1
|
Kumar S, Chauhan N, Chauhan T, Balaga S, Tyagi N, Samanta AK. Evaluation of the techno-functional properties of lactobacilli strains originated from Bos indicus and Bubalus bubalis calves for probiotic potential. Int Microbiol 2025:10.1007/s10123-025-00641-y. [PMID: 39982624 DOI: 10.1007/s10123-025-00641-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2024] [Revised: 01/27/2025] [Accepted: 01/31/2025] [Indexed: 02/22/2025]
Abstract
The current study was undertaken to isolate, characterize, and cluster lactobacilli strains of indigenous cattle (Bos indicus) and buffalo (Bubalus bubalis) calf origin to develop a species-specific multistrain potential probiotic adjunct. Bacterial strains were isolated from the feces of Bos indicus and Bubalus bubalis calves of different breeds, i.e., Sahiwal (SC), Tharparker (TP), and Gir (GC) cattle and Murrah buffalo (MB). The fecal samples were aseptically taken from five healthy calves (5-10 days old) of each breed (a total of 20 animals). Accordingly, 105 bacteria were isolated, 52 of which were catalase negative, Gram-positive, and vancomycin resistant. These isolates were presumed to be Lactobacillus species, and genus-specific PCR was used to confirm their identification. Among the 52 isolates, 22 strains demonstrated greater acid tolerance, while 29 isolates showed superior bile tolerance, with survivability greater than 90%. Fifteen isolates capable of tolerating both acid and bile were further selected, and their identities were confirmed via 16S rRNA sequencing. Cluster analysis of the phylogenetic tree revealed three different species: Ligilactobacillus salivarius (8), Ligilactobacillus agilis (1), and Limosilactobacillus reuteri (6). All lactobacilli strains showed coaggregation with Escherichia coli ATCC25922 and Salmonella arizonae ATCC13314. All the isolates were found non-hemolytic and non-mucinolytic. Principal component analysis (PCA) revealed that L. reuteri GC09, L. salivarius GC12, L. agilis MB08, L. salivarius MB14, L. reuteri SC01, and L. reuteri MB11 possessed the most desirable attributes of probiotics. Based on these findings, these strains could be used to develop multi-strain probiotic adjunct for calves.
Collapse
Affiliation(s)
- Sachin Kumar
- Rumen Biotechnology Lab, Animal Nutrition Division, ICAR-National Dairy Research Institute, Karnal, 132001, Haryana, India.
| | - Nutan Chauhan
- Rumen Biotechnology Lab, Animal Nutrition Division, ICAR-National Dairy Research Institute, Karnal, 132001, Haryana, India
| | - Tejshi Chauhan
- Rumen Biotechnology Lab, Animal Nutrition Division, ICAR-National Dairy Research Institute, Karnal, 132001, Haryana, India
| | - Sravani Balaga
- Rumen Biotechnology Lab, Animal Nutrition Division, ICAR-National Dairy Research Institute, Karnal, 132001, Haryana, India
| | - Nitin Tyagi
- Rumen Biotechnology Lab, Animal Nutrition Division, ICAR-National Dairy Research Institute, Karnal, 132001, Haryana, India
| | - Ashis Kumar Samanta
- Rumen Biotechnology Lab, Animal Nutrition Division, ICAR-National Dairy Research Institute, Karnal, 132001, Haryana, India
| |
Collapse
|
2
|
Edache DO, Baruch J, Kreikemeier W, Nagaraja TG, Renter DR, Smolensky D, Cernicchiaro N. Investigation of Feedlot-level Use of a Direct-fed Microbial on Fecal Shedding of E. coli O157:H7. J Food Prot 2024; 87:100370. [PMID: 39374786 DOI: 10.1016/j.jfp.2024.100370] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2024] [Revised: 09/28/2024] [Accepted: 10/01/2024] [Indexed: 10/09/2024]
Abstract
Our objectives were to determine whether the feedlot-level use of a direct-fed microbial (DFM; Lactobacillus animalis LA51 and Propionibacterium freudenreichii PF24; Bovamine Defend®, 2 × 109 CFU/g) was associated with fecal prevalence and concentration of E. coli O157:H7, and determine pen- and feedlot-level risk factors associated with fecal E. coli O157:H7 prevalence in cattle pens from commercial feedlot operations. Twenty commercial feedlots in Nebraska, ten that included DFM (DFM) and ten that did not (no-DFM), were sampled during the summer of 2017. In each sampling month, 22 pen-floor fecal samples were collected from three pens in each feedlot. Samples were subjected to cultural and molecular procedures for the detection of E. coli O157:H7 (immunomagnetic separation, plating on selective media, followed by PCR confirmation) and spiral plating for quantification. A total of 1,320 samples from 180 pens of finishing cattle belonging to 20 feedlots, which were sampled three times throughout a 12-week period, were processed and tested. Across all feedlots and sampling months, the mean within-pen prevalence was 13.5% (95% CI = 2.6-47.4%). The association between DFM status and the within-pen prevalence of E. coli O157:H7 depended significantly (p < 0.05) on the sampling month. The second sampling month between late July and mid-August corresponded to the highest within-pen prevalence estimates reported in this study, with no-DFM pens having a higher prevalence than DFM pens. After accounting for the DFM status, and based on multivariable analyses, sampling month, average pen body weight, and weather conditions were significantly associated with the within-pen fecal prevalence of E. coli O157:H7. Collectively, these findings demonstrate that the use of a DFM containing Lactobacillus animalis LA51 and Propionibacterium freudenreichii PF26 in feedlots showed potential in reducing fecal E. coli O157:H7 prevalence in cattle during times when prevalence peaks.
Collapse
Affiliation(s)
- David O Edache
- Center for Outcomes Research and Epidemiology, College of Veterinary Medicine, Kansas State University, Manhattan, KS 66506, USA; Department of Diagnostic Medicine and Pathobiology, College of Veterinary Medicine, Kansas State University, Manhattan, KS 66506, USA
| | - Joaquin Baruch
- Center for Outcomes Research and Epidemiology, College of Veterinary Medicine, Kansas State University, Manhattan, KS 66506, USA; Department of Diagnostic Medicine and Pathobiology, College of Veterinary Medicine, Kansas State University, Manhattan, KS 66506, USA
| | | | - Tiruvoor G Nagaraja
- Department of Diagnostic Medicine and Pathobiology, College of Veterinary Medicine, Kansas State University, Manhattan, KS 66506, USA
| | - David R Renter
- Center for Outcomes Research and Epidemiology, College of Veterinary Medicine, Kansas State University, Manhattan, KS 66506, USA; Department of Diagnostic Medicine and Pathobiology, College of Veterinary Medicine, Kansas State University, Manhattan, KS 66506, USA
| | - Dmitriy Smolensky
- Grain Quality and Structure Research, Center for Grain and Animal Health Research, United States Department of Agriculture, Agricultural Research Service, 1515 College Ave., Manhattan, KS 66502, USA
| | - Natalia Cernicchiaro
- Center for Outcomes Research and Epidemiology, College of Veterinary Medicine, Kansas State University, Manhattan, KS 66506, USA; Department of Diagnostic Medicine and Pathobiology, College of Veterinary Medicine, Kansas State University, Manhattan, KS 66506, USA.
| |
Collapse
|
3
|
Saini P, Ayyanna R, Kumar R, Bhowmick SK, Bhaskar V, Dey B. Restriction of growth and biofilm formation of ESKAPE pathogens by caprine gut-derived probiotic bacteria. Front Microbiol 2024; 15:1428808. [PMID: 39135871 PMCID: PMC11317286 DOI: 10.3389/fmicb.2024.1428808] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2024] [Accepted: 07/05/2024] [Indexed: 08/15/2024] Open
Abstract
The accelerated rise in antimicrobial resistance (AMR) poses a significant global health risk, necessitating the exploration of alternative strategies to combat pathogenic infections. Biofilm-related infections that are unresponsive to standard antibiotics often require the use of higher-order antimicrobials with toxic side effects and the potential to disrupt the microbiome. Probiotic therapy, with its diverse benefits and inherent safety, is emerging as a promising approach to prevent and treat various infections, and as an alternative to antibiotic therapy. In this study, we isolated novel probiotic bacteria from the gut of domestic goats (Capra hircus) and evaluated their antimicrobial and anti-biofilm activities against the 'ESKAPE' group of pathogens. We performed comprehensive microbiological, biochemical, and molecular characterizations, including analysis of the 16S-rRNA gene V1-V3 region and the 16S-23S ISR region, on 20 caprine gut-derived lactic acid bacteria (LAB). Among these, six selected Lactobacillus isolates demonstrated substantial biofilm formation under anaerobic conditions and exhibited robust cell surface hydrophobicity and autoaggregation, and epithelial cell adhesion properties highlighting their superior enteric colonization capability. Notably, these Lactobacillus isolates exhibited broad-spectrum growth inhibitory and anti-biofilm properties against 'ESKAPE' pathogens. Additionally, the Lactobacillus isolates were susceptible to antibiotics listed by the European Food Safety Authority (EFSA) within the prescribed Minimum Inhibitory Concentration limits, suggesting their safety as feed additives. The remarkable probiotic characteristics exhibited by the caprine gut-derived Lactobacillus isolates in this study strongly endorse their potential as compelling alternatives to antibiotics and direct-fed microbial (DFM) feed supplements in the livestock industry, addressing the escalating need for antibiotic-free animal products.
Collapse
Affiliation(s)
- Prerna Saini
- National Institute of Animal Biotechnology, Hyderabad, India
- Regional Centre for Biotechnology, Faridabad, India
| | - Repally Ayyanna
- National Institute of Animal Biotechnology, Hyderabad, India
| | - Rishi Kumar
- National Institute of Animal Biotechnology, Hyderabad, India
- Regional Centre for Biotechnology, Faridabad, India
| | - Sayan Kumar Bhowmick
- National Institute of Animal Biotechnology, Hyderabad, India
- Regional Centre for Biotechnology, Faridabad, India
| | - Vinay Bhaskar
- National Institute of Animal Biotechnology, Hyderabad, India
| | - Bappaditya Dey
- National Institute of Animal Biotechnology, Hyderabad, India
- Regional Centre for Biotechnology, Faridabad, India
| |
Collapse
|
4
|
Manna A, Jana SC. Isolation and characterization of lactic acid bacteria producing a potent anti-listerial bacteriocin-like inhibitory substance (BLIS) from chhurpi, a fermented milk product. Arch Microbiol 2024; 206:73. [PMID: 38252168 DOI: 10.1007/s00203-023-03797-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2023] [Revised: 12/11/2023] [Accepted: 12/15/2023] [Indexed: 01/23/2024]
Abstract
Nowadays, the bacteriocin industries have seen significant growth, supplanting chemical preservatives in its ability to improve the shelf-life and safety of food. The increasing customer desire to use natural preservatives has fueled advancing bacteriocin research. The objective of this study was to identify lactic acid bacteria (LAB) that produce bacteriocin-like inhibitory substance (BLIS) and have strong anti-listerial activity. We have identified and analyzed a LAB obtained from chhurpi samples, a popular milk-derived product in the Himalayan regions of India and Nepal. The strain was studied and identified based on its morphological, biochemical, and physiological characteristics. Furthermore, the molecular 16s-rDNA analysis suggests that the strain was Lactococcus sp. RGUAM1 (98.2% similar to Lactococcus lactis subsp. hordniae NBRC 100931T). The isolated strain can produce a potent BLIS, which has shown efficacy against three gram-positive bacteria responsible for food spoilage, such as Listeria monocytogenes (MTCC 657), Staphylococcus aureus subsp. aureus (MTCC 87), Lactobacillus plantarum (MTCC 1407), Lactobacillus paraplantarum (MTCC 12904). The scanning electron microscope (SEM) image illustrates that the crude cell-free supernatant (CFS) disrupts the cell envelope, leading to the release of cellular contents and the clustering of cells. In addition, this BLIS can easily withstand a wide range of pH (2-12), temperature (up to 100 °C for 15 min), bile salt (0.3% W/V), salinity (4% W/V), and enzyme activity of 1600 AU/ml against Listeria monocytogenes. Our research offers a robust framework and valuable insights into bio-preservation and its potential applications in diverse food products.
