1
|
Segui-Perez C, Huang LZX, Paganelli FL, Lievens E, Strijbis K. Probiotic Bifidobacterium bifidum strains desialylate MUC13 and increase intestinal epithelial barrier function. Sci Rep 2025; 15:8778. [PMID: 40082523 PMCID: PMC11906825 DOI: 10.1038/s41598-025-92125-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2024] [Accepted: 02/25/2025] [Indexed: 03/16/2025] Open
Abstract
Probiotic bacteria including Bifidobacterial species have the capacity to improve intestinal health, but the underlying molecular mechanisms are often not understood. Bifidobacteria are considered keystone species but have a relatively low abundance in the adult intestinal tract. Bifidobacterium colonization depends on degradation of host-derived carbohydrates, including human milk oligosaccharides and mucin-associated oligosaccharides. Specific Bifidobacterium strains can enhance intestinal barrier integrity and improve symptoms of gastrointestinal disorders. We previously reported that the transmembrane mucin MUC13 localizes to the apical and lateral membrane and regulates epithelial tight junction strength. Here, we screened probiotic bacterial strains for their capacity to modulate MUC13 and enhance intestinal barrier function. Of these probiotic bacteria, a Bifidobacterium bifidum strain uniquely degraded the MUC13 O-glycosylated extracellular domain. Further characterization of two probiotic B. bifidum strains (W23 and W28) and the type strain 20456 demonstrated that the W23 and W28 strains adhered strongly to the apical surface, had high sialidase activity, penetrated the mucus layer, and enhanced epithelial barrier integrity. These results underscore the strain-specific properties of these specific B. bifidum strains that most likely contribute to their probiotic effects in the intestinal tract.
Collapse
Affiliation(s)
- Celia Segui-Perez
- Department of Biomolecular Health Sciences, Division Infectious Diseases and Immunology, Faculty of Veterinary Medicine, Utrecht University, Utrecht, The Netherlands
| | - Liane Z X Huang
- Department of Biomolecular Health Sciences, Division Infectious Diseases and Immunology, Faculty of Veterinary Medicine, Utrecht University, Utrecht, The Netherlands
| | | | - Elke Lievens
- Winclove Probiotics B.V., Amsterdam, The Netherlands
| | - Karin Strijbis
- Department of Biomolecular Health Sciences, Division Infectious Diseases and Immunology, Faculty of Veterinary Medicine, Utrecht University, Utrecht, The Netherlands.
| |
Collapse
|
2
|
Anania C, Matys V, Marra S, De Canditiis D, Olivero F, Carraro C, Giugliano A, Zicari AM, Piccioni MG. Effect of Supplementation with a Specific Probiotic ( Bifidobacterium bifidum PRL2010) in Pregnancy for the Prevention of Atopic Dermatitis in Children: Preliminary Results of a Randomized Trial. Nutrients 2025; 17:673. [PMID: 40005000 PMCID: PMC11858544 DOI: 10.3390/nu17040673] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2025] [Revised: 02/10/2025] [Accepted: 02/11/2025] [Indexed: 02/27/2025] Open
Abstract
BACKGROUND Atopic dermatitis (AD) is a chronic inflammatory skin disease characterized by the appearance of recurrent eczematous lesions and intense itching. The World Allergy Organization (WAO) suggested the administration of probiotics in pregnant women at high risk of allergies in their children. OBJECTIVES Our study aims to evaluate the role of administering the Bifidobacterium bifidum strain PRL2010 during pregnancy and breastfeeding in preventing and/or reducing the severity of AD manifestations in children. METHODS It is a monocentric, randomized, double-blind, placebo-controlled trial with probiotic/placebo administration since the 36th week of gestation to mothers with atopy or a family history of atopy; the effects were evaluated over the first 12 months of the children's lives. RESULTS No severe adverse effects due to probiotic intake were reported in our cohort. Although proportionally fewer children with AD were in the probiotic group, the statistical analysis showed no significant differences between the probiotic and placebo groups. However, infants who developed the most severe forms of AD in the probiotic group showed a better clinical course during follow-up compared to those in the placebo group. CONCLUSIONS In conclusion, administering the probiotic Bifidobacterium bifidum strain PRL2010 during pregnancy and breastfeeding is safe and potentially beneficial; further large-scale studies may confirm its usefulness in improving the clinical manifestation of AD in children with a family history of atopy.
Collapse
Affiliation(s)
- Caterina Anania
- Department of Maternal, Infantile and Urological Sciences, Sapienza University of Rome, 00161 Rome, Italy; (V.M.); (S.M.); (C.C.); (A.G.); (A.M.Z.); (M.G.P.)
| | - Viviana Matys
- Department of Maternal, Infantile and Urological Sciences, Sapienza University of Rome, 00161 Rome, Italy; (V.M.); (S.M.); (C.C.); (A.G.); (A.M.Z.); (M.G.P.)
| | - Simona Marra
- Department of Maternal, Infantile and Urological Sciences, Sapienza University of Rome, 00161 Rome, Italy; (V.M.); (S.M.); (C.C.); (A.G.); (A.M.Z.); (M.G.P.)
| | | | | | - Carlo Carraro
- Department of Maternal, Infantile and Urological Sciences, Sapienza University of Rome, 00161 Rome, Italy; (V.M.); (S.M.); (C.C.); (A.G.); (A.M.Z.); (M.G.P.)
| | - Anna Giugliano
- Department of Maternal, Infantile and Urological Sciences, Sapienza University of Rome, 00161 Rome, Italy; (V.M.); (S.M.); (C.C.); (A.G.); (A.M.Z.); (M.G.P.)
| | - Anna Maria Zicari
- Department of Maternal, Infantile and Urological Sciences, Sapienza University of Rome, 00161 Rome, Italy; (V.M.); (S.M.); (C.C.); (A.G.); (A.M.Z.); (M.G.P.)
| | - Maria Grazia Piccioni
- Department of Maternal, Infantile and Urological Sciences, Sapienza University of Rome, 00161 Rome, Italy; (V.M.); (S.M.); (C.C.); (A.G.); (A.M.Z.); (M.G.P.)
| |
Collapse
|
3
|
Xu J, Sheikh TMM, Shafiq M, Khan MN, Wang M, Guo X, Yao F, Xie Q, Yang Z, Khalid A, Jiao X. Exploring the gut microbiota landscape in cow milk protein allergy: Clinical insights and diagnostic implications in pediatric patients. J Dairy Sci 2025; 108:73-89. [PMID: 39369895 DOI: 10.3168/jds.2024-25455] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2024] [Accepted: 09/08/2024] [Indexed: 10/08/2024]
Abstract
Cow milk protein allergy (CMPA) is a significant health concern characterized by adverse immune reactions to cow milk proteins. Biomarkers for the accurate diagnosis and prognosis of CMPA are lacking. This study analyzed the clinical features of CMPA, and 16S RNA sequencing was used to investigate potential biomarkers through fecal microbiota profiling. Children with CMPA exhibit a range of clinical symptoms, including gastrointestinal (83% of patients), skin (53% of patients), and respiratory manifestations (26% of patients), highlighting the complexity of this condition. Laboratory analysis revealed significant differences in red cell distribution width and inflammatory markers between the CMPA and control groups, suggesting immune activation and inflammatory responses in CMPA. Microbial diversity analysis revealed higher specific diversity indices in the CMPA group compared with those in control group, with significant differences at the genus and species levels. Bacteroides were more abundant in the CMPA group, whereas Bifidobacterium, Ruminococcus, Faecalibacterium, and Parabacteroides were less abundant. The control group exhibited a balanced microbial profile, with a predominant presence of Bifidobacterium bifidum and Akkermansia muciniphila. The significant abundance of Bifidobacterium in the control group (23.19% vs. 9.89% in CMPA) was associated with improved growth metrics such as height and weight, suggesting its potential as a probiotic to prevent CMPA and enhance gut health. Correlation analysis linked specific microbial taxa such as Coprococcus and Bifidobacterium to clinical parameters such as family allergy history, weight, and height, providing insights into CMPA pathogenesis. Significant differences in bacterial abundance suggested diagnostic potential, with a panel of 6 bacteria achieving high predictive accuracy (area under curve = 0.8708). This study emphasizes the complex relationship between the gut microbiota and CMPA, offering valuable insights into disease mechanisms and diagnostic strategies.
Collapse
Affiliation(s)
- Jiaxin Xu
- Precision Medical Lab Center, Chaozhou Central Hospital, Chaozhou 521000, China; Department of Cell Biology and Genetics, Shantou University Medical College, Shantou 515041, China
| | | | - Muhammad Shafiq
- Research Institute of Clinical Pharmacy, Shantou University Medical College, Shantou 515041, China
| | - Muhammad Nadeem Khan
- Department of Cell Biology and Genetics, Shantou University Medical College, Shantou 515041, China
| | - Meimei Wang
- Department of Cell Biology and Genetics, Shantou University Medical College, Shantou 515041, China
| | - Xiaoling Guo
- Department of Cell Biology and Genetics, Shantou University Medical College, Shantou 515041, China
| | - Fen Yao
- Department of Cell Biology and Genetics, Shantou University Medical College, Shantou 515041, China
| | - Qingdong Xie
- Department of Cell Biology and Genetics, Shantou University Medical College, Shantou 515041, China
| | - Zhe Yang
- Department of Pediatrics, Chaozhou Central Hospital, Chaozhou 521000, China
| | - Areeba Khalid
- Department of Pediatrics, Federal Medical College, Islamabad 44080, Pakistan
| | - Xiaoyang Jiao
- Department of Cell Biology and Genetics, Shantou University Medical College, Shantou 515041, China.
