1
|
Hou Y, Duan Y, Wu G, Zhang J, Luo X, Zhang M, Pang H, Hao Y, Wang Y, Cai Y, Wang L, Tan Z. Antibacterial Activity, Probiotic Potential, and Biocontrol Efficacy of Two Lactic Acid Bacteria Against Penicillium expansum on Fresh Grapes. Foods 2025; 14:493. [PMID: 39942086 PMCID: PMC11816955 DOI: 10.3390/foods14030493] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2024] [Revised: 01/25/2025] [Accepted: 01/30/2025] [Indexed: 02/16/2025] Open
Abstract
Lactic acid bacteria are commonly present in various sources and possess significant probiotic properties. They can inhibit pathogenic bacteria and fungi simultaneously, making them promising candidates as bio-preservatives. This study investigated two potential probiotic strains: Lactiplantibacillus plantarum LR5-2 (isolated from fermented meat products) and Lacticaseibacillus rhamnosus SQ63 (isolated from infant feces). The study evaluated their aggregation ability, anti-pathogenic activity, safety, and tolerance to gastrointestinal conditions, phenol, and bile salts. Additionally, their biological control potential against Penicillium expansum on fresh grapes was assessed. The results demonstrated that both strains exhibited high survival rates under extreme gastrointestinal conditions, enhanced Auto-aggregation, co-aggregation, and hydrophobicity. They displayed strong antioxidant activity and significant antibacterial effects against 11 pathogenic fungi and foodborne pathogens. Biosafety testing revealed that both strains are sensitive to most antibiotics, do not produce biogenic amines, and exhibit no hemolytic or DNase activity. In grapes, L. plantarum LR5-2 and L. rhamnosus SQ63 significantly reduced the incidence and disease index of P. expansum infection. In conclusion, the characterization analysis and bio-preservation experiments revealed that LR5-2 and SQ63 have strong potential as probiotics and bio-preservatives.
Collapse
Affiliation(s)
- Yuting Hou
- Henan Key Laboratory of Ion-Beam Green Agriculture Bioengineering, School of Agricultural Sciences, Zhengzhou University, Zhengzhou 450001, China (Y.D.); (Y.C.)
| | - Yaoke Duan
- Henan Key Laboratory of Ion-Beam Green Agriculture Bioengineering, School of Agricultural Sciences, Zhengzhou University, Zhengzhou 450001, China (Y.D.); (Y.C.)
| | - Guofang Wu
- Plateau Livestock Genetic Resources Protection and Innovative Utilization Key Laboratory of Qinghai Province, Key Laboratory of Animal Genetics and Breeding on Tibetan Plateau, Ministry of Agriculture and Rural Affairs, Academy of Animal Science and Veterinary Medicine, Qinghai University, Xining 810016, China
| | - Jianbo Zhang
- Plateau Livestock Genetic Resources Protection and Innovative Utilization Key Laboratory of Qinghai Province, Key Laboratory of Animal Genetics and Breeding on Tibetan Plateau, Ministry of Agriculture and Rural Affairs, Academy of Animal Science and Veterinary Medicine, Qinghai University, Xining 810016, China
| | - Xuan Luo
- Plateau Livestock Genetic Resources Protection and Innovative Utilization Key Laboratory of Qinghai Province, Key Laboratory of Animal Genetics and Breeding on Tibetan Plateau, Ministry of Agriculture and Rural Affairs, Academy of Animal Science and Veterinary Medicine, Qinghai University, Xining 810016, China
| | - Miao Zhang
- Henan Key Laboratory of Ion-Beam Green Agriculture Bioengineering, School of Agricultural Sciences, Zhengzhou University, Zhengzhou 450001, China (Y.D.); (Y.C.)
| | - Huili Pang
- Henan Key Laboratory of Ion-Beam Green Agriculture Bioengineering, School of Agricultural Sciences, Zhengzhou University, Zhengzhou 450001, China (Y.D.); (Y.C.)
| | - Yuxuan Hao
- Henan Key Laboratory of Ion-Beam Green Agriculture Bioengineering, School of Agricultural Sciences, Zhengzhou University, Zhengzhou 450001, China (Y.D.); (Y.C.)
| | - Yanping Wang
- Henan Key Laboratory of Ion-Beam Green Agriculture Bioengineering, School of Agricultural Sciences, Zhengzhou University, Zhengzhou 450001, China (Y.D.); (Y.C.)
| | - Yimin Cai
- Henan Key Laboratory of Ion-Beam Green Agriculture Bioengineering, School of Agricultural Sciences, Zhengzhou University, Zhengzhou 450001, China (Y.D.); (Y.C.)
| | - Lei Wang
- Plateau Livestock Genetic Resources Protection and Innovative Utilization Key Laboratory of Qinghai Province, Key Laboratory of Animal Genetics and Breeding on Tibetan Plateau, Ministry of Agriculture and Rural Affairs, Academy of Animal Science and Veterinary Medicine, Qinghai University, Xining 810016, China
| | - Zhongfang Tan
- Henan Key Laboratory of Ion-Beam Green Agriculture Bioengineering, School of Agricultural Sciences, Zhengzhou University, Zhengzhou 450001, China (Y.D.); (Y.C.)
