1
|
Huang Z, Li L, Zhang B, Yao D, Xiao B, Mo B. Investigation of the mechanistic impact of CBL0137 on airway remodeling in asthma. BMC Pulm Med 2025; 25:129. [PMID: 40114084 PMCID: PMC11927260 DOI: 10.1186/s12890-025-03596-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2024] [Accepted: 03/12/2025] [Indexed: 03/22/2025] Open
Abstract
BACKGROUND Bronchial asthma, a chronic inflammatory airway disease, is characterized by airway remodeling, including thickening of the airway smooth muscle layer, primarily due to abnormal proliferation of airway smooth muscle cells (ASMCs). CBL0137 (Curaxin-137 hydrochloride), a histone chaperone facilitate chromatin transcription (FACT) inhibitor, has demonstrated anti-tumor properties, including inhibition of proliferation, promotion of apoptosis, and increased autophagy. However, its effects on ASMCs and airway remodeling remain unexplored. METHODS Asthma models were established using ovalbumin (OVA) in female C57BL/6 J mice, with therapeutic interventions using CBL0137 and budesonide. Lung tissues were analyzed using Hematoxylin and eosin (H&E), PAS, Masson's trichrome, and α-SMA immunofluorescence staining. ASMCs extracted from Sprague-Dawley rats were cultured in vitro experiments, with phenotypic changes assessed via flow cytometry. Gene and protein expressions were analyzed using RT-PCR and Western blotting. RESULTS CBL0137 significantly reduced airway resistance, goblet cell proliferation, alveolar collagen deposition, and airway smooth muscle layer thickening in asthmatic mice. In vitro, CBL0137 inhibited ASMC proliferation and induced apoptosis, downregulating cyclin-B1, Cdc2, and Bcl-2 while upregulating caspase-3. CONCLUSIONS CBL0137 mitigates airway remodeling of asthmatic mice by modulating ASMC proliferation and apoptosis, presenting a potential therapeutic strategy for asthma treatment.
Collapse
Affiliation(s)
- Zhiheng Huang
- Department of Respiratory and Critical Care Medicine, Guangxi Clinical Research Center for Diabetes and Metabolic Diseases, Guangxi Health Commission Key Laboratory of Glucose and Lipid Metabolism Disorders, The Second Affiliated Hospital of Guilin Medical University, Guilin, 541199, China
- Chest Hospital of Guangxi Zhuang Autonomous Region, Liuzhou, 545005, China
| | - Liangxian Li
- Guangxi Key Laboratory of Brain and Cognitive Neuroscience, Guilin Medical University, Guilin, 541000, China
| | - Bingxi Zhang
- Department of Pulmonary and Critical Care Medicine, The Laboratory of Respiratory Disease, Affiliated Hospital of Guilin Medical University, Guilin, 541001, China
| | - Dong Yao
- Department of Respiratory and Critical Care Medicine, Guangxi Clinical Research Center for Diabetes and Metabolic Diseases, Guangxi Health Commission Key Laboratory of Glucose and Lipid Metabolism Disorders, The Second Affiliated Hospital of Guilin Medical University, Guilin, 541199, China.
- Guangxi Key Laboratory of Metabolic Reprogramming and Intelligent Medical Engineering for Chronic Diseases, the Key Laboratory of Respiratory Diseases,Education Department of Guangxi Zhuang Autonomous Region, Guilin Medical University, Guilin, 541001, China.
| | - Bo Xiao
- Department of Pulmonary and Critical Care Medicine, The Laboratory of Respiratory Disease, Affiliated Hospital of Guilin Medical University, Guilin, 541001, China.
- Laboratory of Basic Research on Respiratory Diseases, Guangxi Health Commission, Affiliated Hospital of Guilin Medical University, Guilin, 541001, China.
| | - Biwen Mo
- Department of Respiratory and Critical Care Medicine, Guangxi Clinical Research Center for Diabetes and Metabolic Diseases, Guangxi Health Commission Key Laboratory of Glucose and Lipid Metabolism Disorders, The Second Affiliated Hospital of Guilin Medical University, Guilin, 541199, China.
- Guangxi Key Laboratory of Metabolic Reprogramming and Intelligent Medical Engineering for Chronic Diseases, the Key Laboratory of Respiratory Diseases,Education Department of Guangxi Zhuang Autonomous Region, Guilin Medical University, Guilin, 541001, China.
| |
Collapse
|
2
|
Kermani NZ, Li CX, Versi A, Badi Y, Sun K, Abdel-Aziz MI, Bonatti M, Maitland-van der Zee AH, Djukanovic R, Wheelock Å, Dahlen SE, Howarth P, Guo Y, Chung KF, Adcock IM. Endotypes of severe neutrophilic and eosinophilic asthma from multi-omics integration of U-BIOPRED sputum samples. Clin Transl Med 2024; 14:e1771. [PMID: 39073027 DOI: 10.1002/ctm2.1771] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2024] [Revised: 07/04/2024] [Accepted: 07/08/2024] [Indexed: 07/30/2024] Open
Abstract
BACKGROUND Clustering approaches using single omics platforms are increasingly used to characterise molecular phenotypes of eosinophilic and neutrophilic asthma. Effective integration of multi-omics platforms should lead towards greater refinement of asthma endotypes across molecular dimensions and indicate key targets for intervention or biomarker development. OBJECTIVES To determine whether multi-omics integration of sputum leads to improved granularity of the molecular classification of severe asthma. METHODS We analyzed six -omics data blocks-microarray transcriptomics, gene set variation analysis of microarray transcriptomics, SomaSCAN proteomics assay, shotgun proteomics, 16S microbiome sequencing, and shotgun metagenomic sequencing-from induced sputum samples of 57 severe asthma patients, 15 mild-moderate asthma patients, and 13 healthy volunteers in the U-BIOPRED European cohort. We used Monti consensus clustering algorithm for aggregation of clustering results and Similarity Network Fusion to integrate the 6 multi-omics datasets of the 72 asthmatics. RESULTS Five stable omics-associated clusters were identified (OACs). OAC1 had the best lung function with the least number of severe asthmatics with sputum paucigranulocytic inflammation. OAC5 also had fewer severe asthma patients but the highest incidence of atopy and allergic rhinitis, with paucigranulocytic inflammation. OAC3 comprised only severe asthmatics with the highest sputum eosinophilia. OAC2 had the highest sputum neutrophilia followed by OAC4 with both clusters consisting of mostly severe asthma but with more ex/current smokers in OAC4. Compared to OAC4, there was higher incidence of nasal polyps, allergic rhinitis, and eczema in OAC2. OAC2 had microbial dysbiosis with abundant Moraxella catarrhalis and Haemophilus influenzae. OAC4 was associated with pathways linked to IL-22 cytokine activation, with the prediction of therapeutic response to anti-IL22 antibody therapy. CONCLUSION Multi-omics analysis of sputum in asthma has defined with greater granularity the asthma endotypes linked to neutrophilic and eosinophilic inflammation. Modelling diverse types of high-dimensional interactions will contribute to a more comprehensive understanding of complex endotypes. KEY POINTS Unsupervised clustering on sputum multi-omics of asthma subjects identified 3 out of 5 clusters with predominantly severe asthma. One severe asthma cluster was linked to type 2 inflammation and sputum eosinophilia while the other 2 clusters to sputum neutrophilia. One severe neutrophilic asthma cluster was linked to Moraxella catarrhalis and to a lesser extent Haemophilus influenzae while the second cluster to activation of IL-22.