| |
Collapse
|
4
|
Baek J, Kim BS, Kim Y, Bai J. Safety, Antagonistic Activity, and Probiotic Properties of Lactic Acid Bacteria Isolated from Jeotgal, Korean Fermented Seafoods. J Microbiol Biotechnol 2024; 35:e2411055. [PMID: 39663945 PMCID: PMC11813347 DOI: 10.4014/jmb.2411.11055] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2024] [Revised: 11/29/2024] [Accepted: 12/06/2024] [Indexed: 12/13/2024]
Abstract
Probiotics are in high demand in the health functional food market as they effectively inhibit pathogens and improve host health. Therefore, in order to develop novel probiotic strains, new strains were isolated from various type of jeotgal, traditional Korean fermented seafood products, and their safety and probiotic properties have been evaluated. Based on 16S rRNA gene sequence analysis, six strains (JRD1, Pediococcus pentosaceus; JRD2, Lactiplantibacillus plantarum; JRD6, Pediococcus acidilactici; CLJ21, Lactiplantibacillus plantarum; CLJ24, Pediococcus pentosaceus; CLJ28, Leuconostoc mesenteroides subsp. dextranicum) were selected and subjected to further analysis. As a result, all six strains did not show hemolytic activity, antibiotics resistance, and cell cytotoxicity, confirming that they are safe for human use. Among them, JRD1, JRD6, and CLJ24 exhibited high survival rates under simulated gastrointestinal conditions. Additionally, these three strains demonstrated strong adhesion abilities on HT-29 cells, with values of 6.02, 5.77, and 5.86 log CFU/mL, respectively. Furthermore, JRD1, JRD6, and CLJ24 showed relatively high antagonistic activity against both Salmonella Typhimurium and Staphylococcus aureus through competition, exclusion, and displacement of their adhesion. Interestingly, cell-free supernatants (CFS) from three strains effectively inhibited the growth of both S. Typhimurium and S. aureus. Furthermore, CFS of CLJ24, JRD1, and JRD6 demonstrated anti-inflammatory effects in intestinal epithelial cells. The results suggest that CLJ24, JRD1, and JRD6 have potential to be development as functional probiotic strains with both antibacterial and anti-inflammatory activities.
Collapse
Affiliation(s)
- Jihyeon Baek
- Department of Food Science and Technology, Seoul Women’s University, Seoul 01797, Republic of Korea
| | - Bong Sun Kim
- Department of Food Science and Technology, Seoul Women’s University, Seoul 01797, Republic of Korea
| | - Yeonju Kim
- Department of Food Science and Technology, Seoul Women’s University, Seoul 01797, Republic of Korea
| | - Jaewoo Bai
- Department of Food Science and Technology, Seoul Women’s University, Seoul 01797, Republic of Korea
| |
Collapse
|
5
|
Ronkainen A, Khan I, Satokari R. Pathogen exclusion from intestinal mucus and antimicrobial susceptibility of Bifidobacterium spp. strains from fecal donors. MICROBIOME RESEARCH REPORTS 2024; 4:5. [PMID: 40207286 PMCID: PMC11977350 DOI: 10.20517/mrr.2024.43] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/30/2024] [Revised: 10/08/2024] [Accepted: 10/14/2024] [Indexed: 04/11/2025]
Abstract
Aim: To study the ability of bifidobacterial strains isolated from fecal donors to prevent pathogens from adhering to intestinal mucus, along with their antimicrobial susceptibility. Methods: Pathogen prevention was assessed through an in vitro adhesion assay using immobilized porcine mucus. Subsequently, bifidobacterial RNA-Seq data were analyzed to pinpoint glycoside hydrolases and glycosyltransferases possibly involved in mucus degradation affecting pathogen adhesion. The antimicrobial susceptibility of bifidobacterial strains was evaluated using in vitro susceptibility testing, followed by analysis of whole-genome sequencing data to reveal antimicrobial resistance genes. Results: Bifidobacterial strains inhibited pathogen adhesion to intestinal mucus, with most strains reducing the adhesion levels of pathogens like Escherichia coli, Listeria monocytogenes, Salmonella Typhimurium, and Staphylococcus aureus by at least 70%. None of the strains significantly affected Pseudomonas aeruginosa, but they moderately reduced the adhesion of Yersinia enterocolitica. Gene expression analysis indicated that the more effective strains expressed higher levels of glycoside hydrolases, correlating with their pathogen exclusion capabilities. Antimicrobial susceptibility testing revealed that most strains were sensitive to several antibiotics, though some exhibited resistance to tobramycin, trimethoprim, and ciprofloxacin. Notably, one strain carried the tetW gene, conferring resistance to tetracycline. Conclusion: The bifidobacterial strains characterized in this study show potential for bacteriotherapeutic applications due to their strong ability to interfere with the adhesion of pathogenic bacteria and their lack of alarming antimicrobial resistance patterns.
Collapse
Affiliation(s)
| | | | - Reetta Satokari
- Human Microbiome Research Program, Faculty of Medicine, University of Helsinki, Helsinki 00290, Finland
| |
Collapse
|
6
|
Lugli GA, Argentini C, Tarracchini C, Mancabelli L, Viappiani A, Anzalone R, Angelini L, Alessandri G, Longhi G, Bianchi MG, Taurino G, Bussolati O, Milani C, Turroni F, Ventura M. Characterization of a Bifidobacterium animalis subsp. lactis reference strain based on ecology and transcriptomics. Appl Environ Microbiol 2024; 90:e0108024. [PMID: 39235395 PMCID: PMC11497779 DOI: 10.1128/aem.01080-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2024] [Accepted: 08/18/2024] [Indexed: 09/06/2024] Open
Abstract
Bifidobacteria are recognized as health-promoting bacteria that reside in the human gut, helping in the digestion of fiber, preventing infections, and producing essential compounds like vitamins. To date, Bifidobacterium animalis subsp. lactis, together with Bifidobacterium adolescentis, Bifidobacterium bifidum, Bifidobacterium breve, and Bifidobacterium longum, represents one of the species that are used as probiotic bacteria. Despite the extensive and detailed scientific research conducted on this microbial taxon, the molecular mechanisms by which B. animalis subsp. lactis exerts health benefits to its host are still largely unknown. Thus, we dissected the genetic repertoire and phylogenetic relationship of 162 strains of B. animalis subsp. lactis to select a representative reference strain of this taxon suitable for investigating its interaction with the host. The B. animalis subsp. lactis PRL2013 strain, which was isolated by a mucosal sample of a healthy adult, was chosen as the reference of the monophyletic cluster of human origin and revealed a greater adhesion index than that observed for another B. animalis subsp. lactis strain used in the industry as a probiotic supplement. Transcriptomics analyses of PRL2013 strain, when exposed to human cell monolayers, revealed 291 significantly upregulated genes, among which were found genes predicted to encode extracellular structures that may directly interact with human cells, such as extracellular polymeric substances, wall teichoic acids, and pili. IMPORTANCE To date, many Bifidobacterium animalis subsp. lactis strains have been isolated from human fecal samples. However, their presence in these samples does not necessarily suggest an ability to colonize the human gut. Furthermore, probiotics of non-human origin may not effectively interact with the gut epithelium, resulting in transient bacteria of the gut microbiota. In vitro experiments with human cells revealed that B. animalis subsp. lactis PRL2013, an autochthonous member of the human gut, shows colonization capability, leading to future applications in functional foods.
Collapse
Affiliation(s)
- Gabriele Andrea Lugli
- Laboratory of Probiogenomics, Department of Chemistry, Life Sciences, and Environmental Sustainability, University of Parma, Parma, Italy
- Microbiome Research Hub, University of Parma, Parma, Italy
| | - Chiara Argentini
- Laboratory of Probiogenomics, Department of Chemistry, Life Sciences, and Environmental Sustainability, University of Parma, Parma, Italy
| | - Chiara Tarracchini
- Laboratory of Probiogenomics, Department of Chemistry, Life Sciences, and Environmental Sustainability, University of Parma, Parma, Italy
| | - Leonardo Mancabelli
- Microbiome Research Hub, University of Parma, Parma, Italy
- Department of Medicine and Surgery, University of Parma, Parma, Italy
| | | | | | | | - Giulia Alessandri
- Laboratory of Probiogenomics, Department of Chemistry, Life Sciences, and Environmental Sustainability, University of Parma, Parma, Italy
| | - Giulia Longhi
- Laboratory of Probiogenomics, Department of Chemistry, Life Sciences, and Environmental Sustainability, University of Parma, Parma, Italy
| | - Massimiliano G. Bianchi
- Microbiome Research Hub, University of Parma, Parma, Italy
- Laboratory of General Pathology, Department of Medicine and Surgery, University of Parma, Parma, Italy
| | - Giuseppe Taurino
- Microbiome Research Hub, University of Parma, Parma, Italy
- Laboratory of General Pathology, Department of Medicine and Surgery, University of Parma, Parma, Italy
| | - Ovidio Bussolati
- Microbiome Research Hub, University of Parma, Parma, Italy
- Laboratory of General Pathology, Department of Medicine and Surgery, University of Parma, Parma, Italy
| | - Christian Milani
- Laboratory of Probiogenomics, Department of Chemistry, Life Sciences, and Environmental Sustainability, University of Parma, Parma, Italy
- Microbiome Research Hub, University of Parma, Parma, Italy
| | - Francesca Turroni
- Laboratory of Probiogenomics, Department of Chemistry, Life Sciences, and Environmental Sustainability, University of Parma, Parma, Italy
- Microbiome Research Hub, University of Parma, Parma, Italy
| | - Marco Ventura
- Laboratory of Probiogenomics, Department of Chemistry, Life Sciences, and Environmental Sustainability, University of Parma, Parma, Italy
- Microbiome Research Hub, University of Parma, Parma, Italy
| |
Collapse
|
7
|
Longhi G, Lugli GA, Tarracchini C, Fontana F, Bianchi MG, Carli E, Bussolati O, van Sinderen D, Turroni F, Ventura M. From raw milk cheese to the gut: investigating the colonization strategies of Bifidobacterium mongoliense. Appl Environ Microbiol 2024; 90:e0124424. [PMID: 39150265 PMCID: PMC11409640 DOI: 10.1128/aem.01244-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2024] [Accepted: 07/18/2024] [Indexed: 08/17/2024] Open
Abstract
The microbial ecology of raw milk cheeses is determined by bacteria originating from milk and milk-producing animals. Recently, it has been shown that members of the Bifidobacterium mongoliense species may become transmitted along the Parmigiano Reggiano cheese production chain and ultimately may colonize the consumer intestine. However, there is a lack of knowledge regarding the molecular mechanisms that mediate the interaction between B. mongoliense and the human gut. Based on 128 raw milk cheeses collected from different Italian regions, we isolated and characterized 10 B. mongoliense strains. Comparative genomics allowed us to unveil the presence of enzymes required for the degradation of sialylated host-glycans in B. mongoliense, corroborating the appreciable growth on de Man-Rogosa-Sharpe (MRS) medium supplemented with 3'-sialyllactose (3'-SL) or 6'-sialyllactose (6'-SL). The B. mongoliense BMONG18 was chosen, due to its superior ability to utilize 3'-SL and mucin as representative strain, to investigate its behavior when co-inoculated with other bifidobacterial species. Conversely, members of other bifidobacterial species did not appear to benefit from the presence of BMONG18, highlighting a competitive scenario for nutrient acquisition. Transcriptomic data of BMONG18 reveal no significant differences in gene expression when cultivated in a gut simulating medium (GSM), regardless of whether cheese was included or not. Furthermore, BMONG18 was shown to exhibit high adhesion capabilities to HT29-MTX human cells, in line with its colonization ability of a human host.IMPORTANCEFermented foods are nourishments produced through controlled microbial growth that play an essential role in worldwide human nutrition. Research interest in fermented foods has increased since the 80s, driven by growing awareness of their potential health benefits beyond mere nutritional content. Bifidobacterium mongoliense, previously identified throughout the production process of Parmigiano Reggiano cheese, was found to be capable of establishing itself in the intestines of its consumers. Our study underscores molecular mechanisms through which this bifidobacterial species, derived from food, interacts with the host and other gut microbiota members.