| |
Collapse
|
2
|
Non-targeted metabolomics analyze dough fermented by S. cerevisiae and L. plantarum to reveal the formation of flavor substances of bread. Lebensm Wiss Technol 2023. [DOI: 10.1016/j.lwt.2023.114538] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
|
3
|
Hernández-Parada N, González-Ríos O, Suárez-Quiroz ML, Hernández-Estrada ZJ, Figueroa-Hernández CY, Figueroa-Cárdenas JDD, Rayas-Duarte P, Figueroa-Espinoza MC. Exploiting the Native Microorganisms from Different Food Matrices to Formulate Starter Cultures for Sourdough Bread Production. Microorganisms 2022; 11:109. [PMID: 36677402 PMCID: PMC9865925 DOI: 10.3390/microorganisms11010109] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2022] [Revised: 12/24/2022] [Accepted: 12/28/2022] [Indexed: 01/03/2023] Open
Abstract
The use of sourdough for bread production involves fermentation, which is dominated by lactic acid bacteria (LAB) and yeast. Sourdough can be inoculated with a starter culture or through a food matrix containing microorganisms to initiate sourdough fermentation. Sourdough is used as leavening agent for bread making, and metabolites produced by LAB and yeast confer a specific aroma and flavor profile to bread, thus improving its sensory attributes. However, few publications report the effect of microorganisms from different food products and by-products on sourdough fermentation. This review focuses on using different starter cultures from various food sources, from wheat flour to starter cultures. Additionally, included are the types of sourdough, the sourdough fermentation process, and the biochemical transformations that take place during the sourdough fermentation process.
Collapse
Affiliation(s)
- Natali Hernández-Parada
- Tecnológico Nacional de México/Instituto Tecnológico de Veracruz, M.A. de Quevedo 2779, Col. Formando Hogar, Veracruz C.P. 91897, Mexico
| | - Oscar González-Ríos
- Tecnológico Nacional de México/Instituto Tecnológico de Veracruz, M.A. de Quevedo 2779, Col. Formando Hogar, Veracruz C.P. 91897, Mexico
| | - Mirna Leonor Suárez-Quiroz
- Tecnológico Nacional de México/Instituto Tecnológico de Veracruz, M.A. de Quevedo 2779, Col. Formando Hogar, Veracruz C.P. 91897, Mexico
| | - Zorba Josué Hernández-Estrada
- Tecnológico Nacional de México/Instituto Tecnológico de Veracruz, M.A. de Quevedo 2779, Col. Formando Hogar, Veracruz C.P. 91897, Mexico
| | - Claudia Yuritzi Figueroa-Hernández
- CONACYT-Tecnológico Nacional de México/Instituto Tecnológico de Veracruz, Unidad de Investigación y Desarrollo en Alimentos, M.A. de Quevedo 2779, Veracruz C.P. 91897, Mexico
| | - Juan de Dios Figueroa-Cárdenas
- Centro de Investigación y de Estudios Avanzados del IPN (CINVESTAV Unidad Querétaro), Libramiento Norponiente 2000, Fracc. Real de Juriquilla, Querétaro C.P. 76230, Mexico
| | - Patricia Rayas-Duarte
- Robert M. Kerr Food & Agricultural Products Center, Oklahoma State University, 123 FAPC, Stillwater, OK 74078-6055, USA
| | - María Cruz Figueroa-Espinoza
- Qualisud, Univ Montpellier, Avignon Université, CIRAD, Institut Agro, IRD, Université de la Réunion, F-34398 Montpellier, France
| |
Collapse
|
4
|
Potential of three different lactic acid Bacteria to use as starter culture for production of type II sourdough breadmaking. JOURNAL OF FOOD MEASUREMENT AND CHARACTERIZATION 2022. [DOI: 10.1007/s11694-022-01493-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
5
|
Ataç F, Ertekin Filiz B, Guzel‐Seydim ZB. The use of yeast‐rich kefir grain as a starter culture in bread making. J FOOD PROCESS PRES 2022. [DOI: 10.1111/jfpp.15242] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Fatma Ataç
- Department of Food Engineering Suleyman Demirel University Isparta Turkey
| | | | | |
Collapse
|
6
|
García-Gómez B, Fernández-Canto N, Vázquez-Odériz ML, Quiroga-García M, Muñoz-Ferreiro N, Romero-Rodríguez MÁ. Sensory descriptive analysis and hedonic consumer test for Galician type breads. Food Control 2022. [DOI: 10.1016/j.foodcont.2021.108765] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
7
|
Hu Y, Zhang J, Wang S, Liu Y, Li L, Gao M. Lactic acid bacteria synergistic fermentation affects the flavor and texture of bread. J Food Sci 2022; 87:1823-1836. [PMID: 35257375 DOI: 10.1111/1750-3841.16082] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2021] [Revised: 01/19/2022] [Accepted: 01/22/2022] [Indexed: 12/22/2022]
Abstract
Fermentation strains play a key role in the quality of bread. The combination of yeast and lactic acid bacteria (LAB) may effectively improve the function and nutritional properties of bread. In this study, the dough was fermented to make bread by using single strain (Saccharomyces cerevisiae, mode A), the combination of two strains (S. cerevisiae and Lactiplantibacillus plantarum, mode B; S. cerevisiae and Lactobacillus delbrueckii, mode C), or three strains (S. cerevisiae, L. plantarum, and L. delbrueckii, mode D). The specific volume, texture, and aroma substances of bread were evaluated. The possibility of mixed fermentation of selected yeast and LAB to replace natural fermentation dough was evaluated. The results showed that the specific volume of bread in mode B was 15.2% higher than that of mode A. The structure was softer and the taste was more vigorous in mode B bread. The content of volatile compounds was highest in mode B bread among the four mode bread. The characteristic flavors were ethyl 2-hydroxypropionate and z-3-hexenol. The cofermentation in mode B made the bread aroma richer and gave better aroma characteristics to bread. Therefore, the fermentation of S. cerevisiae and L. plantarum can be recommended to replace naturally fermented dough to improve the quality of bread. PRACTICAL APPLICATION: L. plantarum and L. delbrueckii, separately or together, assisted in yeast fermentation to make bread. The specific volume, texture, and aroma substances of bread were evaluated to replace natural fermented dough with mixed fermentation. L. plantarum-assisted yeast fermentation improved the specific volume, texture, and aroma of bread. The characteristic flavors were ethyl 2-hydroxypropionate and z-3-hexenol in bread. Therefore, the fermentation of S. cerevisiae and L. plantarum could replace naturally fermented dough to improve the quality of bread.