Collapse
Affiliation(s)
- Nazanin Zounemat Kermani
- National Heart and Lung Institute, Imperial College London, London, UK
- Data Science Institute, Imperial College London, London, UK
| | - Chuan-Xing Li
- Respiratory Medicine Unit, Department of Medicine & Centre for Molecular Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Ali Versi
- National Heart and Lung Institute, Imperial College London, London, UK
| | - Yusef Badi
- National Heart and Lung Institute, Imperial College London, London, UK
| | - Kai Sun
- Data Science Institute, Imperial College London, London, UK
| | - Mahmoud I Abdel-Aziz
- Department of Pulmonology, Amsterdam UMC, University of Amsterdam, Amsterdam, The Netherlands
| | - Martina Bonatti
- Respiratory Medicine Unit, Department of Medicine & Centre for Molecular Medicine, Karolinska Institutet, Stockholm, Sweden
| | | | - Ratko Djukanovic
- NIHR Southampton Respiratory Biomedical Research Unit and Clinical and Experimental Sciences, Southampton, UK
| | - Åsa Wheelock
- Respiratory Medicine Unit, Department of Medicine & Centre for Molecular Medicine, Karolinska Institutet, Stockholm, Sweden
- Institute of Environmental Medicine, Centre for Allergy Research, Karolinska Institute, Stockholm, Sweden
| | - Sven-Erik Dahlen
- Respiratory Medicine Unit, Department of Medicine & Centre for Molecular Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Peter Howarth
- NIHR Southampton Respiratory Biomedical Research Unit and Clinical and Experimental Sciences, Southampton, UK
| | - Yike Guo
- Data Science Institute, Imperial College London, London, UK
| | - Kian Fan Chung
- National Heart and Lung Institute, Imperial College London, London, UK
- Data Science Institute, Imperial College London, London, UK
| | - Ian M Adcock
- National Heart and Lung Institute, Imperial College London, London, UK
- Data Science Institute, Imperial College London, London, UK
| |
Collapse
|
3
|
Peng Z, Zhang J, Zhang M, Yin L, Zhou Z, Lv C, Wang Z, Tang J. Tryptophan metabolites relieve intestinal Candida albicans infection by altering the gut microbiota to reduce IL-22 release from group 3 innate lymphoid cells of the colon lamina propria. Food Funct 2024; 15:5364-5381. [PMID: 38639049 DOI: 10.1039/d4fo00432a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/20/2024]
Abstract
Invasive candidiasis may be caused by Candida albicans (C. albicans) colonization of the intestinal tract. Preventing intestinal damage caused by Candida albicans infection and protecting intestinal barrier function have become a critical issue. Integrated analyses of the microbiome with metabolome revealed a remarkable shift of the gut microbiota and tryptophan metabolites, kynurenic acid (KynA), and indolacrylic acid (IA) in mice infected with C. albicans. The transcriptome sequencing indicated that differentially expressed genes were significantly associated with innate immune responses and inflammatory responses. The results of this study suggest that KynA and IA (KI) can alleviate intestinal damage caused by Candida albicans infection in mice by reducing intestinal permeability, increasing intestinal firmness, alleviating intestinal inflammation, and reducing the secretion of interleukin-22 (IL-22) in the 3 groups of colon innate lymphoid cells (ILC3). We performed a fecal microbiota transplantation (FMT) experiment and found that the intestinal barrier function, inflammation, and IL-22 secretion of ILC3 in the colon lamina propria of the recipient mice subjected to C. albicans infection and KI treatment were consistent with the trends of the donor mice. Our results suggest that tryptophan metabolites may directly regulate colon lamina ILC3 to promote intestinal resistance to C. albicans invasion, or indirectly regulate the ILC3 secretion of IL-22 to play a protective role in the intestinal barrier by affecting intestinal microorganisms, which may become a potential target for alleviating intestine borne C. albicans infection.
Collapse
Affiliation(s)
- Ziyao Peng
- Department of Trauma-Emergency and Critical Care Medicine, Shanghai Fifth People's Hospital, Fudan University, Shanghai, China
| | - Jiali Zhang
- Central Laboratory, Shanghai Fifth People's Hospital, Fudan University, Shanghai, China
| | - Meng Zhang
- Department of Pulmonary and Critical Care Medicine, Shanghai Fifth People's Hospital, Fudan University, Shanghai, China
| | - Liping Yin
- Department of Trauma-Emergency and Critical Care Medicine, Shanghai Fifth People's Hospital, Fudan University, Shanghai, China
| | - Ziyang Zhou
- Department of Trauma-Emergency and Critical Care Medicine, Shanghai Fifth People's Hospital, Fudan University, Shanghai, China
| | - Cuiting Lv
- Central Laboratory, Shanghai Fifth People's Hospital, Fudan University, Shanghai, China
| | - Zetian Wang
- Department of Trauma-Emergency and Critical Care Medicine, Shanghai Fifth People's Hospital, Fudan University, Shanghai, China
| | - Jianguo Tang
- Department of Trauma-Emergency and Critical Care Medicine, Shanghai Fifth People's Hospital, Fudan University, Shanghai, China
| |
Collapse
|
4
|
Goulart A, Boko MMM, Martins NS, Gembre AF, de Oliveira RS, Palma-Albornoz SP, Bertolini T, Ribolla PEM, Ramalho LNZ, Fraga-Silva TFDC, Bonato VLD. IL-22 Is Deleterious along with IL-17 in Allergic Asthma but Is Not Detrimental in the Comorbidity Asthma and Acute Pneumonia. Int J Mol Sci 2023; 24:10418. [PMID: 37445595 PMCID: PMC10341917 DOI: 10.3390/ijms241310418] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2023] [Revised: 06/06/2023] [Accepted: 06/14/2023] [Indexed: 07/15/2023] Open
Abstract
There is evidence that IL-22 and IL-17 participate in the pathogenesis of allergic asthma. To investigate the role of IL-22, we used IL-22 deficient mice (IL-22 KO) sensitized and challenged with ovalbumin (OVA) and compared with wild type (WT) animals exposed to OVA. IL-22 KO animals exposed to OVA showed a decreased number and frequency of eosinophils, IL-5 and IL-13 in the airways, reduced mucus production and pulmonary inflammation. In addition, IL-22 KO animals exhibited a decreased percentage and number of lung CD11c+CD11b+ cells and increased apoptosis of eosinophils. Th17 cell transfer generated from IL-22 KO to animals previously sensitized and challenged with OVA caused a reduction in eosinophil frequency and number in the airways compared to animals transferred with Th17 cells generated from WT mice. Therefore, IL-22 is deleterious with concomitant secretion of IL-17. Our findings show a pro-inflammatory role for IL-22, confirmed in a model of allergen-free and allergen-specific immunotherapy. Moreover, during the comorbidity asthma and pneumonia that induces neutrophil inflammation, IL-22 was not detrimental. Our results show that targeting IL-22 would negatively affect the survival of eosinophils, reduce the expansion or migration of CD11c+CD11b+ cells, and negatively regulate allergic asthma.
Collapse
Affiliation(s)
- Amanda Goulart
- Basic and Applied Immunology Program, Ribeirao Preto Medical School, University of Sao Paulo, Ribeirao Preto 14049-900, Sao Paulo, Brazil; (A.G.); (M.M.M.B.); (N.S.M.); (R.S.d.O.); (S.P.P.-A.); (T.B.)
| | - Mèdéton Mahoussi Michaël Boko
- Basic and Applied Immunology Program, Ribeirao Preto Medical School, University of Sao Paulo, Ribeirao Preto 14049-900, Sao Paulo, Brazil; (A.G.); (M.M.M.B.); (N.S.M.); (R.S.d.O.); (S.P.P.-A.); (T.B.)
| | - Nubia Sabrina Martins
- Basic and Applied Immunology Program, Ribeirao Preto Medical School, University of Sao Paulo, Ribeirao Preto 14049-900, Sao Paulo, Brazil; (A.G.); (M.M.M.B.); (N.S.M.); (R.S.d.O.); (S.P.P.-A.); (T.B.)
| | - Ana Flávia Gembre
- Department of Biochemistry and Immunology, Ribeirao Preto Medical School, University of Sao Paulo, Ribeirao Preto 14049-900, Sao Paulo, Brazil; (A.F.G.); (T.F.d.C.F.-S.)
| | - Rômulo Silva de Oliveira
- Basic and Applied Immunology Program, Ribeirao Preto Medical School, University of Sao Paulo, Ribeirao Preto 14049-900, Sao Paulo, Brazil; (A.G.); (M.M.M.B.); (N.S.M.); (R.S.d.O.); (S.P.P.-A.); (T.B.)