Collapse
Affiliation(s)
- Giulia Longhi
- Laboratory of Probiogenomics, Department of Chemistry, Life Sciences, and Environmental Sustainability, University of Parma, Parma, Italy
| | - Gabriele Andrea Lugli
- Laboratory of Probiogenomics, Department of Chemistry, Life Sciences, and Environmental Sustainability, University of Parma, Parma, Italy
- Microbiome Research Hub, University of Parma, Parma, Italy
| | - Chiara Tarracchini
- Laboratory of Probiogenomics, Department of Chemistry, Life Sciences, and Environmental Sustainability, University of Parma, Parma, Italy
| | - Federico Fontana
- Laboratory of Probiogenomics, Department of Chemistry, Life Sciences, and Environmental Sustainability, University of Parma, Parma, Italy
| | | | - Elisa Carli
- Laboratory of Probiogenomics, Department of Chemistry, Life Sciences, and Environmental Sustainability, University of Parma, Parma, Italy
| | - Ovidio Bussolati
- Department of Medicine and Surgery, Laboratory of General Pathology, University of Parma, Parma, Italy
| | - Douwe van Sinderen
- APC Microbiome Institute and School of Microbiology, Bioscience Institute, National University of Ireland, Cork, Ireland
| | - Francesca Turroni
- Laboratory of Probiogenomics, Department of Chemistry, Life Sciences, and Environmental Sustainability, University of Parma, Parma, Italy
- Microbiome Research Hub, University of Parma, Parma, Italy
| | - Marco Ventura
- Laboratory of Probiogenomics, Department of Chemistry, Life Sciences, and Environmental Sustainability, University of Parma, Parma, Italy
- Microbiome Research Hub, University of Parma, Parma, Italy
| |
Collapse
|
8
|
Rizzo SM, Alessandri G, Tarracchini C, Bianchi MG, Viappiani A, Mancabelli L, Lugli GA, Milani C, Bussolati O, van Sinderen D, Ventura M, Turroni F. Molecular cross-talk among human intestinal bifidobacteria as explored by a human gut model. Front Microbiol 2024; 15:1435960. [PMID: 39314876 PMCID: PMC11418510 DOI: 10.3389/fmicb.2024.1435960] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2024] [Accepted: 08/28/2024] [Indexed: 09/25/2024] Open
Abstract
Bifidobacteria are well known as common and abundant colonizers of the human gut and are able to exert multiple beneficial effects on their host, although the cooperative and competitive relationships that may occur among bifidobacterial strains are still poorly investigated. Therefore, to dissect possible molecular interactions among bifidobacterial species that typically colonize the human gut, three previously identified bifidobacterial prototypes, i.e., B. bifidum PRL2010, B. breve PRL2012, and B. longum PRL2022 were cultivated individually as well as in bi- and tri-association in a human gut-simulating medium. Transcriptomic analyses of these co-associations revealed up-regulation of genes predicted to be involved in the production of extracellular structures including pili (i.e., flp pilus assembly TadE protein gene), exopolysaccharides (i.e., GtrA family protein gene) and teichoic acids (i.e., ABC transporter permease), along with carbohydrate, amino acid and vitamin metabolism-related genes (i.e., exo-alpha-sialidase; beta-galactosidase and pyridoxamine kinase), suggesting that co-cultivation of bifidobacteria induces a response, in individual bifidobacterial strains, aimed at enhancing their proliferation and survival, as well as their ability to cooperate with their host to promote their persistence. Furthermore, exposure of the selected prototypes to human cell line monolayers unveiled the ability of the bifidobacterial tri-association to communicate with their host by increasing the expression of genes involved in adherence to/interaction with intestinal human cells. Lastly, bifidobacterial tri-association promoted the transcriptional upregulation of genes responsible for maintaining the integrity and homeostasis of the intestinal epithelial barrier.
Collapse
Affiliation(s)
- Sonia Mirjam Rizzo
- Laboratory of Probiogenomics, Department of Chemistry, Life Sciences, and Environmental Sustainability, University of Parma, Parma, Italy
| | - Giulia Alessandri
- Laboratory of Probiogenomics, Department of Chemistry, Life Sciences, and Environmental Sustainability, University of Parma, Parma, Italy
| | - Chiara Tarracchini
- Laboratory of Probiogenomics, Department of Chemistry, Life Sciences, and Environmental Sustainability, University of Parma, Parma, Italy
| | - Massimiliano G. Bianchi
- Laboratory of General Pathology, Department of Medicine and Surgery, University of Parma, Parma, Italy
- Microbiome Research Hub, University of Parma, Parma, Italy
| | | | - Leonardo Mancabelli
- Microbiome Research Hub, University of Parma, Parma, Italy
- Department of Medicine and Surgery, University of Parma, Parma, Italy
| | - Gabriele Andrea Lugli
- Laboratory of Probiogenomics, Department of Chemistry, Life Sciences, and Environmental Sustainability, University of Parma, Parma, Italy
- Microbiome Research Hub, University of Parma, Parma, Italy
| | - Christian Milani
- Laboratory of Probiogenomics, Department of Chemistry, Life Sciences, and Environmental Sustainability, University of Parma, Parma, Italy
- Microbiome Research Hub, University of Parma, Parma, Italy
| | - Ovidio Bussolati
- Laboratory of General Pathology, Department of Medicine and Surgery, University of Parma, Parma, Italy
- Microbiome Research Hub, University of Parma, Parma, Italy
| | - Douwe van Sinderen
- APC Microbiome Institute and School of Microbiology, Bioscience Institute, National University of Ireland, Cork, Ireland
| | - Marco Ventura
- Laboratory of Probiogenomics, Department of Chemistry, Life Sciences, and Environmental Sustainability, University of Parma, Parma, Italy
- Microbiome Research Hub, University of Parma, Parma, Italy
| | - Francesca Turroni
- Laboratory of Probiogenomics, Department of Chemistry, Life Sciences, and Environmental Sustainability, University of Parma, Parma, Italy
- Microbiome Research Hub, University of Parma, Parma, Italy
| |
Collapse
|
9
|
Bellomo AR, Rotondi G, Rago P, Bloise S, Di Ruzza L, Zingoni A, Di Valerio S, Valzano E, Di Pierro F, Cazzaniga M, Bertuccioli A, Guasti L, Zerbinati N, Lubrano R. Effect of Bifidobacterium bifidum Supplementation in Newborns Born from Cesarean Section on Atopy, Respiratory Tract Infections, and Dyspeptic Syndromes: A Multicenter, Randomized, and Controlled Clinical Trial. Microorganisms 2024; 12:1093. [PMID: 38930475 PMCID: PMC11205812 DOI: 10.3390/microorganisms12061093] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2024] [Revised: 05/24/2024] [Accepted: 05/26/2024] [Indexed: 06/28/2024] Open
Abstract
Cesarean section is considered a possible trigger of atopy and gut dysbiosis in newborns. Bifidobacteria, and specifically B. bifidum, are thought to play a central role in reducing the risk of atopy and in favoring gut eubiosis in children. Nonetheless, no trial has ever prospectively investigated the role played by this single bacterial species in preventing atopic manifestations in children born by cesarean section, and all the results published so far refer to mixtures of probiotics. We have therefore evaluated the impact of 6 months of supplementation with B. bifidum PRL2010 on the incidence, in the first year of life, of atopy, respiratory tract infections, and dyspeptic syndromes in 164 children born by cesarean (versus 249 untreated controls). The results of our multicenter, randomized, and controlled trial have shown that the probiotic supplementation significantly reduced the incidence of atopic dermatitis, upper and lower respiratory tract infections, and signs and symptoms of dyspeptic syndromes. Concerning the gut microbiota, B. bifidum supplementation significantly increased α-biodiversity and the relative values of the phyla Bacteroidota and Actinomycetota, of the genus Bacteroides, Bifidobacterium and of the species B. bifidum and reduced the relative content of Escherichia/Shigella and Haemophilus. A 6-month supplementation with B. bifidum in children born by cesarean section reduces the risk of gut dysbiosis and has a positive clinical impact that remains observable in the following 6 months of follow-up.
