1
|
Zhang S, Gao M, Song S, Zhao T, Zhou B, Wang H, Tian W, Zhao W, Zhao J. Unraveling the Mechanisms That Regulate Osteoclast Differentiation: A Review of Current Advances. Genesis 2025; 63:e70012. [PMID: 39959950 DOI: 10.1002/dvg.70012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2024] [Revised: 01/21/2025] [Accepted: 01/28/2025] [Indexed: 05/09/2025]
Abstract
Osteoporosis is a metabolic bone disease primarily caused by a decreased bone formation and increased bone resorption. Osteoclasts are a special class of terminally differentiated cells that play an important role in normal bone remodeling and bone loss in osteoporosis as well as in a variety of osteolytic diseases. Osteoclasts can be differentiated from monocyte-macrophage cells of the hematopoietic system; they are the key cells in bone resorption. Osteoclast formation and differentiation are regulated by various cytokines and transcription factors. In this review, we summarize recent advances in research on the regulation of osteoclast differentiation and function by factors such as M-CSF, RANKL, AP-1, NFATC1, MITF, and PU.1. Understanding these cytokines and transcription factors can not only help identify targets for osteoclast differentiation but also aid in intervening in the treatment of osteoclast-related diseases.
Collapse
Affiliation(s)
- Sai Zhang
- Henan Key Laboratory of Environmental and Animal Product Safety, Henan University of Science and Technology, Luoyang, People's Republic of China
| | - Meng Gao
- Henan Key Laboratory of Environmental and Animal Product Safety, Henan University of Science and Technology, Luoyang, People's Republic of China
| | - Shuzhe Song
- Henan Key Laboratory of Environmental and Animal Product Safety, Henan University of Science and Technology, Luoyang, People's Republic of China
| | - Tongdan Zhao
- Henan Key Laboratory of Environmental and Animal Product Safety, Henan University of Science and Technology, Luoyang, People's Republic of China
| | - Bianhua Zhou
- Henan Key Laboratory of Environmental and Animal Product Safety, Henan University of Science and Technology, Luoyang, People's Republic of China
| | - Hongwei Wang
- Henan Key Laboratory of Environmental and Animal Product Safety, Henan University of Science and Technology, Luoyang, People's Republic of China
| | - Weishun Tian
- Henan Key Laboratory of Environmental and Animal Product Safety, Henan University of Science and Technology, Luoyang, People's Republic of China
| | - Wenpeng Zhao
- Henan Key Laboratory of Environmental and Animal Product Safety, Henan University of Science and Technology, Luoyang, People's Republic of China
| | - Jing Zhao
- Henan Key Laboratory of Environmental and Animal Product Safety, Henan University of Science and Technology, Luoyang, People's Republic of China
- Biosafety Research Institute and College of Veterinary Medicine, Jeonbuk National University, Iksan, Republic of Korea
| |
Collapse
|
2
|
Jiang T, Xia T, Qiao F, Wang N, Jiang Y, Xin H. Role and Regulation of Transcription Factors in Osteoclastogenesis. Int J Mol Sci 2023; 24:16175. [PMID: 38003376 PMCID: PMC10671247 DOI: 10.3390/ijms242216175] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2023] [Revised: 11/01/2023] [Accepted: 11/08/2023] [Indexed: 11/26/2023] Open
Abstract
Bones serve mechanical and defensive functions, as well as regulating the balance of calcium ions and housing bone marrow.. The qualities of bones do not remain constant. Instead, they fluctuate throughout life, with functions increasing in some situations while deteriorating in others. The synchronization of osteoblast-mediated bone formation and osteoclast-mediated bone resorption is critical for maintaining bone mass and microstructure integrity in a steady state. This equilibrium, however, can be disrupted by a variety of bone pathologies. Excessive osteoclast differentiation can result in osteoporosis, Paget's disease, osteolytic bone metastases, and rheumatoid arthritis, all of which can adversely affect people's health. Osteoclast differentiation is regulated by transcription factors NFATc1, MITF, C/EBPα, PU.1, NF-κB, and c-Fos. The transcriptional activity of osteoclasts is largely influenced by developmental and environmental signals with the involvement of co-factors, RNAs, epigenetics, systemic factors, and the microenvironment. In this paper, we review these themes in regard to transcriptional regulation in osteoclastogenesis.
Collapse
Affiliation(s)
- Tao Jiang
- School of Pharmacy, Naval Medical University, Shanghai 200433, China; (T.J.); (T.X.); (F.Q.)
- School of Pharmacy, Fujian University of Traditional Chinese Medicine, Fuzhou 350122, China
| | - Tianshuang Xia
- School of Pharmacy, Naval Medical University, Shanghai 200433, China; (T.J.); (T.X.); (F.Q.)
| | - Fangliang Qiao
- School of Pharmacy, Naval Medical University, Shanghai 200433, China; (T.J.); (T.X.); (F.Q.)
| | - Nani Wang
- Department of Medicine, Zhejiang Academy of Traditional Chinese Medicine, Hangzhou 310007, China;
| | - Yiping Jiang
- School of Pharmacy, Naval Medical University, Shanghai 200433, China; (T.J.); (T.X.); (F.Q.)
| | - Hailiang Xin
- School of Pharmacy, Naval Medical University, Shanghai 200433, China; (T.J.); (T.X.); (F.Q.)
- School of Pharmacy, Fujian University of Traditional Chinese Medicine, Fuzhou 350122, China
| |
Collapse
|
3
|
Staniszewska M, Kiełbowski K, Rusińska K, Bakinowska E, Gromowska E, Pawlik A. Targeting cyclin-dependent kinases in rheumatoid arthritis and psoriasis - a review of current evidence. Expert Opin Ther Targets 2023; 27:1097-1113. [PMID: 37982244 DOI: 10.1080/14728222.2023.2285784] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2023] [Accepted: 11/16/2023] [Indexed: 11/21/2023]
Abstract
INTRODUCTION Rheumatoid arthritis (RA) is a chronic inflammatory disease associated with synovial proliferation and bone erosion, which leads to the structural and functional impairment of the joints. Immune cells, together with synoviocytes, induce a pro-inflammatory environment and novel treatment agents target inflammatory cytokines. Psoriasis is a chronic immune-mediated skin disease, and several cytokines are considered as typical mediators in the progression of the disease, including IL-23, IL-22, and IL-17, among others. AREA COVERED In this review, we try to evaluate whether cyclin-dependent kinases (CDK), enzymes that regulate cell cycle and transcription of various genes, could become novel therapeutic targets in RA and psoriasis. We present the main results of in vitro and in vivo studies, as well as scarce clinical reports. EXPERT OPINION CDK inhibitors seem promising for treating RA and psoriasis because of their multidirectional effects. CDK inhibitors may affect not only the process of osteoclastogenesis, thereby reducing joint destruction in RA, but also the process of apoptosis of neutrophils and macrophages responsible for the development of inflammation in both RA and psoriasis. However, assessing the efficacy of these drugs in clinical practice requires multi-center, long-term clinical trials evaluating the effectiveness and safety of CDK-blocking therapy in RA and psoriasis.
