1
|
Zhiyan C, Min Z, Yida D, Chunying H, Xiaohua H, Yutong L, Huan W, Linjuan S. Bioinformatic analysis of hippocampal histopathology in Alzheimer's disease and the therapeutic effects of active components of traditional Chinese medicine. Front Pharmacol 2024; 15:1424803. [PMID: 39221152 PMCID: PMC11362046 DOI: 10.3389/fphar.2024.1424803] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2024] [Accepted: 07/17/2024] [Indexed: 09/04/2024] Open
Abstract
Background and aim Pathological changes in the central nervous system (CNS) begin before the clinical symptoms of Alzheimer's Disease (AD) manifest, with the hippocampus being one of the first affected structures. Current treatments fail to alter AD progression. Traditional Chinese medicine (TCM) has shown potential in improving AD pathology through multi-target mechanisms. This study investigates pathological changes in AD hippocampal tissue and explores TCM active components that may alleviate these changes. Methods GSE5281 and GSE173955 datasets were downloaded from GEO and normalized to identify differentially expressed genes (DEGs). Key functional modules and hub genes were analyzed using Cytoscape and R. Active TCM components were identified from literature and the Pharmacopoeia of the People's Republic of China. Enrichment analyses were performed on target genes overlapping with DEGs. Result From the datasets, 76 upregulated and 363 downregulated genes were identified. Hub genes included SLAMF, CD34, ELN (upregulated) and ATP5F1B, VDAC1, VDAC2, HSPA8, ATP5F1C, PDHA1, UBB, SNCA, YWHAZ, PGK1 (downregulated). Literature review identified 33 active components from 23 herbal medicines. Target gene enrichment and analysis were performed for six components: dihydroartemisinin, berberine, naringenin, calycosin, echinacoside, and icariside II. Conclusion Mitochondrial to synaptic vesicle dysfunction pathways were enriched in downregulated genes. Despite downregulation, UBB and SNCA proteins accumulate in AD brains. TCM studies suggest curcumin and echinacoside may improve hippocampal pathology and cognitive impairment in AD. Further investigation into their mechanisms is needed.
Collapse
Affiliation(s)
- Chen Zhiyan
- Graduate School of Beijing University of Chinese Medicine, Beijing, China
| | - Zhan Min
- Department of Neurology, China Academy of Chinese Medical Sciences Xiyuan Hospital, Beijing, China
| | - Du Yida
- Graduate School of Beijing University of Chinese Medicine, Beijing, China
| | - He Chunying
- China Academy of Chinese Medical Sciences, Beijing, China
| | - Hu Xiaohua
- China Academy of Chinese Medical Sciences, Beijing, China
| | - Li Yutong
- Graduate School of Beijing University of Chinese Medicine, Beijing, China
| | - Wang Huan
- China Academy of Chinese Medical Sciences, Beijing, China
| | - Sun Linjuan
- Department of Neurology, China Academy of Chinese Medical Sciences Xiyuan Hospital, Beijing, China
| |
Collapse
|
2
|
McIntosh R, Hidalgo M, Lobo J, Dillon K, Szeto A, Hurwitz BE. Circulating endothelial and angiogenic cells predict hippocampal volume as a function of HIV status. J Neurovirol 2023; 29:65-77. [PMID: 36418739 DOI: 10.1007/s13365-022-01101-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2022] [Revised: 09/25/2022] [Accepted: 09/26/2022] [Indexed: 11/27/2022]
Abstract
Circulating endothelial cells (CECs) and myeloid angiogenic cells (MACs) have the capacity to stabilize human blood vessels in vivo. Evidence suggests that these cells are depleted in dementia and in persons living with HIV (PWH), who have a higher prevalence of dementia and other cognitive deficits associated with aging. However, the associations of CECs and MACs with MRI-based measures of aging brain health, such as hippocampal gray matter volume, have not been previously demonstrated. The present study examined differences in these associations in 51 postmenopausal women with and without HIV infection. Gray matter volume was quantified using MRI. CECs and MACs were enumerated using fluorescence-activated cell sorting. Analyses examined the association of these cell counts with left and right hippocampal gray matter volume while controlling for age and hypertension status. The main finding was an interaction suggesting that compared to controls, postmenopausal PWH with greater levels of CECs and MACs had significantly greater hippocampus GMV. Further research is necessary to examine potential underlying pathophysiological mechanisms in HIV infection linking morpho-functional circulatory reparative processes with more diminished hippocampal volume in postmenopausal women.