Collapse
Affiliation(s)
- Yuwei Hu
- College of Life Science, Yangtze University, Jingzhou, Hubei, China
| | - Jialan Zhang
- College of Animal Science, Yangtze University, Jingzhou, Hubei, China
| | - Shaojin Wang
- College of Life Science, Yangtze University, Jingzhou, Hubei, China
| | - Yingbao Liu
- College of Life Science, Yangtze University, Jingzhou, Hubei, China
| | - Li Li
- College of Life Science, Yangtze University, Jingzhou, Hubei, China
| | - Mengxiang Gao
- College of Life Science, Yangtze University, Jingzhou, Hubei, China
| |
Collapse
|
8
|
Ali B, Khan KY, Majeed H, Jin Y, Xu D, Rao Z, Xu X. Impact of Soy–Cow's mixed milk enzyme modified cheese on bread aroma. Lebensm Wiss Technol 2022. [DOI: 10.1016/j.lwt.2021.112793] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
9
|
Pihurov M, Păcularu-Burada B, Cotârleţ M, Vasile MA, Bahrim GE. Novel Insights for Metabiotics Production by Using Artisanal Probiotic Cultures. Microorganisms 2021; 9:2184. [PMID: 34835310 PMCID: PMC8624174 DOI: 10.3390/microorganisms9112184] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2021] [Revised: 10/16/2021] [Accepted: 10/16/2021] [Indexed: 01/15/2023] Open
Abstract
Wild probiotic consortia of microorganisms (bacteria and yeasts) associated in the artisanal cultures' microbiota (milk kefir grains, water kefir grains and kombucha) are considered valuable promoters for metabiotics (prebiotics, probiotics, postbiotics and paraprobiotics) production. The beneficial effects of the fermented products obtained with the artisanal cultures on human well-being are described by centuries and the interest for them is continuously increasing. The wild origin and microbial diversity of these above-mentioned consortia give them extraordinary protection capacity against microbiological contaminants in unusual physico-chemical conditions and unique fermentative behaviour. This review summarizes the state of the art for the wild artisanal cultures (milk and water kefir grains, respectively, kombucha-SCOBY), their symbiotic functionality, and the ability to ferment unconventional substrates in order to obtain valuable bioactive compounds with in vitro and in vivo beneficial functional properties. Due to the necessity of the bioactives production and their use as metabiotics in the modern consumer's life, artisanal cultures are the perfect sources able to biosynthesize complex functional metabolites (bioactive peptides, antimicrobials, polysaccharides, enzymes, vitamins, cell wall components). Depending on the purposes of the biotechnological fermentation processes, artisanal cultures can be used as starters on different substrates. Current studies show that the microbial synergy between bacteria-yeast and/or bacteria-offers new perspectives to develop functional products (food, feeds, and ingredients) with a great impact on life quality.
Collapse
Affiliation(s)
| | | | | | | | - Gabriela Elena Bahrim
- Faculty of Food Science and Engineering, Dunarea de Jos University of Galati, Domneasca Street No. 111, 800201 Galati, Romania; (M.P.); (B.P.-B.); (M.C.); (M.A.V.)
