids (PUFAs), which are accumulated in many algae and can be consumed by animals through the food chain and eventually by humans. Omega-3 and omega-6 PUFAs are essential nutrients for human and animal health. However, compared with plants and aquatic sourced PUFA, the production of PUFA-rich oil from microalgae is still in the early stages of exploration. This study has collected recent reports on algae-based PUFA production and analyzed related research hotspots and directions, including algae cultivation, lipids extraction, lipids purification, and PUFA enrichment processes. The entire technological process for the extraction, purification and enrichment of PUFA oils from algae is systemically summarized in this review, providing important guidance and technical reference for scientific research and industrialization of algae-based PUFA production.
Collapse
Affiliation(s)
- Weixian Chen
- State Key Laboratory of Crop Stress Adaptation and Improvement, School of Life Sciences, Henan University, Kaifeng, China
| | - Tianpei Li
- State Key Laboratory of Crop Stress Adaptation and Improvement, School of Life Sciences, Henan University, Kaifeng, China
| | - Shuwen Du
- School of Food Science and Engineering, Wuhan Polytechnic University, Wuhan, China
| | - Hui Chen
- State Key Laboratory of Crop Stress Adaptation and Improvement, School of Life Sciences, Henan University, Kaifeng, China
| | - Qiang Wang
- State Key Laboratory of Crop Stress Adaptation and Improvement, School of Life Sciences, Henan University, Kaifeng, China
- Academy for Advanced Interdisciplinary Studies, Henan University, Kaifeng, China
- *Correspondence: Qiang Wang,
| |
Collapse
|
9
|
Zhang Z, Wei Z, Xue C. Delivery systems for fucoxanthin: Research progress, applications and future prospects. Crit Rev Food Sci Nutr 2022; 64:4643-4659. [PMID: 36377728 DOI: 10.1080/10408398.2022.2144793] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Fucoxanthin is a special kind of keto-carotenoid found only in algae. The unique structure of fucoxanthin endows it with extraordinary biological activities, which are of great significance to improve food quality and enhance human health. However, due to its highly unsaturated structure, fucoxanthin also suffers from some limitations, such as instability, poor water solubility and low bioavailability. Therefore, although its content is relatively abundant, its applications in the food industry are extremely scarce. In recent years, there have been many reports on the preparation and characterization of delivery systems for fucoxanthin. These well-designed delivery systems can efficaciously alleviate the instability of fucoxanthin under adverse conditions, thereby improving its oral bioavailability. Thus, this review emphatically summarizes the delivery systems that are widely used to encapsulate, protect and release fucoxanthin. Besides, the influence of delivery systems on the absorption of fucoxanthin by intestinal epithelial cells is highlighted. The applications and future development trends of delivery systems for fucoxanthin are also discussed. The extraction of fucoxanthin, development of novel delivery systems, sensory evaluation and toxicity studies, and industrial production may be promising research directions in the future. Overall, this review provides guidance for the development of fucoxanthin-loaded delivery systems.
Collapse
Affiliation(s)
- Zimo Zhang
- College of Food Science and Engineering, Ocean University of China, Qingdao, China
| | - Zihao Wei
- College of Food Science and Engineering, Ocean University of China, Qingdao, China
| | - Changhu Xue
- College of Food Science and Engineering, Ocean University of China, Qingdao, China
- Laboratory of Marine Drugs and Biological Products, Pilot National Laboratory for Marine Science and Technology (Qingdao), Qingdao, China
| |
Collapse
|
10
|
High-Purity Fucoxanthin Can Be Efficiently Prepared from Isochrysis zhangjiangensis by Ethanol-Based Green Method Coupled with Octadecylsilyl (ODS) Column Chromatography. Mar Drugs 2022; 20:md20080510. [PMID: 36005513 PMCID: PMC9410198 DOI: 10.3390/md20080510] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2022] [Revised: 08/02/2022] [Accepted: 08/09/2022] [Indexed: 11/17/2022] Open
Abstract
The exploitation of new economically valuable microalgae as a sustainable source of minor high-value products can effectively promote the full utilization of microalgae. The efficient preparation of minor products from microalgae remains the challenge, owing to the coexistence of various components with a similar polarity in the microalgae biomass. In this study, a novel approach based on the sustainable-oriented strategy for fucoxanthin (FX) production was proposed, which consisted of four steps, including the culture of microalga, ethanol extraction, ODS column chromatography, and ethanol precipitation. The high-purity FX (around 95%) was efficiently obtained in a total recovery efficiency of 84.28 ± 2.56%. This study reveals that I. zhangjiangensis is a potentially promising feedstock for FX production and firstly provides a potentially eco-friendly method for the scale-up preparation of FX from the microalga I. zhangjiangensis.
Collapse
|
11
|
Pajot A, Hao Huynh G, Picot L, Marchal L, Nicolau E. Fucoxanthin from Algae to Human, an Extraordinary Bioresource: Insights and Advances in up and Downstream Processes. Mar Drugs 2022; 20:md20040222. [PMID: 35447895 PMCID: PMC9027613 DOI: 10.3390/md20040222] [Citation(s) in RCA: 35] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2022] [Revised: 03/21/2022] [Accepted: 03/21/2022] [Indexed: 12/11/2022] Open
Abstract
Fucoxanthin is a brown-colored pigment from algae, with great potential as a bioactive molecule due to its numerous properties. This review aims to present current knowledge on this high added-value pigment. An accurate analysis of the biological function of fucoxanthin explains its wide photon absorption capacities in golden-brown algae. The specific chemical structure of this pigment also leads to many functional activities in human health. They are outlined in this work and are supported by the latest studies in the literature. The scientific and industrial interest in fucoxanthin is correlated with great improvements in the development of algae cultures and downstream processes. The best fucoxanthin producing algae and their associated culture parameters are described. The light intensity is a major influencing factor, as it has to enable both a high biomass growth and a high fucoxanthin content. This review also insists on the most eco-friendly and innovative extraction methods and their perspective within the next years. The use of bio-based solvents, aqueous two-phase systems and the centrifugal partition chromatography are the most promising processes. The analysis of the global market and multiple applications of fucoxanthin revealed that Asian companies are major actors in the market with macroalgae. In addition, fucoxanthin from microalgae are currently produced in Israel and France, and are mostly authorized in the USA.
Collapse
Affiliation(s)
- Anne Pajot
- Ifremer, GENALG Laboratory, Unité PHYTOX, F-44000 Nantes, France; (G.H.H.); (E.N.)
- Correspondence:
| | - Gia Hao Huynh
- Ifremer, GENALG Laboratory, Unité PHYTOX, F-44000 Nantes, France; (G.H.H.); (E.N.)
| | - Laurent Picot
- Unité Mixte de Recherche CNRS 7266 Littoral Environnement et Sociétés (LIENSs), Université La Rochelle, F-17042 La Rochelle, France;
| | - Luc Marchal
- Génie des Procédés Environnement (GEPEA), Université Nantes, F-44000 Saint Nazaire, France;
| | - Elodie Nicolau
- Ifremer, GENALG Laboratory, Unité PHYTOX, F-44000 Nantes, France; (G.H.H.); (E.N.)
| |
Collapse
|