Collapse
Affiliation(s)
- Atanu Manna
- Department of Microbiology, Raiganj University, Uttar Dinajpur, Raiganj, West Bengal, 733134, India
| | - Subhas Chandra Jana
- Department of Microbiology, Raiganj University, Uttar Dinajpur, Raiganj, West Bengal, 733134, India.
| |
Collapse
|
5
|
Zommara M, El-Ghaish S, Haertle T, Chobert JM, Ghanimah M. Probiotic and technological characterization of selected Lactobacillus strains isolated from different egyptian cheeses. BMC Microbiol 2023; 23:160. [PMID: 37270482 PMCID: PMC10238244 DOI: 10.1186/s12866-023-02890-1] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2022] [Accepted: 05/10/2023] [Indexed: 06/05/2023] Open
Abstract
BACKGROUND Fresh milk and natural environmental conditions are used to produce traditional cheeses. Such cheeses are produced by dozens of different types of microbes. Non-starter lactobacilli are the most responsible genus of lactic acid bacteria exhibiting key technological and health promoting traits. The purpose of this study is to isolate Lactobacillus bacteria from conventional Egyptian cheeses and analyse their probiotic potential and technological properties. RESULTS Lactobacillus isolates (33 isolates) were isolated from different Egyptian cheeses. Our results revealed that 18.18% of the isolates were fast-acidifying, 30.3% were medium-acidifying and 51.5% were slow-acidifying isolates. The results of autolytic activity showed that 24.3% of the isolates were good autolysis, 33.3% were fair autolysis, while 42.4% were poor autolysis. Fifteen isolates produced exopolysaccharides, while 9 isolates exhibited antimicrobial activities against Lactobacillus bulgaricus 340. All the isolates were resistant to pH 3 for 3 h except isolate No. 15 (MR4). The growth rate of the isolates ranged from 42.25 to 85.25% at 0.3% bile salts after 3 h of incubation. The surviving percentage of the Lactobacillus isolates decreased with increasing incubation time or the percentage of bile salts greater than 0.3%. All the isolates grew after incubation in artificial gastric and intestinal fluids. The auto-aggregation of 15 isolates ranged from 43.13 to 72.77%. Lacticaseibacillus paracasei BD3, Lactiplantibacillus plantarum BR4 and Limosilactobacillus fermentum MR2 were sensitive to the majority of the tested antibiotics and showed good bile salt hydrolase activity. CONCLUSION L. paracasei BD3, L. plantarum BR4 and L. fermentum MR2 were isolated from Egyptian cheeses and showed probiotic and technological characterization, which are valuable for their practical application as starters, adjunct and protective cultures in cheese making.
Collapse
Affiliation(s)
- Mohsen Zommara
- Department of Dairy Science, Faculty of Agriculture, Kafrelsheikh University, Kafr El- Sheikh, 33516, Egypt
| | - Shady El-Ghaish
- Department of Dairy Science, Faculty of Agriculture, Kafrelsheikh University, Kafr El- Sheikh, 33516, Egypt
| | - Thomas Haertle
- UR 1268 Biopolymères Interactions Assemblages, Équipe Fonctions et Interactions des Protéines, INRA, Nantes Cedex 03, 44316, France
| | - Jean-Marc Chobert
- UR 1268 Biopolymères Interactions Assemblages, Équipe Fonctions et Interactions des Protéines, INRA, Nantes Cedex 03, 44316, France
| | - Mohamed Ghanimah
- Department of Dairy Science, Faculty of Agriculture, Kafrelsheikh University, Kafr El- Sheikh, 33516, Egypt.
| |
Collapse
|
6
|
Amin N, Schwarzkopf S, Tröscher-Mußotter J, Camarinha-Silva A, Dänicke S, Huber K, Frahm J, Seifert J. Host metabolome and faecal microbiome shows potential interactions impacted by age and weaning times in calves. Anim Microbiome 2023; 5:12. [PMID: 36788596 PMCID: PMC9926800 DOI: 10.1186/s42523-023-00233-z] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2021] [Accepted: 02/06/2023] [Indexed: 02/16/2023] Open
Abstract
BACKGROUND Calves undergo nutritional, metabolic, and behavioural changes from birth to the entire weaning period. An appropriate selection of weaning age is essential to reduce the negative effects caused by weaning-related dietary transitions. This study monitored the faecal microbiome and plasma metabolome of 59 female Holstein calves during different developmental stages and weaning times (early vs. late) and identified the potential associations of the measured parameters over an experimental period of 140 days. RESULTS A progressive development of the microbiome and metabolome was observed with significant differences according to the weaning groups (weaned at 7 or 17 weeks of age). Faecal samples of young calves were dominated by bifidobacterial and lactobacilli species, while their respective plasma samples showed high concentrations of amino acids (AAs) and biogenic amines (BAs). However, as the calves matured, the abundances of potential fiber-degrading bacteria and the plasma concentrations of sphingomyelins (SMs), few BAs and acylcarnitines (ACs) were increased. Early-weaning at 7 weeks significantly restructured the microbiome towards potential fiber-degrading bacteria and decreased plasma concentrations of most of the AAs and SMs, few BAs and ACs compared to the late-weaning event. Strong associations between faecal microbes, plasma metabolites and calf growth parameters were observed during days 42-98, where the abundances of Bacteroides, Parabacteroides, and Blautia were positively correlated with the plasma concentrations of AAs, BAs and SMs as well as the live weight gain or average daily gain in calves. CONCLUSION The present study reported that weaning at 17 weeks of age was beneficial due to higher growth rate of late-weaned calves during days 42-98 and a quick adaptability of microbiota to weaning-related dietary changes during day 112, suggesting an age-dependent maturation of the gastrointestinal tract. However, the respective plasma samples of late-weaned calves contained several metabolites with differential concentrations to the early-weaned group, suggesting a less abrupt but more-persistent effect of dietary changes on host metabolome compared to the microbiome.
Collapse
Affiliation(s)
- Nida Amin
- grid.9464.f0000 0001 2290 1502HoLMiR - Hohenheim Center for Livestock Microbiome Research, University of Hohenheim, Stuttgart, Germany ,grid.9464.f0000 0001 2290 1502Institute of Animal Science, University of Hohenheim, Emil-Wolff-Str. 6-10, 70593 Stuttgart, Germany
| | - Sarah Schwarzkopf
- grid.9464.f0000 0001 2290 1502HoLMiR - Hohenheim Center for Livestock Microbiome Research, University of Hohenheim, Stuttgart, Germany ,grid.9464.f0000 0001 2290 1502Institute of Animal Science, University of Hohenheim, Emil-Wolff-Str. 6-10, 70593 Stuttgart, Germany
| | - Johanna Tröscher-Mußotter
- grid.9464.f0000 0001 2290 1502HoLMiR - Hohenheim Center for Livestock Microbiome Research, University of Hohenheim, Stuttgart, Germany ,grid.9464.f0000 0001 2290 1502Institute of Animal Science, University of Hohenheim, Emil-Wolff-Str. 6-10, 70593 Stuttgart, Germany
| | - Amélia Camarinha-Silva
- grid.9464.f0000 0001 2290 1502HoLMiR - Hohenheim Center for Livestock Microbiome Research, University of Hohenheim, Stuttgart, Germany ,grid.9464.f0000 0001 2290 1502Institute of Animal Science, University of Hohenheim, Emil-Wolff-Str. 6-10, 70593 Stuttgart, Germany
| | - Sven Dänicke
- grid.417834.dInstitute of Animal Nutrition, Friedrich-Loeffler-Institut, Federal Research Institute for Animal Health, Brunswick, Germany
| | - Korinna Huber
- grid.9464.f0000 0001 2290 1502HoLMiR - Hohenheim Center for Livestock Microbiome Research, University of Hohenheim, Stuttgart, Germany ,grid.9464.f0000 0001 2290 1502Institute of Animal Science, University of Hohenheim, Emil-Wolff-Str. 6-10, 70593 Stuttgart, Germany
| | - Jana Frahm
- grid.417834.dInstitute of Animal Nutrition, Friedrich-Loeffler-Institut, Federal Research Institute for Animal Health, Brunswick, Germany
| | - Jana Seifert
- HoLMiR - Hohenheim Center for Livestock Microbiome Research, University of Hohenheim, Stuttgart, Germany. .,Institute of Animal Science, University of Hohenheim, Emil-Wolff-Str. 6-10, 70593, Stuttgart, Germany.
| |
Collapse
|
7
|
Hymenolepis diminuta Reduce Lactic Acid Bacterial Load and Induce Dysbiosis in the Early Infection of the Probiotic Colonization of Swiss Albino Rat. Microorganisms 2022; 10:microorganisms10122328. [PMID: 36557581 PMCID: PMC9785584 DOI: 10.3390/microorganisms10122328] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2022] [Revised: 11/11/2022] [Accepted: 11/11/2022] [Indexed: 11/27/2022] Open
Abstract
Tapeworm infection continues to be an important cause of morbidity worldwide. Recent metagenomics studies have established a link between gut microbiota and parasite infection. The identification of gut probiotics is of foremost importance to explore its relationship and function with the parasite in the host. In this study, the gut content of hosts infected with tapeworm Hymenolepis diminuta and non-infected host gut were disected out to determine their Lactic acid bacterial (LAB) population in MRS agar and microbial community was analysed by metagenomics. The bacterial count was calculated on a bacterial counting chamber and their morphology was determined microscopically and biochemically. Further, to determine the safety profile antibiotic resistance test, antimicrobial, hemolytic activity, and adhesion capability were calculated. We found six dominant probiotic strains and a decrease in LAB load from 1.7-2.3 × 107 CFU/mL in the uninfected group to a range of 8.4 × 105 CFU/mL to 3.2 × 105 CFU/mL in the infected groups with respect to an increase in the parasite number from 10-18. In addition, we found a depletion in the probiotic relative abundance of Lactobacillus and an enrichment in potentially pathogenic Proteobacteria, Fusobacteria, and Streptococcus. Phylogenetic analysis of the six probiotics revealed a close similarity with different strains of L. brevis, L. johnsonii, L. taiwansis, L. reuteri, L. plantarum, and L. pentosus. Thus, this study suggests that the parasite inhibits probiotic colonization in the gut during its early establishment of infection inside the host.
Collapse
|
8
|
Al-Surrayai T, Al-Khalaifah H, Al-Mansour H, Kishk M, Al-Mutairi A, Sultan H, Al-Saleem H. Evaluation of the lactic acid bacteria based formulated probiotic product for poultry. FRONTIERS IN ANIMAL SCIENCE 2022. [DOI: 10.3389/fanim.2022.1026958] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
This study evaluated the effectiveness of a new probiotic product developed to reduce the effect of Salmonella infections and compared it to the efficacy of commercial probiotics in broiler chicken. Based on the in vitro assessment of the growth characteristics and safety to human health, four bacterial isolates were isolated, characterized, and identified as excellent candidates for the development of commercial probiotic feed additives for poultry. Compatibility and interactions among the four selected strains were investigated. After that, a preliminary study was conducted in which the selected isolates were evaluated individually in vivo with three different methods of application (water, feed, and oral gavage). The cycle included N = 312 chicks, which were divided into 13 groups, including control, distributed into four batteries, with 78 broiler chickens in each battery. There were eight replicates with 24 chicks in each replicate, and the analysis was randomly done in triplicate. The intentional parameters were growth performance, microbial analysis and humoral immune response. The results of the preliminary study assisted in formulating the new probiotic product. Then In vivo evaluations for the newly formulated product were performed with the comparison with two imported commercial products (Alterion and Galli pro fit) used in poultry farms in Kuwait. The second cycle included N = 96 chicks that were divided into four groups, including control. Each group has three replicates and each replicate has eight chicks, and the analysis was randomly done in triplicate. The results showed that although antibiotics were not used, all the growth parameters were similar and sometimes better than the control. The new product inhibited the growth of salmonella as a control and all chickens in different treatment gained a high mass of meat. The statistical analysis showed that no differences were observed in bird weight, weight gain, feed consumption, and feed efficiency between bacterial strains p>0.05. Also, the different probiotic treatments did not affect the total antibody IgM titers significantly in the broilers (P > 0.05). Thus, the newly formulated product was effective in reducing the salmonella.