| |
Collapse
|
10
|
Improving Phenolic-Linked Antioxidant, Antihyperglycemic and Antibacterial Properties of Emmer and Conventional Wheat Using Beneficial Lactic Acid Bacteria. Appl Microbiol 2021. [DOI: 10.3390/applmicrobiol1020020] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Beneficial lactic acid bacteria (LAB)-based fermentation is an effective bioprocessing approach to improve human-health-targeted functional benefits of plant-based food substrates, such as cereal grains. Previously, we observed high phenolic bioactive-linked antioxidant and anti-hyperglycemic properties in whole grain Emmer (hulled). In this study, beneficial LAB (Lactiplantibacillus plantarum) was recruited to ferment (0–72 h) aqueous extracts (0.4 g/mL concentration) of previously optimized hulled Emmer wheat and conventional red spring wheat cv. Barlow. The fermented and unfermented (control) wheat extracts were analyzed for phenolic content, phenolic profile, antioxidant activity, and antihyperglycemic properties (α-amylase and α-glucosidase enzyme inhibitory activity) using in vitro assay models. Additionally, antimicrobial activity against pathogenic bacteria Helicobacter pylori, and potential prebiotic activity supporting the growth of beneficial Bifidobacterium longum were also investigated. Improvement in antioxidant activity and antihyperglycemic functional benefits were observed, while soluble phenolic content remained high after 72 h fermentation. Antimicrobial activity against H. pylori was also observed in 48 and 72 h fermented wheat extracts. This study provides an insight into the efficacy of LAB-based fermentation as a safe bioprocessing tool to design health-targeted functional foods and ingredients from underutilized whole grains like Emmer for targeting type 2 diabetes dietary benefits.
Collapse
|
11
|
Gonzalez M, Reyes I, Carrera-Tarela Y, Vernon-Carter EJ, Alvarez-Ramirez J. Charcoal bread: Physicochemical and textural properties, in vitro digestibility, and dough rheology. Int J Gastron Food Sci 2020. [DOI: 10.1016/j.ijgfs.2020.100227] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
12
|
|
13
|
Yeast-Free Doughs by Zymomonas mobilis: Evaluation of Technological and Fermentation Performances by Using a Metabolomic Approach. Microorganisms 2020; 8:microorganisms8060792. [PMID: 32466402 PMCID: PMC7357046 DOI: 10.3390/microorganisms8060792] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2020] [Revised: 05/22/2020] [Accepted: 05/22/2020] [Indexed: 12/15/2022] Open
Abstract
This research focuses on the leavening performances and development of volatile compounds of three strains of Zymomonas mobilis in the production of yeast-free doughs. Z. mobilis DSM 3580, 424, and 473 were used in doughs supplemented with glucose and with or without NaCl. Z. mobilis produced about 10 mg ethanol/g dough, with maximum dough volumes (640–680 mL) being reached after 2 h leavening. NaCl addition postponed this parameter up to 6 h. Among organic acids, hexanoic acid resulted the highest produced compound; DSM 424 and 473 formed more propanoic, butanoic and pentanoic acid, being both negatively affected by NaCl. Esters were mainly discriminated on NaCl addition, with octanoic acid (DSM 3580), butanoic acid (DSM 424), and propanoic acid (DSM 473) ethyl esters as main components. DSM 3580 specifically produced 2-heptanal, DSM 424 2-hexadecenal, (E) and DSM 473 octanal, while DSM 424 and DSM 473 produced 2-butanone-4-hydroxy better than DSM 3580. Z. mobilis unique signatures were the production of nonanoic and undecanoic acids, 2-hexadecenal, (E), L(+)-tartaric acid diethyl ester and 3-decen-5-one, 4-methyl, (E). This outcome can pave the way for using Z. mobilis in baking goods, providing innovation possibilities in the area of yeast-free leavened products.
Collapse
|
14
|
Hypocholesterolaemic activity of a novel autochthonous potential probiotic Lactobacillus plantarum YS5 isolated from yogurt. Lebensm Wiss Technol 2019. [DOI: 10.1016/j.lwt.2019.05.057] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
|
15
|
Nami Y, Gharekhani M, Aalami M, Hejazi MA. Lactobacillus-fermented sourdoughs improve the quality of gluten-free bread made from pearl millet flour. Journal of Food Science and Technology 2019; 56:4057-4067. [PMID: 31477977 DOI: 10.1007/s13197-019-03874-8] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Revised: 06/07/2019] [Accepted: 06/12/2019] [Indexed: 11/26/2022]
Abstract
The study investigated the effect of sourdough made from combinations of four Lactobacillus spp. on the physicochemical properties, consumer acceptability, and shelf life of bread made from pearl millet flour. Fermentation based on both single and multiple species reduced the pH of the dough and increased its titratable acidity and H2O2 content. The addition of sourdough increased the elasticity and reduced the stiffness of the pearl millet dough. Sourdough fermented with L. brevis had the greatest effect on loaf height, specific volume, porosity, and moisture content. During storage, the moisture content of the bread crumb decreased, but that of their crust increased. Sourdough-based loaves retained their moisture better than conventional loaves and the sourdough suppressed the development of mold for a longer period. An organoleptic assessment showed that the sourdough-based bread was more palatable than either conventional or chemically acidified ones. The tissue softness, chewiness, and flavor of the pearl millet bread decreased during storage. The use of sourdough based on either L. brevis, L. paralimentarius, or L. brevis + L. paralimentarius is recommended to produce high-quality pearl millet-based bread.