Collapse
Affiliation(s)
- Anna Rita Bellomo
- Dipartimento Materno Infantile e di Scienze Urologiche, Sapienza Università di Roma, UOC di Pediatria e Neonatologia-Polo Pontino, 04100 Latina, Italy; (A.R.B.); (P.R.)
| | - Giulia Rotondi
- Pediatric Surgery Unit, Gaslini Children Hospital and Research Institute, 16147 Genoa, Italy
| | - Prudenza Rago
- Dipartimento Materno Infantile e di Scienze Urologiche, Sapienza Università di Roma, UOC di Pediatria e Neonatologia-Polo Pontino, 04100 Latina, Italy; (A.R.B.); (P.R.)
| | - Silvia Bloise
- Dipartimento Materno Infantile e di Scienze Urologiche, Sapienza Università di Roma, UOC di Pediatria e Neonatologia-Polo Pontino, 04100 Latina, Italy; (A.R.B.); (P.R.)
| | - Luigi Di Ruzza
- UOC Pediatria e Nido, Ospedale S.S. Trinità, 03039 Sora, Italy
| | - Annamaria Zingoni
- UOC Pediatria e Neonatologia, Ospedale G.B. Grassi, 00122 Ostia, Italy
| | - Susanna Di Valerio
- UOC Neonatologia e Terapia Intensiva Neonatale, Ospedale S. Spirito, 65124 Pescara, Italy
| | - Eliana Valzano
- UOC Neonatologia e Terapia Intensiva Neonatale, Ospedale S. Spirito, 65124 Pescara, Italy
| | - Francesco Di Pierro
- Scientific & Research Department, Velleja Research, 20125 Milan, Italy
- Department of Medicine and Surgery, University of Insubria, 21100 Varese, Italy
| | | | - Alexander Bertuccioli
- Department of Biomolecular Sciences, University of Urbino Carlo Bo, 61029 Urbino, Italy;
| | - Luigina Guasti
- Department of Medicine and Surgery, University of Insubria, 21100 Varese, Italy
| | - Nicola Zerbinati
- Department of Medicine and Surgery, University of Insubria, 21100 Varese, Italy
| | - Riccardo Lubrano
- Dipartimento Materno Infantile e di Scienze Urologiche, Sapienza Università di Roma, UOC di Pediatria e Neonatologia-Polo Pontino, 04100 Latina, Italy; (A.R.B.); (P.R.)
| |
Collapse
|
10
|
Argentini C, Lugli GA, Tarracchini C, Fontana F, Mancabelli L, Viappiani A, Anzalone R, Angelini L, Alessandri G, Bianchi MG, Taurino G, Bussolati O, Milani C, van Sinderen D, Turroni F, Ventura M. Ecology- and genome-based identification of the Bifidobacterium adolescentis prototype of the healthy human gut microbiota. Appl Environ Microbiol 2024; 90:e0201423. [PMID: 38294252 PMCID: PMC10880601 DOI: 10.1128/aem.02014-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2023] [Accepted: 11/20/2023] [Indexed: 02/01/2024] Open
Abstract
Bifidobacteria are among the first microbial colonizers of the human gut, being frequently associated with human health-promoting activities. In the current study, an in silico methodology based on an ecological and phylogenomic-driven approach allowed the selection of a Bifidobacterium adolescentis prototype strain, i.e., B. adolescentis PRL2023, which best represents the overall genetic content and functional features of the B. adolescentis taxon. Such features were confirmed by in vitro experiments aimed at evaluating the ability of this strain to survive in the gastrointestinal tract of the host and its ability to interact with human intestinal cells and other microbial gut commensals. In this context, co-cultivation of B. adolescentis PRL2023 and several gut commensals revealed various microbe-microbe interactions and indicated co-metabolism of particular plant-derived glycans, such as xylan.IMPORTANCEThe use of appropriate bacterial strains in experimental research becomes imperative in order to investigate bacterial behavior while mimicking the natural environment. In the current study, through in silico and in vitro methodologies, we were able to identify the most representative strain of the Bifidobacterium adolescentis species. The ability of this strain, B. adolescentis PRL2023, to cope with the environmental challenges imposed by the gastrointestinal tract, together with its ability to switch its carbohydrate metabolism to compete with other gut microorganisms, makes it an ideal choice as a B. adolescentis prototype and a member of the healthy microbiota of adults. This strain possesses a genetic blueprint appropriate for its exploitation as a candidate for next-generation probiotics.
Collapse
Affiliation(s)
- Chiara Argentini
- Laboratory of Probiogenomics, Department of Chemistry, Life Sciences, and Environmental Sustainability, University of Parma, Parma, Italy
| | - Gabriele Andrea Lugli
- Laboratory of Probiogenomics, Department of Chemistry, Life Sciences, and Environmental Sustainability, University of Parma, Parma, Italy
- Microbiome Research Hub, University of Parma, Parma, Italy
| | - Chiara Tarracchini
- Laboratory of Probiogenomics, Department of Chemistry, Life Sciences, and Environmental Sustainability, University of Parma, Parma, Italy
| | - Federico Fontana
- Laboratory of Probiogenomics, Department of Chemistry, Life Sciences, and Environmental Sustainability, University of Parma, Parma, Italy
- GenProbio srl, Parma, Italy
| | - Leonardo Mancabelli
- Microbiome Research Hub, University of Parma, Parma, Italy
- Department of Medicine and Surgery, University of Parma, Parma, Italy
| | | | | | | | - Giulia Alessandri
- Laboratory of Probiogenomics, Department of Chemistry, Life Sciences, and Environmental Sustainability, University of Parma, Parma, Italy
| | - Massimiliano G. Bianchi
- Microbiome Research Hub, University of Parma, Parma, Italy
- Department of Medicine and Surgery, Laboratory of General Pathology, University of Parma, Parma, Italy
| | - Giuseppe Taurino
- Microbiome Research Hub, University of Parma, Parma, Italy
- Department of Medicine and Surgery, Laboratory of General Pathology, University of Parma, Parma, Italy
| | - Ovidio Bussolati
- Microbiome Research Hub, University of Parma, Parma, Italy
- Department of Medicine and Surgery, Laboratory of General Pathology, University of Parma, Parma, Italy
| | - Christian Milani
- Laboratory of Probiogenomics, Department of Chemistry, Life Sciences, and Environmental Sustainability, University of Parma, Parma, Italy
- Microbiome Research Hub, University of Parma, Parma, Italy
| | - Douwe van Sinderen
- APC Microbiome Institute and School of Microbiology, Bioscience Institute, National University of Ireland, Cork, Ireland
| | - Francesca Turroni
- Laboratory of Probiogenomics, Department of Chemistry, Life Sciences, and Environmental Sustainability, University of Parma, Parma, Italy
- Microbiome Research Hub, University of Parma, Parma, Italy
| | - Marco Ventura
- Laboratory of Probiogenomics, Department of Chemistry, Life Sciences, and Environmental Sustainability, University of Parma, Parma, Italy
- Microbiome Research Hub, University of Parma, Parma, Italy
| |
Collapse
|
11
|
Argentini C, Lugli GA, Tarracchini C, Fontana F, Mancabelli L, Viappiani A, Anzalone R, Angelini L, Alessandri G, Longhi G, Bianchi MG, Taurino G, Bussolati O, Milani C, van Sinderen D, Turroni F, Ventura M. Genomic and ecological approaches to identify the Bifidobacterium breve prototype of the healthy human gut microbiota. Front Microbiol 2024; 15:1349391. [PMID: 38426063 PMCID: PMC10902438 DOI: 10.3389/fmicb.2024.1349391] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Accepted: 01/29/2024] [Indexed: 03/02/2024] Open
Abstract
Members of the genus Bifidobacterium are among the first microorganisms colonizing the human gut. Among these species, strains of Bifidobacterium breve are known to be commonly transmitted from mother to her newborn, while this species has also been linked with activities supporting human wellbeing. In the current study, an in silico approach, guided by ecology- and phylogenome-based analyses, was employed to identify a representative strain of B. breve to be exploited as a novel health-promoting candidate. The selected strain, i.e., B. breve PRL2012, was found to well represent the genetic content and functional genomic features of the B. breve taxon. We evaluated the ability of PRL2012 to survive in the gastrointestinal tract and to interact with other human gut commensal microbes. When co-cultivated with various human gut commensals, B. breve PRL2012 revealed an enhancement of its metabolic activity coupled with the activation of cellular defense mechanisms to apparently improve its survivability in a simulated ecosystem resembling the human microbiome.