| | - Sandra Patrícia Palma-Albornoz
- Basic and Applied Immunology Program, Ribeirao Preto Medical School, University of Sao Paulo, Ribeirao Preto 14049-900, Sao Paulo, Brazil; (A.G.); (M.M.M.B.); (N.S.M.); (R.S.d.O.); (S.P.P.-A.); (T.B.)
| | - Thais Bertolini
- Basic and Applied Immunology Program, Ribeirao Preto Medical School, University of Sao Paulo, Ribeirao Preto 14049-900, Sao Paulo, Brazil; (A.G.); (M.M.M.B.); (N.S.M.); (R.S.d.O.); (S.P.P.-A.); (T.B.)
| | | | - Leandra Naira Zambelli Ramalho
- Department of Pathology and Legal Medicine, Ribeirao Preto Medical School, University of Sao Paulo, Ribeirao Preto 14049-900, Sao Paulo, Brazil;
| | - Thais Fernanda de Campos Fraga-Silva
- Department of Biochemistry and Immunology, Ribeirao Preto Medical School, University of Sao Paulo, Ribeirao Preto 14049-900, Sao Paulo, Brazil; (A.F.G.); (T.F.d.C.F.-S.)
| | - Vânia Luiza Deperon Bonato
- Basic and Applied Immunology Program, Ribeirao Preto Medical School, University of Sao Paulo, Ribeirao Preto 14049-900, Sao Paulo, Brazil; (A.G.); (M.M.M.B.); (N.S.M.); (R.S.d.O.); (S.P.P.-A.); (T.B.)
- Department of Biochemistry and Immunology, Ribeirao Preto Medical School, University of Sao Paulo, Ribeirao Preto 14049-900, Sao Paulo, Brazil; (A.F.G.); (T.F.d.C.F.-S.)
| |
Collapse
|
5
|
Habibovic A, Hristova M, Morris CR, Lin MCJ, Cruz LC, Ather JL, Geiszt M, Anathy V, Janssen-Heininger YMW, Poynter ME, Dixon AE, van der Vliet A. Diet-induced obesity worsens allergen-induced type 2/type 17 inflammation in airways by enhancing DUOX1 activation. Am J Physiol Lung Cell Mol Physiol 2023; 324:L228-L242. [PMID: 36625485 PMCID: PMC9942905 DOI: 10.1152/ajplung.00331.2022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2022] [Revised: 12/16/2022] [Accepted: 12/29/2022] [Indexed: 01/11/2023] Open
Abstract
More than 50% of people with asthma in the United States are obese, and obesity often worsens symptoms of allergic asthma and impairs response to treatment. Based on previously established roles of the epithelial NADPH oxidase DUOX1 in allergic airway inflammation, we addressed the potential involvement of DUOX1 in altered allergic inflammation in the context of obesity. Intranasal house dust mite (HDM) allergen challenge of subjects with allergic asthma induced rapid secretion of IL-33, then IL-13, into the nasal lumen, responses that were significantly enhanced in obese asthmatic subjects (BMI >30). Induction of diet-induced obesity (DIO) in mice by high-fat diet (HFD) feeding similarly enhanced acute airway responses to intranasal HDM challenge, particularly with respect to secretion of IL-33 and type 2/type 3 cytokines, and this was associated with enhanced epithelial DUOX1 expression and was avoided in DUOX1-deficient mice. DIO also enhanced DUOX1-dependent features of chronic HDM-induced allergic inflammation. Although DUOX1 did not affect overall weight gain by HFD feeding, it contributed to glucose intolerance, suggesting a role in glucose metabolism. However, glucose intolerance induced by short-term HFD feeding, in the absence of adiposity, was not sufficient to alter HDM-induced acute airway responses. DIO was associated with enhanced presence of the adipokine leptin in the airways, and leptin enhanced DUOX1-dependent IL-13 and mucin production in airway epithelial cells. In conclusion, augmented inflammatory airway responses to HDM in obesity are associated with increases in airway epithelial DUOX1, and by increased airway epithelial leptin signaling.
Collapse
Affiliation(s)
- Aida Habibovic
- Departments of Pathology and Laboratory Medicine, Larner College of Medicine, University of Vermont, Burlington, Vermont
| | - Milena Hristova
- Departments of Pathology and Laboratory Medicine, Larner College of Medicine, University of Vermont, Burlington, Vermont
| | - Carolyn R Morris
- Departments of Pathology and Laboratory Medicine, Larner College of Medicine, University of Vermont, Burlington, Vermont
- Department of Medicine, Larner College of Medicine, University of Vermont, Burlington, Vermont
| | - Miao-Chong Joy Lin
- Departments of Pathology and Laboratory Medicine, Larner College of Medicine, University of Vermont, Burlington, Vermont
| | - Litiele C Cruz
- Departments of Pathology and Laboratory Medicine, Larner College of Medicine, University of Vermont, Burlington, Vermont
| | - Jennifer L Ather
- Department of Medicine, Larner College of Medicine, University of Vermont, Burlington, Vermont
| | - Miklós Geiszt
- Department of Physiology and "Lendület" Peroxidase Enzyme Research Group, Semmelweis University, Budapest, Hungary
| | - Vikas Anathy
- Departments of Pathology and Laboratory Medicine, Larner College of Medicine, University of Vermont, Burlington, Vermont
| | - Yvonne M W Janssen-Heininger
- Departments of Pathology and Laboratory Medicine, Larner College of Medicine, University of Vermont, Burlington, Vermont
| | - Matthew E Poynter
- Department of Medicine, Larner College of Medicine, University of Vermont, Burlington, Vermont
| | - Anne E Dixon
- Department of Medicine, Larner College of Medicine, University of Vermont, Burlington, Vermont
| | - Albert van der Vliet
- Departments of Pathology and Laboratory Medicine, Larner College of Medicine, University of Vermont, Burlington, Vermont
| |
Collapse
|
6
|
Abstract
Introduction: Allergic asthma is often associated with eosinophilic inflammation, which is related to the T-helper cell type 2 (Th2) cytokines and responsive to corticosteroids. However, there are also phenotypes of non-Th2-mediated asthma, which have poor responsivity to corticosteroids. The leading phenotype of non-Th2-mediated asthma is neutrophilic asthma, which is considered difficult to treat. Recently, IL-22 has been found to be involved in neutrophilic inflammation in asthma. However, studies on the role of IL-22 in asthma are still controversial as IL-22 has both pro-inflammatory and anti-inflammatory roles in asthma. This study examined whether the IL-22 level increased in acute neutrophilic asthma in the mouse model. Herein, we aimed to demonstrate increased IL-22 levels in neutrophilic asthma and elucidate the pathways leading to elevated neutrophil counts.Methods: Six-week old female BALB/c mice were sensitized and challenged with PBS, ovalbumin (OVA) or OVA + lipopolysaccharide (LPS). The mice were then assigned to one of the following five groups: (1) control (PBS/ PBS), (2) OVA/PBS, (3) OVA/OVA, (4) OVA+LPS/PBS, (5) OVA+LPS/OVA+LPS.Results: The levels of Th2 cytokines, IL-17, and IL-22 were assessed, with investigation of the neutrophil chemokines. This study showed that in the acute neutrophilic asthma, the levels of IL-17 and IL-22 were significantly higher than those in the OVA/OVA group, which represents acute eosinophilic asthma. Moreover, the level of CCL20 increased in the neutrophilic asthma group.Conclusion: Thus, this study suggests that in the acute neutrophilic asthma mouse model, IL-17 and IL-22 may increase with CCL20, resulting in neutrophilic inflammation.