Collapse
Affiliation(s)
| | - Kajetan Kiełbowski
- Department of Physiology, Pomeranian Medical University, Szczecin, Poland
| | - Klaudia Rusińska
- Department of Physiology, Pomeranian Medical University, Szczecin, Poland
| | - Estera Bakinowska
- Department of Physiology, Pomeranian Medical University, Szczecin, Poland
| | - Ewa Gromowska
- Department of Physiology, Pomeranian Medical University, Szczecin, Poland
| | - Andrzej Pawlik
- Department of Physiology, Pomeranian Medical University, Szczecin, Poland
| |
Collapse
|
4
|
Sikora M, Śmieszek A, Pielok A, Marycz K. MiR-21-5p regulates the dynamic of mitochondria network and rejuvenates the senile phenotype of bone marrow stromal cells (BMSCs) isolated from osteoporotic SAM/P6 mice. Stem Cell Res Ther 2023; 14:54. [PMID: 36978118 PMCID: PMC10053106 DOI: 10.1186/s13287-023-03271-1] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2022] [Accepted: 03/08/2023] [Indexed: 03/30/2023] Open
Abstract
BACKGROUND Progression of senile osteoporosis is associated with deteriorated regenerative potential of bone marrow-derived mesenchymal stem/stromal cells (BMSCs). According to the recent results, the senescent phenotype of osteoporotic cells strongly correlates with impaired regulation of mitochondria dynamics. Moreover, due to the ageing of population and growing osteoporosis incidence, more efficient methods concerning BMSCs rejuvenation are intensely investigated. Recently, miR-21-5p was reported to play a vital role in bone turnover, but its therapeutic mechanisms in progenitor cells delivered from senile osteoporotic patients remain unclear. Therefore, the goal of this paper was to investigate for the first time the regenerative potential of miR-21-5p in the process of mitochondrial network regulation and stemness restoration using the unique model of BMSCs isolated from senile osteoporotic SAM/P6 mice model. METHODS BMSCs were isolated from healthy BALB/c and osteoporotic SAM/P6 mice. We analysed the impact of miR-21-5p on the expression of crucial markers related to cells' viability, mitochondria reconstruction and autophagy progression. Further, we established the expression of markers vital for bone homeostasis, as well as defined the composition of extracellular matrix in osteogenic cultures. The regenerative potential of miR-21 in vivo was also investigated using a critical-size cranial defect model by computed microtomography and SEM-EDX imaging. RESULTS MiR-21 upregulation improved cells' viability and drove mitochondria dynamics in osteoporotic BMSCs evidenced by the intensification of fission processes. Simultaneously, miR-21 enhanced the osteogenic differentiation of BMSCs evidenced by increased expression of Runx-2 but downregulated Trap, as well as improved calcification of extracellular matrix. Importantly, the analyses using the critical-size cranial defect model indicated on a greater ratio of newly formed tissue after miR-21 application, as well as upregulated content of calcium and phosphorus within the defect site. CONCLUSIONS Our results demonstrate that miR-21-5p regulates the fission and fusion processes of mitochondria and facilitates the stemness restoration of senile osteoporotic BMSCs. At the same time, it enhances the expression of RUNX-2, while reduces TRAP accumulation in the cells with deteriorated phenotype. Therefore, miR-21-5p may bring a novel molecular strategy for senile osteoporosis diagnostics and treatment.
Collapse
Affiliation(s)
- Mateusz Sikora
- Department of Experimental Biology, The Faculty of Biology and Animal Science, University of Environmental and Life Sciences Wroclaw, Norwida 27B St, 50-375, Wrocław, Poland
| | - Agnieszka Śmieszek
- Department of Experimental Biology, The Faculty of Biology and Animal Science, University of Environmental and Life Sciences Wroclaw, Norwida 27B St, 50-375, Wrocław, Poland
| | - Ariadna Pielok
- Department of Experimental Biology, The Faculty of Biology and Animal Science, University of Environmental and Life Sciences Wroclaw, Norwida 27B St, 50-375, Wrocław, Poland
| | - Krzysztof Marycz
- Department of Medicine and Epidemiology, School of Veterinary Medicine, University of California, One Shields Avenue, Davis, CA, 95616-8739, USA.
- International Institute of Translational Medicine, Jesionowa 11 Street, 55-124, Malin, Poland.
| |
Collapse
|
5
|
Ding M, Cho E, Chen Z, Park SW, Lee TH. ( S)-2-(Cyclobutylamino)- N-(3-(3,4-dihydroisoquinolin-2(1 H)-yl)-2-hydroxypropyl)isonicotinamide Attenuates RANKL-Induced Osteoclast Differentiation by Inhibiting NF-κB Nuclear Translocation. Int J Mol Sci 2023; 24:ijms24054327. [PMID: 36901758 PMCID: PMC10002170 DOI: 10.3390/ijms24054327] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2023] [Revised: 02/15/2023] [Accepted: 02/20/2023] [Indexed: 02/24/2023] Open
Abstract
Osteoporosis is a common skeletal disease; however, effective pharmacological treatments still need to be discovered. This study aimed to identify new drug candidates for the treatment of osteoporosis. Here, we investigated the effect of EPZ compounds, protein arginine methyltransferase 5 (PRMT5) inhibitors, on RANKL-induced osteoclast differentiation via molecular mechanisms by in vitro experiments. EPZ015866 attenuated RANKL-induced osteoclast differentiation, and its inhibitory effect was more significant than EPZ015666. EPZ015866 suppressed the F-actin ring formation and bone resorption during osteoclastogenesis. In addition, EPZ015866 significantly decreased the protein expression of Cathepsin K, NFATc1, and PU.1 compared with the EPZ015666 group. Both EPZ compounds inhibited the nuclear translocation of NF-κB by inhibiting the dimethylation of the p65 subunit, which eventually prevented osteoclast differentiation and bone resorption. Hence, EPZ015866 may be a potential drug candidate for the treatment of osteoporosis.
Collapse
Affiliation(s)
- Mina Ding
- BioMedical Sciences Graduate Program (BMSGP), Chonnam National University, Gwangju 61186, Republic of Korea
| | - Eunjin Cho
- Department of Oral Biochemistry, Dental Science Research Institute, School of Dentistry, Chonnam National University, Gwangju 61186, Republic of Korea
| | - Zhihao Chen
- BioMedical Sciences Graduate Program (BMSGP), Chonnam National University, Gwangju 61186, Republic of Korea
| | - Sang-Wook Park
- Department of Oral Biochemistry, Dental Science Research Institute, School of Dentistry, Chonnam National University, Gwangju 61186, Republic of Korea
| | - Tae-Hoon Lee
- Department of Oral Biochemistry, Dental Science Research Institute, School of Dentistry, Chonnam National University, Gwangju 61186, Republic of Korea
- Correspondence:
| |
Collapse
|
6
|
Yang X, Kuang Z, Yang X, Hu X, Luo P, Lai Q, Zhang B, Zhang X, Wei Y. Facile synthesis of curcumin-containing poly(amidoamine) dendrimers as pH-responsive delivery system for osteoporosis treatment. Colloids Surf B Biointerfaces 2023; 222:113029. [PMID: 36436402 DOI: 10.1016/j.colsurfb.2022.113029] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2022] [Revised: 11/09/2022] [Accepted: 11/15/2022] [Indexed: 11/18/2022]
Abstract
Osteoporosis is an age-related metabolic disease of bone, resulting in bone pain and even bone fragility and brittle fracture. Inhibiting overactive osteoclasts while promoting osteoblast activity is an ideal way to treat osteoporosis. Previous studies have demonstrated that natural compounds, such as curcumin (Cur) have dual roles both in promoting bone formation and inhibiting bone resorption, making them promising candidates for osteoporosis treatment. However, their poor water solubility, high dosage of curative effect and significant toxicity to other organs have largely limited their clinical translations. In this study, a novel method was reported to conjugate Cur and poly(amidoamine) dendrimers (PAD) using hexachlorocyclotriphosphazene (HCCP) as the linkage through a one-pot reaction, forming stable and uniform Cur loaded nanospheres (HCCP-Cur-PAD, HCP NPs). Owing to the hydrophilicity of PAD and hydrophobicity of Cur, HCP NPs can self-assemble into nanoparticles with particle size of 138.8 ± 78.7 nm and display excellent water dispersity. The loading capacity of Cur can reach 27.2% and it can be released from HCP NPs with pH-responsiveness. In vitro experimental results demonstrated that the HCP NPs entered lysosomes by endocytosis and proved dual anti-osteoporosis effects of inhibiting osteoclasts and promoting osteoblasts.