Collapse
Affiliation(s)
- Yousef Nami
- 1Department of Food Biotechnology, Branch for Northwest & West Region, Agricultural Biotechnology Research Institute of Iran, Agricultural Research, Education and Extension Organization (AREEO), Tabriz, Iran
| | - Mehdi Gharekhani
- 2Department of Food Science and Technology, Tabriz Branch, Islamic Azad University, Tabriz, Iran
| | - Mehran Aalami
- 3Department of Food Science and Technology, Gorgan University of Agriculture Sciences and Natural Resources, Gorgan, Iran
| | - Mohammad Amin Hejazi
- 1Department of Food Biotechnology, Branch for Northwest & West Region, Agricultural Biotechnology Research Institute of Iran, Agricultural Research, Education and Extension Organization (AREEO), Tabriz, Iran
| |
Collapse
|
16
|
Yu Y, Wang L, Qian H, Zhang H, Li Y, Wu G, Qi X, Xu M, Rao Z. Effect of selected strains on physical and organoleptic properties of breads. Food Chem 2019; 276:547-553. [PMID: 30409631 DOI: 10.1016/j.foodchem.2018.10.048] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2018] [Revised: 10/09/2018] [Accepted: 10/09/2018] [Indexed: 02/04/2023]
Abstract
The use of selected Saccharomyces cerevisiae PS7314, Lactobacillus rossiae NOS7307, Lactobacillus brevis NOS7311, and Lactobacillus plantarum NOS7315 as mono-culture or co-culture for production of sourdoughs, their breads showed different physical and organoleptic properties. The pH of breads fermented with sourdoughs incubated with mono-culture or co-culture all decreased. An opposite trend was found for TTA. The use of single lactobacillus for the dough fermentation decreased the specific volume of bread, which was 4.15-19.10% lower than that of control bread (CB). However, the synergetic fermentation helped the improvement of bread quality. Compared to CB, the mixed culture 4 sourdough remarkably decreased the hardness by 52.08%, increased the specific volume by 5.29%, improved porosity of final product by 24.90%, and gave a preferable sensory characteristic to bread. Thus, the MC4 could be recommended for replacing spontaneous sourdough for improving the quality of bread.
Collapse
Affiliation(s)
- Yafang Yu
- Jiangsu Key Laboratory of Advanced Food Manufacturing Equipment & Technology, Jiangnan University, 1800 Lihu Avenue, Wuxi 214122, China; State Key Laboratory of Food Science and Technology, Jiangnan University, 1800 Lihu Avenue, Wuxi 214122, China; School of Food Science and Technology, Jiangnan University, 1800 Lihu Avenue, Wuxi 214122, China; National Engineering Research Center for Functional Food, Jiangnan University, 1800 Lihu Avenue, Wuxi 214122, China
| | - Li Wang
- State Key Laboratory of Food Science and Technology, Jiangnan University, 1800 Lihu Avenue, Wuxi 214122, China; School of Food Science and Technology, Jiangnan University, 1800 Lihu Avenue, Wuxi 214122, China; National Engineering Research Center for Functional Food, Jiangnan University, 1800 Lihu Avenue, Wuxi 214122, China.
| | - Haifeng Qian
- State Key Laboratory of Food Science and Technology, Jiangnan University, 1800 Lihu Avenue, Wuxi 214122, China; School of Food Science and Technology, Jiangnan University, 1800 Lihu Avenue, Wuxi 214122, China; National Engineering Research Center for Functional Food, Jiangnan University, 1800 Lihu Avenue, Wuxi 214122, China.
| | - Hui Zhang
- State Key Laboratory of Food Science and Technology, Jiangnan University, 1800 Lihu Avenue, Wuxi 214122, China; School of Food Science and Technology, Jiangnan University, 1800 Lihu Avenue, Wuxi 214122, China; National Engineering Research Center for Functional Food, Jiangnan University, 1800 Lihu Avenue, Wuxi 214122, China.
| | - Yan Li
- State Key Laboratory of Food Science and Technology, Jiangnan University, 1800 Lihu Avenue, Wuxi 214122, China; School of Food Science and Technology, Jiangnan University, 1800 Lihu Avenue, Wuxi 214122, China; National Engineering Research Center for Functional Food, Jiangnan University, 1800 Lihu Avenue, Wuxi 214122, China.
| | - Gangcheng Wu
- State Key Laboratory of Food Science and Technology, Jiangnan University, 1800 Lihu Avenue, Wuxi 214122, China; School of Food Science and Technology, Jiangnan University, 1800 Lihu Avenue, Wuxi 214122, China; National Engineering Research Center for Functional Food, Jiangnan University, 1800 Lihu Avenue, Wuxi 214122, China
| | - Xiguang Qi
- State Key Laboratory of Food Science and Technology, Jiangnan University, 1800 Lihu Avenue, Wuxi 214122, China; School of Food Science and Technology, Jiangnan University, 1800 Lihu Avenue, Wuxi 214122, China; National Engineering Research Center for Functional Food, Jiangnan University, 1800 Lihu Avenue, Wuxi 214122, China
| | - Meijuan Xu
- School of Biotechnology, Jiangnan University, 1800 Lihu Avenue, Wuxi 214122, China.
| | - Zhiming Rao
- School of Biotechnology, Jiangnan University, 1800 Lihu Avenue, Wuxi 214122, China.