Collapse
|
9
|
Afshari A, Hashemi M, Tavassoli M, Eraghi V, Noori SA. Probiotic bacteria from 10 different traditional Iranian cheeses: Isolation, characterization, and investigation of probiotic potential. Food Sci Nutr 2022; 10:2009-2020. [PMID: 35702287 PMCID: PMC9179165 DOI: 10.1002/fsn3.2817] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2021] [Revised: 02/16/2022] [Accepted: 02/18/2022] [Indexed: 12/12/2022] Open
Abstract
In this study, 10 different traditional Iranian cheeses, which are still consumed by people in rural areas of Iran, were examined to isolate new strains of probiotic bacteria. Isolated bacteria were identified by 16s rRNA gene amplification and subjected to series of in vitro tests to find out their probiotic potential. A total of 2345 colonies were collected and 465 of them were confirmed as lactic acid bacteria (LAB), of which Lactiplantibacillus plantarum, Lactobacillus bulgaricus, and Lacticaseibacillus casei were the top three isolated bacteria. Among the different species of LAB isolated in this study, Lactip. plantarum was the most isolated species, and seven isolates had the significant criteria for being a probiotic strain than other isolates indicating the most adaptable properties of this species. Lactiplantibacillus plantarum was the most resistant bacteria in the bile resistance test and was also the most durable bacteria in gastrointestinal conditions, for example, acidic environment (pH = 2.5) and trypsin. In contrast, Lacticaseibacillus casei was the most susceptible bacterial strain. Lactobacillus rhamnosus showed the most antibacterial effect against Staphylococcus aureus, Escherichia coli, and Pseudomonas aeruginosa. This study showed that probiotic strains isolated from local cheeses could be considered as suitable biopreservatives and used as specific starter cultures for the production of functional cheeses.
Collapse
Affiliation(s)
- Asma Afshari
- Department of NutritionFaculty of MedicineMashhad University of Medical SciencesMashhadIran
| | - Mohammad Hashemi
- Department of NutritionFaculty of MedicineMashhad University of Medical SciencesMashhadIran
| | - Milad Tavassoli
- Student Research CommitteeDepartment of Food Sciences and TechnologyFaculty of Nutrition and Food SciencesTabriz University of Medical SciencesTabrizIran
| | - Vida Eraghi
- Department of BiotechnologySabzevar BranchIslamic Azad UniversitySabzevarIran
| | - Seyyed Mohammad Ali Noori
- Nutrition and Metabolic Diseases Research CenterClinical Sciences Research InstituteAhvaz Jundishapur University of Medical SciencesAhvazIran
- Department of NutritionSchool of Allied Medical SciencesAhvaz Jundishapur University of Medical SciencesAhvazIran
| |
Collapse
|
10
|
Sugajski M, Maślak E, Złoch M, Rafińska K, Pomastowski P, Białczak D, Buszewski B. New sources of lactic acid bacteria with potential antibacterial properties. Arch Microbiol 2022; 204:349. [PMID: 35616812 DOI: 10.1007/s00203-022-02956-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2022] [Revised: 04/25/2022] [Accepted: 04/28/2022] [Indexed: 11/29/2022]
Abstract
In the face of the growing demand for functional food, the search for new sources of lactic acid bacteria (LAB) becomes a priority. In our research, we used multiplied culture conditions followed by identification via the matrix-assisted laser desorption ionization-time of flight mass spectrometry for seeking LAB strains in plant- and animal-derived sources. Furthermore, the selected LAB isolates were examined for their proteolytic activity as well as antimicrobial action against different bacterial pathogens. The applied method appeared to be useful tool for searching LAB strains within different types of the biological matrices. The best source of the LABs was from calf. Comparing properties of the two selected LABs, those isolated from calf demonstrated the greatest proteolytic and antibacterial properties suggesting that gastrointestinal microbiota are the most valuable LAB source. Nevertheless, second selected strain derived from pickled cucumber juice may be also treated as a promising source of potential probiotic strains.
Collapse
Affiliation(s)
- Mateusz Sugajski
- Centre for Modern Interdisciplinary Technologies, Nicolaus Copernicus University in Toruń, Wileńska 4 Str, 87-100, Toruń, Poland
| | - Ewelina Maślak
- Centre for Modern Interdisciplinary Technologies, Nicolaus Copernicus University in Toruń, Wileńska 4 Str, 87-100, Toruń, Poland.,Department of Environmental Chemistry and Bioanalytics, Faculty of Chemistry, Nicolaus Copernicus University in Toruń, Gagarina 7, 87-100, Toruń, Poland
| | - Michał Złoch
- Centre for Modern Interdisciplinary Technologies, Nicolaus Copernicus University in Toruń, Wileńska 4 Str, 87-100, Toruń, Poland. .,Department of Environmental Chemistry and Bioanalytics, Faculty of Chemistry, Nicolaus Copernicus University in Toruń, Gagarina 7, 87-100, Toruń, Poland.
| | - Katarzyna Rafińska
- Department of Environmental Chemistry and Bioanalytics, Faculty of Chemistry, Nicolaus Copernicus University in Toruń, Gagarina 7, 87-100, Toruń, Poland
| | - Paweł Pomastowski
- Centre for Modern Interdisciplinary Technologies, Nicolaus Copernicus University in Toruń, Wileńska 4 Str, 87-100, Toruń, Poland
| | - Dorota Białczak
- Polmlek Grudziądz Sp. z o. o, Magazynowa 8, 86-302, Grudziądz, Poland
| | - Bogusław Buszewski
- Centre for Modern Interdisciplinary Technologies, Nicolaus Copernicus University in Toruń, Wileńska 4 Str, 87-100, Toruń, Poland.,Department of Environmental Chemistry and Bioanalytics, Faculty of Chemistry, Nicolaus Copernicus University in Toruń, Gagarina 7, 87-100, Toruń, Poland
| |
Collapse
|
11
|
Varada VV, Tyagi AK, Banakar PS, Das A, Tyagi N, Mallapa RH, Kumar S. Autochthonous Limosilactobacillus reuteri BFE7 and Ligilactobacillus salivarius BF17 probiotics consortium supplementation improves performance, immunity, and selected gut health indices in Murrah buffalo calves. Vet Res Commun 2022; 46:757-767. [PMID: 35107723 DOI: 10.1007/s11259-022-09896-6] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2021] [Accepted: 01/30/2022] [Indexed: 11/28/2022]
Abstract
Probiotics have emerged as biotherapeutic adjuncts to combat neonatal calf gastrointestinal disorders. Therefore, they are considered a suitable alternative to antibiotics for maintaining a healthy and balanced gut microbiota. Hence, the current investigation was carried out to evaluate the effect of autochthonous probiotics on Murrah buffalo calves. Sixteen calves (5-7 days of age) were randomly divided into four groups. Group I served as control (CT), fed a basal diet with no supplementation. Groups II (LR), III (LS), and IV (CS) were supplemented with Limosilactobacillus reuteri BF-E7, Ligilactobacillus salivarius BF-17, and a consortium of both probiotic strains at a rate of 1x108 CFU/g/calf per day along with the basal diet, respectively. Two previously isolated potential probiotic strains, Limosilactobacillus reuteri BF-E7 and Ligilactobacillus salivarius BF-17, were found to be compatible in vitro. Dietary supplementation of probiotics for sixty days significantly increased (P<0.05) dry matter intake (DMI, g/d), average daily gain (ADG, g/d), net body weight gain (kg), feed conversion efficiency (FCE), and structural growth measurements as compared to control. Furthermore, a considerable (P<0.05) increase in the abundance of beneficial intestinal microbiota (lactobacilli and bifidobacteria) was observed along with improvement in fecal biomarkers like lactate and ammonia, immune status, and reduced fecal score. Upon comparative analysis among treatment groups, the results were found to be better in the probiotic consortium fed group compared to the LR and LS treated groups. The present findings conclusively deduced that autochthonous probiotic consortium might serve as potential candidate for fostering performance, immunity, and gut health biomarkers in Murrah buffalo calves.
Collapse
Affiliation(s)
- Vinay Venkatesh Varada
- Rumen Biotechnology Lab., Animal Nutrition Division, ICAR-National Dairy Research Institute, Karnal, Haryana, 132001, India
| | - Amrish Kumar Tyagi
- Rumen Biotechnology Lab., Animal Nutrition Division, ICAR-National Dairy Research Institute, Karnal, Haryana, 132001, India.,Indian Council of Agricultural Research, New Delhi, India
| | - Praveen Sivakumara Banakar
- Rumen Biotechnology Lab., Animal Nutrition Division, ICAR-National Dairy Research Institute, Karnal, Haryana, 132001, India
| | - Asit Das
- Rumen Biotechnology Lab., Animal Nutrition Division, ICAR-National Dairy Research Institute, Karnal, Haryana, 132001, India
| | - Nitin Tyagi
- Rumen Biotechnology Lab., Animal Nutrition Division, ICAR-National Dairy Research Institute, Karnal, Haryana, 132001, India
| | | | - Sachin Kumar
- Rumen Biotechnology Lab., Animal Nutrition Division, ICAR-National Dairy Research Institute, Karnal, Haryana, 132001, India.
| |
Collapse
|
12
|
Yan R, Lu Y, Wu X, Yu P, Lan P, Wu X, Jiang Y, Li Q, Pi X, Liu W, Zhou J, Yu Y. Anticolonization of Carbapenem-Resistant Klebsiella pneumoniae by Lactobacillus plantarum LP1812 Through Accumulated Acetic Acid in Mice Intestinal. Front Cell Infect Microbiol 2022; 11:804253. [PMID: 34976873 PMCID: PMC8714838 DOI: 10.3389/fcimb.2021.804253] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2021] [Accepted: 11/29/2021] [Indexed: 12/22/2022] Open
Abstract
Carbapenem-resistant Klebsiella pneumoniae (CRKP) is highly prevalent and poses a significant threat to public health. In critically ill patients, gut colonization is considered to be the reservoir of recurrent CRKP infection. Therefore, eliminating CRKP carriage in the intestine is critical for preventing subsequent CRKP infection. In the present study, Lactobacillus plantarum LP1812, a probiotic that can inhibit CRKP in vitro, was used as a candidate probiotic to investigate its efficacy for CRKP anticolonization. Compared with the control, mice fed with 1×10 8 CFU L. plantarum LP1812 exhibited significant CRKP clearance from 1×10 4 CFU/mg to less than 10 CFU/mg in mice feces. Furthermore, 16S RNA gene sequencing revealed that L. plantarum LP1812 modulated mice microbiota by increasing the relative abundance of the genus Halomanas, Blautia, and Holdemania. Further KEGG pathway enrichment analysis revealed that fatty acid-utilizing bacteria, such as acetate-producing Bacteroidetes and Blautia flourished in mice fed with L. plantarum LP1812. Moreover, we found that the concentration of acetic acid was higher in L. plantarum LP1812, which inhibited the growth of K. pneumoniae strains in vitro. Meanwhile, mice intragastrically administered with acetic acid exhibited significantly increased CRKP elimination in vivo. In conclusion, L. plantarum LP1812 is a potential candidate for intestinal CRKP anticolonization by regulating the intestinal microbiota and inhibiting CRKP via increased acetic acid in the intestinal lumen.
