1
|
Arima M, Ito K, Abe T, Oguma T, Asano K, Mukherjee M, Ueki S. Eosinophilic mucus diseases. Allergol Int 2024; 73:362-374. [PMID: 38594175 DOI: 10.1016/j.alit.2024.03.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2024] [Accepted: 02/27/2024] [Indexed: 04/11/2024] Open
Abstract
Eosinophilic inflammation is primarily characterized by type 2 immune responses against parasitic organisms. In the contemporary human being especially in developed countries, eosinophilic inflammation is strongly associated with allergic/sterile inflammation, and constitutes an undesired immune reaction. This situation is in stark contrast to neutrophilic inflammation, which is indispensable for the host defense against bacterial infections. Among eosinophilic inflammatory disorders, massive accumulation of eosinophils within mucus is observed in certain cases, and is often linked to the distinctive clinical finding of mucus with high viscosity. Eosinophilic mucus is found in a variety of diseases, including chronic allergic keratoconjunctivitis, chronic rhinosinusitis encompassing allergic fungal sinusitis, eosinophilic otitis media, eosinophilic sialodochitis, allergic bronchopulmonary aspergillosis/mycosis, eosinophilic plastic bronchitis, and eosinophilic asthma. In these pathological conditions, chronic inflammation and tissue remodeling coupled with irreversible organ damage due to persistent adhesion of toxic substances and luminal obstruction may impose a significant burden on the body. Eosinophils aggregate in the hyperconcentrated mucus together with cell-derived crystals, macromolecules, and polymers, thereby affecting the biophysical properties of the mucus. This review focuses on the clinically significant challenges of mucus and discusses the consequences of activated eosinophils on the mucosal surface that impact mucus and persistent inflammation.
Collapse
Affiliation(s)
- Misaki Arima
- Department of General Internal Medicine and Clinical Laboratory Medicine, Akita University Graduate School of Medicine, Akita, Japan
| | - Keisuke Ito
- Department of General Internal Medicine and Clinical Laboratory Medicine, Akita University Graduate School of Medicine, Akita, Japan
| | - Tomoe Abe
- Department of General Internal Medicine and Clinical Laboratory Medicine, Akita University Graduate School of Medicine, Akita, Japan
| | - Tsuyoshi Oguma
- Division of Pulmonary Medicine, Department of Medicine, Tokai University School of Medicine, Kanagawa, Japan
| | - Koichiro Asano
- Division of Pulmonary Medicine, Department of Medicine, Tokai University School of Medicine, Kanagawa, Japan
| | - Manali Mukherjee
- Department of Medicine, McMaster University & St Joseph's Healthcare, Hamilton, Ontario, Canada
| | - Shigeharu Ueki
- Department of General Internal Medicine and Clinical Laboratory Medicine, Akita University Graduate School of Medicine, Akita, Japan.
| |
Collapse
|
2
|
Fermon C, Authier FJ, Gallay L. Idiopathic eosinophilic myositis: a systematic literature review. Neuromuscul Disord 2021; 32:116-124. [PMID: 34980535 DOI: 10.1016/j.nmd.2021.10.003] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2021] [Revised: 10/02/2021] [Accepted: 10/06/2021] [Indexed: 11/16/2022]
Abstract
Eosinophilic myositis belong to the idiopathic inflammatory myopathies and are defined by an inflammatory infiltrate composed of eosinophils within the muscle. To date, no consensus exists for diagnosis and care of such patients. The aim of this review was to describe clinical and histological presentation, treatment, and outcome of eosinophilic myositis based on a systematic review of all published histologically proven cases of eosinophilic myositis. A total of 453 records were identified in MEDLINE until November 2020. A total of 69 published cases were identified. The analysis of these allowed the distinction of the 3 previously described pathological subtypes: focal eosinophilic myositis (n = 17); diffuse eosinophilic myositis (n = 36); and eosinophilic perimyositis (n = 16). We propose a simple algorithm for diagnosis and treatment strategy for the care of patient with muscular symptoms and blood eosinophilia. This work also highlights eosinophilic myositis pathogenesis and the need for careful investigations in order to rule out differential diagnoses.
Collapse
Affiliation(s)
- Cécile Fermon
- Department of Internal Medicine, Edouard Herriot University Hospital, Hospices Civils de Lyon, University Claude Bernard, 5 Place d'Arsonval, F-69003, Lyon, France.
| | - François-Jérôme Authier
- University Paris Est-Créteil, INSERM, IMRB U955, Team Relaix, F-94010, Créteil, France; Reference Centre for Neuromuscular Diseases "Nord-Est-Ile de France", FILNEMUS, France; Department of Pathology, AP-HP, Henri Mondor University Hospital, F-94010, Créteil, France
| | - Laure Gallay
- Department of Internal Medicine, Edouard Herriot University Hospital, Hospices Civils de Lyon, University Claude Bernard, 5 Place d'Arsonval, F-69003, Lyon, France
| |
Collapse
|
3
|
Miyabe Y, Kobayashi Y, Fukuchi M, Saga A, Moritoki Y, Saga T, Akuthota P, Ueki S. Eosinophil-mediated inflammation in the absence of eosinophilia. Asia Pac Allergy 2021; 11:e30. [PMID: 34386406 PMCID: PMC8331253 DOI: 10.5415/apallergy.2021.11.e30] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2021] [Accepted: 07/10/2021] [Indexed: 12/14/2022] Open
Abstract
The increase of eosinophil levels is a hallmark of type-2 inflammation. Blood eosinophil counts act as a convenient biomarker for asthma phenotyping and the selection of biologics, and they are even used as a prognostic factor for severe coronavirus disease 2019. However, the circulating eosinophil count does not always reflect tissue eosinophilia and vice versa. The mismatch of blood and tissue eosinophilia can be seen in various clinical settings. For example, blood eosinophil levels in patients with acute eosinophilic pneumonia are often within normal range despite the marked symptoms and increased number of eosinophils in bronchoalveolar lavage fluid. Histological studies using immunostaining for eosinophil granule proteins have revealed the extracellular deposition of granule proteins coincident with pathological conditions, even in the absence of a significant eosinophil infiltrate. The marked deposition of eosinophil granule proteins in tissue is often associated with cytolytic degranulation. Recent studies have indicated that extracellular trap cell death (ETosis) is a major mechanism of cytolysis. Cytolytic ETosis is a total cell degranulation in which cytoplasmic and nuclear contents, including DNA and histones that act as alarmins, are also released. In the present review, eosinophil-mediated inflammation in such mismatch conditions is discussed.