| |
Collapse
|
17
|
Mantzourani I, Plessas S, Odatzidou M, Alexopoulos A, Galanis A, Bezirtzoglou E, Bekatorou A. Effect of a novel Lactobacillus paracasei starter on sourdough bread quality. Food Chem 2018; 271:259-265. [PMID: 30236675 DOI: 10.1016/j.foodchem.2018.07.183] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2017] [Revised: 04/23/2018] [Accepted: 07/25/2018] [Indexed: 10/28/2022]
Abstract
The novel Lactobacillus paracasei K5 strain, recently isolated from Greek cheese, was evaluated as potential sourdough bread starter. Breads were made using different amounts of L. paracasei sourdoughs as well as traditional sourdough for comparison. Quality characteristics of the breads (acidity and rising) were examined, as well as rope spoilage through macroscopic observations and molecular analysis (PCR-DGGE). The highest acidity levels (3.15 g lactic acid and 1.13 g acetic acid per kg of bread) and better resistance to rope spoilage were observed when bread contained 30% w/w L. paracasei K5 sourdough. Spoilage in the L. paracasei K5 breads was observed at 15-16 days, 5 days later than the control breads. In addition, L. paracasei K5 sourdough improved the bread sensory properties, as reflected by consumer preference and GC/MS analysis of aroma volatiles. Therefore, L. paracasei K5 can be successfully used for sourdough bread making with good quality and extended shelf-life.
Collapse
Affiliation(s)
- Ioanna Mantzourani
- Laboratory of Microbiology, Biotechnology and Hygiene, Faculty of Agriculture Development, Democritus University of Thrace, 68200 Orestiada, Greece
| | - Stavros Plessas
- Laboratory of Microbiology, Biotechnology and Hygiene, Faculty of Agriculture Development, Democritus University of Thrace, 68200 Orestiada, Greece.
| | - Maria Odatzidou
- Laboratory of Microbiology, Biotechnology and Hygiene, Faculty of Agriculture Development, Democritus University of Thrace, 68200 Orestiada, Greece
| | - Athanasios Alexopoulos
- Laboratory of Microbiology, Biotechnology and Hygiene, Faculty of Agriculture Development, Democritus University of Thrace, 68200 Orestiada, Greece
| | - Alex Galanis
- Department of Molecular Biology and Genetics, Faculty of Health Sciences, Democritus University of Thrace, Dragana, 68100 Alexandroupolis, Greece
| | - Eugenia Bezirtzoglou
- Laboratory of Microbiology, Biotechnology and Hygiene, Faculty of Agriculture Development, Democritus University of Thrace, 68200 Orestiada, Greece
| | - Argyro Bekatorou
- Department of Chemistry, University of Patras, 26500 Patras, Greece
| |
Collapse
|
18
|
Axel C, Zannini E, Arendt EK. Mold spoilage of bread and its biopreservation: A review of current strategies for bread shelf life extension. Crit Rev Food Sci Nutr 2018; 57:3528-3542. [PMID: 26980564 DOI: 10.1080/10408398.2016.1147417] [Citation(s) in RCA: 97] [Impact Index Per Article: 13.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
Microbial spoilage of bread and the consequent waste problem causes large economic losses for both the bakery industry and the consumer. Furthermore the presence of mycotoxins due to fungal contamination in cereals and cereal products remains a significant issue. The use of conventional chemical preservatives has several drawbacks, necessitating the development of clean-label alternatives. In this review, we describe current research aiming to extend the shelf life of bread through the use of more consumer friendly and ecologically sustainable preservation techniques as alternatives to chemical additives. Studies on the in situ-production/-expression of antifungal compounds are presented, with special attention given to recent developments over the past decade. Sourdough fermented with antifungal strains of lactic acid bacteria (LAB) is an area of increasing focus and serves as a high-potential biological ingredient to produce gluten-containing and gluten-free breads with improved nutritional value, quality and safety due to shelf-life extension, and is in-line with consumer's demands for more products containing less additives. Other alternative biopreservation techniques include the utilization of antifungal peptides, ethanol and plant extracts. These can be added to bread formulations or incorporated in antimicrobial films for active packaging (AP) of bread. This review outlines recent progress that has been made in the area of bread biopreservation and future perspectives in this important area.