Collapse
Affiliation(s)
- Roger McIntosh
- Department of Psychology, College of Arts and Sciences, University of Miami, Miami, FL, USA.
- Behavioral Medicine Research Center, University of Miami, Miami, FL, USA.
- Division of Public Health Sciences, Leonard M. Miller School of Medicine, University of Miami, Miami, FL, USA.
| | - Melissa Hidalgo
- Department of Internal Medicine, Broward Health North, Fort Lauderdale, FL, USA
| | - Judith Lobo
- Department of Psychiatry, University of California San Diego, San Diego, CA, USA
| | - Kaitlyn Dillon
- Department of Psychology, College of Arts and Sciences, University of Miami, Miami, FL, USA
| | - Angela Szeto
- Department of Psychology, College of Arts and Sciences, University of Miami, Miami, FL, USA
| | - Barry E Hurwitz
- Department of Psychology, College of Arts and Sciences, University of Miami, Miami, FL, USA
- Behavioral Medicine Research Center, University of Miami, Miami, FL, USA
- Division of Endocrinology, Diabetes and Metabolism, Leonard M. Miller School of Medicine, University of Miami, Miami, FL, USA
| |
Collapse
|
3
|
Marshall AJ, Gaubert A, Kapoor A, Tan A, McIntosh E, Jang JY, Yew B, Ho JK, Blanken AE, Dutt S, Sible IJ, Li Y, Rodgers K, Nation DA. Blood-Derived Progenitor Cells Are Depleted in Older Adults with Cognitive Impairment: A Role for Vascular Resilience? J Alzheimers Dis 2023; 93:1041-1050. [PMID: 37154177 PMCID: PMC10258882 DOI: 10.3233/jad-220269] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/23/2023] [Indexed: 05/10/2023]
Abstract
BACKGROUND Depletion of blood-derived progenitor cells, including so called "early endothelial progenitor cells", has been observed in individuals with early stage Alzheimer's disease relative to matched older control subjects. These findings could implicate the loss of angiogenic support from hematopoietic progenitors or endothelial progenitors in cognitive dysfunction. OBJECTIVE To investigate links between progenitor cell proliferation and mild levels of cognitive dysfunction. METHODS We conducted in vitro studies of blood-derived progenitor cells using blood samples from sixty-five older adults who were free of stroke or dementia. Peripheral blood mononuclear cells from venous blood samples were cultured in CFU-Hill media and the number of colony forming units were counted after 5 days in vitro. Neuropsychological testing was administered to all participants. RESULTS Fewer colony forming units were observed in samples from older adults with a Clinical Dementia Rating global score of 0.5 versus 0. Older adults whose samples developed fewer colony forming units exhibited worse performance on neuropsychological measures of memory, executive functioning, and language ability. CONCLUSION These data suggest blood progenitors may represent a vascular resilience marker related to cognitive dysfunction in older adults.