Collapse
Affiliation(s)
- Xiaowei Yang
- Department of Orthopedics, First Affiliated Hospital of Nanchang University, No. 17 Yong Wai Zheng Street, Nanchang, Jiangxi 330006, PR China; Department of Chemistry, Nanchang University, 999 Xuefu Avenue, Nanchang 330031, PR China
| | - Zhihui Kuang
- Department of Orthopedics, First Affiliated Hospital of Nanchang University, No. 17 Yong Wai Zheng Street, Nanchang, Jiangxi 330006, PR China
| | - Xinmin Yang
- Department of Orthopedics, First Affiliated Hospital of Nanchang University, No. 17 Yong Wai Zheng Street, Nanchang, Jiangxi 330006, PR China
| | - Xin Hu
- Department of Chemistry, Nanchang University, 999 Xuefu Avenue, Nanchang 330031, PR China
| | - Peng Luo
- Department of Orthopedics, First Affiliated Hospital of Nanchang University, No. 17 Yong Wai Zheng Street, Nanchang, Jiangxi 330006, PR China; Department of Chemistry, Nanchang University, 999 Xuefu Avenue, Nanchang 330031, PR China
| | - Qi Lai
- Department of Orthopedics, First Affiliated Hospital of Nanchang University, No. 17 Yong Wai Zheng Street, Nanchang, Jiangxi 330006, PR China
| | - Bin Zhang
- Department of Orthopedics, First Affiliated Hospital of Nanchang University, No. 17 Yong Wai Zheng Street, Nanchang, Jiangxi 330006, PR China.
| | - Xiaoyong Zhang
- Department of Chemistry, Nanchang University, 999 Xuefu Avenue, Nanchang 330031, PR China.
| | - Yen Wei
- Department of Chemistry and the Tsinghua Center for Frontier Polymer Research, Tsinghua University, Beijing 100084, PR China.
| |
Collapse
|
7
|
Cai X, Yao Y, Teng F, Li Y, Wu L, Yan W, Lin N. The role of P2X7 receptor in infection and metabolism: Based on inflammation and immunity. Int Immunopharmacol 2021; 101:108297. [PMID: 34717202 DOI: 10.1016/j.intimp.2021.108297] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2021] [Revised: 10/15/2021] [Accepted: 10/19/2021] [Indexed: 12/20/2022]
Abstract
The P2X7 receptor (P2X7R) is a ligand-gated receptor belonging to the P2 receptor family. It is distributed in various tissues of the human body and is involved in regulating the physiological functions of tissues and cells to affect the occurrence and development of diseases. Unlike all other P2 receptors, the P2X7 receptor is mainly expressed in immune cells and can be activated not only by extracellular nucleotides but also by non-nucleotide substances which act as positive allosteric modulators. In this review, we comprehensively describe the role of the P2X7 receptor in infection and metabolism based on its role as an important regulator of inflammation and immunity, and briefly introduce the structure and general function of the P2X7 receptor. These provide a clear knowledge framework for the study of the P2X7 receptor in human health. Targeting the P2X7 receptor may be an effective method for the treatment of inflammatory and immune diseases. And its role in microbial infection and metabolism may be the main direction for in-depth research on the P2X7 receptor in the future.
Collapse
Affiliation(s)
- Xiaoyu Cai
- Department of Clinical Pharmacology, Key Laboratory of Clinical Cancer Pharmacology and Toxicology Research of Zhejiang Province, Affiliated Hangzhou First People's Hospital, Cancer Center, Zhejiang University School of Medicine, Hangzhou 310006, China
| | - Yao Yao
- Department of Pharmacy, Women's Hospital School of Medicine Zhejiang University, Hangzhou 310006, China
| | - Fei Teng
- College of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou 310053, China
| | - Yangling Li
- Department of Clinical Pharmacology, Key Laboratory of Clinical Cancer Pharmacology and Toxicology Research of Zhejiang Province, Affiliated Hangzhou First People's Hospital, Cancer Center, Zhejiang University School of Medicine, Hangzhou 310006, China
| | - Linwen Wu
- Department of Clinical Pharmacology, Key Laboratory of Clinical Cancer Pharmacology and Toxicology Research of Zhejiang Province, Affiliated Hangzhou First People's Hospital, Cancer Center, Zhejiang University School of Medicine, Hangzhou 310006, China
| | - Wei Yan
- Department of Clinical Pharmacology, Key Laboratory of Clinical Cancer Pharmacology and Toxicology Research of Zhejiang Province, Affiliated Hangzhou First People's Hospital, Cancer Center, Zhejiang University School of Medicine, Hangzhou 310006, China.
| | - Nengming Lin
- Department of Clinical Pharmacology, Key Laboratory of Clinical Cancer Pharmacology and Toxicology Research of Zhejiang Province, Affiliated Hangzhou First People's Hospital, Cancer Center, Zhejiang University School of Medicine, Hangzhou 310006, China; College of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou 310053, China.
| |
Collapse
|
8
|
Gao Y, Patil S, Jia J. The Development of Molecular Biology of Osteoporosis. Int J Mol Sci 2021; 22:8182. [PMID: 34360948 PMCID: PMC8347149 DOI: 10.3390/ijms22158182] [Citation(s) in RCA: 69] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2021] [Revised: 07/25/2021] [Accepted: 07/26/2021] [Indexed: 02/07/2023] Open
Abstract
Osteoporosis is one of the major bone disorders that affects both women and men, and causes bone deterioration and bone strength. Bone remodeling maintains bone mass and mineral homeostasis through the balanced action of osteoblasts and osteoclasts, which are responsible for bone formation and bone resorption, respectively. The imbalance in bone remodeling is known to be the main cause of osteoporosis. The imbalance can be the result of the action of various molecules produced by one bone cell that acts on other bone cells and influence cell activity. The understanding of the effect of these molecules on bone can help identify new targets and therapeutics to prevent and treat bone disorders. In this article, we have focused on molecules that are produced by osteoblasts, osteocytes, and osteoclasts and their mechanism of action on these cells. We have also summarized the different pharmacological osteoporosis treatments that target different molecular aspects of these bone cells to minimize osteoporosis.
Collapse
Affiliation(s)
- Yongguang Gao
- Tangshan Key Laboratory of Green Speciality Chemicals, Department of Chemistry, Tangshan Normal University, Tangshan 063000, China;
| | - Suryaji Patil
- Lab for Bone Metabolism, School of Life Sciences, Northwestern Polytechnical University, Xi’an 710072, China;
| | - Jingxian Jia
- Tangshan Key Laboratory of Green Speciality Chemicals, Department of Chemistry, Tangshan Normal University, Tangshan 063000, China;
| |
Collapse
|
9
|
Zhao X, Patil S, Xu F, Lin X, Qian A. Role of Biomolecules in Osteoclasts and Their Therapeutic Potential for Osteoporosis. Biomolecules 2021; 11:747. [PMID: 34067783 PMCID: PMC8156890 DOI: 10.3390/biom11050747] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2021] [Revised: 05/12/2021] [Accepted: 05/13/2021] [Indexed: 02/06/2023] Open
Abstract
Osteoclasts (OCs) are important cells that are involved in the regulation of bone metabolism and are mainly responsible for coordinating bone resorption with bone formation to regulate bone remodeling. The imbalance between bone resorption and formation significantly affects bone metabolism. When the activity of osteoclasts exceeds the osteoblasts, it results in a condition called osteoporosis, which is characterized by reduced bone microarchitecture, decreased bone mass, and increased occurrences of fracture. Molecules, including transcription factors, proteins, hormones, nucleic acids, such as non-coding RNAs, play an important role in osteoclast proliferation, differentiation, and function. In this review, we have highlighted the role of these molecules in osteoclasts regulation and osteoporosis. The developed therapeutics targeting these molecules for the treatment of osteoporosis in recent years have also been discussed with challenges faced in clinical application.