Collapse
Affiliation(s)
- Claudia Axel
- a School of Food and Nutritional Sciences , University College Cork , Cork , Ireland
| | - Emanuele Zannini
- a School of Food and Nutritional Sciences , University College Cork , Cork , Ireland
| | - Elke K Arendt
- a School of Food and Nutritional Sciences , University College Cork , Cork , Ireland
| |
Collapse
|
19
|
|
20
|
Zolfaghari MS, Ardebili SMS, Asadi GH, Larijani K. Effect of Sourdough, Bakery Yeast and Sodium Bicarbonate on Volatile Compounds, and Sensory Evaluation of Lavash Bread. J FOOD PROCESS PRES 2016. [DOI: 10.1111/jfpp.12973] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Mahboobe Sedat Zolfaghari
- Department of Food Science and Technology, Tehran Science and Research Branch; Islamic Azad University; Tehran Iran
| | | | - Gholam Hasan Asadi
- Department of Food Science and Technology, Tehran Science and Research Branch; Islamic Azad University; Tehran Iran
| | - Kambiz Larijani
- Department of Food Science and Technology, Tehran Science and Research Branch; Islamic Azad University; Tehran Iran
| |
Collapse
|
21
|
Li Z, Li H, Bian K. Microbiological characterization of traditional dough fermentation starter (Jiaozi) for steamed bread making by culture-dependent and culture-independent methods. Int J Food Microbiol 2016; 234:9-14. [PMID: 27351835 DOI: 10.1016/j.ijfoodmicro.2016.06.024] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2016] [Revised: 06/17/2016] [Accepted: 06/21/2016] [Indexed: 11/26/2022]
Abstract
In this study, the microbial composition of two types of Jiaozi (a dough fermentation starter in making steamed bread) was investigated using both culture-dependent and culture-independent (PCR-DGGE) methods. The numbers of the cultivable bacteria on MRS at 30°C and yeast on YPD at 28°C in the maize flour Jiaozi (MFJ) were 9.21±0.16 Log CFU/g and 9.18±0.05 Log CFU/g, respectively, which were higher than that in the rice flour Jiaozi (RFJ) (P<0.05). A total of 140 bacteria and 124 yeasts were isolated and identified on the basis of the sequences of their 16S rRNA gene and ITS region. The culture-dependent method showed that Acetobacter tropicalis and Enterococcus durans were the predominant bacteria strains in MFJ, and accounted for 45.7% and 25.7% of the bacteria, and Lactobacillus plantarum and Pediococcus pentosaceus represented 12.8% and 8.6%. In the RFJ sample, the most prominent isolate was P. pentosaceus (38.6%), followed by L. plantarum (24.3%), A. tropicalis (22.8%), and E. durans (5.7%). P. pentosaceus and L. plantarum were also detected in both starters by PCR-DGGE, while some bacteria species such as A. tropicalis and E. durans, recovered as pure cultures, were not detected by direct PCR-DGGE. On the other hand, Lactobacillus brevis, Weissella sp. and Lactobacillus alimentarius detected by PCR-DGGE were not recovered in any of the media and conditions used. In the MFJ sample, the isolated main yeast species were identified as Wickerhamomyces anomalus (67.2%), Saccharomyces cerevisiae (27.9%) and Torulaspora delbrueckii (4.9%). In addition to S. cerevisiae (42.9%), W. anomalus (27.0%) and T. delbrueckii (7.9%), Saccharomycopsis fibuligera was also identified as the predominant isolate in RFJ samples and accounted for 22.2%. PCR-DGGE also indicated the presence of W. anomalus and S. cerevisiae in both MFJ and RFJ starters and S. fibuligera was also detected in RFJ, but T. delbrueckii was not detected in both samples.
Collapse
Affiliation(s)
- Zhijian Li
- College of Food Science and Technology, Henan University of Technology, Zhengzhou 450052, China
| | - Haifeng Li
- College of Bioengineering, Henan University of Technology, Zhengzhou 450001, China.
| | - Ke Bian
- College of Food Science and Technology, Henan University of Technology, Zhengzhou 450052, China
| |
Collapse
|
22
|
Torkamani M, Razavi S, Gharibzahedi S. Critical quality attributes of Iranian ‘Taftoon’ breads as affected by the addition of rice bran sourdough with different lactobacilli. QUALITY ASSURANCE AND SAFETY OF CROPS & FOODS 2015. [DOI: 10.3920/qas2013.0375] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Affiliation(s)
- M.G. Torkamani
- Faculty of Agricultural Engineering and Technology, Department of Food Science, Engineering & Technology, Bioprocess Engineering Laboratory (BPEL), University of Tehran, P.O. Box 4111, Karaj 31587-77871, Iran
| | - S.H. Razavi
- Faculty of Agricultural Engineering and Technology, Department of Food Science, Engineering & Technology, Bioprocess Engineering Laboratory (BPEL), University of Tehran, P.O. Box 4111, Karaj 31587-77871, Iran
| | - S.M.T. Gharibzahedi
- Faculty of Agricultural Engineering and Technology, Department of Food Science, Engineering & Technology, Bioprocess Engineering Laboratory (BPEL), University of Tehran, P.O. Box 4111, Karaj 31587-77871, Iran
| |
Collapse
|
23
|
Denkova R, Ilieva S, Denkova Z, Georgieva L, Yordanova M, Nikolova D, Evstatieva Y. Production of wheat bread without preservatives using sourdough starters. BIOTECHNOL BIOTEC EQ 2014; 28:889-898. [PMID: 26019574 PMCID: PMC4433955 DOI: 10.1080/13102818.2014.965057] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2014] [Accepted: 06/26/2014] [Indexed: 11/17/2022] Open
Abstract
In order for the beneficial effects of sourdough application in breadmaking to take place a proper selection of lactic acid bacteria species and strains, an appropriate technology and effective control of the purity and activity of the selected cultures. Four symbiotic starters for sourdough for the production of bread were developed and probated in a production laboratory using the selected strains Lactobacillus brevis LBRZ7, L. buchneri LBRZ6, L. plantarum X2, L. paracasei RN5, L. sanfranciscensis R and L. fermentum LBRH10 and the probiotic strain Propionibacterium freudenreichii ssp. shermanii NBIMCC 327. The starter sourdoughs that include Propionibacterium freudenreichii ssp. shermanii NBIMCC 327 had greater antimicrobial activity against saprophytic microorganisms: Bacillus subtilis, B. mesentericus, Aspergillus niger, Penicillium sp. and Rhizopus sp., but none of them inhibited the growth of bakery yeasts Saccharomyces cerevisiae. It was established that in order to prevent bacterial spoilage 10% of the selected starter sourdoughs had to be added in the breadmaking process, while for prevention of mold spoilage the necessary amount of starter sourdough had to be between 15% and 20%.The application of the developed starters for the production of wheat bread guarantees longer shelf life and no adverse alterations in the features of the final bread.