Collapse
Affiliation(s)
- Kyu Yean Kim
- Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, Uijeongbu St. Mary's Hospital, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea
| | - Jung Hur
- Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, Uijeongbu St. Mary's Hospital, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea.,Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, Seoul St. Mary's Hospital, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea
| | - Hwa Young Lee
- Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, Uijeongbu St. Mary's Hospital, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea.,Division of Allergy, Department of Internal Medicine, Seoul St. Mary's Hospital, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea
| | - Sook Young Lee
- Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, Uijeongbu St. Mary's Hospital, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea.,Division of Allergy, Department of Internal Medicine, Seoul St. Mary's Hospital, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea
| |
Collapse
|
7
|
Wang Y, Yu H, Li J, Liu W, Yu S, Lv P, Zhao L, Wang X, Zuo Z, Liu X. Th22 cells induce Müller cell activation via the Act1/TRAF6 pathway in diabetic retinopathy. Cell Tissue Res 2022; 390:367-383. [PMID: 36201050 DOI: 10.1007/s00441-022-03689-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2022] [Accepted: 09/14/2022] [Indexed: 11/02/2022]
Abstract
T helper 22 (Th22) cells have been implicated in diabetic retinopathy (DR), but it remains unclear whether Th22 cells involve in the pathogenesis of DR. To investigate the role of Th22 cells in DR mice, the animal models were established by intraperitoneal injection of STZ and confirmed by fundus fluorescein angiography and retinal haematoxylin-eosin staining. IL-22BP was administered by intravitreal injection. IL-22 level was measured by ELISA in vivo and in vitro. The expression of IL-22Rα1 in the retina was assessed by immunofluorescence. We assessed GFAP, VEGF, ICAM-1, inflammatory-associated factors and the integrity of blood-retinal barrier in control, DR, IL-22BP, and sham group. Müller cells were co-cultured with Th22 cells, and the expression of the above proteins was measured by immunoblotting. Plasmid transfection technique was used to silence Act1 gene in Müller cells. Results in vivo and in vitro indicated that Th22 cells infiltrated into the DR retinal and IL-22Rα1 expressed in Müller cells. Th22 cells promoted Müller cells activation and inflammatory factor secretion by secreting IL-22 compared with high-glucose stimulation alone. In addition, IL-22BP ameliorated the pathological alterations of the retina in DR. Inhibition of the inflammatory signalling cascade through Act1 knockdown alleviated DR-like pathology. All in all, the results suggested that Th22 cells infiltrated into the retina and secreted IL-22 in DR, and then IL-22 binding with IL-22Rα1 activated the Act1/TRAF6 signal pathway, and promoted the inflammatory of Müller cells and involved the pathogenesis of DR.
Collapse
Affiliation(s)
- Yufei Wang
- Liaoning Key Laboratory of Diabetic Cognitive and Perceptive Dysfunction, Jinzhou Medical University, Jinzhou, China.,Department of Anatomy, Histology and Embryology, Jinzhou Medical University, Jinzhou, China
| | - Hongdan Yu
- Liaoning Key Laboratory of Diabetic Cognitive and Perceptive Dysfunction, Jinzhou Medical University, Jinzhou, China.,Department of Anatomy, Histology and Embryology, Jinzhou Medical University, Jinzhou, China
| | - Jing Li
- Liaoning Key Laboratory of Diabetic Cognitive and Perceptive Dysfunction, Jinzhou Medical University, Jinzhou, China
| | - Wenqiang Liu
- Liaoning Key Laboratory of Diabetic Cognitive and Perceptive Dysfunction, Jinzhou Medical University, Jinzhou, China.,Department of Anatomy, Histology and Embryology, Jinzhou Medical University, Jinzhou, China
| | - Shengxue Yu
- Liaoning Key Laboratory of Diabetic Cognitive and Perceptive Dysfunction, Jinzhou Medical University, Jinzhou, China.,Department of Anatomy, Histology and Embryology, Jinzhou Medical University, Jinzhou, China
| | - Pan Lv
- Liaoning Key Laboratory of Diabetic Cognitive and Perceptive Dysfunction, Jinzhou Medical University, Jinzhou, China.,Department of Anatomy, Histology and Embryology, Jinzhou Medical University, Jinzhou, China
| | - Lipan Zhao
- Liaoning Key Laboratory of Diabetic Cognitive and Perceptive Dysfunction, Jinzhou Medical University, Jinzhou, China.,Department of Anatomy, Histology and Embryology, Jinzhou Medical University, Jinzhou, China
| | - Xiaobai Wang
- Liaoning Key Laboratory of Diabetic Cognitive and Perceptive Dysfunction, Jinzhou Medical University, Jinzhou, China.,Department of Anatomy, Histology and Embryology, Jinzhou Medical University, Jinzhou, China
| | - Zhongfu Zuo
- Liaoning Key Laboratory of Diabetic Cognitive and Perceptive Dysfunction, Jinzhou Medical University, Jinzhou, China. .,Department of Anatomy, Histology and Embryology, Jinzhou Medical University, Jinzhou, China. .,Department of Anatomy, Histology and Embryology, Postdoctoral Research Station, Guangxi Medical University, Nanning, China.
| | - Xuezheng Liu
- Liaoning Key Laboratory of Diabetic Cognitive and Perceptive Dysfunction, Jinzhou Medical University, Jinzhou, China. .,Department of Anatomy, Histology and Embryology, Jinzhou Medical University, Jinzhou, China.
| |
Collapse
|
8
|
Ulu A, Sveiven S, Bilg A, Velazquez JV, Diaz M, Mukherjee M, Yuil-Valdes AG, Kota S, Burr A, Najera A, Nordgren TM. IL-22 regulates inflammatory responses to agricultural dust-induced airway inflammation. Toxicol Appl Pharmacol 2022; 446:116044. [PMID: 35525330 PMCID: PMC9133182 DOI: 10.1016/j.taap.2022.116044] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2022] [Revised: 04/21/2022] [Accepted: 04/28/2022] [Indexed: 11/26/2022]
Abstract
IL-22 is a unique cytokine that is upregulated in many chronic inflammatory diseases, including asthma, and modulates tissue responses during inflammation. However, the role of IL-22 in the resolution of inflammation and how this contributes to lung repair processes are largely unknown. Here, we tested the hypothesis that IL-22 signaling is critical in inflammation resolution after repetitive exposure to agricultural dust. Using an established mouse model of organic dust extract-induced lung inflammation, we found that IL-22 knockout mice have an enhanced response to agricultural dust as evidenced by an exacerbated increase in infiltrating immune cells and lung pathology as compared to wild-type controls. We further identified that, in response to dust, IL-22 is expressed in airway epithelium and in Ym1+ macrophages found within the parenchyma in response to dust. The increase in IL-22 expression was accompanied by increases in IL-22 receptor IL-22R1 within the lung epithelium. In addition, we found that alveolar macrophages in vivo as well as THP-1 cells in vitro express IL-22, and this expression is modulated by dust exposure. Furthermore, subcellular localization of IL-22 appears to be in the Golgi of resting THP1 human monocytes, and treatment with dust extracts is associated with IL-22 release into the cytosolic compartment from the Golgi reservoirs during dust extract exposure. Taken together, we have identified a significant role for macrophage-mediated IL-22 signaling that is activated in dust-induced lung inflammation in mice.