Collapse
Affiliation(s)
- Rushuang Yan
- Department of Critical Care Medicine, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China.,Key Laboratory of Microbial Technology and Bioinformatics of Zhejiang Province, Sir Run Run Shaw Hospital, Hangzhou, China
| | - Ye Lu
- Department of Critical Care Medicine, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China.,Key Laboratory of Microbial Technology and Bioinformatics of Zhejiang Province, Sir Run Run Shaw Hospital, Hangzhou, China
| | - Xiaoqing Wu
- Department of Rehabilitation, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Peihao Yu
- Department of Critical Care Medicine, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China.,Key Laboratory of Microbial Technology and Bioinformatics of Zhejiang Province, Sir Run Run Shaw Hospital, Hangzhou, China
| | - Peng Lan
- Department of Critical Care Medicine, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China.,Key Laboratory of Microbial Technology and Bioinformatics of Zhejiang Province, Sir Run Run Shaw Hospital, Hangzhou, China
| | - Xueqing Wu
- Key Laboratory of Microbial Technology and Bioinformatics of Zhejiang Province, Sir Run Run Shaw Hospital, Hangzhou, China.,Department of Infectious Diseases, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Yan Jiang
- Key Laboratory of Microbial Technology and Bioinformatics of Zhejiang Province, Sir Run Run Shaw Hospital, Hangzhou, China.,Department of Infectious Diseases, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Qi Li
- Department of Emergency Medicine, Lanxi People's Hospital, Lanxi, China
| | - Xionge Pi
- Institute of Plant Protection and Microbiology, Zhejiang Academy of Agricultural Sciences, Hangzhou, China
| | - Wei Liu
- Institute of Plant Protection and Microbiology, Zhejiang Academy of Agricultural Sciences, Hangzhou, China
| | - Jiancang Zhou
- Department of Critical Care Medicine, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Yunsong Yu
- Key Laboratory of Microbial Technology and Bioinformatics of Zhejiang Province, Sir Run Run Shaw Hospital, Hangzhou, China.,Department of Infectious Diseases, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China
| |
Collapse
|
13
|
de Souza da Motta A, Nespolo CR, Breyer GM. Probiotics in milk and dairy foods. PROBIOTICS 2022:103-128. [DOI: 10.1016/b978-0-323-85170-1.00004-x] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/06/2025]
|
14
|
Isolation and probiotic potential of lactic acid bacteria from swine feces for feed additive composition. Arch Microbiol 2021; 204:61. [PMID: 34940898 PMCID: PMC8702511 DOI: 10.1007/s00203-021-02700-0] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2021] [Revised: 11/08/2021] [Accepted: 11/09/2021] [Indexed: 12/05/2022]
Abstract
Animal microbiota is becoming an object of interest as a source of beneficial bacteria for commercial use. Moreover, the escalating problem of bacterial resistance to antibiotics is threatening animals and humans; therefore, in the last decade intensive search for alternative antimicrobials has been observed. In this study, lactic acid bacteria (LAB) were isolated from suckling and weaned pigs feces (376) and characterized to determine their functional properties and usability as pigs additives. Selection of the most promising LAB was made after each stage of research. Isolates were tested for their antimicrobial activity (376) and susceptibility to antibiotics (71). Selected LAB isolates (41) were tested for the production of organic acids, enzymatic activity, cell surface hydrophobicity and survival in gastrointestinal tract. Isolates selected for feed additive (5) were identified by MALDI-TOF mass spectrometry and partial sequence analysis of 16S rRNA gene, represented by Lentilactobacillus, Lacticaseibacillus (both previously classified as Lactobacillus) and Pediococcus genus. Feed additive prototype demonstrated high viability after lyophilization and during storage at 4 °C and − 20 °C for 30 days. Finally, feed additive was tested for survival in simulated alimentary tract of pigs, showing viability at the sufficient level to colonize the host. Studies are focused on obtaining beneficial strains of LAB with probiotic properties for pigs feed additive.
Collapse
|
15
|
Gupta M, Pattanaik AK, Singh A, Sharma S, Jadhav SE, Kumar A, Verma AK. Functional and probiotic characterization of Ligilactobacillus salivarius CPN60 isolated from calf faeces and its appraisal in rats. J Biosci Bioeng 2021; 132:575-584. [PMID: 34600807 DOI: 10.1016/j.jbiosc.2021.09.001] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2021] [Revised: 08/23/2021] [Accepted: 09/01/2021] [Indexed: 10/20/2022]
Abstract
Emerging concern about the emergence of antimicrobial resistance has limited the use of antibiotics in calves. Hence, there is a need to find suitable alternatives to antibiotics to manage gastrointestinal infections in neonatal calves. The objective of the present study was to develop a probiotic of calf-origin for its potential application in calf nutrition. Accordingly, 69 lactic acid bacteria (LAB) strains were isolated from faeces of newborn calves, out of which 10 strains were short-listed for further in vitro testing based on the aggregation time and cell surface hydrophobicity. The results of acid-, bile- and phenol-tolerance tests indicated that out of the ten strains, the isolate CPN60 had better resistance to these adverse conditions likely to be encountered in the gastrointestinal tract. The isolate also showed an optimal ability to produce biofilm. Further assessments reiterated its superiority in terms of co-aggregation and antagonistic activity against pathogenic strains of Escherichia coli. Subsequently, the isolate was identified through 16S rRNA sequencing and sequence homology and designated as Ligilactobacillus salivarius CPN60. The candidate probiotic was evaluated in vivo using 48 male (5 weeks old) Wistar rats, divided into two equal groups viz. control (CON) and probiotic (PRO). During the 4-weeks feeding trial, the PRO group rats were gavaged with one mL culture of L. salivarius CPN60 equivalent to 108 CFU/rat. The in vivo trial results indicated better nutrient utilization efficiency and growth performance (p < 0.001) of the PRO group of rats. The probiotic supplementation improved the faecal concentration of lactate (p < 0.001) and individual as well as total short-chain fatty acids (p < 0.001) production. The cell-mediated immune response, assessed as a delayed-type hypersensitivity reaction to phytohaemagglutinin-P, was improved (p < 0.001) in PRO compared to the CON rats. It is concluded that the calf-origin probiotic L. salivarius CPN60, in addition to possessing all the in vitro functional attributes of a candidate probiotic, also has desirable potential for its future use in young calves to promote gut health and immunity.
Collapse
Affiliation(s)
- Mokshata Gupta
- Clinical and Pet Nutrition Laboratory, Division of Animal Nutrition, ICAR-Indian Veterinary Research Institute, Izatnagar 243 122, India
| | - Ashok Kumar Pattanaik
- Clinical and Pet Nutrition Laboratory, Division of Animal Nutrition, ICAR-Indian Veterinary Research Institute, Izatnagar 243 122, India.
| | - Asmita Singh
- Clinical and Pet Nutrition Laboratory, Division of Animal Nutrition, ICAR-Indian Veterinary Research Institute, Izatnagar 243 122, India
| | - Shalini Sharma
- Clinical and Pet Nutrition Laboratory, Division of Animal Nutrition, ICAR-Indian Veterinary Research Institute, Izatnagar 243 122, India
| | - Sunil Ekanath Jadhav
- Centre for Advanced Faculty Training, Division of Animal Nutrition, ICAR-Indian Veterinary Research Institute, Izatnagar 243 122, India
| | - Avneesh Kumar
- Clinical and Pet Nutrition Laboratory, Division of Animal Nutrition, ICAR-Indian Veterinary Research Institute, Izatnagar 243 122, India
| | - Ashok Kumar Verma
- Centre for Advanced Faculty Training, Division of Animal Nutrition, ICAR-Indian Veterinary Research Institute, Izatnagar 243 122, India
| |
Collapse
|
16
|
Jang HJ, Son S, Kim JA, Jung MY, Choi YJ, Kim DH, Lee HK, Shin D, Kim Y. Characterization and Functional Test of Canine Probiotics. Front Microbiol 2021; 12:625562. [PMID: 33763044 PMCID: PMC7982664 DOI: 10.3389/fmicb.2021.625562] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2020] [Accepted: 02/17/2021] [Indexed: 02/01/2023] Open
Abstract
Probiotics can modulate the composition of gut microbiota and benefit the host animal health in multiple ways. Lactic acid bacteria (LAB), mainly Lactobacillus and Bifidobacterium species, are well-known microbes with probiotic potential. In the present study, 88 microbial strains were isolated from canine feces and annotated. Among these, the four strains CACC517, 537, 558, and 566 were tested for probiotic characteristics, and their beneficial effects on hosts were evaluated both in vitro and in vivo; these strains exhibited antibiosis, antibiotic activity, acid and bile tolerance, and relative cell adhesion to the HT-29 monolayer cell line. Byproducts of these strains increased the viability and decreased oxidative stress in mouse and dog cell lines (RAW264.7 and DH82, respectively). Subsequently, when the probiotics were applied to the clinical trial, changes in microbial composition and relative abundance of bacterial strains were clearly observed in the experimental animals. Experimental groups before and after the application were obviously separated from PCA analysis of clinical results. Conclusively, these results could provide comprehensive understanding of the effects of probiotic strains (CACC517, 537, 558, and 566) and their industrial applications.
Collapse
Affiliation(s)
- Hyun-Jun Jang
- Department of Research and Development, Center for Industrialization of Agricultural and Livestock Microorganisms, Jeongeup-si, South Korea
| | - Seungwoo Son
- Department of Agricultural Convergence Technology, Jeonbuk National University, Jeonju-si, South Korea.,The Animal Molecular Genetics & Breeding Center, Jeonbuk National University, Jeonju-si, South Korea
| | - Jung-Ae Kim
- Department of Research and Development, Center for Industrialization of Agricultural and Livestock Microorganisms, Jeongeup-si, South Korea.,Department of Bioactive Material Sciences, Jeonbuk National University, Jeonju-si, South Korea
| | - Min Young Jung
- Department of Research and Development, Center for Industrialization of Agricultural and Livestock Microorganisms, Jeongeup-si, South Korea
| | - Yeon-Jae Choi
- Department of Research and Development, Center for Industrialization of Agricultural and Livestock Microorganisms, Jeongeup-si, South Korea
| | - Dae-Hyuk Kim
- Department of Research and Development, Center for Industrialization of Agricultural and Livestock Microorganisms, Jeongeup-si, South Korea.,Department of Bioactive Material Sciences, Jeonbuk National University, Jeonju-si, South Korea.,Department of Molecular Biology, Institute for Molecular Biology and Genetics, Jeonbuk National University, Jeonju-si, South Korea
| | - Hak Kyo Lee
- Department of Agricultural Convergence Technology, Jeonbuk National University, Jeonju-si, South Korea.,The Animal Molecular Genetics & Breeding Center, Jeonbuk National University, Jeonju-si, South Korea
| | - Donghyun Shin
- Department of Agricultural Convergence Technology, Jeonbuk National University, Jeonju-si, South Korea.,The Animal Molecular Genetics & Breeding Center, Jeonbuk National University, Jeonju-si, South Korea
| | - Yangseon Kim
- Department of Research and Development, Center for Industrialization of Agricultural and Livestock Microorganisms, Jeongeup-si, South Korea
| |
Collapse
|
17
|
Singh A, Kumar S, Vinay V, Tyagi B, Choudhury PK, Rashmi H, Banakar P, Tyagi N, Tyagi AK. Autochthonous Lactobacillus spp. isolated from Murrah buffalo calves show potential application as probiotic. CURRENT RESEARCH IN BIOTECHNOLOGY 2021. [DOI: 10.1016/j.crbiot.2021.04.002] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
|
18
|
Pei L, Yang H, Qin S, Yan Z, Zhang H, Lan Y, Li A, Iqbal M, Shen Y. Isolation and Evaluation of Probiotic Potential of Lactic Acid Strains From Healthy Equines for Potential Use in Salmonella Infection. J Equine Vet Sci 2021; 96:103312. [PMID: 33349402 DOI: 10.1016/j.jevs.2020.103312] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2020] [Revised: 10/21/2020] [Accepted: 10/23/2020] [Indexed: 12/11/2022]
Abstract
The objective of the present study was to evaluate the probiotic properties, security and antibacterial ability in vivo of isolated strains from healthy equine. In the present study, two Pediococcus acidilactici (P1 and P2) and two Lactobacillus equi (L1 and L2) were isolated. All isolates were died when exposed to pH 2.0 for 3 hours but survived at pH 3.0 and pH 4.0 with differential survival rate, and there is a higher survival rate at pH 4.0. Similarly, the isolates showed different tolerance to bile. The viable bacteria count was sustained at high levels in a tolerance test with artificial gastrointestinal fluid. The isolates survived and grew at temperatures between 37 and 55°C but died at 65°C. Four strains exhibited inhibitory activity against pathogens, including Salmonella typhimurium (CVCC542), Escherichia coli (C83902), Staphylococcus aureus (BNCC186335), and Pasteurella multocida (clinical isolate). These isolates exhibited differential antibiotic susceptibility. In safety trials, all isolates were γ-hemolytic, and the oral toxicity of strains P1 (gavaged with 1 × 109 CFU/day) and L1 (gavaged with 1 × 109 CFU/day) were analyzed in mice. There were no effects on the overall health status of mice. There were no prominent differences in the incidence of bacteria translocation to blood, liver, and spleen. Mice gavaged with Pediococcus acidilactici P1 (1 × 108 CFU/day) or Lactobacillus equi L1 (1 × 108 CFU/day) as prevention showed lower rates of diarrhea and mortality after being challenged with Salmonella typhimurium (4 × 106 CFU signal dose, 0.1 mL by intragastric gavage). The results indicate that the isolated strains could act as potential probiotics, providing a new way to reduce salmonella infection, which merit future application studies.