Collapse
Affiliation(s)
- Xin Zhao
- School of Pharmacy, Shaanxi Institute of International Trade & Commerce, Xi’an 712046, China;
| | - Suryaji Patil
- Xi’an Key Laboratory of Special Medicine and Health Engineering, Key Lab for Space Biosciences and Biotechnology, Research Center for Special Medicine and Health Systems Engineering, NPU-UAB Joint Laboratory for Bone Metabolism, School of Life Sciences, Northwestern Polytechnical University, Xi’an 710072, China; (S.P.); (F.X.); (X.L.)
| | - Fang Xu
- Xi’an Key Laboratory of Special Medicine and Health Engineering, Key Lab for Space Biosciences and Biotechnology, Research Center for Special Medicine and Health Systems Engineering, NPU-UAB Joint Laboratory for Bone Metabolism, School of Life Sciences, Northwestern Polytechnical University, Xi’an 710072, China; (S.P.); (F.X.); (X.L.)
| | - Xiao Lin
- Xi’an Key Laboratory of Special Medicine and Health Engineering, Key Lab for Space Biosciences and Biotechnology, Research Center for Special Medicine and Health Systems Engineering, NPU-UAB Joint Laboratory for Bone Metabolism, School of Life Sciences, Northwestern Polytechnical University, Xi’an 710072, China; (S.P.); (F.X.); (X.L.)
| | - Airong Qian
- Xi’an Key Laboratory of Special Medicine and Health Engineering, Key Lab for Space Biosciences and Biotechnology, Research Center for Special Medicine and Health Systems Engineering, NPU-UAB Joint Laboratory for Bone Metabolism, School of Life Sciences, Northwestern Polytechnical University, Xi’an 710072, China; (S.P.); (F.X.); (X.L.)
| |
Collapse
|
10
|
Ma Y, Ran D, Cao Y, Zhao H, Song R, Zou H, Gu J, Yuan Y, Bian J, Zhu J, Liu Z. The effect of P2X7 on cadmium-induced osteoporosis in mice. JOURNAL OF HAZARDOUS MATERIALS 2021; 405:124251. [PMID: 33168313 DOI: 10.1016/j.jhazmat.2020.124251] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/12/2020] [Revised: 09/05/2020] [Accepted: 10/08/2020] [Indexed: 06/11/2023]
Abstract
Cadmium (Cd), an environmental pollutant, induces osteoporosis by directly destroying bone tissue, but its direct damaging effect on bone cells is not fully illustrated. Here, we treated mouse bone marrow stem cells (BMSC) and bone marrow macrophages (BMM) with Cd, and gave BALB/c mice Cd in water. Long-term Cd exposure significantly inhibited BMSC osteogenesis and osteoclast differentiation in vitro, and induced osteoporosis in vivo. Cd exposure also reduced P2X7 expression dramatically. However, P2X7 deletion significantly inhibited osteoblast and osteoclast differentiation; P2X7 overexpression obviously reduced the suppression effect of Cd on osteoblast and osteoclast differentiation. The suppression of P2X7-PI3K-AKT signaling aggravated the effect of Cd. In mice, short-term Cd exposure did not result in osteoporosis, but bone formation was inhibited, RANKL expression was increased, and osteoclasts were significantly increased in vivo. In vitro, short-term Cd exposure not only increased osteoclast numbers, but also promoted osteoclast adhesion function at late-stage osteoclast differentiation. Cd exposure also reduced P2X7 expression in vivo and in vitro. Our results demonstrate that short-term Cd exposure does not affect osteoblast and osteoclast apoptosis in vivo and in vitro, but long-term Cd exposure significantly increases bone tissue apoptosis. Overall, our results describe a novel mechanism for Cd-induced osteoporosis.
Collapse
Affiliation(s)
- Yonggang Ma
- College of Veterinary Medicine, Yangzhou University, Yangzhou, 225009 Jiangsu, PR China; Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, 225009 Jiangsu, PR China; Joint International Research Laboratory of Agriculture and Agri-Product Safety of the Ministry of Education of China, Yangzhou University, Yangzhou, 225009 Jiangsu, PR China
| | - Di Ran
- College of Veterinary Medicine, Yangzhou University, Yangzhou, 225009 Jiangsu, PR China; Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, 225009 Jiangsu, PR China
| | - Ying Cao
- College of Veterinary Medicine, Yangzhou University, Yangzhou, 225009 Jiangsu, PR China; Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, 225009 Jiangsu, PR China; Joint International Research Laboratory of Agriculture and Agri-Product Safety of the Ministry of Education of China, Yangzhou University, Yangzhou, 225009 Jiangsu, PR China
| | - Hongyan Zhao
- College of Veterinary Medicine, Yangzhou University, Yangzhou, 225009 Jiangsu, PR China; Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, 225009 Jiangsu, PR China; Joint International Research Laboratory of Agriculture and Agri-Product Safety of the Ministry of Education of China, Yangzhou University, Yangzhou, 225009 Jiangsu, PR China
| | - Ruilong Song
- College of Veterinary Medicine, Yangzhou University, Yangzhou, 225009 Jiangsu, PR China; Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, 225009 Jiangsu, PR China; Joint International Research Laboratory of Agriculture and Agri-Product Safety of the Ministry of Education of China, Yangzhou University, Yangzhou, 225009 Jiangsu, PR China
| | - Hui Zou
- College of Veterinary Medicine, Yangzhou University, Yangzhou, 225009 Jiangsu, PR China; Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, 225009 Jiangsu, PR China; Joint International Research Laboratory of Agriculture and Agri-Product Safety of the Ministry of Education of China, Yangzhou University, Yangzhou, 225009 Jiangsu, PR China
| | - Jianhong Gu
- College of Veterinary Medicine, Yangzhou University, Yangzhou, 225009 Jiangsu, PR China; Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, 225009 Jiangsu, PR China; Joint International Research Laboratory of Agriculture and Agri-Product Safety of the Ministry of Education of China, Yangzhou University, Yangzhou, 225009 Jiangsu, PR China
| | - Yan Yuan
- College of Veterinary Medicine, Yangzhou University, Yangzhou, 225009 Jiangsu, PR China; Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, 225009 Jiangsu, PR China; Joint International Research Laboratory of Agriculture and Agri-Product Safety of the Ministry of Education of China, Yangzhou University, Yangzhou, 225009 Jiangsu, PR China
| | - Jianchun Bian
- College of Veterinary Medicine, Yangzhou University, Yangzhou, 225009 Jiangsu, PR China; Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, 225009 Jiangsu, PR China; Joint International Research Laboratory of Agriculture and Agri-Product Safety of the Ministry of Education of China, Yangzhou University, Yangzhou, 225009 Jiangsu, PR China
| | - Jiaqiao Zhu
- College of Veterinary Medicine, Yangzhou University, Yangzhou, 225009 Jiangsu, PR China; Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, 225009 Jiangsu, PR China; Joint International Research Laboratory of Agriculture and Agri-Product Safety of the Ministry of Education of China, Yangzhou University, Yangzhou, 225009 Jiangsu, PR China.
| | - Zongping Liu
- College of Veterinary Medicine, Yangzhou University, Yangzhou, 225009 Jiangsu, PR China; Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, 225009 Jiangsu, PR China; Joint International Research Laboratory of Agriculture and Agri-Product Safety of the Ministry of Education of China, Yangzhou University, Yangzhou, 225009 Jiangsu, PR China.
| |
Collapse
|
11
|
Yahara Y, Ma X, Gracia L, Alman BA. Monocyte/Macrophage Lineage Cells From Fetal Erythromyeloid Progenitors Orchestrate Bone Remodeling and Repair. Front Cell Dev Biol 2021; 9:622035. [PMID: 33614650 PMCID: PMC7889961 DOI: 10.3389/fcell.2021.622035] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2020] [Accepted: 01/12/2021] [Indexed: 12/21/2022] Open
Abstract
A third of the population sustains a bone fracture, and the pace of fracture healing slows with age. The slower pace of repair is responsible for the increased morbidity in older individuals who sustain a fracture. Bone healing progresses through overlapping phases, initiated by cells of the monocyte/macrophage lineage. The repair process ends with remodeling. This last phase is controlled by osteoclasts, which are bone-specific multinucleated cells also of the monocyte/macrophage lineage. The slower rate of healing in aging can be rejuvenated by macrophages from young animals, and secreted proteins from macrophage regulate undifferentiated mesenchymal cells to become bone-forming osteoblasts. Macrophages can derive from fetal erythromyeloid progenitors or from adult hematopoietic progenitors. Recent studies show that fetal erythromyeloid progenitors are responsible for the osteoclasts that form the space in bone for hematopoiesis and the fetal osteoclast precursors reside in the spleen postnatally, traveling through the blood to participate in fracture repair. Differences in secreted proteins between macrophages from old and young animals regulate the efficiency of osteoblast differentiation from undifferentiated mesenchymal precursor cells. Interestingly, during the remodeling phase osteoclasts can form from the fusion between monocyte/macrophage lineage cells from the fetal and postnatal precursor populations. Data from single cell RNA sequencing identifies specific markers for populations derived from the different precursor populations, a finding that can be used in future studies. Here, we review the diversity of macrophages and osteoclasts, and discuss recent finding about their developmental origin and functions, which provides novel insights into their roles in bone homeostasis and repair.