Collapse
Affiliation(s)
- Arzu Ulu
- Division of Biomedical Sciences, School of Medicine, University of California, Riverside, CA 92521, USA
| | - Stefanie Sveiven
- Division of Biomedical Sciences, School of Medicine, University of California, Riverside, CA 92521, USA
| | - Amanpreet Bilg
- Division of Biomedical Sciences, School of Medicine, University of California, Riverside, CA 92521, USA
| | - Jalene V Velazquez
- Division of Biomedical Sciences, School of Medicine, University of California, Riverside, CA 92521, USA
| | - Marissa Diaz
- Riverside Community College, Riverside, CA 92521, USA
| | - Maheswari Mukherjee
- Department of Medical Sciences, College of Allied Health Professions, University of Nebraska Medical Center, Omaha, NE 68198, USA
| | - Ana G Yuil-Valdes
- Department of Pathology and Microbiology, University of Nebraska Medical Center, Omaha, NE 68198, USA
| | - Santosh Kota
- Department of Preprofessional Biology, University of Florida, Gainesville, FL 32603, USA
| | - Abigail Burr
- Division of Biomedical Sciences, School of Medicine, University of California, Riverside, CA 92521, USA
| | - Aileen Najera
- Division of Biomedical Sciences, School of Medicine, University of California, Riverside, CA 92521, USA
| | - Tara M Nordgren
- Division of Biomedical Sciences, School of Medicine, University of California, Riverside, CA 92521, USA; Department of Environmental and Radiological Health Sciences, Colorado State University, Fort Collins, CO, 80521, USA.
| |
Collapse
|
9
|
Margelidon-Cozzolino V, Tsicopoulos A, Chenivesse C, de Nadai P. Role of Th17 Cytokines in Airway Remodeling in Asthma and Therapy Perspectives. FRONTIERS IN ALLERGY 2022; 3:806391. [PMID: 35386663 PMCID: PMC8974749 DOI: 10.3389/falgy.2022.806391] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2021] [Accepted: 01/10/2022] [Indexed: 12/07/2022] Open
Abstract
Airway remodeling is a frequent pathological feature of severe asthma leading to permanent airway obstruction in up to 50% of cases and to respiratory disability. Although structural changes related to airway remodeling are well-characterized, immunological processes triggering and maintaining this phenomenon are still poorly understood. As a consequence, no biotherapy targeting cytokines are currently efficient to treat airway remodeling and only bronchial thermoplasty may have an effect on bronchial nerves and smooth muscles with uncertain clinical relevance. Th17 cytokines, including interleukin (IL)-17 and IL-22, play a role in neutrophilic inflammation in severe asthma and may be involved in airway remodeling. Indeed, IL-17 is increased in sputum from severe asthmatic patients, induces the expression of "profibrotic" cytokines by epithelial, endothelial cells and fibroblasts, and provokes human airway smooth muscle cell migration in in vitro studies. IL-22 is also increased in asthmatic samples, promotes myofibroblast differentiation, epithelial-mesenchymal transition and proliferation and migration of smooth muscle cells in vitro. Accordingly, we also found high levels of IL-17 and IL-22 in a mouse model of dog-allergen induced asthma characterized by a strong airway remodeling. Clinical trials found no effect of therapy targeting IL-17 in an unselected population of asthmatic patients but showed a potential benefit in a sub-population of patients exhibiting a high level of airway reversibility, suggesting a potential role on airway remodeling. Anti-IL-22 therapies have not been evaluated in asthma yet but were demonstrated efficient in severe atopic dermatitis including an effect on skin remodeling. In this review, we will address the role of Th17 cytokines in airway remodeling through data from in vitro, in vivo and translational studies, and examine the potential place of Th17-targeting therapies in the treatment of asthma with airway remodeling.
Collapse
Affiliation(s)
- Victor Margelidon-Cozzolino
- Univ. Lille, CNRS, INSERM, CHU de Lille, Institut Pasteur de Lille, Unité INSERM U1019-UMR9017-CIIL-Centre d'Infection et d'Immunité de Lille, Lille, France
| | - Anne Tsicopoulos
- Univ. Lille, CNRS, INSERM, CHU de Lille, Institut Pasteur de Lille, Unité INSERM U1019-UMR9017-CIIL-Centre d'Infection et d'Immunité de Lille, Lille, France
| | - Cécile Chenivesse
- Univ. Lille, CNRS, INSERM, CHU de Lille, Institut Pasteur de Lille, Unité INSERM U1019-UMR9017-CIIL-Centre d'Infection et d'Immunité de Lille, Lille, France
- CRISALIS (Clinical Research Initiative in Severe Asthma: a Lever for Innovation & Science), F-CRIN Network, INSERM US015, Toulouse, France
| | - Patricia de Nadai
- Univ. Lille, CNRS, INSERM, CHU de Lille, Institut Pasteur de Lille, Unité INSERM U1019-UMR9017-CIIL-Centre d'Infection et d'Immunité de Lille, Lille, France
| |
Collapse
|
10
|
Tamasauskiene L, Sitkauskiene B. Systemic and local cytokine profile and risk factors for persistent allergic airway inflammation in patients sensitised to house dust mite allergens. BMC Pulm Med 2021; 21:424. [PMID: 34930201 PMCID: PMC8690867 DOI: 10.1186/s12890-021-01798-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2021] [Accepted: 12/15/2021] [Indexed: 01/01/2023] Open
Abstract
Objective To evaluate cytokine profile, vitamin D status, symptom score and quality of life in patients with persistent allergic airway diseases sensitised to house dust mites (HDM) in comparison with healthy individuals. Material and methods Patients sensitized to HDM with persistent AR and having symptoms for at least 2 years with or without AA were involved into the study. Measurements of vitamin D level in serum and IL-10, IL-13, IL-17, IL-22, IL-33 and IFN-gamma in serum and nasal lavage were performed by ELISA. Results Eighty-one subjects were involved into the study. Serum IL-10 concentration was higher in patients with AR than in patients with AR and AA (6.71 ± 1.73 vs. 1.98 ± 0.24, p < 0.05). IFN-gamma level in nasal lavage was higher in patients with AR and AA than in patients with AR (p < 0.01) and healthy individuals (p < 0.05) (7.50 ± 0.37 vs. 6.80 ± 0.99 vs. 6.50 ± 0.22). Serum IL-22 negatively correlated with IL-22 in nasal lavage, whereas serum IFN-gamma positively correlated with IFN-gamma in nasal lavage. Positive correlation between serum IL-17 and total IgE and negative correlation between IL-17 in nasal lavage and eosinophils in nasal smear were found in patients with AR and AA. Serum IFN-gamma decreased the risk of AR for healthy individuals. Serum IL-10 and vitamin D decreased risk for development of AA for patients with AR. IL-22 in serum and IL-10 and IL-33 in nasal lavage increased this risk. Conclusion Novel cytokines such as IL-22, IL-17 and IL-33 and vitamin D may be involved in pathogenesis of persistent airway inflammation in patients sensitized to HDM.
Collapse
Affiliation(s)
- Laura Tamasauskiene
- Department of Immunology and Allergology, Lithuanian University of Health Sciences, Eiveniu str. 2, Kaunas, Lithuania. .,Laboratory of Immunology, Department of Immunology and Allergology, Lithuanian University of Health Sciences, Eiveniu str. 2, 50009, Kaunas, Lithuania.
| | - Brigita Sitkauskiene
- Department of Immunology and Allergology, Lithuanian University of Health Sciences, Eiveniu str. 2, Kaunas, Lithuania
| |
Collapse
|
11
|
Wang J, Gao S, Zhang J, Li C, Li H, Lin J. Interleukin-22 attenuates allergic airway inflammation in ovalbumin-induced asthma mouse model. BMC Pulm Med 2021; 21:385. [PMID: 34836520 PMCID: PMC8620641 DOI: 10.1186/s12890-021-01698-x] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2021] [Accepted: 10/11/2021] [Indexed: 12/14/2022] Open
Abstract
BACKGROUND Allergic asthma is a chronic airway inflammatory disease with a number of cytokines participating in its pathogenesis and progress. Interleukin (IL)-22, which is derived from lymphocytes, acts on epithelial cells and play a role in the chronic airway inflammation. However, the actual role of IL-22 in allergic asthma is still unclear. Therefore, we explored the effect of IL-22 on allergic airway inflammation and airway hyperresponsiveness (AHR) in an ovalbumin (OVA)-induced asthma mouse model. METHODS To evaluate the effect of IL-22 in an allergic asthma model, BALB/c mice were sensitized and challenged with OVA; then the recombinant mouse IL-22 was administered intranasally 24 h prior to each challenge. The IL-22 levels in lung homogenates and bronchoalveolar lavage fluid (BALF) were measured by enzyme linked immunosorbent assay, respectively. AHR was evaluated through indicators including airways resistance (Rrs), elastance (Ers) and compliance (Crs); the inflammatory cell infiltration was assessed by quantification of differential cells counts in BALF and lung tissues stained by hematoxylin and eosin (H&E); IL-22 specific receptors were determined by immunohistochemistry staining. RESULTS The concentration of IL-22 was significantly elevated in the OVA-induced mice compared with the control mice in lung homogenates and BALF. In the OVA-induced mouse model, IL-22 administration could significantly attenuate AHR, including Rrs, Ers and Crs, decrease the proportion of eosinophils in BALF and reduce inflammatory cell infiltration around bronchi and their concomitant vessels, compared with the OVA-induced group. In addition, the expression of IL-22RA1 and IL-10RB in the lung tissues of OVA-induced mice was significantly increased compared with the control mice, while it was dramatically decreased after the treatment with IL-22, but not completely attenuated in the IL-22-treated mice when compared with the control mice. CONCLUSION Interleukin-22 could play a protective role in an OVA-induced asthma model, by suppressing the inflammatory cell infiltration around bronchi and their concomitant vessels and airway hyperresponsiveness, which might associate with the expression of its heterodimer receptors. Thus, IL-22 administration might be an effective strategy to attenuate allergic airway inflammation.