Collapse
Affiliation(s)
- Lulu Pei
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, Hubei, China
| | - Hao Yang
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, Hubei, China
| | - Songkang Qin
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, Hubei, China
| | - Ziyin Yan
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, Hubei, China
| | - Hui Zhang
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, Hubei, China
| | - Yanfang Lan
- Wuhan Business University, Wuhan, Hubei, China
| | - Aoyun Li
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, Hubei, China
| | - Mudassar Iqbal
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, Hubei, China
| | - Yaoqin Shen
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, Hubei, China.
| |
Collapse
|
19
|
Aladeboyeje OT, Sanli NO, Buyuk U. Evaluation of the Antimicrobial Efficacy of some Fermented Traditional Turkish Beverages with Probiotic Potentials. JOHNSON MATTHEY TECHNOLOGY REVIEW 2021. [DOI: 10.1595/205651322x16388083409013] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Turkey is a home country for a good number of fermented beverages derived from milk, cereals, fruits and vegetables, and several studies have reported the probiotic potentiality of these beverages. Probiotics, otherwise known as beneficial microorganisms possess the ability to exert antimicrobial effects, which is one of the most important selection criteria for their use in commercial products. In the current study, the antimicrobial activities of potential probiotic bacteria isolated from five fermented traditional Turkish beverages (boza, kefir, ayran, shalgam juice and hardaliye) were evaluated. The bacterial isolates were morphologically characterized and genotypically identified by 16S rRNA gene sequence analysis. The antimicrobial effects of the isolates against selected human pathogens were assessed using spot-on-the-lawn and agar well diffusion assays. Eighteen of the twenty-two strains displayed varying degrees of antagonism against the tested pathogens. Amongst the isolates, the strongest antimicrobial effects were exhibited by strains from boza, kefir and shalgam which can be attributed to their greater microbiota diversity. Strain specificity in the activities of the obtained isolates and specificity with the different indicator pathogens tested was observed. The impressive antimicrobial effects exhibited by boza, kefir and shalgam isolates offer a promising health benefit to consumers of these fermented probiotic products.
Collapse
Affiliation(s)
| | - Nazmiye Ozlem Sanli
- Section of Biotechnology, Department of Biology, İstanbul University, İstanbul, 34126, Turkey
| | - Umut Buyuk
- Hibrigen Biyoteknoloji, Tübitak MAM Teknoloji Serbest Bölge Şubesi Barış Mahallesi 5002 Sk. Yeni Tek. Binası A Blok 4 A/101 Gebze/Kocaeli, Turkey
- Department of Molecular Biology and Genetics, Faculty of Science, Istanbul University, Istanbul 34134, Turkey
| |
Collapse
|
20
|
Patrone V, Al-Surrayai T, Romaniello F, Fontana A, Milani G, Sagheddu V, Puglisi E, Callegari ML, Al-Mansour H, Kishk MW, Morelli L. Integrated Phenotypic-Genotypic Analysis of Candidate Probiotic Weissella Cibaria Strains Isolated from Dairy Cows in Kuwait. Probiotics Antimicrob Proteins 2020; 13:809-823. [PMID: 33085038 PMCID: PMC8203532 DOI: 10.1007/s12602-020-09715-x] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/26/2020] [Indexed: 12/12/2022]
Abstract
Probiotics represent a possible strategy for controlling intestinal infections in livestock. Members of the Weissella genus are increasingly being studied for health-related applications in animals and humans. Here we investigated the functional properties of two Weissella cibaria strains isolated from cows reared in Kuwait breeding facilities by combining phenotypic with genomic analyses. W. cibaria SP7 and SP19 exhibited good growth in vitro under acidic conditions and in the presence of bile salts compared to the reference probiotic Lacticaseibacillus (formerly Lactobacillus) rhamnosus GG. Both strains were able to adhere to Caco-2 and HT-29 cell lines, as well as to mucin. The cell-free supernatants of the two isolates exhibited inhibitory activity towards Escherichia coli ATCC 25,922 and Salmonella enterica UC3605, which was ultimately due to the low pH of supernatants. W. cibaria SP19 showed a co-aggregation ability similar to that of L. rhamnosus GG when incubated with S. enterica. Whole genome sequencing and analysis revealed that both strains harbored several genes involved in carbohydrate metabolism and general stress responses, indicating bacterial adaptation to the gastrointestinal environment. We also detected genes involved in the adhesion to host epithelial cells or extracellular matrix. No evidence of acquired antibiotic resistance or hemolytic activity was found in either strain. These findings shed light on the potential of W. cibaria for probiotic use in livestock and on the mechanisms underlying host-microbe interaction in the gut. W. cibaria` strain SP19 exhibited the best combination of in vitro probiotic properties and genetic markers, and is a promising candidate for further investigation.
Collapse
Affiliation(s)
- Vania Patrone
- Department for Sustainable Food Process (DiSTAS), Università Cattolica del Sacro Cuore, via E. Parmense 84, 29122, Piacenza, Italy
| | | | - Francesco Romaniello
- Biotechnological Research Centre, Università Cattolica del Sacro Cuore, via Milano 24, 26100, Cremona, Italy
| | - Alessandra Fontana
- Department for Sustainable Food Process (DiSTAS), Università Cattolica del Sacro Cuore, via E. Parmense 84, 29122, Piacenza, Italy
| | - Giovanni Milani
- Department for Sustainable Food Process (DiSTAS), Università Cattolica del Sacro Cuore, via E. Parmense 84, 29122, Piacenza, Italy
| | - Valeria Sagheddu
- AAT - Advanced Analytical Technologies Srl, Via P. Majavacca 12, 29107, Fiorenzuola d'Arda (Piacenza), Italy
| | - Edoardo Puglisi
- Department for Sustainable Food Process (DiSTAS), Università Cattolica del Sacro Cuore, via E. Parmense 84, 29122, Piacenza, Italy
| | - Maria Luisa Callegari
- Biotechnological Research Centre, Università Cattolica del Sacro Cuore, via Milano 24, 26100, Cremona, Italy.
| | | | | | - Lorenzo Morelli
- Department for Sustainable Food Process (DiSTAS), Università Cattolica del Sacro Cuore, via E. Parmense 84, 29122, Piacenza, Italy
| |
Collapse
|
21
|
Huang J, Zhang W, Hu Z, Liu Z, Du T, Dai Y, Xiong T. Isolation, characterization and selection of potential probiotic lactic acid bacteria from feces of wild boar, native pig and commercial pig. Livest Sci 2020; 237:104036. [DOI: 10.1016/j.livsci.2020.104036] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
|
22
|
Tarrah A, da Silva Duarte V, Pakroo S, Corich V, Giacomini A. Genomic and phenotypic assessments of safety and probiotic properties of Streptococcus macedonicus strains of dairy origin. Food Res Int 2020; 130:108931. [DOI: 10.1016/j.foodres.2019.108931] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2019] [Revised: 12/15/2019] [Accepted: 12/17/2019] [Indexed: 10/25/2022]
|
23
|
Kang CH, Gu T, So JS. Possible Probiotic Lactic Acid Bacteria Isolated from Oysters (Crassostrea gigas). Probiotics Antimicrob Proteins 2019; 10:728-739. [PMID: 28875385 DOI: 10.1007/s12602-017-9315-5] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
We attempted to isolate lactic acid bacteria (LAB) from the marine oyster (Crassostrea gigas) and selected several environmental stress-resistant isolates for the development of a future probiotic adjuvant for marine aquaculture. Twenty-six presumptive LAB isolates were extracted from oysters and screened (by an agar diffusion assay) for antimicrobial activity toward various pathogens: Vibrio parahaemolyticus, Streptococcus iniae, and Edwardsiella tarda. Eight isolates had an antibacterial activity toward V. parahaemolyticus; in particular, 6 isolates showed a growth-inhibitory activity, with inhibition zone diameters > 15 mm. Of these, 5 isolates (JL17, JL18, JL28, HL7, and HL32) were also active against S. iniae and E. tarda. Enterococcus faecium HL7 was selected as the isolate most resistant to environmental stressors: the minimum NaCl, ethanol, and hydrogen peroxide concentrations at which HL7 cells lost their viability were 1.9 M, 11%, and 0.013%, respectively. When an antibiotic sensitivity test was performed on E. faecium HL7, this isolate was found to be resistant to trimethoprim/sulfamethoxazole, cephalothin, ampicillin, rifampin, gentamicin, cefotaxime, cefepime, cefotetan, nalidixic acid, and kanamycin. While the oyster model studies provided indication that E. faecium HL7 could be a good candidate as biocontrol agent against V. vulnificus, further optimization is needed in the actual animal rearing situation.
Collapse
Affiliation(s)
- Chang-Ho Kang
- Department of Biological Engineering, Inha University, 100 Inha-ro, Nam-gu, Incheon, 22212, South Korea.,MEDIOGEN, Co., Ltd., Jecheon-si, 27159, South Korea
| | - Takyong Gu
- Department of Biological Engineering, Inha University, 100 Inha-ro, Nam-gu, Incheon, 22212, South Korea
| | - Jae-Seong So
- Department of Biological Engineering, Inha University, 100 Inha-ro, Nam-gu, Incheon, 22212, South Korea.
| |
Collapse
|
24
|
Khaldi TEM, Kebouchi M, Soligot C, Gomri MA, Kharroub K, Le Roux Y, Roux E. Streptococcus macedonicus strains isolated from traditional fermented milks: resistance to gastrointestinal environment and adhesion ability. Appl Microbiol Biotechnol 2019; 103:2759-2771. [PMID: 30701281 DOI: 10.1007/s00253-019-09651-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2018] [Revised: 12/27/2018] [Accepted: 01/15/2019] [Indexed: 12/12/2022]
Abstract
In this study, Streptococcus macedonicus (S. macedonicus) strains were identified from Algerian traditional fermented milks (Lben and Rayeb). Important prerequisites of probiotic interest such as acidity, bile salts tolerance, and adhesion ability to epithelial cells were investigated. A combination of phenotypic (ability to grow on Bile Esculin Azide medium, BEA; on high salt content medium NaCl 6.5%; on alkaline medium pH 9.6) and genotypic approaches (16S rRNA, ITS genes sequencing and MLST technique) allowed to identify four genetically distinct strains of S. macedonicus. These four strains and two references, Streptococcus thermophilus LMD-9 and Lactobacillus rhamnosus GG (LGG), were tested for their capacity to survive at low pH values, and at different concentrations of an equimolar bile salts mixture (BSM). Two different cell lines, Caco-2 TC7 and HT29-MTX, were used for the adhesion study. The results show that S. macedonicus strains selected constitute a distinct genetic entity from the Greek strain S. macedonicus ACA-DC-198. They were able to survive up to pH 3 and could tolerate high concentrations of bile salts (10 mM), unlike LMD-9 and LGG strains. Our strains also display in vitro adhesion similar to the LGG strain on Caco-2 TC7 and higher adhesion than the LMD-9 strain to Caco-2 TC7 and HT29-MTX cell models. This first characterization allows considering S. macedonicus as a potential candidate for possible probiotic effects that need to be investigated.
Collapse
Affiliation(s)
- Tedj El Moulouk Khaldi
- Laboratoire Alimentation, Nutrition et Santé (ALNUTS), Institut de la Nutrition, de l'Alimentation et des Technologies Agro Alimentaires (INATAA), Université Frères Mentouri Constantine 1 (UFMC1), Route de Ain El Bey, 25000, Constantine, Algeria
| | | | - Claire Soligot
- INRA, URAFPA, Université de Lorraine, F-54000, Nancy, France
| | - Mohamed Amine Gomri
- Laboratoire Biotechnologie et Qualité des Aliments (BIOQUAL), Equipe Métabolites des Extrêmophiles METEX, Institut de la Nutrition, de l'Alimentation et des Technologies Agro Alimentaires (INATAA), Université Frères Mentouri Constantine 1 (UFMC1), Route de Ain El Bey, 25000, Constantine, Algeria
| | - Karima Kharroub
- Laboratoire Biotechnologie et Qualité des Aliments (BIOQUAL), Equipe Métabolites des Extrêmophiles METEX, Institut de la Nutrition, de l'Alimentation et des Technologies Agro Alimentaires (INATAA), Université Frères Mentouri Constantine 1 (UFMC1), Route de Ain El Bey, 25000, Constantine, Algeria
| | - Yves Le Roux
- INRA, URAFPA, Université de Lorraine, F-54000, Nancy, France
| | - Emeline Roux
- CALBINOTOX, Université de Lorraine, F-54000, Nancy, France.
| |
Collapse
|
25
|
Lo Verso L, Lessard M, Talbot G, Fernandez B, Fliss I. Isolation and Selection of Potential Probiotic Bacteria from the Pig Gastrointestinal Tract. Probiotics Antimicrob Proteins 2019; 10:299-312. [PMID: 28744832 DOI: 10.1007/s12602-017-9309-3] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The present study aimed to isolate bacterial strains from the pig gastrointestinal tract that have antagonistic activity against potential pathogens and are able to produce antimicrobial compounds. That ability would be a first requirement for the strains' possible use as probiotics. Samples obtained from pig intestinal mucosa and contents were screened for the presence of antagonistic activity against pathogenic indicator strains of Escherichia coli, Salmonella, and Listeria by means of the double-layer technique. Samples displaying the largest inhibitory halos were further studied for the production of inhibitory substances using the agar diffusion and microtitration methods. The three most promising isolates were identified by sequencing of the 16S rRNA gene and showed highest affiliation to Lactobacillus salivarius. Optimal growth conditions and bacteriocin production were recorded in de Man, Rogosa, and Sharpe broth under anaerobic conditions at 37 °C. The antimicrobial substances were found to be sensitive to proteolytic enzymes but showed good stability at pH values below 6. Our findings suggest that these three intestinal strains are able to produce antimicrobial substances capable of inhibiting the growth of potential enteric pathogens and might have potential as probiotic feed additives for the prevention of gastrointestinal diseases.