Collapse
Affiliation(s)
- Yasuhito Yahara
- Department of Orthopaedic Surgery, Duke University School of Medicine, Durham, NC, United States.,Department of Orthopaedic Surgery, Faculty of Medicine, University of Toyama, Toyama, Japan.,Department of Molecular and Medical Pharmacology, Faculty of Medicine, University of Toyama, Toyama, Japan
| | - Xinyi Ma
- Department of Orthopaedic Surgery, Duke University School of Medicine, Durham, NC, United States.,Department of Cell Biology, Duke University School of Medicine, Durham, NC, United States
| | - Liam Gracia
- Department of Orthopaedic Surgery, Duke University School of Medicine, Durham, NC, United States.,Department of Cell Biology, Duke University School of Medicine, Durham, NC, United States
| | - Benjamin A Alman
- Department of Orthopaedic Surgery, Duke University School of Medicine, Durham, NC, United States.,Department of Cell Biology, Duke University School of Medicine, Durham, NC, United States
| |
Collapse
|
12
|
The anti-inflammatory effect of the gut lactic acid bacteria-generated metabolite 10-oxo-cis-6,trans-11-octadecadienoic acid on monocytes. Biochem Biophys Res Commun 2020; 530:342-347. [PMID: 32828309 DOI: 10.1016/j.bbrc.2020.07.006] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2020] [Accepted: 07/02/2020] [Indexed: 11/23/2022]
Abstract
We evaluated the effect of gut bacterial metabolites of polyunsaturated fatty acids on inflammation and found that 10-oxo-cis-6,trans-11-octadecadienoic acid (γKetoC) strikingly suppressed LPS-induced IL-6 release from bone marrow-derived macrophages (BMMs), which was accompanied by reduced mRNA expression of Il6, TNF, and Il1b. γKetoC decreased the cAMP concentration in BMMs, suggesting that γKetoC stimulated G protein-coupled receptors. A Gq agonist significantly suppressed LPS-induced IL-6 expression in BMMs, whereas a Gi inhibitor partially abrogated γKetoC-mediated IL-6 suppression. Cytosolic Ca2+ was markedly increased by γKetoC, which was partly but not fully abrogated by an ion channel inhibitor. Taken together, these data suggest that γKetoC suppresses inflammatory cytokine expression in macrophages primarily through Gq and partially through Gi. γKetoC suppressed osteoclast development and IL-6 expression in synovial fibroblasts from rheumatoid arthritis (RA) patients, suggesting the beneficial effect of γKetoC on the prevention or treatment of RA.
Collapse
|
13
|
Jiao Y, Chen C, Hu X, Feng X, Shi Z, Cao J, Li Q, Zhu Y. Niclosamide and its derivative DK-520 inhibit RANKL-induced osteoclastogenesis. FEBS Open Bio 2020; 10:1685-1697. [PMID: 32602250 PMCID: PMC7396435 DOI: 10.1002/2211-5463.12921] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2019] [Revised: 06/05/2020] [Accepted: 06/09/2020] [Indexed: 01/13/2023] Open
Abstract
Niclosamide is a potent inhibitor of osteoclastogenesis and bone remodeling. DK‐520 is an acyl derivative of Niclosamide and significantly increased both the plasma concentration and the duration of exposure of Niclosamide when dosed orally. However, at present the effect of DK‐520 on osteoclastogenesis has not been reported. Here, we investigated whether DK‐520 can regulate receptor activator of nuclear factor‐κB ligand (RANKL)‐induced osteoclastogenesis of bone marrow macrophages (BMMs) in vitro. Following induction of BMMs with RANKL for three days, we detected differentiated osteoclasts with typical morphology and high levels of tartrate‐resistant acid phosphatase (TRAP), RANKL, and cathepsin K (CTSK) expression. Treatment with either Niclosamide or DK‐520 did not affect the viability of osteoclast precursors (OCPs), but significantly inhibited RANKL‐induced transdifferentiation of macrophages into OCPs, particularly in the early stage of osteoclastogenesis. Both Niclosamide and DK‐520 significantly decreased the relative levels of transcription factor PU.1 mRNA transcripts and dendritic cell‐specific transmembrane protein (DC‐STAMP), but not v‐ATPasev0d2 protein expression in OCPs. In addition, the inhibitory effect of DK‐520 on osteoclastogenesis is realized through impairment of the NF‐kB (nuclear factor‐κB) and MAPK (mitogen‐activated protein kinase) signaling pathways. These results demonstrate that DK‐520, like Niclosamide, effectively inhibits the early stage of osteoclastogenesis. The findings presented here, together with its increased oral plasma concentrations and bioavailability, suggest that DK‐520 may be a promising drug candidate for treatment of osteoclast‐related diseases.
Collapse
Affiliation(s)
- Yurui Jiao
- Department of Endocrinology, The Second Hospital of Shanxi Medical University, Taiyuan, China
| | - Chenglong Chen
- Musculoskeletal Tumor Center, Peking University People's Hospital, Beijing, China
| | - Xijian Hu
- Department of Orthopedics, The Second Hospital of Shanxi Medical University, Taiyuan, China
| | - Xu Feng
- Department of Pathology, University of Alabama at Birmingham, AL, USA
| | - Zhenqi Shi
- Department of Pathology, University of Alabama at Birmingham, AL, USA
| | - Jie Cao
- Department of Endocrinology, The Second Hospital of Shanxi Medical University, Taiyuan, China
| | - Qing Li
- Department of Endocrinology, The Second Hospital of Shanxi Medical University, Taiyuan, China
| | - Yikun Zhu
- Department of Endocrinology, The Second Hospital of Shanxi Medical University, Taiyuan, China
| |
Collapse
|
14
|
Dong Y, Chen Y, Zhang L, Tian Z, Dong S. P2X7 receptor acts as an efficient drug target in regulating bone metabolism system. Biomed Pharmacother 2020; 125:110010. [PMID: 32187957 DOI: 10.1016/j.biopha.2020.110010] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2019] [Revised: 02/05/2020] [Accepted: 02/12/2020] [Indexed: 12/12/2022] Open
Abstract
Skeletal system is a highly dynamic system going through continuous resorption and reconstruction to maintain homeostasis, which is influenced by numerous factors. Once the balance is disrupted, various kinds of bone diseases may occur such as osteoporosis. It has been well known that ATP (adenosine triphosphate), an important signaling molecule, is important in maintaining the dynamic balance of bone matrix. ATP mainly functions through P2X receptors, a kind of ATP receptors expressed by various kinds of bone cells to regulate the whole network of skeleton system. Among P2X receptors, P2X7 plays a crucial role in bone since P2X7 is widely expressed by bone cells and the mutation of P2X7 receptor is associated with kinds of bone diseases. It's acknowledged that P2X7 acts as a potential therapeutic target for clinical treatment of bone-related diseases but further investigations are needed for the practical application. However, since P2X7 has a complicated effect in many aspects, the exact role of P2X7 in skeleton system is ambiguous. This review discusses the function of P2X7 in bone and other cells and their general effect on skeleton system, especially focusing on the possible clinical application for bone diseases.