Collapse
Affiliation(s)
- Jingru Wang
- Peking University China-Japan Friendship School of Clinical Medicine, No. 2, East Yinghua Road, Chaoyang Disteict, Beijing, 100029 China
- Department of Pulmonary and Critical Care Medicine, China-Japan Friendship Hospital, Beijing, 100029 China
| | - Shengnan Gao
- Department of Pulmonary and Critical Care Medicine, China-Japan Friendship Hospital, Beijing, 100029 China
- Department of Pulmonary and Critical Care Medicine, Graduate School of Chinese Academy of Medical Sciences, Peking Union Medical College, China-Japan Friendship Hospital, Beijing, 100730 China
| | - Jingyuan Zhang
- Department of Pulmonary and Critical Care Medicine, China-Japan Friendship Hospital, Beijing, 100029 China
- Department of Pulmonary and Critical Care Medicine, Graduate School of Chinese Academy of Medical Sciences, Peking Union Medical College, China-Japan Friendship Hospital, Beijing, 100730 China
| | - Chunxiao Li
- Peking University China-Japan Friendship School of Clinical Medicine, No. 2, East Yinghua Road, Chaoyang Disteict, Beijing, 100029 China
- Department of Pulmonary and Critical Care Medicine, China-Japan Friendship Hospital, Beijing, 100029 China
| | - Hongwen Li
- Peking University China-Japan Friendship School of Clinical Medicine, No. 2, East Yinghua Road, Chaoyang Disteict, Beijing, 100029 China
- Department of Pulmonary and Critical Care Medicine, China-Japan Friendship Hospital, Beijing, 100029 China
| | - Jiangtao Lin
- Peking University China-Japan Friendship School of Clinical Medicine, No. 2, East Yinghua Road, Chaoyang Disteict, Beijing, 100029 China
- Department of Pulmonary and Critical Care Medicine, China-Japan Friendship Hospital, Beijing, 100029 China
| |
Collapse
|
12
|
Komlósi ZI, van de Veen W, Kovács N, Szűcs G, Sokolowska M, O'Mahony L, Akdis M, Akdis CA. Cellular and molecular mechanisms of allergic asthma. Mol Aspects Med 2021; 85:100995. [PMID: 34364680 DOI: 10.1016/j.mam.2021.100995] [Citation(s) in RCA: 107] [Impact Index Per Article: 26.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2021] [Revised: 07/13/2021] [Accepted: 07/15/2021] [Indexed: 12/21/2022]
Abstract
Asthma is a chronic disease of the airways, which affects more than 350 million people worldwide. It is the most common chronic disease in children, affecting at least 30 million children and young adults in Europe. Asthma is a complex, partially heritable disease with a marked heterogeneity. Its development is influenced both by genetic and environmental factors. The most common, as well as the most well characterized subtype of asthma is allergic eosinophilic asthma, which is characterized by a type 2 airway inflammation. The prevalence of asthma has substantially increased in industrialized countries during the last 60 years. The mechanisms underpinning this phenomenon are incompletely understood, however increased exposure to various environmental pollutants probably plays a role. Disease inception is thought to be enabled by a disadvantageous shift in the balance between protective and harmful lifestyle and environmental factors, including exposure to protective commensal microbes versus infection with pathogens, collectively leading to airway epithelial cell damage and disrupted barrier integrity. Epithelial cell-derived cytokines are one of the main drivers of the type 2 immune response against innocuous allergens, ultimately leading to infiltration of lung tissue with type 2 T helper (TH2) cells, type 2 innate lymphoid cells (ILC2s), M2 macrophages and eosinophils. This review outlines the mechanisms responsible for the orchestration of type 2 inflammation and summarizes the novel findings, including but not limited to dysregulated epithelial barrier integrity, alarmin release and innate lymphoid cell stimulation.
Collapse
Affiliation(s)
- Zsolt I Komlósi
- Department of Genetics, Cell- and Immunobiology, Semmelweis University, Nagyvárad Sqr. 4, 1089, Budapest, Hungary.
| | - Willem van de Veen
- Swiss Institute of Allergy and Asthma Research (SIAF), Hermann-Burchard Strasse 9, CH7265, Davos Wolfgand, Switzerland; Christine Kühne - Center for Allergy Research and Education, Davos, Switzerland
| | - Nóra Kovács
- Department of Genetics, Cell- and Immunobiology, Semmelweis University, Nagyvárad Sqr. 4, 1089, Budapest, Hungary; Lung Health Hospital, Munkácsy Mihály Str. 70, 2045, Törökbálint, Hungary
| | - Gergő Szűcs
- Department of Genetics, Cell- and Immunobiology, Semmelweis University, Nagyvárad Sqr. 4, 1089, Budapest, Hungary; Department of Pulmonology, Semmelweis University, Tömő Str. 25-29, 1083, Budapest, Hungary
| | - Milena Sokolowska
- Swiss Institute of Allergy and Asthma Research (SIAF), Hermann-Burchard Strasse 9, CH7265, Davos Wolfgand, Switzerland; Christine Kühne - Center for Allergy Research and Education, Davos, Switzerland
| | - Liam O'Mahony
- Department of Medicine and School of Microbiology, APC Microbiome Ireland, University College Cork, Ireland
| | - Mübeccel Akdis
- Swiss Institute of Allergy and Asthma Research (SIAF), Hermann-Burchard Strasse 9, CH7265, Davos Wolfgand, Switzerland; Christine Kühne - Center for Allergy Research and Education, Davos, Switzerland
| | - Cezmi A Akdis
- Swiss Institute of Allergy and Asthma Research (SIAF), Hermann-Burchard Strasse 9, CH7265, Davos Wolfgand, Switzerland; Christine Kühne - Center for Allergy Research and Education, Davos, Switzerland
| |
Collapse
|
13
|
Manli W, Hua Q. Effect of miR-506-3p on Proliferation and Apoptosis of Airway Smooth Muscle Cells in Asthmatic Mice by Regulating CCL2 Gene Expression and Mediating TLR4/NF-κB Signaling Pathway Activation. Mol Biotechnol 2021; 63:410-423. [PMID: 33638773 DOI: 10.1007/s12033-021-00309-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2020] [Accepted: 02/12/2021] [Indexed: 10/22/2022]
Abstract
We aimed to investigate the effect of miR-506-3p on the proliferation and apoptosis of airway smooth muscle cells (ASMCS) in asthmatic mice by regulating the activation of TLR4/NF-κB signaling pathway through targeted regulation of C-C Motif Chemokine Ligand 2 (CCL2) expression. Twenty-four BALB/c mice of specific pathogen-free grade were selected to establish asthmatic mouse model, which were randomly divided into normal control group and asthma model group (n = 12 for each group). HE and IHC staining, bioinformatics and dual luciferase reporter assay, RT-PCR MTT, flow cytometry and Western blot were used in this research. HE staining showed airway epithelium thickening, submucosal inflammatory cell infiltration and airway smooth muscle thickening, and the positive expression rate of CCL2 was significantly increased in asthma model group (all P < 0.05). CCL2 was the target gene of miR-506-3p. Moreover, the expression of miR-506-3p in asthma model group was significantly decreased, the mRNA and protein expression levels of CCL2, TLR4, NF-κB (p65) and Bcl-2 were significantly increased, while those of Bax were decreased (all P < 0.05). In miR-506-3p mimic group or siRNA-CCL2 group, the expression of CCL2, TLR4, NF-κB (p65) and Bcl-2 decreased obviously, while that of Bax increased, cell proliferation decreased, G1 phase prolonged, G2 & S phases shortened, and apoptosis rate increased significantly (all P < 0.05), whereas the opposite trends were found in miR-506-3p inhibitor group (all P < 0.05). However, there was no statistical difference in the above-mentioned indexes in miR-506-3p inhibitor + siRNA-CCL2 group (all P > 0.05). Overexpression of miR-506-3p can inhibit ASMCS proliferation and promote apoptosis via inhibiting CCL2 expression and suppressing the activation of TLR4/NF-κB signaling pathway. Inhibited expression of miR-506-3p can reverse the positive role of CCL2 gene silencing. Our study is the first to prove the beneficial role of miR-506-3p-CCL2-TLR4/NF-κB regulatory axis in the development of asthma.