Collapse
Affiliation(s)
- Chiara Argentini
- Laboratory of Probiogenomics, Department of Chemistry, Life Sciences, and Environmental Sustainability, University of Parma, Parma, Italy
| | - Gabriele Andrea Lugli
- Laboratory of Probiogenomics, Department of Chemistry, Life Sciences, and Environmental Sustainability, University of Parma, Parma, Italy
- Microbiome Research Hub, University of Parma, Parma, Italy
| | - Chiara Tarracchini
- Laboratory of Probiogenomics, Department of Chemistry, Life Sciences, and Environmental Sustainability, University of Parma, Parma, Italy
| | - Federico Fontana
- Laboratory of Probiogenomics, Department of Chemistry, Life Sciences, and Environmental Sustainability, University of Parma, Parma, Italy
- GenProbio srl, Parma, Italy
| | - Leonardo Mancabelli
- Microbiome Research Hub, University of Parma, Parma, Italy
- Department of Medicine and Surgery, University of Parma, Parma, Italy
| | | | | | | | - Giulia Alessandri
- Laboratory of Probiogenomics, Department of Chemistry, Life Sciences, and Environmental Sustainability, University of Parma, Parma, Italy
| | - Giulia Longhi
- Laboratory of Probiogenomics, Department of Chemistry, Life Sciences, and Environmental Sustainability, University of Parma, Parma, Italy
| | - Massimiliano G. Bianchi
- Microbiome Research Hub, University of Parma, Parma, Italy
- Laboratory of General Pathology, Department of Medicine and Surgery, University of Parma, Parma, Italy
| | - Giuseppe Taurino
- Microbiome Research Hub, University of Parma, Parma, Italy
- Laboratory of General Pathology, Department of Medicine and Surgery, University of Parma, Parma, Italy
| | - Ovidio Bussolati
- Microbiome Research Hub, University of Parma, Parma, Italy
- Laboratory of General Pathology, Department of Medicine and Surgery, University of Parma, Parma, Italy
| | - Christian Milani
- Laboratory of Probiogenomics, Department of Chemistry, Life Sciences, and Environmental Sustainability, University of Parma, Parma, Italy
- Microbiome Research Hub, University of Parma, Parma, Italy
| | - Douwe van Sinderen
- APC Microbiome Institute and School of Microbiology, Bioscience Institute, National University of Ireland, Cork, Ireland
| | - Francesca Turroni
- Laboratory of Probiogenomics, Department of Chemistry, Life Sciences, and Environmental Sustainability, University of Parma, Parma, Italy
- Microbiome Research Hub, University of Parma, Parma, Italy
| | - Marco Ventura
- Laboratory of Probiogenomics, Department of Chemistry, Life Sciences, and Environmental Sustainability, University of Parma, Parma, Italy
- Microbiome Research Hub, University of Parma, Parma, Italy
| |
Collapse
|
12
|
Zhai Z, Xiong Y, Gu Y, Lei Y, An H, Yi H, Zhao L, Ren F, Hao Y. Up-regulation of sortase-dependent pili in Bifidobacterium longum BBMN68 in response to bile stress enhances its adhesion to HT-29 cells. Int J Biol Macromol 2024; 257:127527. [PMID: 37866558 DOI: 10.1016/j.ijbiomac.2023.127527] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2023] [Revised: 10/14/2023] [Accepted: 10/16/2023] [Indexed: 10/24/2023]
Abstract
Adhesion to gastrointestinal tract is crucial for bifidobacteria to exert their probiotic effects. Our previous work found that bile salts significantly enhance the adhesion ability of Bifidobacterium longum BBMN68 to HT-29 cells. In this study, trypsin-shaving and LC-MS/MS-based surface proteomics were employed to identify surface proteins involved in bile stress response. Among the 829 differentially expressed proteins, 56 up-regulated proteins with a fold change >1.5 were subjected to further analysis. Notably, the minor pilin subunit FimB was 4.98-fold up-regulated in response to bile stress. In silico analysis and RT-PCR confirmed that gene fimB, fimA and srtC were co-transcribed and contributed to the biosynthesis of sortase-dependent pili Pil1. Moreover, scanning electron microscopy and immunogold electron microscopy assays showed increased abundance and length of Pil1 on BBMN68 under bile stress. As the major pilin subunit FimA serves as adhesion component of Pil1, an inhibition assay using anti-FimA antibodies further confirmed the critical role of Pil1 in mediating the adhesion of BBMN68 to HT-29 cells under bile stress. Our findings suggest that the up-regulation of Pil1 in response to bile stress enhances the adhesion of BBMN68 to intestinal epithelial cells, highlighting a novel mechanism of gut persistence in B. longum strains.
Collapse
Affiliation(s)
- Zhengyuan Zhai
- Key Laboratory of Functional Dairy, Co-constructed by Ministry of Education and Beijing Municipality, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China; Food Laboratory of Zhongyuan, Luohe 462300, Henan, China
| | - Yao Xiong
- Key Laboratory of Functional Dairy, Co-constructed by Ministry of Education and Beijing Municipality, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China
| | - Yaxin Gu
- Key Laboratory of Functional Dairy, Co-constructed by Ministry of Education and Beijing Municipality, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China
| | - Yuanqiu Lei
- Key Laboratory of Functional Dairy, Co-constructed by Ministry of Education and Beijing Municipality, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China
| | - Haoran An
- Center for Infectious Disease Research, Tsinghua-Peking Joint Center for Life Science, School of Medicine, Tsinghua University, Beijing 100084, China
| | - Huaxi Yi
- Food Laboratory of Zhongyuan, Luohe 462300, Henan, China; College of Food Science and Engineering, Ocean University of China, Qingdao 266100, Shandong, China
| | - Liang Zhao
- Key Laboratory of Functional Dairy, Co-constructed by Ministry of Education and Beijing Municipality, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China
| | - Fazheng Ren
- Key Laboratory of Precision Nutrition and Food Quality, Department of Nutrition and Health, China Agricultural University, Beijing 100093, China
| | - Yanling Hao
- Key Laboratory of Precision Nutrition and Food Quality, Department of Nutrition and Health, China Agricultural University, Beijing 100093, China; Food Laboratory of Zhongyuan, Luohe 462300, Henan, China.
| |
Collapse
|
13
|
Rizzo SM, Vergna LM, Alessandri G, Lee C, Fontana F, Lugli GA, Carnevali L, Bianchi MG, Barbetti M, Taurino G, Sgoifo A, Bussolati O, Turroni F, van Sinderen D, Ventura M. GH136-encoding gene (perB) is involved in gut colonization and persistence by Bifidobacterium bifidum PRL2010. Microb Biotechnol 2024; 17:e14406. [PMID: 38271233 PMCID: PMC10884991 DOI: 10.1111/1751-7915.14406] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2023] [Revised: 12/21/2023] [Accepted: 12/26/2023] [Indexed: 01/27/2024] Open
Abstract
Bifidobacteria are commensal microorganisms that typically inhabit the mammalian gut, including that of humans. As they may be vertically transmitted, they commonly colonize the human intestine from the very first day following birth and may persist until adulthood and old age, although generally at a reduced relative abundance and prevalence compared to infancy. The ability of bifidobacteria to persist in the human intestinal environment has been attributed to genes involved in adhesion to epithelial cells and the encoding of complex carbohydrate-degrading enzymes. Recently, a putative mucin-degrading glycosyl hydrolase belonging to the GH136 family and encoded by the perB gene has been implicated in gut persistence of certain bifidobacterial strains. In the current study, to better characterize the function of this gene, a comparative genomic analysis was performed, revealing the presence of perB homologues in just eight bifidobacterial species known to colonize the human gut, including Bifidobacterium bifidum and Bifidobacterium longum subsp. longum strains, or in non-human primates. Mucin-mediated growth and adhesion to human intestinal cells, in addition to a rodent model colonization assay, were performed using B. bifidum PRL2010 as a perB prototype and its isogenic perB-insertion mutant. These results demonstrate that perB inactivation reduces the ability of B. bifidum PRL2010 to grow on and adhere to mucin, as well as to persist in the rodent gut niche. These results corroborate the notion that the perB gene is one of the genetic determinants involved in the persistence of B. bifidum PRL2010 in the human gut.
Collapse
Affiliation(s)
- Sonia Mirjam Rizzo
- Laboratory of Probiogenomics, Department of Chemistry, Life Sciences and Environmental SustainabilityUniversity of ParmaParmaItaly
| | - Laura Maria Vergna
- Laboratory of Probiogenomics, Department of Chemistry, Life Sciences and Environmental SustainabilityUniversity of ParmaParmaItaly
| | - Giulia Alessandri
- Laboratory of Probiogenomics, Department of Chemistry, Life Sciences and Environmental SustainabilityUniversity of ParmaParmaItaly
| | - Ciaran Lee
- APC Microbiome Institute and School of Microbiology, Bioscience InstituteNational University of IrelandCorkIreland
| | - Federico Fontana
- Laboratory of Probiogenomics, Department of Chemistry, Life Sciences and Environmental SustainabilityUniversity of ParmaParmaItaly
- GenProbio srlParmaItaly
| | - Gabriele Andrea Lugli
- Laboratory of Probiogenomics, Department of Chemistry, Life Sciences and Environmental SustainabilityUniversity of ParmaParmaItaly
- Interdepartmental Research Centre “Microbiome Research Hub”University of ParmaParmaItaly
| | - Luca Carnevali
- Interdepartmental Research Centre “Microbiome Research Hub”University of ParmaParmaItaly
- Stress Physiology Lab, Department of Chemistry, Life Sciences and Environmental SustainabilityUniversity of ParmaParmaItaly
| | - Massimiliano G. Bianchi
- Interdepartmental Research Centre “Microbiome Research Hub”University of ParmaParmaItaly
- Laboratory of General Pathology, Department of Medicine and SurgeryUniversity of ParmaParmaItaly
| | - Margherita Barbetti
- Stress Physiology Lab, Department of Chemistry, Life Sciences and Environmental SustainabilityUniversity of ParmaParmaItaly
| | - Giuseppe Taurino
- Interdepartmental Research Centre “Microbiome Research Hub”University of ParmaParmaItaly
- Laboratory of General Pathology, Department of Medicine and SurgeryUniversity of ParmaParmaItaly
| | - Andrea Sgoifo
- Interdepartmental Research Centre “Microbiome Research Hub”University of ParmaParmaItaly
- Stress Physiology Lab, Department of Chemistry, Life Sciences and Environmental SustainabilityUniversity of ParmaParmaItaly
| | - Ovidio Bussolati
- Interdepartmental Research Centre “Microbiome Research Hub”University of ParmaParmaItaly
- Laboratory of General Pathology, Department of Medicine and SurgeryUniversity of ParmaParmaItaly
| | - Francesca Turroni
- Laboratory of Probiogenomics, Department of Chemistry, Life Sciences and Environmental SustainabilityUniversity of ParmaParmaItaly
- Interdepartmental Research Centre “Microbiome Research Hub”University of ParmaParmaItaly
| | - Douwe van Sinderen
- APC Microbiome Institute and School of Microbiology, Bioscience InstituteNational University of IrelandCorkIreland
| | - Marco Ventura
- Laboratory of Probiogenomics, Department of Chemistry, Life Sciences and Environmental SustainabilityUniversity of ParmaParmaItaly
- Interdepartmental Research Centre “Microbiome Research Hub”University of ParmaParmaItaly
| |
Collapse
|
14
|
Shi X, Li Z, Lin W, Shi W, Hu R, Chen G, Li X, Li X, Zhang S. Altered Intestinal Microbial Flora and Metabolism in Patients with Idiopathic Membranous Nephropathy. Am J Nephrol 2023; 54:451-470. [PMID: 37793354 DOI: 10.1159/000533537] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2023] [Accepted: 07/31/2023] [Indexed: 10/06/2023]
Abstract
INTRODUCTION Dysbiosis of the intestinal microbiome and related metabolites have been observed in chronic kidney disease, yet their roles in idiopathic membranous nephropathy (IMN) are poorly understood. METHODS In this study, we describe the variation of intestinal bacteria and fecal metabolites in patients with IMN in Chinese population. Stool samples were collected from 41 IMN patients at the beginning of diagnosis confirmation and 41 gender- and age-matched healthy control (HC). Microbial communities are investigated by sequencing of 16S rRNA genes and functional profiles predicted using Tax4Fun, and the correlation between intestinal bacteria and IMN clinical characteristics is also analyzed. Untargeted metabolomic analysis is performed to explore the relationship between colon's microbiota and fecal metabolites. RESULTS IMN gastrointestinal microbiota demonstrates lower richness and diversity compared to HC, and exhibits a marked taxonomic and inferred functional dysbiosis when compared to HC. Some genera are closely related to the clinical parameters, such as Citrobacter and Akkermansia. Twenty characteristic microbial biomarkers are selected to establish a disease prediction model with a diagnostic accuracy of 93.53%. Fecal metabolomics shows that tryptophan metabolism is reduced in IMN patients but uremic toxin accumulation in feces is not noticeable. Fecal microbiota transplantation demonstrates that gut dysbiosis impairs gut permeability in microbiota-depleted mice and induces NOD-like receptor activation in the kidneys. CONCLUSIONS Clarifying the changes in intestinal microbiota in IMN patients will help further know the pathogenesis of this disease, and microbiota-targeted biomarkers will provide a potentially powerful tool for diagnosing and treating IMN.