Collapse
Affiliation(s)
- Yutong Dong
- Department of Biomedical Materials Science, Army Medical University, Chongqing, China; Battalion one of Basic Medical Sciences, Army Medical University, Chongqing, China
| | - Yueqi Chen
- Department of Biomedical Materials Science, Army Medical University, Chongqing, China; Department of Orthopedics, Southwest Hospital, Army medical university, Chongqing, China
| | - Lincheng Zhang
- Department of Biomedical Materials Science, Army Medical University, Chongqing, China; Battalion one of Basic Medical Sciences, Army Medical University, Chongqing, China
| | - Zhansong Tian
- Department of Biomedical Materials Science, Army Medical University, Chongqing, China
| | - Shiwu Dong
- Department of Biomedical Materials Science, Army Medical University, Chongqing, China; Department of Orthopedics, Southwest Hospital, Army medical university, Chongqing, China; State Key Laboratory of Trauma, Burns and Combined Injury, Army medical university, Chongqing, China.
| |
Collapse
|
15
|
Anesi A, Generali L, Sandoni L, Pozzi S, Grande A. From Osteoclast Differentiation to Osteonecrosis of the Jaw: Molecular and Clinical Insights. Int J Mol Sci 2019; 20:ijms20194925. [PMID: 31590328 PMCID: PMC6801843 DOI: 10.3390/ijms20194925] [Citation(s) in RCA: 50] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2019] [Revised: 09/27/2019] [Accepted: 09/30/2019] [Indexed: 01/05/2023] Open
Abstract
Bone physiology relies on the delicate balance between resorption and formation of its tissue. Bone resorption depends on a process called osteoclastogenesis in which bone-resorbing cells, i.e., osteoclasts, are produced by the differentiation of more undifferentiated progenitors and precursors. This process is governed by two main factors, monocyte-colony stimulating factor (M-CSF) and receptor activator of NFκB ligand (RANKL). While the former exerts a proliferating effect on progenitors/precursors, the latter triggers a differentiation effect on more mature cells of the same lineage. Bone homeostasis requires a perfect space–time coordination of the involved signals. When osteoclastogenesis is poorly balanced with the differentiation of the bone forming counterparts, i.e., osteoblasts, physiological bone remodelling can turn into a pathological state, causing the systematic disruption of bone tissue which results in osteopenia or osteolysis. Examples of these conditions are represented by osteoporosis, Paget’s disease, bone metastasis, and multiple myeloma. Therefore, drugs targeting osteoclastogenesis, such as bisphosphonates and an anti-RANKL monoclonal antibody, have been developed and are currently used in the treatment of such diseases. Despite their demonstrated therapeutic efficacy, these agents are unfortunately not devoid of side effects. In this regard, a condition called osteonecrosis of the jaw (ONJ) has been recently correlated with anti-resorptive therapy. In this review we will address the involvement of osteoclasts and osteoclast-related factors in the pathogenesis of ONJ. It is to be hoped that a better understanding of the biological mechanisms underlying bone remodelling will help in the design a medical therapeutic approach for ONJ as an alternative to surgical procedures.
Collapse
Affiliation(s)
- Alexandre Anesi
- Department of Medical and Surgical Sciences for Children & Adults, University of Modena and Reggio Emilia, Via del Pozzo 71, 41124 Modena, Italy.
| | - Luigi Generali
- Department of Surgery, Medicine, Dentistry and Morphological Sciences with Transplant Surgery, Oncology and Regenerative Medicine Relevance, University of Modena and Reggio Emilia, 41121 Modena, Italy.
| | - Laura Sandoni
- Department of Biomedical, Metabolic and Neural Sciences, University of Modena and Reggio Emilia, Via Giuseppe Campi 287, 41125 Modena, Italy.
| | - Samantha Pozzi
- Department of Medical and Surgical Sciences for Children & Adults, University of Modena and Reggio Emilia, Via del Pozzo 71, 41124 Modena, Italy.
| | - Alexis Grande
- Department of Biomedical, Metabolic and Neural Sciences, University of Modena and Reggio Emilia, Via Giuseppe Campi 287, 41125 Modena, Italy.
| |
Collapse
|
16
|
Amirhosseini M, Bernhardsson M, Lång P, Andersson G, Flygare J, Fahlgren A. Cyclin-dependent kinase 8/19 inhibition suppresses osteoclastogenesis by downregulating RANK and promotes osteoblast mineralization and cancellous bone healing. J Cell Physiol 2019; 234:16503-16516. [PMID: 30793301 DOI: 10.1002/jcp.28321] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2018] [Revised: 01/29/2019] [Accepted: 02/01/2019] [Indexed: 01/24/2023]
Abstract
Cyclin-dependent kinase 8 (CDK8) is a mediator complex-associated transcriptional regulator that acts depending on context and cell type. While primarily under investigation as potential cancer therapeutics, some inhibitors of CDK8-and its paralog CDK19-have been reported to affect the osteoblast lineage and bone formation. This study investigated the effects of two selective CDK8/19 inhibitors on osteoclastogenesis and osteoblasts in vitro, and further evaluated how local treatment with a CDK8/19 inhibitor affects cancellous bone healing in rats. CDK8/19 inhibitors did not alter the proliferation of neither mouse bone marrow-derived macrophages (BMMs) nor primary mouse osteoblasts. Receptor activator of nuclear factor κΒ (NF-κB) ligand (RANKL)-induced osteoclastogenesis from mouse BMMs was suppressed markedly by inhibition of CDK8/19, concomitant with reduced tartrate-resistant acid phosphatase (TRAP) activity and C-terminal telopeptide of type I collagen levels. This was accompanied by downregulation of PU.1, RANK, NF-κB, nuclear factor of activated T-cells 1 (NFATc1), dendritic cell-specific transmembrane protein (DC-STAMP), TRAP, and cathepsin K in RANKL-stimulated BMMs. Downregulating RANK and its downstream signaling in osteoclast precursors enforce CDK8/19 inhibitors as anticatabolic agents to impede excessive osteoclastogenesis. In mouse primary osteoblasts, CDK8/19 inhibition did not affect differentiation but enhanced osteoblast mineralization by promoting alkaline phosphatase activity and downregulating osteopontin, a negative regulator of mineralization. In rat tibiae, a CDK8/19 inhibitor administered locally promoted cancellous bone regeneration. Our data indicate that inhibitors of CDK8/19 have the potential to develop into therapeutics to restrict osteolysis and enhance bone regeneration.
Collapse
Affiliation(s)
- Mehdi Amirhosseini
- Department of Clinical and Experimental Medicine, Faculty of Medicine and Health Sciences, Linköping University, Linköping, Sweden
| | - Magnus Bernhardsson
- Department of Clinical and Experimental Medicine, Faculty of Medicine and Health Sciences, Linköping University, Linköping, Sweden
| | - Pernilla Lång
- Department of Laboratory Medicine, Division of Pathology, Karolinska Institutet, Karolinska University Hospital, Huddinge, Sweden
| | - Göran Andersson
- Department of Laboratory Medicine, Division of Pathology, Karolinska Institutet, Karolinska University Hospital, Huddinge, Sweden
| | - Johan Flygare
- Department of Molecular Medicine and Gene Therapy, Lund Stem Cell Center, Lund University, Lund, Sweden
| | - Anna Fahlgren
- Department of Clinical and Experimental Medicine, Faculty of Medicine and Health Sciences, Linköping University, Linköping, Sweden
| |
Collapse
|
17
|
Zhang Z, Wen H, Yang X, Zhang K, He B, Zhang X, Kong L. Stimuli and Relevant Signaling Cascades for NFATc1 in Bone Cell Homeostasis: Friend or Foe? Curr Stem Cell Res Ther 2019; 14:239-243. [PMID: 30516111 DOI: 10.2174/1574888x14666181205122729] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2018] [Revised: 10/13/2018] [Accepted: 10/30/2018] [Indexed: 12/26/2022]
Abstract
Bone homeostasis is strictly regulated by balanced activity of bone-forming osteoblasts and bone-resorbing osteoclasts.Disruption of the balance of activity between osteoblasts and osteoclasts leads to various metabolic bone diseases. Osteoclasts are cells of hematopoietic origin that they are large, multinucleated cells formed by the fusion of precursor cells of monocyte/macrophage lineage, they are unique cells that degrade the bone matrix, activation of transcription factors nuclear factoractivated T cells c1 (NFATc1) is required for sufficient osteoclast differentiation and it plays the role of a master transcription regulator of osteoclast differentiation, meanwhile, NFATc1 could be employed to elicit anabolic effects on bone. In this review, we have summarized the various mechanisms that control NFATc1 regulation during osteoclast and osteoblast differentiation as well as a new strategy for promoting bone regeneration in osteopenic disease.