Collapse
Affiliation(s)
- Anisa J. Marshall
- Department of Psychology, University of Southern California, Los Angeles, CA, USA
| | - Aimee Gaubert
- Institute for Memory Impairments and Neurological Disorders, University of California, Irvine, Irvine, CA, USA
| | - Arunima Kapoor
- Department of Psychological Science, University of California, Irvine, Irvine, CA, USA
| | - Alick Tan
- Department of Clinical Pharmacy, University of Southern California, Los Angeles, CA, USA
| | - Elissa McIntosh
- Department of Psychology, University of Southern California, Los Angeles, CA, USA
| | - Jung Yun Jang
- Institute for Memory Impairments and Neurological Disorders, University of California, Irvine, Irvine, CA, USA
| | - Belinda Yew
- Department of Rehabilitation and Human Performance, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Jean K. Ho
- Institute for Memory Impairments and Neurological Disorders, University of California, Irvine, Irvine, CA, USA
| | - Anna E. Blanken
- Department of Psychology, University of Southern California, Los Angeles, CA, USA
| | - Shubir Dutt
- Department of Psychology, University of Southern California, Los Angeles, CA, USA
- Davis School of Gerontology, University of Southern California, Los Angeles, CA, USA
| | - Isabel J. Sible
- Department of Psychology, University of Southern California, Los Angeles, CA, USA
| | - Yanrong Li
- Institute for Memory Impairments and Neurological Disorders, University of California, Irvine, Irvine, CA, USA
| | - Kathleen Rodgers
- Center for Innovations in Brain Science, Department of Pharmacology, University of Arizona, Tucson, AZ, USA
| | - Daniel A. Nation
- Institute for Memory Impairments and Neurological Disorders, University of California, Irvine, Irvine, CA, USA
- Department of Psychological Science, University of California, Irvine, Irvine, CA, USA
| |
Collapse
|
4
|
Romaus-Sanjurjo D, Sobrino T, Custodia A, Ouro A. CD34 + progenitor cells as diagnostic and therapeutic targets in Alzheimer’s disease. Neural Regen Res 2023; 18:535-536. [DOI: 10.4103/1673-5374.346485] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022] Open
|
5
|
Terracina S, Petrella C, Francati S, Lucarelli M, Barbato C, Minni A, Ralli M, Greco A, Tarani L, Fiore M, Ferraguti G. Antioxidant Intervention to Improve Cognition in the Aging Brain: The Example of Hydroxytyrosol and Resveratrol. Int J Mol Sci 2022; 23:15674. [PMID: 36555317 PMCID: PMC9778814 DOI: 10.3390/ijms232415674] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2022] [Revised: 11/30/2022] [Accepted: 12/08/2022] [Indexed: 12/14/2022] Open
Abstract
Both physiological and pathological aging processes induce brain alterations especially affecting the speed of processing, working memory, conceptual reasoning and executive functions. Many therapeutic approaches to reduce the impact of brain aging on cognitive functioning have been tested; unfortunately, there are no satisfactory results as a single therapy. As aging is partly contributed by free radical reactions, it has been proposed that exogenous antioxidants could have a positive impact on both aging and its associated manifestations. The aim of this report is to provide a summary and a subsequent review of the literature evidence on the role of antioxidants in preventing and improving cognition in the aging brain. Manipulation of endogenous cellular defense mechanisms through nutritional antioxidants or pharmacological compounds represents an innovative approach to therapeutic intervention in diseases causing brain tissue damage, such as neurodegeneration. Coherently with this notion, antioxidants, especially those derived from the Mediterranean diet such as hydroxytyrosol and resveratrol, seem to be able to delay and modulate the cognitive brain aging processes and decrease the occurrence of its effects on the brain. The potential preventive activity of antioxidants should be evaluated in long-term exposure clinical trials, using preparations with high bioavailability, able to bypass the blood-brain barrier limitation, and that are well standardized.