Collapse
Affiliation(s)
- Luca Lo Verso
- Sherbrooke Research and Development Centre, Agriculture and Agri-Food Canada, 2000 College Street, Sherbrooke, Quebec, J1M 0C8, Canada.
| | - Martin Lessard
- Sherbrooke Research and Development Centre, Agriculture and Agri-Food Canada, 2000 College Street, Sherbrooke, Quebec, J1M 0C8, Canada
| | - Guylaine Talbot
- Sherbrooke Research and Development Centre, Agriculture and Agri-Food Canada, 2000 College Street, Sherbrooke, Quebec, J1M 0C8, Canada
| | - Benoit Fernandez
- Institute of Nutrition and Functional Foods, Université Laval, Quebec City, Quebec, G1K 7P4, Canada
| | - Ismail Fliss
- Institute of Nutrition and Functional Foods, Université Laval, Quebec City, Quebec, G1K 7P4, Canada
| |
Collapse
|
26
|
In vitro probiotic properties of vaginal Lactobacillus fermentum MG901 and Lactobacillus plantarum MG989 against Candida albicans. Eur J Obstet Gynecol Reprod Biol 2018; 228:232-237. [PMID: 30014929 DOI: 10.1016/j.ejogrb.2018.07.005] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2018] [Revised: 05/30/2018] [Accepted: 07/02/2018] [Indexed: 11/20/2022]
Abstract
Candida albicans is the most important Candida species causing vulvovaginal candidiasis (VVC). We investigated the potential of the probiotic strains Lactobacillus fermentum MG901 and L. plantarum MG989 towards control of C. albiacns. Cell viability tests following co-culturing with lactobacilli revealed that C. albicans cells lost metabolic activity and were eventually killed. Further studies revealed that MG901 and MG989 had high surface hydrophobicity that enhanced its adhesion ability to epithelial cell. The MG901 and MG989 showed coaggregation with E. coli and C. albicans to affect their adhesion and colonization. The adhesion of MG901 and MG989 to HT-29 cell and its inhibition of E. coli and C. albicans adherence to these cells were demonstrated. These incidences provided evidence of the possible colonization of MG901 and MG989 that would prevent binding and growth of E. coli and C. albicans onto intestinal epithelial cells. Following daily administration of 108 CFU of viable MG901 and MG989 orally, the animals' feces were examined for bacterial excretion. The potential probiotic MG901 and MG989 were found to persist for up to 6 days in the feces of mice. In conclusion, L. fermentum MG901 and L. plantarum MG989 have the potential to inhibit the yeast growth, which could possibly have played an important role in helping to clear VVC in vivo.
Collapse
|
27
|
Fernández S, Fraga M, Silveyra E, Trombert AN, Rabaza A, Pla M, Zunino P. Probiotic properties of native Lactobacillus spp. strains for dairy calves. Benef Microbes 2018; 9:613-624. [PMID: 29633640 DOI: 10.3920/bm2017.0131] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
The use of native microorganisms with probiotic capacity is an alternative tool for the treatment and prevention of several diseases that affect animals, such as neonatal calf diarrhoea. The selection of probiotic strains within a collection is based on different in vitro and in vivo assays, which predict their potential. The aim of this study was to characterise a group of native Lactobacillus spp. strains isolated from faeces of healthy calves using an in vitro approach and to assess their ability to colonise the gastrointestinal tract (GIT) of calves. Native Lactobacillus spp. strains were evaluated on their capacity to survive low pH conditions and bile salts presence, biofilm formation and adhesion to both mucus and Caco-2 cells. Based on the in vitro characterisation, four strains (Lactobacillus johnsonii TP1.1, Lactobacillus reuteri TP1.3B, L. johnsonii TP1.6 and Lactobacillus amylovorus TP8.7) were selected to evaluate their capacity to colonise and persist in the GIT of calves. The assessment of enteric persistence involved an in vivo assay with oral administration of probiotics and quantification in faeces of the administered bacterial species with real-time quantitative PCR (qPCR). The study was conducted using 15 calves (1-month-old) which were divided into five groups of three animals, four of which were treated with four different selected strains and one was the control group. Strains TP1.3B and TP1.6 managed to persist in treated animals until ten days after the end of the administration period, indicating that they could be promising candidates for the design of probiotics for calves.
Collapse
Affiliation(s)
- S Fernández
- 1 Department of Microbiology, Instituto de Investigaciones Biológicas 'Clemente Estable', Av Italia 3318, Montevideo, Uruguay
| | - M Fraga
- 2 Animal Health Unit, Instituto Nacional de Investigación Agropecuaria, Ruta 50 Km 11, Colonia, Uruguay
| | - E Silveyra
- 1 Department of Microbiology, Instituto de Investigaciones Biológicas 'Clemente Estable', Av Italia 3318, Montevideo, Uruguay
| | - A N Trombert
- 3 Genomic and Bioinformatic Centre, Universidad Mayor, Camino La Pirámide 5750, Huechuraba, Santiago, Chile
| | - A Rabaza
- 1 Department of Microbiology, Instituto de Investigaciones Biológicas 'Clemente Estable', Av Italia 3318, Montevideo, Uruguay
| | - M Pla
- 4 Dairy Unit, Instituto Nacional de Investigación Agropecuaria, Ruta 50 Km 11, Colonia, Uruguay
| | - P Zunino
- 1 Department of Microbiology, Instituto de Investigaciones Biológicas 'Clemente Estable', Av Italia 3318, Montevideo, Uruguay
| |
Collapse
|
28
|
Jans C, Boleij A. The Road to Infection: Host-Microbe Interactions Defining the Pathogenicity of Streptococcus bovis/Streptococcus equinus Complex Members. Front Microbiol 2018; 9:603. [PMID: 29692760 PMCID: PMC5902542 DOI: 10.3389/fmicb.2018.00603] [Citation(s) in RCA: 49] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2017] [Accepted: 03/15/2018] [Indexed: 12/17/2022] Open
Abstract
The Streptococcus bovis/Streptococcus equinus complex (SBSEC) comprises several species inhabiting the animal and human gastrointestinal tract (GIT). They match the pathobiont description, are potential zoonotic agents and technological organisms in fermented foods. SBSEC members are associated with multiple diseases in humans and animals including ruminal acidosis, infective endocarditis (IE) and colorectal cancer (CRC). Therefore, this review aims to re-evaluate adhesion and colonization abilities of SBSEC members of animal, human and food origin paired with genomic and functional host-microbe interaction data on their road from colonization to infection. SBSEC seem to be a marginal population during GIT symbiosis that can proliferate as opportunistic pathogens. Risk factors for human colonization are considered living in rural areas and animal-feces contact. Niche adaptation plays a pivotal role where Streptococcus gallolyticus subsp. gallolyticus (SGG) retained the ability to proliferate in various environments. Other SBSEC members have undergone genome reduction and niche-specific gene gain to yield important commensal, pathobiont and technological species. Selective colonization of CRC tissue is suggested for SGG, possibly related to increased adhesion to cancerous cell types featuring enhanced collagen IV accessibility. SGG can colonize, proliferate and may shape the tumor microenvironment to their benefit by tumor promotion upon initial neoplasia development. Bacteria cell surface structures including lipotheichoic acids, capsular polysaccharides and pilus loci (pil1, pil2, and pil3) govern adhesion. Only human blood-derived SGG contain complete pilus loci and other disease-associated surface proteins. Rumen or feces-derived SGG and other SBSEC members lack or harbor mutated pili. Pili also contribute to binding to fibrinogen upon invasion and translocation of cells from the GIT into the blood system, subsequent immune evasion, human contact system activation and collagen-I-binding on damaged heart valves. Only SGG carrying complete pilus loci seem to have highest IE potential in humans with significant links between SGG bacteremia/IE and underlying diseases including CRC. Other SBSEC host-microbe combinations might rely on currently unknown mechanisms. Comparative genome data of blood, commensal and food isolates are limited but required to elucidate the role of pili and other virulence factors, understand pathogenicity mechanisms, host specificity and estimate health risks for animals, humans and food alike.
Collapse
Affiliation(s)
- Christoph Jans
- Laboratory of Food Biotechnology, Institute of Food Nutrition and Health, Department of Health Science and Technology, ETH Zurich, Zurich, Switzerland
| | - Annemarie Boleij
- Department of Pathology, Radboud Institute for Molecular Life Sciences, Radboudumc, Nijmegen, Netherlands
| |
Collapse
|
29
|
Tavakoli M, Hamidi-Esfahani Z, Hejazi M, Azizi M, Abbasi S. Characterization of Probiotic Abilities of Lactobacilli Isolated from Iranian Koozeh Traditional Cheese. POL J FOOD NUTR SCI 2017. [DOI: 10.1515/pjfns-2016-0003] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
|
30
|
Sandes S, Alvim L, Silva B, Acurcio L, Santos C, Campos M, Santos C, Nicoli J, Neumann E, Nunes Á. Selection of new lactic acid bacteria strains bearing probiotic features from mucosal microbiota of healthy calves: Looking for immunobiotics through in vitro and in vivo approaches for immunoprophylaxis applications. Microbiol Res 2017; 200:1-13. [PMID: 28527759 DOI: 10.1016/j.micres.2017.03.008] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2017] [Revised: 03/15/2017] [Accepted: 03/23/2017] [Indexed: 12/27/2022]
Abstract
From the birth, since their mucosal microbiota and immune system are not fully developed, newborn calves are susceptible to several mucosal pathogenic microorganisms. Operating through humoral and non-humoral mechanisms in the host, several lactic acid bacteria strains bearing probiotic features are often employed in livestock as food supplement, improving animal production performance, promoting health and reducing the severity of mucosal infections. Accordingly, we isolated, species-level identified and screened for their probiotic potentials seventy lactic acid bacteria strains from upper airway, vaginal and intestinal mucosa of healthy calves. Based on in vitro approaches, we selected three strains: Lactobacillus fermentum V3B-08 isolated from upper airway mucosa, Weissella hellenica V1V-30 isolated from vaginal mucosa and Lactobacillus farciminis B4F-06 isolated from intestinal mucosa were used to mono-colonize germ-free mice in the same site in which these strains were isolated, aiming to characterize their immunomodulatory features. These strains were able to colonize germ-free mice mucosa and trigger sIgA synthesis at a local level, in addition to stimulating, in different ways, adaptive immune responses at a systemic level.