Collapse
Affiliation(s)
- Rositsa Denkova
- Department of Biotechnology, Sofia University 'St. Kliment Ohridski' , Sofia , Bulgaria
| | - Svetla Ilieva
- Department of Biotechnology, Sofia University 'St. Kliment Ohridski' , Sofia , Bulgaria
| | - Zapryana Denkova
- Department of Microbiology, University of Food Technologies , Plovdiv , Bulgaria
| | - Ljubka Georgieva
- Institute of Cryobiology and Food Technology, Bulgarian Academy of Sciences , Sofia , Bulgaria
| | - Mariya Yordanova
- Department of Biotechnology, Sofia University 'St. Kliment Ohridski' , Sofia , Bulgaria
| | - Dilyana Nikolova
- Department of Biotechnology, Sofia University 'St. Kliment Ohridski' , Sofia , Bulgaria
| | - Yana Evstatieva
- Department of Biotechnology, Sofia University 'St. Kliment Ohridski' , Sofia , Bulgaria
| |
Collapse
|
24
|
Denkova R, Ilieva S, Denkova Z, Georgieva L, Krastanov A. Examination of the technological properties of newly isolated strains of the genus Lactobacillus and possibilities for their application in the composition of starters. BIOTECHNOL BIOTEC EQ 2014; 28:487-494. [PMID: 26019534 PMCID: PMC4433788 DOI: 10.1080/13102818.2014.918701] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2013] [Accepted: 01/31/2013] [Indexed: 11/11/2022] Open
Abstract
The ability of four Lactobacillus strains – Lactobacillus brevis LBRZ7 (isolated from fermented cabbage), Lactobacillus plantarum LBRZ12 (isolated from fermented cabbage), Lactobacillus fermentum LBRH9 (of human origin) and Lactobacillus casei ssp. rhamnosus LBRC11 (isolated from home-made cheese) – to grow in flour/water environment and to accumulate high concentrations of viable cells was examined. Two starters for sourdough were created for lab-scale production of wheat bread: a two-strain starter and a four-strain starter. Wheat bread with improved properties – greater loaf volume, enhanced flavour and softer and brighter crumb – was obtained from the 7% four-strain starter sourdough. The addition of sourdough in the production of wheat bread affected positively the technological and organoleptic characteristics of the final bread by inhibiting the growth of wild yeasts and mold and Bacillus spores without the addition of preservatives. The inclusion of 15% of the four-strain starter sourdough in the bread-making process led to enhanced safety and longer shelf life of the baked bread.
Collapse
Affiliation(s)
- Rositsa Denkova
- Department of Biotechnology, Faculty of Biology, Sofia University 'St. Kliment Ohridski' , Sofia , Bulgaria
| | - Svetla Ilieva
- Department of Biotechnology, Faculty of Biology, Sofia University 'St. Kliment Ohridski' , Sofia , Bulgaria
| | - Zapryana Denkova
- Department of Microbiology, Faculty of Technology, University of Food Technologies , Plovdiv , Bulgaria
| | - Ljubka Georgieva
- Institute of Cryobiology and Food Technology, Bulgarian Academy of Sciences , Sofia , Bulgaria
| | - Albert Krastanov
- Department of Microbiology, Faculty of Technology, University of Food Technologies , Plovdiv , Bulgaria
| |
Collapse
|
25
|
Aplevicz KS, da Silva T, Fritzen-Freire CB, Amboni RDMC, Barreto PLM, Sant’Anna ES. Effect of the Incorporation of Different Freeze-Dried Cultures on the Properties of Sourdough Bread. JOURNAL OF CULINARY SCIENCE & TECHNOLOGY 2014. [DOI: 10.1080/15428052.2014.904837] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
26
|
Abstract
PA/CPP packaging material was used for Chinese steamed bread to evaluate its ability to improve quality and increase steamed bread shelf-life. The changes on the aroma volatiles during storage were assessed using by simultaneous distillation extraction(SDE) with dichloromethane and were analysed by GC-MS. The obtained results showed that there were 17 volatile components in fresh Chinese steamed bread, however, after 3 days of storage at 4°C tempreture, the flavor compounds significant decreased in the steamed bread without packaged, only 6 volatile components could be determinted. For the PA/CPP group storged at 4°C tempreture after 3 days, there were 21 volatile components identified, and most of components were the same to the fresh steamed bread.
Collapse
|