Collapse
Affiliation(s)
- Wang Manli
- Department 1 of Respiratory and Critical Care Medicine, Nanyang First People's Hospital, No. 12, Renmin Road, Nanyang City, 473000, Hubei, People's Republic of China.
| | - Qiao Hua
- Department 1 of Respiratory and Critical Care Medicine, Nanyang First People's Hospital, No. 12, Renmin Road, Nanyang City, 473000, Hubei, People's Republic of China
| |
Collapse
|
14
|
Tamasauskiene L, Gintauskiene VM, Bastyte D, Sitkauskiene B. Role of IL-22 in persistent allergic airway diseases caused by house dust mite: a pilot study. BMC Pulm Med 2021; 21:36. [PMID: 33478443 PMCID: PMC7819229 DOI: 10.1186/s12890-021-01410-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2020] [Accepted: 01/13/2021] [Indexed: 12/14/2022] Open
Abstract
BACKGROUND Persistent allergic airway diseases cause a great burden worldwide. Their pathogenesis is not clear enough. There is evidence that one of the recently described cytokine interleukin (IL) 22 may be involved in the pathogenesis of these diseases. Scientists argue if this cytokine acts as proinflammatory or anti-inflammatory agent. The aim of this study was to investigate IL-22 level in patients with persistent allergic airway diseases caused by house dust mite (HDM) in comparison with healthy individuals and to evaluate its relationship with IL-13 and IL-10 level, symptoms score and quality of life. METHODS Patients with persistent allergic rhinitis caused by HDM and having symptoms for at least 2 years with or without allergic asthma were involved into the study. Measurements of IL-22, IL-13 and IL-10 and in serum and nasal lavage was performed by ELISA. Questionnaires assessing symptoms severity and quality of life were used. RESULTS A tendency was observed that IL-22 in serum and nasal lavage was higher in patients with allergic airway diseases compared to control group (14.86 pg/ml vs. 7.04 pg/ml and 2.67 pg/ml vs. 1.28 pg/ml, respectively). Positive statistically significant correlation was estimated between serum IL-22 and serum IL-10 (rs = 0.57, p < 0.01) and IL-13 (rs = 0.44, p < 0.05) level. Moreover, positive significant correlation was found between IL-22 in nasal lavage and IL-10 in nasal lavage (rs = 0.37, p < 0.05). There was a negative statistically significant correlation between serum IL-22 and Rhinoconjunctivitis Quality of Life Questionnaire (RQLQ) (rs = - 0.42, p < 0.05). CONCLUSION Our study showed a possible anti-inflammatory effect of IL-22 in patients with persistent allergic airway diseases caused by HDM.
Collapse
Affiliation(s)
- Laura Tamasauskiene
- Department of Immunology and Allergology, Lithuanian University of Health Sciences, Eiveniu str. 2, 50009 Kaunas, Lithuania
| | - Vilte Marija Gintauskiene
- Department of Immunology and Allergology, Lithuanian University of Health Sciences, Eiveniu str. 2, 50009 Kaunas, Lithuania
| | - Daina Bastyte
- Department of Immunology and Allergology, Lithuanian University of Health Sciences, Eiveniu str. 2, 50009 Kaunas, Lithuania
| | - Brigita Sitkauskiene
- Department of Immunology and Allergology, Lithuanian University of Health Sciences, Eiveniu str. 2, 50009 Kaunas, Lithuania
| |
Collapse
|
15
|
Chen J, Lodi R, Zhang S, Su Z, Wu Y, Xia L. The double-edged role of IL-22 in organ fibrosis. Immunopharmacol Immunotoxicol 2020; 42:392-399. [PMID: 32689851 DOI: 10.1080/08923973.2020.1799388] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2020] [Accepted: 07/16/2020] [Indexed: 10/23/2022]
Abstract
Fibrosis is unregulated tissue repair in damaged or diseased organs, and the accumulation of excess extracellular matrix (ECM) impacts the structure and functions of organs, leading to death. Fibrosis is usually triggered by inflammation and tissue damage, and inflammatory mediators stimulate the proliferation of myofibroblasts and the excessive production of ECM. The IL-10 family cytokines play important roles in the development of fibrosis, and its member IL-22 has recently attracted specific attention. IL-22 plays great roles in preventing pathogens invasion and tissue damage, as well as making a contribution to pathogenic processes. Increasing evidence suggested that IL-22 is a key molecule in tissue repair, proliferation and mucosal barrier defense, and it has also been suggested to play both pro-fibrotic and anti-fibrotic roles in tissues. In this review, we summarized the pro-fibrotic and anti-fibrotic functions of IL-22 in various organs which may be of great significance for the development of potential therapeutic strategies for fibrosis-related diseases.
Collapse
Affiliation(s)
- Jia Chen
- International Genome Center, Jiangsu University, Zhenjiang, China
| | | | - Shiqing Zhang
- International Genome Center, Jiangsu University, Zhenjiang, China
| | - Zhaoliang Su
- International Genome Center, Jiangsu University, Zhenjiang, China
| | - Yan Wu
- Central Laboratory, Fourth Affiliated Hospital of Jiangsu University, Zhenjiang, China
| | - Lin Xia
- International Genome Center, Jiangsu University, Zhenjiang, China
- Department of Laboratory Medicine, Affiliated Hospital of Jiangsu University, Zhenjiang, China
| |
Collapse
|
16
|
Sakuma A, Sugawara S, Hidaka H, Nakajo M, Suda Y, Shimazu T, Rose MT, Urakawa M, Zhuang T, Zhao G, Watanabe K, Nochi T, Kitazawa H, Katoh K, Suzuki K, Aso H. IL-12p40 gene expression in lung and hilar lymph nodes of MPS-resistant pigs. Anim Sci J 2020; 91:e13450. [PMID: 32881233 DOI: 10.1111/asj.13450] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2020] [Revised: 07/06/2020] [Accepted: 08/02/2020] [Indexed: 11/28/2022]
Abstract
Mycoplasma pneumonia of swine (MPS) is caused by Mycoplasma hyopneumoniae (M.hp) and is a common chronic respiratory disease of pigs. Recently, a genetically selected variant of the Landrace pig (Miyagino L2) has a lower incidence of pulmonary MPS lesions. We investigated the pathological and immunological characteristics of MPS resistance in these pigs (n = 24) by comparing with the normal landrace pig (control: n = 24). The pathological MPS lung lesion score in MPS-selected landrace pigs was significantly lower than in the control. The gene expression of interleukin (IL)-12p40, which acts as a chemoattractant and a component of the bioactive cytokines IL-12 and IL-23, was significantly higher at the hilar lymph nodes, lung, and spleen in MPS-selected landrace pigs than in control landrace pigs, and these were negatively correlated with the macroscopic MPS lung lesion score. In summary, we demonstrate that resistance against MPS in Miyagino L2 pigs is associated with IL-12p40 up-regulation, in comparison with normal landrace pigs without the MPS vaccine. In addition, a comparative study of macroscopic MPS lung lesions and IL-12p40 gene expression in lung and hilar lymph nodes may lead to beneficial selection traits for the genetic selection for MPS resistance in pigs.