Collapse
Affiliation(s)
- Sávio Sandes
- Departamento de Biologia Geral, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Campus Pampulha, Av. Antônio Carlos 6627, 31270-901, Belo Horizonte, MG, Brazil.
| | - Luige Alvim
- Departamento de Biologia Geral, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Campus Pampulha, Av. Antônio Carlos 6627, 31270-901, Belo Horizonte, MG, Brazil
| | - Bruno Silva
- Departamento de Biologia Geral, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Campus Pampulha, Av. Antônio Carlos 6627, 31270-901, Belo Horizonte, MG, Brazil
| | - Leonardo Acurcio
- Departamento de Microbiologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Campus Pampulha, Av. Antônio Carlos 6627, 31270-901, Belo Horizonte, MG, Brazil
| | - Cinara Santos
- Departamento de Biologia Geral, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Campus Pampulha, Av. Antônio Carlos 6627, 31270-901, Belo Horizonte, MG, Brazil; Departamento de Microbiologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Campus Pampulha, Av. Antônio Carlos 6627, 31270-901, Belo Horizonte, MG, Brazil
| | - Márcia Campos
- Departamento de Biologia Geral, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Campus Pampulha, Av. Antônio Carlos 6627, 31270-901, Belo Horizonte, MG, Brazil
| | - Camila Santos
- Departamento de Biologia Geral, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Campus Pampulha, Av. Antônio Carlos 6627, 31270-901, Belo Horizonte, MG, Brazil
| | - Jacques Nicoli
- Departamento de Microbiologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Campus Pampulha, Av. Antônio Carlos 6627, 31270-901, Belo Horizonte, MG, Brazil
| | - Elisabeth Neumann
- Departamento de Microbiologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Campus Pampulha, Av. Antônio Carlos 6627, 31270-901, Belo Horizonte, MG, Brazil
| | - Álvaro Nunes
- Departamento de Biologia Geral, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Campus Pampulha, Av. Antônio Carlos 6627, 31270-901, Belo Horizonte, MG, Brazil
| |
Collapse
|
31
|
Sadishkumar V, Jeevaratnam K. In vitroprobiotic evaluation of potential antioxidant lactic acid bacteria isolated fromidlibatter fermented withPiper betleleaves. Int J Food Sci Technol 2016. [DOI: 10.1111/ijfs.13284] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Affiliation(s)
- Vishwanathan Sadishkumar
- Department of Biochemistry and Molecular Biology; Pondicherry University; Puducherry 605014 India
| | - Kadirvelu Jeevaratnam
- Department of Biochemistry and Molecular Biology; Pondicherry University; Puducherry 605014 India
| |
Collapse
|
32
|
Silva BC, Sandes SHC, Alvim LB, Bomfim MRQ, Nicoli JR, Neumann E, Nunes AC. Selection of a candidate probiotic strain of Pediococcus pentosaceus from the faecal microbiota of horses by in vitro testing and health claims in a mouse model of Salmonella infection. J Appl Microbiol 2016; 122:225-238. [PMID: 27813217 PMCID: PMC7166613 DOI: 10.1111/jam.13339] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2016] [Revised: 10/13/2016] [Accepted: 10/31/2016] [Indexed: 12/28/2022]
Abstract
AIMS The aim of this study was to verify the suitable use of candidate 'probiotics' selected by in vitro tests and the importance of in vivo assays to nominate micro-organisms as probiotics and alternative prophylactic treatments for Salmonella Typhimurium infection. METHODS AND RESULTS Thirty-three lactic acid bacteria (LAB) isolated from foal's faeces were assessed based on the main desirable functional in vitro criteria. Based on these results, Pediococcus pentosaceus strain 40 was chosen to evaluate its putative probiotic features in a mouse model of Salmonella infection. Daily intragastric doses of Ped. pentosaceus 40 for 10 days before and 10 days after Salmonella challenge (106 CFU of Salm. Typhimurium per mouse) led to a significant aggravation in mouse health by increasing weight loss, worsening clinical symptoms and anticipating the time and the number of deaths by Salmonella. Pediococcus pentosaceus modulated cell-mediated immune responses by up-regulation of the gene expression of the proinflammatory cytokines IFN-γ and TNF-α in the small intestine. CONCLUSION The usual criteria were used for in vitro screening of a large number of LAB for desirable probiotic functional properties. However, the best candidate probiotic strain identified, Ped. pentosaceus #40, aggravated the experimental disease in mice. SIGNIFICANCE AND IMPACT OF THE STUDY These findings emphasize the need for prophylactic or therapeutic effectiveness to be demonstrated in in vivo models to make precise health claims.
Collapse
Affiliation(s)
- B C Silva
- Departamento de Biologia Geral, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Campus Pampulha, Belo Horizonte, MG, Brazil
| | - S H C Sandes
- Departamento de Biologia Geral, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Campus Pampulha, Belo Horizonte, MG, Brazil
| | - L B Alvim
- Departamento de Biologia Geral, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Campus Pampulha, Belo Horizonte, MG, Brazil
| | - M R Q Bomfim
- Laboratório de Biologia Molecular de Microrganismos do Núcleo de Biologia Parasitária, Centro Universitário do Maranhão (UniCEUMA), São Luís, MA, Brazil
| | - J R Nicoli
- Departamento de Microbiologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Campus Pampulha, Belo Horizonte, MG, Brazil
| | - E Neumann
- Departamento de Microbiologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Campus Pampulha, Belo Horizonte, MG, Brazil
| | - A C Nunes
- Departamento de Biologia Geral, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Campus Pampulha, Belo Horizonte, MG, Brazil
| |
Collapse
|
33
|
Ishaq SL, Kim CJ, Reis D, Wright ADG. Fibrolytic Bacteria Isolated from the Rumen of North American Moose (Alces alces) and Their Use as a Probiotic in Neonatal Lambs. PLoS One 2015; 10:e0144804. [PMID: 26716685 PMCID: PMC4696820 DOI: 10.1371/journal.pone.0144804] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2015] [Accepted: 11/24/2015] [Indexed: 12/31/2022] Open
Abstract
Fibrolytic bacteria were isolated from the rumen of North American moose (Alces alces), which eat a high-fiber diet of woody browse. It was hypothesized that fibrolytic bacteria isolated from the moose rumen could be used as probiotics to improve fiber degradation and animal production. Thirty-one isolates (Bacillus, n = 26; Paenibacillus, n = 1; and Staphylococcus, n = 4) were cultured from moose rumen digesta samples collected in Vermont. Using Sanger sequencing of the 16S rRNA gene, culturing techniques, and optical densities, isolates were identified and screened for biochemical properties important to plant carbohydrate degradation. Five isolates were selected as candidates for use as a probiotic, which was administered daily to neonate lambs for 9 weeks. It was hypothesized that regular administration of a probiotic to improve fibrolysis to neonate animals through weaning would increase the developing rumen bacterial diversity, increase animal production, and allow for long-term colonization of the probiotic species. Neither weight gain nor wool quality was improved in lambs given a probiotic, however, dietary efficiency was increased as evidenced by the reduced feed intake (and rearing costs) without a loss to weight gain. Experimental lambs had a lower acetate to propionate ratio than control lambs, which was previously shown to indicate increased dietary efficiency. Fibrolytic bacteria made up the majority of sequences, mainly Prevotella, Butyrivibrio, and Ruminococcus. While protozoal densities increased over time and were stable, methanogen densities varied greatly in the first six months of life for lambs. This is likely due to the changing diet and bacterial populations in the developing rumen.
Collapse
Affiliation(s)
- Suzanne L. Ishaq
- Department of Animal Science, College of Agriculture and Life Sciences, University of Vermont, Burlington, Vermont, United States of America
- * E-mail:
| | - Christina J. Kim
- Department of Animal Science, College of Agriculture and Life Sciences, University of Vermont, Burlington, Vermont, United States of America
| | - Doug Reis
- Department of Microbiology and Molecular Genetics, College of Agriculture and Life Sciences, University of Vermont, Burlington, Vermont, United States of America
| | - André-Denis G. Wright
- Department of Animal Science, College of Agriculture and Life Sciences, University of Vermont, Burlington, Vermont, United States of America
| |
Collapse
|
34
|
Bunesova V, Vlkova E, Rada V, Killer J, Musilova S. Bifidobacteria from the gastrointestinal tract of animals: differences and similarities. Benef Microbes 2015; 5:377-88. [PMID: 24889892 DOI: 10.3920/bm2013.0081] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
At present, the genus Bifidobacterium includes 48 species and subspecies, and this number is expected to increase. Bifidobacteria are found in different ecological niches. However, most were originally isolated from animals, mainly mammals, especially during the milk feeding period of life. Their presence in high numbers is associated with good health of the host. Moreover, bifidobacteria are often found in poultry and insects that exhibit a social mode of life (honeybees and bumblebees). This review is designed as a summary of currently known species of the genus Bifidobacterium, especially focused on their difference and similarities. The primary focus is on their occurrence in the digestive tract of animals, as well as the specificities of animal strains, with regard to their potential use as probiotics.
Collapse
Affiliation(s)
- V Bunesova
- Department of Microbiology, Nutrition and Dietetics, Faculty of Agrobiology, Food and Natural Resources, Czech University of Life Sciences Prague, Kamycka 129, 16521 Prague 6-Suchdol, Czech Republic
| | - E Vlkova
- Department of Microbiology, Nutrition and Dietetics, Faculty of Agrobiology, Food and Natural Resources, Czech University of Life Sciences Prague, Kamycka 129, 16521 Prague 6-Suchdol, Czech Republic
| | - V Rada
- Department of Microbiology, Nutrition and Dietetics, Faculty of Agrobiology, Food and Natural Resources, Czech University of Life Sciences Prague, Kamycka 129, 16521 Prague 6-Suchdol, Czech Republic
| | - J Killer
- Department of Microbiology, Nutrition and Dietetics, Faculty of Agrobiology, Food and Natural Resources, Czech University of Life Sciences Prague, Kamycka 129, 16521 Prague 6-Suchdol, Czech Republic Institute of Animal Physiology and Genetics, Academy of Sciences of the Czech Republic, Vídeňská 1083, 14200 Prague 4-Krč, Czech Republic
| | - S Musilova
- Department of Microbiology, Nutrition and Dietetics, Faculty of Agrobiology, Food and Natural Resources, Czech University of Life Sciences Prague, Kamycka 129, 16521 Prague 6-Suchdol, Czech Republic
| |
Collapse
|
35
|
Leite AMO, Miguel MAL, Peixoto RS, Ruas-Madiedo P, Paschoalin VMF, Mayo B, Delgado S. Probiotic potential of selected lactic acid bacteria strains isolated from Brazilian kefir grains. J Dairy Sci 2015; 98:3622-32. [PMID: 25841972 DOI: 10.3168/jds.2014-9265] [Citation(s) in RCA: 124] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2014] [Accepted: 02/16/2015] [Indexed: 12/26/2022]
Abstract
A total of 34 lactic acid bacteria isolates from 4 different Brazilian kefir grains were identified and characterized among a group of 150 isolates, using the ability to tolerate acidic pH and resistance to bile salts as restrictive criteria for probiotic potential. All isolates were identified by amplified ribosomal DNA restriction analysis and 16S rDNA sequencing of representative amplicons. Eighteen isolates belonged to the species Leuconostoc mesenteroides, 11 to Lactococcus lactis (of which 8 belonged to subspecies cremoris and 3 to subspecies lactis), and 5 to Lactobacillus paracasei. To exclude replicates, a molecular typing analysis was performed by combining repetitive extragenic palindromic-PCR and random amplification of polymorphic DNA techniques. Considering a threshold of 90% similarity, 32 different strains were considered. All strains showed some antagonistic activity against 4 model food pathogens. In addition, 3 Lc. lactis strains and 1 Lb. paracasei produced bacteriocin-like inhibitory substances against at least 2 indicator organisms. Moreover, 1 Lc. lactis and 2 Lb. paracasei presented good total antioxidative activity. None of these strains showed undesirable enzymatic or hemolytic activities, while proving susceptible or intrinsically resistant to a series of clinically relevant antibiotics. The Lb. paracasei strain MRS59 showed a level of adhesion to human Caco-2 epithelial cells comparable with that observed for Lactobacillus rhamnosus GG. Taken together, these properties allow the MRS59 strain to be considered a promising probiotic candidate.