Collapse
Affiliation(s)
- Xiaohu Shi
- Department of Traditional Chinese Medicine, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences, Beijing, China
| | - Zhaojun Li
- State Key Laboratory of Bioactive Substances and Functions of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Weifeng Lin
- Department of Nephropathy, Peking University Third Hospital, Beijing, China
| | - Wenying Shi
- State Key Laboratory of Bioactive Substances and Functions of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
- State Key Laboratory of Functions and Applications of Medicinal Plants, College of Pharmacy, Guizhou Provincial Engineering Technology Research Center for Chemical Drug R&D, Guizhou Medical University, Guiyang, China
| | - Rongrong Hu
- Department of Nephropathy, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences, Beijing, China
| | - Gang Chen
- Department of Nephropathy, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences, Beijing, China
| | - Xuemei Li
- Department of Nephropathy, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences, Beijing, China
| | - Xuewang Li
- Department of Nephropathy, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences, Beijing, China
| | - Sen Zhang
- State Key Laboratory of Bioactive Substances and Functions of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| |
Collapse
|
15
|
Gutierrez A, Pucket B, Engevik MA. Bifidobacterium and the intestinal mucus layer. MICROBIOME RESEARCH REPORTS 2023; 2:36. [PMID: 38045921 PMCID: PMC10688832 DOI: 10.20517/mrr.2023.37] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/21/2023] [Revised: 08/21/2023] [Accepted: 09/13/2023] [Indexed: 12/05/2023]
Abstract
Bifidobacterium species are integral members of the human gut microbiota and these microbes have significant interactions with the intestinal mucus layer. This review delves into Bifidobacterium-mucus dynamics, shedding light on the multifaceted nature of this relationship. We cover conserved features of Bifidobacterium-mucus interactions, such as mucus adhesion and positive regulation of goblet cell and mucus production, as well as species and strain-specific attributes of mucus degradation. For each interface, we explore the molecular mechanisms underlying these interactions and their potential implications for human health. Notably, we emphasize the ability of Bifidobacterium species to positively influence the mucus layer, shedding light on its potential as a mucin-builder and a therapeutic agent for diseases associated with disrupted mucus barriers. By elucidating the complex interplay between Bifidobacterium and intestinal mucus, we aim to contribute to a deeper understanding of the gut microbiota-host interface and pave the way for novel therapeutic strategies.
Collapse
Affiliation(s)
- Alyssa Gutierrez
- Department of Regenerative Medicine and Cell Biology, Medical University of South Carolina, Charleston, SC 29425, USA
| | - Brenton Pucket
- Department of Regenerative Medicine and Cell Biology, Medical University of South Carolina, Charleston, SC 29425, USA
| | - Melinda A. Engevik
- Department of Regenerative Medicine and Cell Biology, Medical University of South Carolina, Charleston, SC 29425, USA
- Department of Microbiology & Immunology, Medical University of South Carolina, Charleston, SC 29425, USA
| |
Collapse
|
16
|
Tarracchini C, Alessandri G, Fontana F, Rizzo SM, Lugli GA, Bianchi MG, Mancabelli L, Longhi G, Argentini C, Vergna LM, Anzalone R, Viappiani A, Turroni F, Taurino G, Chiu M, Arboleya S, Gueimonde M, Bussolati O, van Sinderen D, Milani C, Ventura M. Genetic strategies for sex-biased persistence of gut microbes across human life. Nat Commun 2023; 14:4220. [PMID: 37452041 PMCID: PMC10349097 DOI: 10.1038/s41467-023-39931-2] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2023] [Accepted: 06/30/2023] [Indexed: 07/18/2023] Open
Abstract
Although compositional variation in the gut microbiome during human development has been extensively investigated, strain-resolved dynamic changes remain to be fully uncovered. In the current study, shotgun metagenomic sequencing data of 12,415 fecal microbiomes from healthy individuals are employed for strain-level tracking of gut microbiota members to elucidate its evolving biodiversity across the human life span. This detailed longitudinal meta-analysis reveals host sex-related persistence of strains belonging to common, maternally-inherited species, such as Bifidobacterium bifidum and Bifidobacterium longum subsp. longum. Comparative genome analyses, coupled with experiments including intimate interaction between microbes and human intestinal cells, show that specific bacterial glycosyl hydrolases related to host-glycan metabolism may contribute to more efficient colonization in females compared to males. These findings point to an intriguing ancient sex-specific host-microbe coevolution driving the selective persistence in women of key microbial taxa that may be vertically passed on to the next generation.
Collapse
Affiliation(s)
- Chiara Tarracchini
- Laboratory of Probiogenomics, Department of Chemistry, Life Sciences, and Environmental Sustainability, University of Parma, Parma, Italy
| | - Giulia Alessandri
- Laboratory of Probiogenomics, Department of Chemistry, Life Sciences, and Environmental Sustainability, University of Parma, Parma, Italy
| | - Federico Fontana
- Laboratory of Probiogenomics, Department of Chemistry, Life Sciences, and Environmental Sustainability, University of Parma, Parma, Italy
- GenProbio srl, Parma, Italy
| | - Sonia Mirjam Rizzo
- Laboratory of Probiogenomics, Department of Chemistry, Life Sciences, and Environmental Sustainability, University of Parma, Parma, Italy
| | - Gabriele Andrea Lugli
- Laboratory of Probiogenomics, Department of Chemistry, Life Sciences, and Environmental Sustainability, University of Parma, Parma, Italy
| | - Massimiliano Giovanni Bianchi
- Department of Medicine and Surgery, University of Parma, Parma, Italy
- Interdepartmental Research Centre "Microbiome Research Hub", University of Parma, Parma, Italy
| | - Leonardo Mancabelli
- Department of Medicine and Surgery, University of Parma, Parma, Italy
- Interdepartmental Research Centre "Microbiome Research Hub", University of Parma, Parma, Italy
| | - Giulia Longhi
- Laboratory of Probiogenomics, Department of Chemistry, Life Sciences, and Environmental Sustainability, University of Parma, Parma, Italy
| | - Chiara Argentini
- Laboratory of Probiogenomics, Department of Chemistry, Life Sciences, and Environmental Sustainability, University of Parma, Parma, Italy
| | - Laura Maria Vergna
- Laboratory of Probiogenomics, Department of Chemistry, Life Sciences, and Environmental Sustainability, University of Parma, Parma, Italy
| | | | | | - Francesca Turroni
- Laboratory of Probiogenomics, Department of Chemistry, Life Sciences, and Environmental Sustainability, University of Parma, Parma, Italy
- Interdepartmental Research Centre "Microbiome Research Hub", University of Parma, Parma, Italy
| | - Giuseppe Taurino
- Department of Medicine and Surgery, University of Parma, Parma, Italy
- Interdepartmental Research Centre "Microbiome Research Hub", University of Parma, Parma, Italy
| | - Martina Chiu
- Department of Medicine and Surgery, University of Parma, Parma, Italy
| | - Silvia Arboleya
- Department of Microbiology and Biochemistry of Dairy Products, Instituto de Productos Lácteos de Asturias, CSIC, 33300, Villaviciosa, Spain
| | - Miguel Gueimonde
- Department of Microbiology and Biochemistry of Dairy Products, Instituto de Productos Lácteos de Asturias, CSIC, 33300, Villaviciosa, Spain
| | - Ovidio Bussolati
- Department of Medicine and Surgery, University of Parma, Parma, Italy
- Interdepartmental Research Centre "Microbiome Research Hub", University of Parma, Parma, Italy
| | - Douwe van Sinderen
- APC Microbiome Institute and School of Microbiology, Bioscience Institute, National University of Ireland, T12YT20, Cork, Ireland
| | - Christian Milani
- Laboratory of Probiogenomics, Department of Chemistry, Life Sciences, and Environmental Sustainability, University of Parma, Parma, Italy.