Collapse
Affiliation(s)
- Yui Miyabe
- Department of General Internal Medicine and Clinical Laboratory Medicine, Akita University Graduate School of Medicine, Akita, Japan
| | - Yoshiki Kobayashi
- Airway Disease Section, Department of Otorhinolaryngology, Kansai Medical University, Hirakata, Japan.,Allergy Center, Kansai Medical University, Hirakata, Japan
| | - Mineyo Fukuchi
- Department of General Internal Medicine and Clinical Laboratory Medicine, Akita University Graduate School of Medicine, Akita, Japan
| | - Akiko Saga
- Department of General Internal Medicine and Clinical Laboratory Medicine, Akita University Graduate School of Medicine, Akita, Japan
| | - Yuki Moritoki
- Department of General Internal Medicine and Clinical Laboratory Medicine, Akita University Graduate School of Medicine, Akita, Japan
| | - Tomoo Saga
- Department of General Internal Medicine and Clinical Laboratory Medicine, Akita University Graduate School of Medicine, Akita, Japan
| | - Praveen Akuthota
- Division of Pulmonary, Critical Care, and Sleep Medicine, University of California, San Diego, La Jolla, CA, USA
| | - Shigeharu Ueki
- Department of General Internal Medicine and Clinical Laboratory Medicine, Akita University Graduate School of Medicine, Akita, Japan
| |
Collapse
|
4
|
Fukuchi M, Miyabe Y, Furutani C, Saga T, Moritoki Y, Yamada T, Weller PF, Ueki S. How to detect eosinophil ETosis (EETosis) and extracellular traps. Allergol Int 2021; 70:19-29. [PMID: 33189567 PMCID: PMC9333458 DOI: 10.1016/j.alit.2020.10.002] [Citation(s) in RCA: 45] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2020] [Accepted: 09/02/2020] [Indexed: 12/13/2022] Open
Abstract
Eosinophils are short-lived and comprise only a small population of circulating leukocytes; however, they play surprisingly multifunctional roles in homeostasis and various diseases including allergy and infection. Recent research has shed light on active cytolytic eosinophil cell death that releases eosinophil extracellular traps (EETs) and total cellular contents, namely eosinophil extracellular trap cell death (EETosis). The pathological contribution of EETosis was made more cogent by recent findings that a classical pathological finding of eosinophilic inflammation, that of Charcot-Leyden crystals, is closely associated with EETosis. Currently no gold standard methods to identify EETosis exist, but “an active eosinophil lysis that releases cell-free granules and net-like chromatin structure” appears to be a common feature of EETosis. In this review, we describe several approaches that visualize EETs/EETosis in clinical samples and in vitro studies using isolated human eosinophils. EETs/EETosis can be observed using simple chemical or fluorescence staining, immunostaining, and electron microscopy, although it is noteworthy that visualization of EETs is greatly changed by sample preparation including the extracellular space of EETotic cells and shear flow. Considering the multiple aspects of biological significance, further study into EETs/EETosis is warranted to give a detailed understanding of the roles played in homeostasis and disease pathogenesis.
Collapse
Affiliation(s)
- Mineyo Fukuchi
- Department of General Internal Medicine and Clinical Laboratory Medicine, Akita University Graduate School of Medicine, Akita, Japan
| | - Yui Miyabe
- Department of General Internal Medicine and Clinical Laboratory Medicine, Akita University Graduate School of Medicine, Akita, Japan; Department of Otorhinolaryngology, Head and Neck Surgery, Graduate School of Medicine, Akita University, Akita, Japan
| | - Chikako Furutani
- Department of General Internal Medicine and Clinical Laboratory Medicine, Akita University Graduate School of Medicine, Akita, Japan
| | - Tomoo Saga
- Department of General Internal Medicine and Clinical Laboratory Medicine, Akita University Graduate School of Medicine, Akita, Japan
| | - Yuki Moritoki
- Department of General Internal Medicine and Clinical Laboratory Medicine, Akita University Graduate School of Medicine, Akita, Japan
| | - Takechiyo Yamada
- Department of Otorhinolaryngology, Head and Neck Surgery, Graduate School of Medicine, Akita University, Akita, Japan
| | - Peter F Weller
- Divisions of Allergy and Inflammation and Infectious Diseases, Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA
| | - Shigeharu Ueki
- Department of General Internal Medicine and Clinical Laboratory Medicine, Akita University Graduate School of Medicine, Akita, Japan.
| |
Collapse
|