Collapse
Affiliation(s)
- Sergio Terracina
- Department of Experimental Medicine, Sapienza University of Rome, 00185 Rome, Italy
| | - Carla Petrella
- Institute of Biochemistry and Cell Biology, IBBC—CNR, 00185 Rome, Italy
| | - Silvia Francati
- Department of Experimental Medicine, Sapienza University of Rome, 00185 Rome, Italy
| | - Marco Lucarelli
- Department of Experimental Medicine, Sapienza University of Rome, 00185 Rome, Italy
| | - Christian Barbato
- Institute of Biochemistry and Cell Biology, IBBC—CNR, 00185 Rome, Italy
| | - Antonio Minni
- Department of Sense Organs, Sapienza University of Rome, 00185 Rome, Italy
| | - Massimo Ralli
- Department of Sense Organs, Sapienza University of Rome, 00185 Rome, Italy
| | - Antonio Greco
- Department of Sense Organs, Sapienza University of Rome, 00185 Rome, Italy
| | - Luigi Tarani
- Department of Maternal Infantile and Urological Sciences, Sapienza University of Rome, 00185 Rome, Italy
| | - Marco Fiore
- Institute of Biochemistry and Cell Biology, IBBC—CNR, 00185 Rome, Italy
| | - Giampiero Ferraguti
- Department of Experimental Medicine, Sapienza University of Rome, 00185 Rome, Italy
| |
Collapse
|
6
|
Associations between increased circulating endothelial progenitor cell levels and anxiety/depressive severity, cognitive deficit and function disability among patients with major depressive disorder. Sci Rep 2021; 11:18221. [PMID: 34521977 PMCID: PMC8440504 DOI: 10.1038/s41598-021-97853-9] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2020] [Accepted: 05/31/2021] [Indexed: 12/11/2022] Open
Abstract
The association of major depressive disorder (MDD) with cardiovascular diseases (CVDs) through endothelial dysfunction is bidirectional. Circulating endothelial progenitor cells (cEPCs), essential for endothelial repair and function, are associated with risks of various CVDs. Here, the relationship of cEPC counts with MDD and the related clinical presentations were investigated in 50 patients with MDD and 46 healthy controls. In patients with MDD, a battery of clinical domains was analysed: depressed mood with Hamilton Depression Rating Scale (HAMD) and Montgomery–Åsberg Depression Rating Scale (MADRS), anxiety with Hamilton Anxiety Rating Scale (HAMA), cognitive dysfunction and deficit with Digit Symbol Substitution Test (DSST) and Perceived Deficits Questionnaire-Depression (PDQ-D), somatic symptoms with Depressive and Somatic Symptom Scale (DSSS), quality of life with 12-Item Short Form Health Survey (SF-12) and functional disability with Sheehan Disability Scale (SDS). Immature and mature cEPC counts were measured through flow cytometry. Increased mature and immature cEPC counts were significantly associated with higher anxiety after controlling the confounding effect of systolic blood pressure, and potentially associated with more severe depressive symptoms, worse cognitive performance and increased cognitive deficit, higher social disability, and worse mental health outcomes. Thus, cEPCs might have pleiotropic effects on MDD-associated symptoms and psychosocial outcomes.
Collapse
|
7
|
Moazzami K, Wittbrodt MT, Lima BB, Kim JH, Hammadah M, Ko YA, Obideen M, Abdelhadi N, Kaseer B, Gafeer MM, Nye JA, Shah AJ, Ward L, Raggi P, Waller EK, Bremner JD, Quyyumi AA, Vaccarino V. Circulating Progenitor Cells and Cognitive Impairment in Men and Women with Coronary Artery Disease. J Alzheimers Dis 2021; 74:659-668. [PMID: 32083582 DOI: 10.3233/jad-191063] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
BACKGROUND Circulating progenitor cells (CPC) have been associated with memory function and cognitive impairment in healthy adults. However, it is unclear whether such associations also exist in patients with coronary artery disease (CAD). OBJECTIVE To assess the association between CPCs and memory performance among individuals with CAD. METHODS We assessed cognitive function in 509 patients with CAD using the verbal and visual Memory subtests of the Wechsler memory scale-IV and the Trail Making Test parts A and B. CPCs were enumerated with flow cytometry as CD45med/CD34+ blood mononuclear cells, those co-expressing other epitopes representing populations enriched for hematopoietic and endothelial progenitors. RESULTS After adjusting for demographic and cardiovascular risk factors, lower number of endothelial progenitor cell counts were independently associated with lower visual and verbal memory scores (p for all < 0.05). There was a significant interaction in the magnitude of this association with race (p < 0.01), such that the association of verbal memory scores with endothelial progenitor subsets was present in Black but not in non-Black participants. No associations were present with the hematopoietic progenitor-enriched cells or with the Trail Making Tests. CONCLUSION Lower numbers of circulating endothelial progenitor cells are associated with cognitive impairment in patients with CAD, suggesting a protective effect of repair/regeneration processes in the maintenance of cognitive status. Impairment of verbal memory function was more strongly associated with lower CPC counts in Black compared to non-Black participants with CAD. Whether strategies designed to improve regenerative capacity will improve cognition needs further study.