Collapse
Affiliation(s)
- Zhen Zhang
- Department of Spine Surgery, Honghui Hospital Affiliated to Xi'an Jiaotong University, Xi'an, China
| | - Hao Wen
- Department of Spine Surgery, Honghui Hospital Affiliated to Xi'an Jiaotong University, Xi'an, China
| | - Xiaobin Yang
- Department of Spine Surgery, Honghui Hospital Affiliated to Xi'an Jiaotong University, Xi'an, China
| | - Ke Zhang
- Department of Spine Surgery, Honghui Hospital Affiliated to Xi'an Jiaotong University, Xi'an, China
| | - Baorong He
- Department of Spine Surgery, Honghui Hospital Affiliated to Xi'an Jiaotong University, Xi'an, China
| | - Xinliang Zhang
- Department of Spine Surgery, Honghui Hospital Affiliated to Xi'an Jiaotong University, Xi'an, China
| | - Lingbo Kong
- Department of Spine Surgery, Honghui Hospital Affiliated to Xi'an Jiaotong University, Xi'an, China
| |
Collapse
|
18
|
Ding N, Geng B, Li Z, Yang Q, Yan L, Wan L, Zhang B, Wang C, Xia Y. Fluid shear stress promotes osteoblast proliferation through the NFATc1-ERK5 pathway. Connect Tissue Res 2019; 60:107-116. [PMID: 29609502 DOI: 10.1080/03008207.2018.1459588] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
PURPOSE Extracellular-regulated kinase 5 (ERK5) is thought to regulate osteoblast proliferation. To further understand how ERK5 signaling regulates osteoblast proliferation induced by fluid shear stress (FSS), we examined some potential signaling targets associated with ERK5 in MC3T3-E1 cells. METHODS MC3T3-E1 cells were treated with XMD8-92 (an ERK5 inhibitor) or Cyclosporin A (CsA, a nuclear factor of activated T cells (NFAT) c1 inhibitor) and/or exposed to 12 dyn/cm2 FSS. Phosphorylated-ERK5 (p-ERK5) and expression levels of NFATc1, ERK5, E2F2, and cyclin E1 were analyzed by western blot. The mRNA levels of genes associated with cell proliferation were analyzed by Polymerase Chain Reaction (PCR) array. Subcellular localization of p-ERK5 and NFATc1 were determined by immunofluorescence. Cell proliferation was evaluated by MTT assay. RESULTS NFATc1 expression was up-regulated by FSS. XMD8-92 only blocked ERK5 activation; however, CsA decreased NFATc1 and p-ERK5 levels, including after FSS stimulation. Exposure to NFATc1 inhibitor or ERK5 inhibitor resulted in decreased E2F2 and cyclin E1 expression and proliferation by proliferative MC3T3-E1 cells. Furthermore, immunofluorescence results illustrated that NFATc1 induced ERK5 phosphorylation, resulting in p-ERK5 translocation to the nucleus. CONCLUSIONS Our results reveal that NFATc1 acts as an intermediate to promote the phosphorylation of ERK5 induced by FSS. Moreover, activated NFATc1-ERK5 signaling up-regulates the expression of E2F2 and cyclin E1, which promote osteoblast proliferation.
Collapse
Affiliation(s)
- Ning Ding
- a Department of Orthopaedics , Lanzhou University Second Hospital , Lanzhou , Gansu , China.,b Orthopaedics Key Laboratory of Gansu Province , Lanzhou , Gansu , China
| | - Bin Geng
- a Department of Orthopaedics , Lanzhou University Second Hospital , Lanzhou , Gansu , China.,b Orthopaedics Key Laboratory of Gansu Province , Lanzhou , Gansu , China
| | - Zhonghao Li
- a Department of Orthopaedics , Lanzhou University Second Hospital , Lanzhou , Gansu , China.,b Orthopaedics Key Laboratory of Gansu Province , Lanzhou , Gansu , China
| | - Quanzeng Yang
- a Department of Orthopaedics , Lanzhou University Second Hospital , Lanzhou , Gansu , China.,b Orthopaedics Key Laboratory of Gansu Province , Lanzhou , Gansu , China
| | - Liang Yan
- a Department of Orthopaedics , Lanzhou University Second Hospital , Lanzhou , Gansu , China.,b Orthopaedics Key Laboratory of Gansu Province , Lanzhou , Gansu , China
| | - Lang Wan
- a Department of Orthopaedics , Lanzhou University Second Hospital , Lanzhou , Gansu , China.,b Orthopaedics Key Laboratory of Gansu Province , Lanzhou , Gansu , China
| | - Bo Zhang
- a Department of Orthopaedics , Lanzhou University Second Hospital , Lanzhou , Gansu , China.,b Orthopaedics Key Laboratory of Gansu Province , Lanzhou , Gansu , China
| | - Cuifang Wang
- a Department of Orthopaedics , Lanzhou University Second Hospital , Lanzhou , Gansu , China.,b Orthopaedics Key Laboratory of Gansu Province , Lanzhou , Gansu , China
| | - Yayi Xia
- a Department of Orthopaedics , Lanzhou University Second Hospital , Lanzhou , Gansu , China.,b Orthopaedics Key Laboratory of Gansu Province , Lanzhou , Gansu , China
| |
Collapse
|
19
|
Magnesium Is a Key Regulator of the Balance between Osteoclast and Osteoblast Differentiation in the Presence of Vitamin D₃. Int J Mol Sci 2019; 20:ijms20020385. [PMID: 30658432 PMCID: PMC6358963 DOI: 10.3390/ijms20020385] [Citation(s) in RCA: 60] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2018] [Revised: 12/21/2018] [Accepted: 01/12/2019] [Indexed: 01/28/2023] Open
Abstract
Magnesium (Mg) is crucial for bone health. Low concentrations of Mg inhibit the activity of osteoblasts while promoting that of osteoclasts, with the final result of inducing osteopenia. Conversely, little is known about the effects of high concentrations of extracellular Mg on osteoclasts and osteoblasts. Since the differentiation and activation of these cells is coordinated by vitamin D₃ (VD3), we investigated the effects of high extracellular Mg, as well as its impact on VD3 activity, in these cells. U937 cells were induced to osteoclastic differentiation by VD3 in the presence of supra-physiological concentrations (>1 mM) of extracellular Mg. The effect of high Mg concentrations was also studied in human bone-marrow-derived mesenchymal stem cells (bMSCs) induced to differentiate into osteoblasts by VD3. We demonstrate that high extra-cellular Mg levels potentiate VD3-induced osteoclastic differentiation, while decreasing osteoblastogenesis. We hypothesize that Mg might reprogram VD3 activity on bone remodeling, causing an unbalanced activation of osteoclasts and osteoblasts.