Collapse
Affiliation(s)
- A M O Leite
- Curso Farmácia, Universidade Federal do Rio de Janeiro, Campus Macaé, Macaé, RJ, Brazil 27930-560; Instituto de Productos Lácteos de Asturias (IPLA-CSIC), Villaviciosa, Asturias, Spain 33300; Instituto de Química, Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ, Brazil 21941-904
| | - M A L Miguel
- Instituto de Microbiologia Paulo de Goes, Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ, Brazil 21941-904
| | - R S Peixoto
- Instituto de Microbiologia Paulo de Goes, Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ, Brazil 21941-904
| | - P Ruas-Madiedo
- Instituto de Productos Lácteos de Asturias (IPLA-CSIC), Villaviciosa, Asturias, Spain 33300
| | - V M F Paschoalin
- Instituto de Química, Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ, Brazil 21941-904.
| | - B Mayo
- Instituto de Productos Lácteos de Asturias (IPLA-CSIC), Villaviciosa, Asturias, Spain 33300
| | - S Delgado
- Instituto de Productos Lácteos de Asturias (IPLA-CSIC), Villaviciosa, Asturias, Spain 33300
| |
Collapse
|
36
|
Pringsulaka O, Rueangyotchanthana K, Suwannasai N, Watanapokasin R, Amnueysit P, Sunthornthummas S, Sukkhum S, Sarawaneeyaruk S, Rangsiruji A. In vitro screening of lactic acid bacteria for multi-strain probiotics. Livest Sci 2015. [DOI: 10.1016/j.livsci.2015.01.016] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|
37
|
Probiotic Properties of Leuconostoc mesenteroides Isolated from Aguamiel of Agave salmiana. Probiotics Antimicrob Proteins 2015; 7:107-17. [DOI: 10.1007/s12602-015-9187-5] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|
38
|
Sharma A, Trivedi S. Evaluation ofin vitroprobiotic potential of phytase-producing bacterial strain as a new probiotic candidate. Int J Food Sci Technol 2014. [DOI: 10.1111/ijfs.12697] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Anjana Sharma
- Bacteriology Laboratory; Department of P. G. Studies and Research in Biological Science; Rani Durgavati University; Pachpedi Jabalpur Madhya Pradesh 482001 India
| | - Shraddha Trivedi
- Bacteriology Laboratory; Department of P. G. Studies and Research in Biological Science; Rani Durgavati University; Pachpedi Jabalpur Madhya Pradesh 482001 India
| |
Collapse
|
39
|
Sandes S, Alvin L, Silva B, Zanirati D, Jung L, Nicoli J, Neumann E, Nunes A. Lactobacillus species identification by amplified ribosomal 16S-23S rRNA restriction fragment length polymorphism analysis. Benef Microbes 2014; 5:471-81. [DOI: 10.3920/bm2013.0092] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Lactic acid bacteria strains are commonly used for animal and human consumption due to their probiotic properties. One of the major genera used is Lactobacillus, a highly diverse genus comprised of several closely related species. The selection of new strains for probiotic use, especially strains of Lactobacillus, is the focus of several research groups. Accurate identification to species level is fundamental for research on new strains, as well as for safety assessment and quality assurance. The 16S-23S internal transcribed spacer (ITS-1) is a deeply homologous region among prokaryotes that is commonly used for identification to the species level because it is able to acquire and accumulate mutations without compromising general bacterial metabolism. In the present study, 16S-23S ITS regions of 45 Lactobacillus species (48 strains) were amplified and subjected to independent enzymatic digestions, using 12 restriction enzymes that recognise six-base sequences. Twenty-nine species showed unique restriction patterns, and could therefore be precisely identified solely by this assay (64%). This approach proved to be reproducible, allowing us to establish simplified restriction patterns for each evaluated species. The restriction patterns of each species were similar among homologous strains, and to a large extent reflected phylogenetic relationships based on 16S rRNA sequences, demonstrating the promising nature of this region for evolutionary studies.
Collapse
Affiliation(s)
- S.H.C. Sandes
- Departamento de Biologia Geral, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Campus Pampulha, Av. Antônio Carlos 6627, 31270-901 Belo Horizonte, MG, Brazil
| | - L.B. Alvin
- Departamento de Biologia Geral, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Campus Pampulha, Av. Antônio Carlos 6627, 31270-901 Belo Horizonte, MG, Brazil
| | - B.C. Silva
- Departamento de Biologia Geral, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Campus Pampulha, Av. Antônio Carlos 6627, 31270-901 Belo Horizonte, MG, Brazil
| | - D.F. Zanirati
- Departamento de Biologia Geral, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Campus Pampulha, Av. Antônio Carlos 6627, 31270-901 Belo Horizonte, MG, Brazil
| | - L.R.C. Jung
- Departamento de Biologia Geral, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Campus Pampulha, Av. Antônio Carlos 6627, 31270-901 Belo Horizonte, MG, Brazil
| | - J.R. Nicoli
- Departamento de Microbiologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Campus Pampulha, Av. Antônio Carlos 6627, 31270-901 Belo Horizonte, MG, Brazil
| | - E. Neumann
- Departamento de Microbiologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Campus Pampulha, Av. Antônio Carlos 6627, 31270-901 Belo Horizonte, MG, Brazil
| | - A.C. Nunes
- Departamento de Biologia Geral, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Campus Pampulha, Av. Antônio Carlos 6627, 31270-901 Belo Horizonte, MG, Brazil
| |
Collapse
|
40
|
Tirloni E, Cattaneo P, Ripamonti B, Agazzi A, Bersani C, Stella S. In vitro evaluation of Lactobacillus animalis SB310, Lactobacillus paracasei subsp. paracasei SB137 and their mixtures as potential bioprotective agents for raw meat. Food Control 2014. [DOI: 10.1016/j.foodcont.2014.01.003] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
41
|
Stanford K, Bach S, Baah J, McAllister T. A mixture of Lactobacillus casei, Lactobacillus lactis, and Paenibacillus polymyxa reduces Escherichia coli O157:H7 in finishing feedlot cattle. J Food Prot 2014; 77:738-44. [PMID: 24780327 DOI: 10.4315/0362-028x.jfp-13-433] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
A direct-fed microbial (DFM) containing Paenibacillus polymyxa, Lactobacillus casei, and Lactobacillus lactis was fed to cattle (n = 120) to determine impacts on shedding and survival of Escherichia coli O157:H7 in feces. Cattle were individually penned and fed diets containing 0 (control), 4 × 10(7) CFU (DFM-4), 8 × 10(7) CFU (DFM-8), or 1.2 × 10(8) CFU (DFM-12) lactobacilli per kg of dietary dry matter over 84-day fall-winter growing and 140-day spring-summer finishing periods. Fecal grab samples were collected from cattle at 28-day intervals, E. coli O157:H7 was detected by immunomagnetic separation, and isolates were compared by pulsed-field gel electrophoresis. During the growing period, feces negative for E. coli O157 from each dietary treatment were inoculated with 10(5) CFU/g nalidixic acid-resistant E. coli O157:H7 and were incubated at 4 and 22(u) C for 11 weeks. Fecal pH and fecal dry matter were measured on days 0, 1, 3, and 7 and weekly thereafter, with E. coli O157:H7 enumerated through dilution plating. Treatment with DFMs did not affect survival of E. coli O157:H7 in feces or fecal pH (P > 0.05). Only one steer was positive for E. coli O157:H7 during the growing period, but during the finishing period, DFM-8 and DFM-12 reduced the prevalence of E. coli O157:H7 in feces (P < 0.05). Feeding DFMs also reduced the frequency of individual steers shedding E. coli O157:H7 during finishing (P < 0.05), with control steers shedding E. coli O157:H7 up to four times, whereas DFM-12 steers shed E. coli O157:H7 a maximum of twice. Treatment with DFMs influenced pulsed-field gel electrophoresis profiles; steers that were fed DFM-8 and DFM-12 shed more diverse subtypes of E. coli O157:H7 than did control or DFM-4 steers. Because a companion study found linear improvement in performance with increasing dosage of DFMs in the first 28 days of the growing period, targeted use of DFM-12 during this time and for the final 1 or 2 weeks prior to slaughter may optimize performance and reduce E. coli O157:H7 while minimizing feed costs.
Collapse
Affiliation(s)
- Kim Stanford
- Alberta Agriculture and Rural Development, Lethbridge, Alberta, Canada T1J 4V6
| | - Susan Bach
- Agriculture and Agri-Food Canada, Summerland, British Columbia, Canada VOH 1ZO
| | - John Baah
- Agriculture and Agri-Food Canada, Lethbridge, Alberta, Canada T1J 4V6
| | - Tim McAllister
- Agriculture and Agri-Food Canada, Lethbridge, Alberta, Canada T1J 4V6.
| |
Collapse
|
42
|
Soto L, Zbrun M, Frizzo L, Signorini M, Sequeira G, Rosmini M. Effects of bacterial inoculants in milk on the performance of intensively reared calves. Anim Feed Sci Technol 2014. [DOI: 10.1016/j.anifeedsci.2013.12.004] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
43
|
Jena PK, Trivedi D, Thakore K, Chaudhary H, Giri SS, Seshadri S. Isolation and characterization of probiotic properties of Lactobacilli isolated from rat fecal microbiota. Microbiol Immunol 2013; 57:407-16. [DOI: 10.1111/1348-0421.12054] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2012] [Revised: 03/11/2013] [Accepted: 04/02/2013] [Indexed: 01/26/2023]
Affiliation(s)
- Prasant Kumar Jena
- Institute of Science; Nirma University, Sarkhej-Gandhinagar Highway; Chharodi, Ahmedabad; 382481; Gujarat
| | - Disha Trivedi
- Institute of Science; Nirma University, Sarkhej-Gandhinagar Highway; Chharodi, Ahmedabad; 382481; Gujarat
| | - Kirati Thakore
- Institute of Science; Nirma University, Sarkhej-Gandhinagar Highway; Chharodi, Ahmedabad; 382481; Gujarat
| | - Harshita Chaudhary
- Institute of Science; Nirma University, Sarkhej-Gandhinagar Highway; Chharodi, Ahmedabad; 382481; Gujarat
| | - Sib Sankar Giri
- Department of Biotechnology; Periyar Maniammai University; Thanjavur; 613403; Tamilnadu; India
| | - Sriram Seshadri
- Institute of Science; Nirma University, Sarkhej-Gandhinagar Highway; Chharodi, Ahmedabad; 382481; Gujarat
| |
Collapse
|
44
|
Biagi G, Cipollini I, Bonaldo A, Grandi M, Pompei A, Stefanelli C, Zaghini G. Effect of feeding a selected combination of galacto-oligosaccharides and a strain of Bifidobacterium pseudocatenulatum on the intestinal microbiota of cats. Am J Vet Res 2013; 74:90-5. [PMID: 23270351 DOI: 10.2460/ajvr.74.1.90] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
OBJECTIVE To evaluate the growth kinetics of a strain of Bifidobacterium pseudocatenulatum (BP) on 4 oligo- or polysaccharides and the effect of feeding a selected probiotic-prebiotic combination on intestinal microbiota in cats. ANIMALS 10 healthy adult cats. PROCEDURES Growth kinetics of a strain of cat-origin BP (BP-B82) on fructo-oligosaccharides, galacto-oligosaccharides (GOS), lactitol, or pectins was determined, and the combination of GOS and BP-B82 was selected. Cats received supplemental once-daily feeding of 1% GOS-BP-B82 (10(10) CFUs/d) for 15 days; fecal samples were collected for analysis the day before (day 0) and 1 and 10 days after the feeding period (day 16 and 25, respectively). RESULTS Compared with the prefeeding value, mean fecal ammonia concentration was significantly lower on days 16 and 25 (288 and 281 μmol/g of fecal dry matter [fDM], respectively, vs 353 μmol/g of fDM); fecal acetic acid concentration was higher on day 16 (171 μmol/g of fDM vs 132 μmol/g of fDM). On day 16, fecal concentrations of lactic, n-valeric, and isovaleric acids (3.61, 1.52, and 3.55 μmol/g of fDM, respectively) were significantly lower than on days 0 (5.08, 18.4, and 6.48 μmol/g of fDM, respectively) and 25 (4.24, 17.3, and 6.17 μmol/g of fDM, respectively). A significant increase in fecal bifidobacteria content was observed on days 16 and 25 (7.98 and 7.52 log(10) CFUs/g of fDM, respectively), compared with the prefeeding value (5.63 log(10) CFUs/g of fDM). CONCLUSIONS AND CLINICAL RELEVANCE Results suggested that feeding 1% GOS-BP-B82 combination had some positive effects on the intestinal microbiota in cats.
Collapse
Affiliation(s)
- Giacomo Biagi
- Department of Veterinary Medical Sciences, University of Bologna, Ozzano Emilia, Italy.
| | | | | | | | | | | | | |
Collapse
|
45
|
Argyri AA, Zoumpopoulou G, Karatzas KAG, Tsakalidou E, Nychas GJE, Panagou EZ, Tassou CC. Selection of potential probiotic lactic acid bacteria from fermented olives by in vitro tests. Food Microbiol 2013. [DOI: 10.1016/j.fm.2012.10.005] [Citation(s) in RCA: 313] [Impact Index Per Article: 26.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
|
46
|
Characteristics of Bacterial Isolates from the Gut of Freshwater Fish, Labeo rohita that May be Useful as Potential Probiotic Bacteria. Probiotics Antimicrob Proteins 2012; 4:238-42. [DOI: 10.1007/s12602-012-9119-6] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|