- Interdepartmental Research Centre "Microbiome Research Hub", University of Parma, Parma, Italy.
| | - Marco Ventura
- Laboratory of Probiogenomics, Department of Chemistry, Life Sciences, and Environmental Sustainability, University of Parma, Parma, Italy.
- Interdepartmental Research Centre "Microbiome Research Hub", University of Parma, Parma, Italy.
| |
Collapse
|
17
|
Rizzo SM, Alessandri G, Lugli GA, Fontana F, Tarracchini C, Mancabelli L, Viappiani A, Bianchi MG, Bussolati O, van Sinderen D, Ventura M, Turroni F. Exploring Molecular Interactions between Human Milk Hormone Insulin and Bifidobacteria. Microbiol Spectr 2023; 11:e0066523. [PMID: 37191543 PMCID: PMC10269646 DOI: 10.1128/spectrum.00665-23] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2023] [Accepted: 04/27/2023] [Indexed: 05/17/2023] Open
Abstract
Multiple millennia of human evolution have shaped the chemical composition of breast milk toward an optimal human body fluid for nutrition and protection and for shaping the early gut microbiota of newborns. This biological fluid is composed of water, lipids, simple and complex carbohydrates, proteins, immunoglobulins, and hormones. Potential interactions between hormones present in mother's milk and the microbial community of the newborn are a very fascinating yet unexplored topic. In this context, insulin, in addition to being one of the most prevalent hormones in breast milk, is also involved in a metabolic disease that affects many pregnant women, i.e., gestational diabetes mellitus (GDM). Analysis of 3,620 publicly available metagenomic data sets revealed that the bifidobacterial community varies in relation to the different concentrations of this hormone in breast milk of healthy and diabetic mothers. Starting from this assumption, in this study, we explored possible molecular interactions between this hormone and bifidobacterial strains that represent bifidobacterial species commonly occurring in the infant gut using 'omics' approaches. Our findings revealed that insulin modulates the bifidobacterial community by apparently improving the persistence of the Bifidobacterium bifidum taxon in the infant gut environment compared to other typical infant-associated bifidobacterial species. IMPORTANCE Breast milk is a key factor in modulating the infant's intestinal microbiota composition. Even though the interaction between human milk sugars and bifidobacteria has been extensively studied, there are other bioactive compounds in human milk that may influence the gut microbiota, such as hormones. In this article, the molecular interaction of the human milk hormone insulin and the bifidobacterial communities colonizing the human gut in the early stages of life has been explored. This molecular cross talk was assessed using an in vitro gut microbiota model and then analyzed by various omics approaches, allowing the identification of genes associated with bacterial cell adaptation/colonization in the human intestine. Our findings provide insights into the manner by which assembly of the early gut microbiota may be regulated by host factors such as hormones carried by human milk.
Collapse
Affiliation(s)
- Sonia Mirjam Rizzo
- Laboratory of Probiogenomics, Department of Chemistry, Life Sciences and Environmental Sustainability, University of Parma, Parma, Italy
| | - Giulia Alessandri
- Laboratory of Probiogenomics, Department of Chemistry, Life Sciences and Environmental Sustainability, University of Parma, Parma, Italy
| | - Gabriele Andrea Lugli
- Laboratory of Probiogenomics, Department of Chemistry, Life Sciences and Environmental Sustainability, University of Parma, Parma, Italy
| | - Federico Fontana
- Laboratory of Probiogenomics, Department of Chemistry, Life Sciences and Environmental Sustainability, University of Parma, Parma, Italy
- GenProbio srl, Parma, Italy
| | - Chiara Tarracchini
- Laboratory of Probiogenomics, Department of Chemistry, Life Sciences and Environmental Sustainability, University of Parma, Parma, Italy
| | - Leonardo Mancabelli
- Department of Medicine and Surgery, University of Parma, Parma, Italy
- Interdepartmental Research Centre “Microbiome Research Hub”, University of Parma, Italy
| | | | - Massimiliano G. Bianchi
- Department of Medicine and Surgery, University of Parma, Parma, Italy
- Interdepartmental Research Centre “Microbiome Research Hub”, University of Parma, Italy
| | - Ovidio Bussolati
- Department of Medicine and Surgery, University of Parma, Parma, Italy
- Interdepartmental Research Centre “Microbiome Research Hub”, University of Parma, Italy
| | - Douwe van Sinderen
- APC Microbiome Institute and School of Microbiology, Bioscience Institute, National University of Ireland, Cork, Ireland
| | - Marco Ventura
- Laboratory of Probiogenomics, Department of Chemistry, Life Sciences and Environmental Sustainability, University of Parma, Parma, Italy
- Interdepartmental Research Centre “Microbiome Research Hub”, University of Parma, Italy
| | - Francesca Turroni
- Laboratory of Probiogenomics, Department of Chemistry, Life Sciences and Environmental Sustainability, University of Parma, Parma, Italy
- Interdepartmental Research Centre “Microbiome Research Hub”, University of Parma, Italy
| |
Collapse
|
18
|
Kang MJ, Jeong H, Kim S, Shin J, Song Y, Lee BH, Park HG, Lee TH, Jiang HH, Han YS, Lee BG, Lee HJ, Park MJ, Park YS. Structural analysis and prebiotic activity of exopolysaccharide produced by probiotic strain Bifidobacterium bifidum EPS DA-LAIM. Food Sci Biotechnol 2023; 32:517-529. [PMID: 36911335 PMCID: PMC9992680 DOI: 10.1007/s10068-022-01213-w] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2022] [Revised: 11/08/2022] [Accepted: 11/13/2022] [Indexed: 12/03/2022] Open
Abstract
Exopolysaccharide (EPS)-producing Bifidobacterium bifidum EPS DA-LAIM was isolated from healthy human feces, the structure of purified EPS from the strain was analyzed, and its prebiotic activity was evaluated. The EPS from B. bifidum EPS DA-LAIM is a glucomannan-type heteropolysaccharide with a molecular weight of 407-1007 kDa, and its structure comprises 2-mannosyl, 6-mannosyl, and 2,6-mannosyl residues. The purified EPS promoted the growth of representative lactic acid bacteria and bifidobacterial strains. Bifidobacterium bifidum EPS DA-LAIM increased nitric oxide production in RAW 264.7 macrophage cells, indicating its immunostimulatory activity. Bifidobacterium bifidum EPS DA-LAIM also exhibited high gastrointestinal tract tolerance, gut adhesion ability, and antioxidant activity. These results suggest that EPS from B. bifidum EPS DA-LAIM is a potentially useful prebiotic material, and B. bifidum EPS DA-LAIM could be applied as a probiotic candidate. Supplementary Information The online version contains supplementary material available at 10.1007/s10068-022-01213-w.
Collapse
Affiliation(s)
- Min Joo Kang
- Department of Food Science and Biotechnology, Gachon University, Seongnam, 13120 Republic of Korea
| | - Huijin Jeong
- Department of Food Science and Biotechnology, Gachon University, Seongnam, 13120 Republic of Korea
| | - Suin Kim
- Department of Food Science and Biotechnology, Gachon University, Seongnam, 13120 Republic of Korea
| | - Jaein Shin
- Department of Food Science and Biotechnology, Gachon University, Seongnam, 13120 Republic of Korea
| | - Youngbo Song
- Department of Food Science and Biotechnology, Gachon University, Seongnam, 13120 Republic of Korea
| | - Byung-Hoo Lee
- Department of Food Science and Biotechnology, Gachon University, Seongnam, 13120 Republic of Korea
| | - Hyoung-Geun Park
- Research Laboratory, Dong-A Pharmaceutical Co., Ltd., Yongin, 17073 Republic of Korea
| | - Tae-Ho Lee
- Research Laboratory, Dong-A Pharmaceutical Co., Ltd., Yongin, 17073 Republic of Korea
| | - Hai-Hua Jiang
- Research Laboratory, Dong-A Pharmaceutical Co., Ltd., Yongin, 17073 Republic of Korea
| | - Young-Sun Han
- Research Laboratory, Dong-A Pharmaceutical Co., Ltd., Yongin, 17073 Republic of Korea
| | - Bong-Gyeong Lee
- Research Laboratory, Dong-A Pharmaceutical Co., Ltd., Yongin, 17073 Republic of Korea
| | - Ho-Jin Lee
- Research Laboratory, Dong-A Pharmaceutical Co., Ltd., Yongin, 17073 Republic of Korea
| | - Min-Ju Park
- Research Laboratory, Dong-A Pharmaceutical Co., Ltd., Yongin, 17073 Republic of Korea
| | - Young-Seo Park
- Department of Food Science and Biotechnology, Gachon University, Seongnam, 13120 Republic of Korea
| |
Collapse
|
19
|
Alessandri G, Fontana F, Tarracchini C, Rizzo SM, Bianchi MG, Taurino G, Chiu M, Lugli GA, Mancabelli L, Argentini C, Longhi G, Anzalone R, Viappiani A, Milani C, Turroni F, Bussolati O, van Sinderen D, Ventura M. Identification of a prototype human gut Bifidobacterium longum subsp. longum strain based on comparative and functional genomic approaches. Front Microbiol 2023; 14:1130592. [PMID: 36846784 PMCID: PMC9945282 DOI: 10.3389/fmicb.2023.1130592] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2022] [Accepted: 01/17/2023] [Indexed: 02/10/2023] Open
Abstract
Bifidobacteria are extensively exploited for the formulation of probiotic food supplements due to their claimed ability to exert health-beneficial effects upon their host. However, most commercialized probiotics are tested and selected for their safety features rather than for their effective abilities to interact with the host and/or other intestinal microbial players. In this study, we applied an ecological and phylogenomic-driven selection to identify novel B. longum subsp. longum strains with a presumed high fitness in the human gut. Such analyses allowed the identification of a prototype microorganism to investigate the genetic traits encompassed by the autochthonous bifidobacterial human gut communities. B. longum subsp. longum PRL2022 was selected due to its close genomic relationship with the calculated model representative of the adult human-gut associated B. longum subsp. longum taxon. The interactomic features of PRL2022 with the human host as well as with key representative intestinal microbial members were assayed using in vitro models, revealing how this bifidobacterial gut strain is able to establish extensive cross-talk with both the host and other microbial residents of the human intestine.