Collapse
|
20
|
Grössinger EM, Kang M, Bouchareychas L, Sarin R, Haudenschild DR, Borodinsky LN, Adamopoulos IE. Ca 2+-Dependent Regulation of NFATc1 via KCa3.1 in Inflammatory Osteoclastogenesis. THE JOURNAL OF IMMUNOLOGY 2017; 200:749-757. [PMID: 29246953 DOI: 10.4049/jimmunol.1701170] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/15/2017] [Accepted: 11/02/2017] [Indexed: 12/21/2022]
Abstract
In inflammatory arthritis, the dysregulation of osteoclast activity by proinflammatory cytokines, including TNF, interferes with bone remodeling during inflammation through Ca2+-dependent mechanisms causing pathological bone loss. Ca2+-dependent CREB/c-fos activation via Ca2+-calmodulin kinase IV (CaMKIV) induces transcriptional regulation of osteoclast-specific genes via NFATc1, which facilitate bone resorption. In leukocytes, Ca2+ regulation of NFAT-dependent gene expression oftentimes involves the activity of the Ca2+-activated K+ channel KCa3.1. In this study, we evaluate KCa3.1 as a modulator of Ca2+-induced NFAT-dependent osteoclast differentiation in inflammatory bone loss. Microarray analysis of receptor activator of NF-κB ligand (RANKL)-activated murine bone marrow macrophage (BMM) cultures revealed unique upregulation of KCa3.1 during osteoclastogenesis. The expression of KCa3.1 in vivo was confirmed by immunofluorescence staining on multinucleated cells at the bone surface of inflamed mouse joints. Experiments on in vitro BMM cultures revealed that KCa3.1-/- and TRAM-34 treatment significantly reduced the expression of osteoclast-specific genes (p < 0.05) alongside decreased osteoclast formation (p < 0.0001) in inflammatory (RANKL+TNF) and noninflammatory (RANKL) conditions. In particular, live cell Ca2+ imaging and Western blot analysis showed that TRAM-34 pretreatment decreased transient RANKL-induced Ca2+ amplitudes in BMMs by ∼50% (p < 0.0001) and prevented phosphorylation of CaMKIV. KCa3.1-/- reduced RANKL+/-TNF-stimulated phosphorylation of CREB and expression of c-fos in BMMs (p < 0.01), culminating in decreased NFATc1 protein expression and transcriptional activity (p < 0.01). These data indicate that KCa3.1 regulates Ca2+-dependent NFATc1 expression via CaMKIV/CREB during inflammatory osteoclastogenesis in the presence of TNF, corroborating its role as a target candidate for the treatment of bone erosion in inflammatory arthritis.
Collapse
Affiliation(s)
- Eva M Grössinger
- Division of Rheumatology, Allergy, and Clinical Immunology, Department of Internal Medicine, University of California Davis, Davis, CA 95616
| | - Mincheol Kang
- Division of Rheumatology, Allergy, and Clinical Immunology, Department of Internal Medicine, University of California Davis, Davis, CA 95616
| | - Laura Bouchareychas
- Division of Rheumatology, Allergy, and Clinical Immunology, Department of Internal Medicine, University of California Davis, Davis, CA 95616
| | - Ritu Sarin
- Division of Rheumatology, Allergy, and Clinical Immunology, Department of Internal Medicine, University of California Davis, Davis, CA 95616
| | | | - Laura N Borodinsky
- Department of Physiology and Membrane Biology, University of California Davis, Davis, CA 95616; and.,Institute for Pediatric Regenerative Medicine, Shriners Hospital for Children - Northern California, Sacramento, CA 95817
| | - Iannis E Adamopoulos
- Division of Rheumatology, Allergy, and Clinical Immunology, Department of Internal Medicine, University of California Davis, Davis, CA 95616; .,Institute for Pediatric Regenerative Medicine, Shriners Hospital for Children - Northern California, Sacramento, CA 95817
| |
Collapse
|
21
|
Wu R, Nie Q, Tapper EE, Jerde CR, Dunlap GS, Shrestha S, Elraiyah TA, Offer SM, Diasio RB. Histone H3K27 Trimethylation Modulates 5-Fluorouracil Resistance by Inhibiting PU.1 Binding to the DPYD Promoter. Cancer Res 2016; 76:6362-6373. [PMID: 27578004 PMCID: PMC5093042 DOI: 10.1158/0008-5472.can-16-1306] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2016] [Accepted: 08/10/2016] [Indexed: 12/20/2022]
Abstract
The antimetabolite 5-fluorouracil (5-FU) is one of the most widely used chemotherapy drugs. Dihydropyrimidine dehydrogenase (DPD) is a major determinant of 5-FU response and toxicity. Although DPYD variants may affect 5-FU metabolism, they do not completely explain the reported variability in DPD function or the resultant differences in treatment response. Here, we report that H3K27 trimethylation (H3K27me3) at the DPYD promoter regulated by Ezh2 and UTX suppresses DPYD expression by inhibiting transcription factor PU.1 binding, leading to increased resistance to 5-FU. Enrichment of H3K27me3 at the DPYD promoter was negatively correlated with both DPYD expression and DPD enzyme activity in peripheral blood specimens from healthy volunteers. Lastly, tumor expression data suggest that DPYD repression by Ezh2 predicts poor survival in 5-FU-treated cancers. Collectively, the findings of the present article suggest that a previously uncharacterized mechanism regulates DPD expression and may contribute to tumor resistance to 5-FU. Cancer Res; 76(21); 6362-73. ©2016 AACR.
Collapse
Affiliation(s)
- Rentian Wu
- Department of Molecular Pharmacology and Experimental Therapeutics, Mayo Clinic Cancer Center, Rochester, Minnesota
| | - Qian Nie
- Department of Molecular Pharmacology and Experimental Therapeutics, Mayo Clinic Cancer Center, Rochester, Minnesota
| | - Erin E Tapper
- Department of Molecular Pharmacology and Experimental Therapeutics, Mayo Clinic Cancer Center, Rochester, Minnesota
| | - Calvin R Jerde
- Department of Molecular Pharmacology and Experimental Therapeutics, Mayo Clinic Cancer Center, Rochester, Minnesota
| | - Garrett S Dunlap
- Department of Molecular Pharmacology and Experimental Therapeutics, Mayo Clinic Cancer Center, Rochester, Minnesota
| | - Shikshya Shrestha
- Department of Molecular Pharmacology and Experimental Therapeutics, Mayo Clinic Cancer Center, Rochester, Minnesota
| | - Tarig A Elraiyah
- Department of Molecular Pharmacology and Experimental Therapeutics, Mayo Clinic Cancer Center, Rochester, Minnesota
- Mayo Clinic College of Medicine, Mayo Clinic, Rochester, Minnesota
| | - Steven M Offer
- Department of Molecular Pharmacology and Experimental Therapeutics, Mayo Clinic Cancer Center, Rochester, Minnesota.
- Mayo Clinic College of Medicine, Mayo Clinic, Rochester, Minnesota
| | - Robert B Diasio
- Department of Molecular Pharmacology and Experimental Therapeutics, Mayo Clinic Cancer Center, Rochester, Minnesota.
- Mayo Clinic College of Medicine, Mayo Clinic, Rochester, Minnesota
| |
Collapse
|
22
|
The Multiple Roles of Microrna-223 in Regulating Bone Metabolism. Molecules 2015; 20:19433-48. [PMID: 26512640 PMCID: PMC6332311 DOI: 10.3390/molecules201019433] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2015] [Revised: 10/13/2015] [Accepted: 10/20/2015] [Indexed: 12/23/2022] Open
Abstract
Bone metabolism is a lifelong process for maintaining skeletal system homeostasis, which is regulated by bone-resorbing osteoclasts and bone-forming osteoblasts. Aberrant differentiation of osteoclasts and osteoblasts leads to imbalanced bone metabolism, resulting in ossification and osteolysis diseases. MicroRNAs (miRNAs) are pivotal factors in regulating bone metabolism via post-transcriptional inhibition of target genes. Recent studies have revealed that miR-223 exerts multiple effects on bone metabolism, especially in the processes of osteoclast and osteoblasts differentiation. In this review, we highlight the roles of miR-223 during the processes of osteoclast and osteoblast differentiation, as well as the potential clinical applications of miR-223 in bone metabolism disorders.
Collapse
|