Collapse
Affiliation(s)
- Kasra Moazzami
- Department of Epidemiology, Rollins School of Public Health, Emory University, Atlanta, GA, USA.,Department of Medicine, Emory Clinical Cardiovascular Research Institute, Division of Cardiology, Emory University School of Medicine, Atlanta, GA, USA
| | - Matthew T Wittbrodt
- Department of Psychiatry and Behavioral Sciences, Emory University School of Medicine, Atlanta, GA, USA
| | - Bruno B Lima
- Department of Epidemiology, Rollins School of Public Health, Emory University, Atlanta, GA, USA.,Department of Medicine, Emory Clinical Cardiovascular Research Institute, Division of Cardiology, Emory University School of Medicine, Atlanta, GA, USA
| | - Jeong Hwan Kim
- Department of Epidemiology, Rollins School of Public Health, Emory University, Atlanta, GA, USA.,Department of Medicine, Emory Clinical Cardiovascular Research Institute, Division of Cardiology, Emory University School of Medicine, Atlanta, GA, USA
| | - Muhammad Hammadah
- Department of Epidemiology, Rollins School of Public Health, Emory University, Atlanta, GA, USA.,Department of Medicine, Emory Clinical Cardiovascular Research Institute, Division of Cardiology, Emory University School of Medicine, Atlanta, GA, USA
| | - Yi-An Ko
- Department of Biostatistics and Bioinformatics, Rollins School of Public Health, Emory University, Atlanta, GA, USA
| | - Malik Obideen
- Department of Epidemiology, Rollins School of Public Health, Emory University, Atlanta, GA, USA.,Department of Medicine, Emory Clinical Cardiovascular Research Institute, Division of Cardiology, Emory University School of Medicine, Atlanta, GA, USA
| | - Naser Abdelhadi
- Department of Epidemiology, Rollins School of Public Health, Emory University, Atlanta, GA, USA.,Department of Medicine, Emory Clinical Cardiovascular Research Institute, Division of Cardiology, Emory University School of Medicine, Atlanta, GA, USA
| | - Belal Kaseer
- Department of Epidemiology, Rollins School of Public Health, Emory University, Atlanta, GA, USA.,Department of Medicine, Emory Clinical Cardiovascular Research Institute, Division of Cardiology, Emory University School of Medicine, Atlanta, GA, USA
| | - M Mazen Gafeer
- Department of Epidemiology, Rollins School of Public Health, Emory University, Atlanta, GA, USA.,Department of Medicine, Emory Clinical Cardiovascular Research Institute, Division of Cardiology, Emory University School of Medicine, Atlanta, GA, USA
| | - Jonathon A Nye
- Department of Radiology and Imaging Sciences, Emory University School of Medicine, Atlanta, GA, USA
| | - Amit J Shah
- Department of Epidemiology, Rollins School of Public Health, Emory University, Atlanta, GA, USA.,Department of Medicine, Emory Clinical Cardiovascular Research Institute, Division of Cardiology, Emory University School of Medicine, Atlanta, GA, USA.,Atlanta VA Medical Center, Decatur, GA, USA
| | - Laura Ward
- Department of Biostatistics and Bioinformatics, Rollins School of Public Health, Emory University, Atlanta, GA, USA
| | - Paolo Raggi
- Department of Epidemiology, Rollins School of Public Health, Emory University, Atlanta, GA, USA.,Mazankowski Alberta Heart Institute, University of Alberta, Alberta, Canada
| | - Edmund K Waller
- Department of Hematology and Oncology, Winship Cancer Institute, Atlanta, GA, USA
| | - J Douglas Bremner
- Department of Psychiatry and Behavioral Sciences, Emory University School of Medicine, Atlanta, GA, USA.,Department of Radiology and Imaging Sciences, Emory University School of Medicine, Atlanta, GA, USA.,Atlanta VA Medical Center, Decatur, GA, USA
| | - Arshed A Quyyumi
- Department of Medicine, Emory Clinical Cardiovascular Research Institute, Division of Cardiology, Emory University School of Medicine, Atlanta, GA, USA
| | - Viola Vaccarino
- Department of Epidemiology, Rollins School of Public Health, Emory University, Atlanta, GA, USA.,Department of Medicine, Emory Clinical Cardiovascular Research Institute, Division of Cardiology, Emory University School of Medicine, Atlanta, GA, USA
| |
Collapse
|
8
|
Jarajapu YPR. Targeting Angiotensin-Converting Enzyme-2/Angiotensin-(1-7)/Mas Receptor Axis in the Vascular Progenitor Cells for Cardiovascular Diseases. Mol Pharmacol 2021; 99:29-38. [PMID: 32321734 PMCID: PMC7725063 DOI: 10.1124/mol.119.117580] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2019] [Accepted: 03/31/2020] [Indexed: 12/20/2022] Open