Collapse
Affiliation(s)
- Akiko Sakuma
- Miyagi Livestock Experimental Station, Osaki, Japan.,Miyagi Prefectural Sendai Livestock Hygiene Service Center, Sendai, Japan.,International Education and Research Center for Food and Agricultural Immunology (CFAI), Graduate School of Agricultural Science, Tohoku University, Sendai, Japan
| | - Shizuka Sugawara
- International Education and Research Center for Food and Agricultural Immunology (CFAI), Graduate School of Agricultural Science, Tohoku University, Sendai, Japan
| | - Hikaru Hidaka
- International Education and Research Center for Food and Agricultural Immunology (CFAI), Graduate School of Agricultural Science, Tohoku University, Sendai, Japan
| | | | - Yoshihito Suda
- Department of Food, Agriculture and Environment, Miyagi University, Sendai, Japan
| | - Tomoyuki Shimazu
- Department of Food, Agriculture and Environment, Miyagi University, Sendai, Japan
| | - Michael T Rose
- Tasmanian Institute of Agriculture, University of Tasmania, Sandy Bay, TAS, Australia
| | - Megumi Urakawa
- International Education and Research Center for Food and Agricultural Immunology (CFAI), Graduate School of Agricultural Science, Tohoku University, Sendai, Japan.,Laboratory of Animal Health Science, Graduate School of Agricultural Science, Tohoku University, Sendai, Japan
| | - Tao Zhuang
- International Education and Research Center for Food and Agricultural Immunology (CFAI), Graduate School of Agricultural Science, Tohoku University, Sendai, Japan.,Laboratory of Animal Health Science, Graduate School of Agricultural Science, Tohoku University, Sendai, Japan
| | - Guoqi Zhao
- Institute of Animal Culture Collection and Application, College of Animal Science and Technology, Yangzhou University, Yangzhou, China
| | - Kouichi Watanabe
- International Education and Research Center for Food and Agricultural Immunology (CFAI), Graduate School of Agricultural Science, Tohoku University, Sendai, Japan.,Laboratory of Animal Health Science, Graduate School of Agricultural Science, Tohoku University, Sendai, Japan
| | - Tomonori Nochi
- International Education and Research Center for Food and Agricultural Immunology (CFAI), Graduate School of Agricultural Science, Tohoku University, Sendai, Japan.,Laboratory of Animal Health Science, Graduate School of Agricultural Science, Tohoku University, Sendai, Japan
| | - Haruki Kitazawa
- International Education and Research Center for Food and Agricultural Immunology (CFAI), Graduate School of Agricultural Science, Tohoku University, Sendai, Japan.,Laboratory of Animal Health Science, Graduate School of Agricultural Science, Tohoku University, Sendai, Japan
| | - Kazuo Katoh
- International Education and Research Center for Food and Agricultural Immunology (CFAI), Graduate School of Agricultural Science, Tohoku University, Sendai, Japan
| | - Keiichi Suzuki
- International Education and Research Center for Food and Agricultural Immunology (CFAI), Graduate School of Agricultural Science, Tohoku University, Sendai, Japan
| | - Hisashi Aso
- International Education and Research Center for Food and Agricultural Immunology (CFAI), Graduate School of Agricultural Science, Tohoku University, Sendai, Japan.,Laboratory of Animal Health Science, Graduate School of Agricultural Science, Tohoku University, Sendai, Japan
| |
Collapse
|
17
|
Ruiter B, Smith NP, Monian B, Tu AA, Fleming E, Virkud YV, Patil SU, Whittaker CA, Love JC, Shreffler WG. Expansion of the CD4 + effector T-cell repertoire characterizes peanut-allergic patients with heightened clinical sensitivity. J Allergy Clin Immunol 2020; 145:270-282. [PMID: 31654649 PMCID: PMC6949413 DOI: 10.1016/j.jaci.2019.09.033] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2019] [Revised: 08/06/2019] [Accepted: 09/06/2019] [Indexed: 02/06/2023]
Abstract
BACKGROUND Individuals with peanut allergy range in clinical sensitivity: some can consume grams of peanut before experiencing any symptoms, whereas others suffer systemic reactions to 10 mg or less. Current diagnostic testing only partially predicts this clinical heterogeneity. OBJECTIVE We sought to identify characteristics of the peanut-specific CD4+ T-cell response in peanut-allergic patients that correlate with high clinical sensitivity. METHODS We studied the T-cell receptor β-chain (TCRβ) usage and phenotypes of peanut-activated, CD154+ CD4+ memory T cells using fluorescence-activated cell sorting, TCRβ sequencing, and RNA-Seq, in reactive and hyporeactive patients who were stratified by clinical sensitivity. RESULTS TCRβ analysis of the CD154+ and CD154- fractions revealed more than 6000 complementarity determining region 3 sequences and motifs that were significantly enriched in the activated cells and 17% of the sequences were shared between peanut-allergic individuals, suggesting strong convergent selection of peanut-specific clones. These clones were more numerous among the reactive patients, and this expansion was identified within effector, but not regulatory T-cell populations. The transcriptional profile of CD154+ T cells in the reactive group skewed toward a polarized TH2 effector phenotype, and expression of TH2 cytokines strongly correlated with peanut-specific IgE levels. There were, however, also non-TH2-related differences in phenotype. Furthermore, the ratio of peanut-specific clones in the effector versus regulatory T-cell compartment, which distinguished the clinical groups, was independent of specific IgE concentration. CONCLUSIONS Expansion of the peanut-specific effector T-cell repertoire is correlated with clinical sensitivity, and this observation may be useful to inform our assessment of disease phenotype and to monitor disease longitudinally.
Collapse
Affiliation(s)
- Bert Ruiter
- Center for Immunology & Inflammatory Diseases, Massachusetts General Hospital, Boston, Mass; Harvard Medical School, Boston, Mass.
| | - Neal P Smith
- Center for Immunology & Inflammatory Diseases, Massachusetts General Hospital, Boston, Mass
| | - Brinda Monian
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, Mass
| | - Ang A Tu
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, Mass
| | - Elizabeth Fleming
- Center for Immunology & Inflammatory Diseases, Massachusetts General Hospital, Boston, Mass
| | - Yamini V Virkud
- Center for Immunology & Inflammatory Diseases, Massachusetts General Hospital, Boston, Mass; Harvard Medical School, Boston, Mass; Food Allergy Center, Massachusetts General Hospital, Boston, Mass
| | - Sarita U Patil
- Center for Immunology & Inflammatory Diseases, Massachusetts General Hospital, Boston, Mass; Harvard Medical School, Boston, Mass; Food Allergy Center, Massachusetts General Hospital, Boston, Mass
| | - Charles A Whittaker
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, Mass; The Barbara K. Ostrom (1978) Bioinformatics and Computing Facility in the Swanson Biotechnology Center, Massachusetts Institute of Technology, Cambridge, Mass
| | - J Christopher Love
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, Mass
| | - Wayne G Shreffler
- Center for Immunology & Inflammatory Diseases, Massachusetts General Hospital, Boston, Mass; Harvard Medical School, Boston, Mass; Food Allergy Center, Massachusetts General Hospital, Boston, Mass
| |
Collapse
|
18
|
Kiyono H, Izuhara K. New trends in mucosal immunology and allergy. Allergol Int 2019; 68:1-3. [PMID: 30591151 DOI: 10.1016/j.alit.2018.12.002] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2018] [Indexed: 01/03/2023] Open
|