Abstract
Bone marrow-derived hematopoietic stem/progenitor cells are vasculogenic and play an important role in endothelial health and vascular homeostasis by participating in postnatal vasculogenesis. Progenitor cells are mobilized from bone marrow niches in response to remote ischemic injury and migrate to the areas of damage and stimulate revascularization largely by paracrine activation of angiogenic functions in the peri-ischemic vasculature. This innate vasoprotective mechanism is impaired in certain chronic clinical conditions, which leads to the development of cardiovascular complications. Members of the renin-angiotensin system-angiotensin-converting enzymes (ACEs) ACE and ACE2, angiotensin II (Ang II), Ang-(1-7), and receptors AT1 and Mas-are expressed in vasculogenic progenitor cells derived from humans and rodents. Ang-(1-7), generated by ACE2, is known to produce cardiovascular protective effects by acting on Mas receptor and is considered as a counter-regulatory mechanism to the detrimental effects of Ang II. Evidence has now been accumulating in support of the activation of the ACE2/Ang-(1-7)/Mas receptor pathway by pharmacologic or molecular maneuvers, which stimulates mobilization of progenitor cells from bone marrow, migration to areas of vascular damage, and revascularization of ischemic areas in pathologic conditions. This minireview summarizes recent studies that have enhanced our understanding of the physiology and pharmacology of vasoprotective axis in bone marrow-derived progenitor cells in health and disease. SIGNIFICANCE STATEMENT: Hematopoietic stem progenitor cells (HSPCs) stimulate revascularization of ischemic areas. However, the reparative potential is diminished in certain chronic clinical conditions, leading to the development of cardiovascular diseases. ACE2 and Mas receptor are key members of the alternative axis of the renin-angiotensin system and are expressed in HSPCs. Accumulating evidence points to activation of ACE2 or Mas receptor as a promising approach for restoring the reparative potential, thereby preventing the development of ischemic vascular diseases.
Collapse
Affiliation(s)
- Yagna P R Jarajapu
- Department of Pharmaceutical Sciences, College of Health Professions, North Dakota State University, Fargo, North Dakota
| |
Collapse
|
9
|
Nation DA, Tan A, Dutt S, McIntosh EC, Yew B, Ho JK, Blanken AE, Jang JY, Rodgers KE, Gaubert A. Circulating Progenitor Cells Correlate with Memory, Posterior Cortical Thickness, and Hippocampal Perfusion. J Alzheimers Dis 2018; 61:91-101. [PMID: 29103037 PMCID: PMC5924766 DOI: 10.3233/jad-170587] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
BACKGROUND Bone marrow-derived progenitor cells survey the vasculature and home to sites of tissue injury where they can promote repair and regeneration. It has been hypothesized that these cells may play a protective role neurodegenerative and vascular cognitive impairment. OBJECTIVE To evaluate progenitor cell levels in older adults with and without mild cognitive impairment (MCI), and to relate circulating levels to memory, brain volume, white matter lesion volume, and cerebral perfusion. METHOD Thirty-two older adults, free of stroke and cardiovascular disease, were recruited from the community and evaluated for diagnosis of MCI versus cognitively normal (CN). Participants underwent brain MRI and blood samples were taken to quantify progenitor reserve using flow cytometry (CD34+, CD34+CD133+, and CD34+CD133+CD309+ cells). RESULTS Participants with MCI (n = 10) exhibited depletion of all CPC markers relative to those who were CN (n = 22), after controlling for age, sex, and education. Post-hoc age, sex, and education matched comparisons (n = 10 MCI, n = 10 CN) also revealed the same pattern of results. Depletion of CD34+ cells correlated with memory performance, left posterior cortical thickness, and bilateral hippocampal perfusion. Participants exhibited low levels of vascular risk and white matter lesion burden that did not correlate with progenitor levels. CONCLUSIONS Circulating progenitor cells are associated with cognitive impairment, memory, cortical atrophy, and hippocampal perfusion. We hypothesize that progenitor depletion contributes to, or is triggered by, cognitive decline and cortical atrophy. Further study of progenitor cell depletion in older adults may benefit efforts to prevent or delay dementia.
Collapse
Affiliation(s)
- Daniel A. Nation
- Department of Psychology, University of Southern California, Los Angeles, CA
| | - Alick Tan
- Department of Clinical Pharmacy, University of Southern California, Los Angeles CA
| | - Shubir Dutt
- Department of Psychology, University of Southern California, Los Angeles, CA
| | - Elissa C. McIntosh
- Department of Psychology, University of Southern California, Los Angeles, CA
| | - Belinda Yew
- Department of Psychology, University of Southern California, Los Angeles, CA
| | - Jean K. Ho
- Department of Psychology, University of Southern California, Los Angeles, CA
| | - Anna E. Blanken
- Department of Psychology, University of Southern California, Los Angeles, CA
| | - Jung Yun Jang
- Department of Psychology, University of Southern California, Los Angeles, CA
| | - Kathleen E. Rodgers
- Department of Clinical Pharmacy, University of Southern California, Los Angeles CA
| | - Aimée Gaubert
- Department of Psychology, University of Southern California, Los Angeles, CA
| |
Collapse
|
10
|
Yang T, Sun Y, Lu Z, Leak RK, Zhang F. The impact of cerebrovascular aging on vascular cognitive impairment and dementia. Ageing Res Rev 2017; 34:15-29. [PMID: 27693240 DOI: 10.1016/j.arr.2016.09.007] [Citation(s) in RCA: 138] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2016] [Revised: 08/09/2016] [Accepted: 09/26/2016] [Indexed: 02/07/2023]
Abstract
As human life expectancy rises, the aged population will increase. Aging is accompanied by changes in tissue structure, often resulting in functional decline. For example, aging within blood vessels contributes to a decrease in blood flow to important organs, potentially leading to organ atrophy and loss of function. In the central nervous system, cerebral vascular aging can lead to loss of the integrity of the blood-brain barrier, eventually resulting in cognitive and sensorimotor decline. One of the major of types of cognitive dysfunction due to chronic cerebral hypoperfusion is vascular cognitive impairment and dementia (VCID). In spite of recent progress in clinical and experimental VCID research, our understanding of vascular contributions to the pathogenesis of VCID is still very limited. In this review, we summarize recent findings on VCID, with a focus on vascular age-related pathologies and their contribution to the development of this condition.
Collapse
Affiliation(s)
- Tuo Yang
- Department of Neurology, Pittsburgh Institute of Brain Disorders and Recovery, University of Pittsburgh School of Medicine, Pittsburgh, PA 15213, USA
| | - Yang Sun
- Department of Neurology, Pittsburgh Institute of Brain Disorders and Recovery, University of Pittsburgh School of Medicine, Pittsburgh, PA 15213, USA
| | - Zhengyu Lu
- Department of Neurology, Pittsburgh Institute of Brain Disorders and Recovery, University of Pittsburgh School of Medicine, Pittsburgh, PA 15213, USA; Department of Neurology, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese, Shanghai 200437, China
| | - Rehana K Leak
- Division of Pharmaceutical Sciences, Mylan School of Pharmacy, Duquesne University, Pittsburgh, PA 15282, USA
| | - Feng Zhang
- Department of Neurology, Pittsburgh Institute of Brain Disorders and Recovery, University of Pittsburgh School of Medicine, Pittsburgh, PA 15213, USA; Key Lab of Cerebral Microcirculation in Universities of Shandong, Taishan Medical University, Taian, Shandong, 271000, China.
| |
Collapse
|