Collapse
Affiliation(s)
- Giulia Alessandri
- Laboratory of Probiogenomics, Department of Chemistry, Life Sciences, and Environmental Sustainability, University of Parma, Parma, Italy
| | - Federico Fontana
- Laboratory of Probiogenomics, Department of Chemistry, Life Sciences, and Environmental Sustainability, University of Parma, Parma, Italy
- GenProbio srl, Parma, Italy
| | - Chiara Tarracchini
- Laboratory of Probiogenomics, Department of Chemistry, Life Sciences, and Environmental Sustainability, University of Parma, Parma, Italy
| | - Sonia Mirjam Rizzo
- Laboratory of Probiogenomics, Department of Chemistry, Life Sciences, and Environmental Sustainability, University of Parma, Parma, Italy
| | - Massimiliano G. Bianchi
- Department of Medicine and Surgery, University of Parma, Parma, Italy
- Microbiome Research Hub, University of Parma, Parma, Italy
| | - Giuseppe Taurino
- Department of Medicine and Surgery, University of Parma, Parma, Italy
- Microbiome Research Hub, University of Parma, Parma, Italy
| | - Martina Chiu
- Department of Medicine and Surgery, University of Parma, Parma, Italy
| | - Gabriele Andrea Lugli
- Laboratory of Probiogenomics, Department of Chemistry, Life Sciences, and Environmental Sustainability, University of Parma, Parma, Italy
| | - Leonardo Mancabelli
- Department of Medicine and Surgery, University of Parma, Parma, Italy
- Microbiome Research Hub, University of Parma, Parma, Italy
| | - Chiara Argentini
- Laboratory of Probiogenomics, Department of Chemistry, Life Sciences, and Environmental Sustainability, University of Parma, Parma, Italy
| | - Giulia Longhi
- Laboratory of Probiogenomics, Department of Chemistry, Life Sciences, and Environmental Sustainability, University of Parma, Parma, Italy
- GenProbio srl, Parma, Italy
| | | | | | - Christian Milani
- Laboratory of Probiogenomics, Department of Chemistry, Life Sciences, and Environmental Sustainability, University of Parma, Parma, Italy
- Microbiome Research Hub, University of Parma, Parma, Italy
| | - Francesca Turroni
- Laboratory of Probiogenomics, Department of Chemistry, Life Sciences, and Environmental Sustainability, University of Parma, Parma, Italy
- Microbiome Research Hub, University of Parma, Parma, Italy
| | - Ovidio Bussolati
- Department of Medicine and Surgery, University of Parma, Parma, Italy
- Microbiome Research Hub, University of Parma, Parma, Italy
| | - Douwe van Sinderen
- APC Microbiome Institute and School of Microbiology, Bioscience Institute, National University of Ireland, Cork, Ireland
| | - Marco Ventura
- Laboratory of Probiogenomics, Department of Chemistry, Life Sciences, and Environmental Sustainability, University of Parma, Parma, Italy
- Microbiome Research Hub, University of Parma, Parma, Italy
| |
Collapse
|
20
|
Cao M, Xue T, Huo H, Zhang X, Wang NN, Yan X, Li C. Spatial transcriptomes and microbiota reveal immune mechanism that respond to pathogen infection in the posterior intestine of Sebastes schlegelii. Open Biol 2023; 13:220302. [PMID: 36974664 PMCID: PMC9944294 DOI: 10.1098/rsob.220302] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2022] [Accepted: 01/25/2023] [Indexed: 02/25/2023] Open
Abstract
The intestine is a site of immune cell priming at birth. Therefore, spatial transcriptomes were performed to define how the transcriptomic landscape was spatially organized in the posterior intestine of Sebastes schlegelii following Edwardsiella piscicida infection. In the healthy condition, we identified a previously unappreciated molecular regionalization of the posterior intestine. Following bacterial infection, most immune-related genes were identified in mucosa layer. Moreover, investigation of immune-related genes and genes in immune-related KEGG pathways based on spatial transcriptomes shed light on which sections of these genes are in the posterior intestine. Meanwhile, the high expression of genes related to regeneration also indicated that the posterior intestine was responding to the invasion of pathogens by constantly proliferating new cells. In addition, the increasing microbiota communities indicated that these bacteria maintained posterior intestine integrity and shaped the mucosal immune system. Taken together, spatial transcriptomes and microbiota compositions have significant implications for understanding the immune mechanism that responds to E. piscicida infection in the posterior intestine of S. schlegelii, which also provides a theoretical basis for the spatial distribution of immune genes and changes in bacterial flora in other teleosts in the process of resisting pathogens.
Collapse
Affiliation(s)
- Min Cao
- School of Marine Science and Engineering, Qingdao Agricultural University, Qingdao 266109, People's Republic of China
| | - Ting Xue
- School of Marine Science and Engineering, Qingdao Agricultural University, Qingdao 266109, People's Republic of China
| | - Huijun Huo
- School of Marine Science and Engineering, Qingdao Agricultural University, Qingdao 266109, People's Republic of China
| | - Xiaoyan Zhang
- School of Marine Science and Engineering, Qingdao Agricultural University, Qingdao 266109, People's Republic of China
| | - Ning Ning Wang
- School of Marine Science and Engineering, Qingdao Agricultural University, Qingdao 266109, People's Republic of China
| | - Xu Yan
- School of Marine Science and Engineering, Qingdao Agricultural University, Qingdao 266109, People's Republic of China
| | - Chao Li
- School of Marine Science and Engineering, Qingdao Agricultural University, Qingdao 266109, People's Republic of China
| |
Collapse
|
21
|
Hazarika P, Chattopadhyay I, Umpo M, Choudhury Y, Sharma I. Elucidating the gut microbiome alterations of tribal community of Arunachal Pradesh: perspectives on their lifestyle or food habits. Sci Rep 2022; 12:18296. [PMID: 36316382 PMCID: PMC9622709 DOI: 10.1038/s41598-022-23124-w] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2021] [Accepted: 10/25/2022] [Indexed: 11/07/2022] Open
Abstract
Gut microbiota studies of ethnic populations reveal gut microbial biomarkers for therapeutic options and detection of the disease state. The present study aimed to analyze the gut microbiome signatures in thirty individuals from the Adi, Apatani and Nyshi tribes of Arunachal Pradesh (ten in each cohort) by sequencing the V3 and V4 regions of 16S rRNA on the Illumina MiSeq Platform. The gut microbiome was highly predominated by Firmicutes, Actinobacteria, Proteobacteria, and Bacteroidates in the three studied tribal groups. At the genus level, significant abundance of Bifidobacterium, Collinsella, Bacteroides, Prevotella, Lactobacillus, Streptococcus, Clostridium, Coprococcus, Dorea, Lachnospira, Roseburia, Ruminococcus, Faecalibacterium, Catenibacterium, Eubacterium, Citrobacter and Enterobacter were observed amongst the three tribes. The tribal communities residing in remote areas and following traditional lifestyle had higher gut microbiome diversity with a high prevalence of Prevotella and Collinsella in the Adi and Nyshi tribes, and Bifidobacterium and Catenibacterium in the Apatani tribe. Elucidating the gut microbiome of the tribal community of Arunachal Pradesh will add to the knowledge on relationships between microbial communities, dietary food factors, and the overall state of health of humans worldwide.
Collapse
Affiliation(s)
- Parijat Hazarika
- grid.411460.60000 0004 1767 4538Department of Microbiology, Assam University, Silchar, 788011 India
| | - Indranil Chattopadhyay
- grid.448768.10000 0004 1772 7660Department of Life Sciences, Central University of Tamil Nadu, 610 101, Thiruvarur, India
| | - Mika Umpo
- Department of Microbiology, Tomo Riba Institute of Health and Medical Sciences, Nahrlagun, 791110 India
| | - Yashmin Choudhury
- grid.411460.60000 0004 1767 4538Department of Biotechnology, Assam University, Silchar, 788011 India
| | - Indu Sharma
- grid.411460.60000 0004 1767 4538Department of Microbiology, Assam University, Silchar, 788011 India
| |
Collapse
|
22
|
Liu Z, Zhu S, He M, Li M, Wei H, Zhang L, Sun Q, Jia Q, Hu N, Fang Y, Song L, Zhou C, Tao H, Kao JY, Zhu H, Owyang C, Duan L. Patients with breath test positive are necessary to be identified from irritable bowel syndrome: a clinical trial based on microbiomics and rifaximin sensitivity. Chin Med J (Engl) 2022; 135:1716-1727. [PMID: 36070467 PMCID: PMC9509105 DOI: 10.1097/cm9.0000000000002294] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
BACKGROUND As a non-invasive and effective diagnostic method for small intestinal bacterial overgrowth (SIBO), wild-use of breath test (BT) has demonstrated a high comorbidity rate in patients with diarrhea-predominant irritable bowel syndrome (IBS-D) and SIBO. Patients overlapping with SIBO respond better to rifaximin therapy than those with IBS-D only. Gut microbiota plays a critical role in both of these two diseases. We aimed to determine the microbial difference between IBS-D overlapping with/without SIBO, and to study the underlying mechanism of its sensitivity to rifaximin. METHODS Patients with IBS-D were categorized as BT-negative (IBSN) and BT-positive (IBSP). Healthy volunteers (BT-negative) were enrolled as healthy control. The patients were clinically evaluated before and after rifaximin treatment (0.4 g bid, 4 weeks). Blood, intestine, and stool samples were collected for cytokine assessment and gut microbial analyses. RESULTS Clinical complaints and microbial abundance were significantly higher in IBSP than in IBSN. In contrast, severe systemic inflammation and more active bacterial invasion function that were associated with enrichment of opportunistic pathogens were seen in IBSN. The symptoms of IBSP patients were relieved in different degrees after therapy, but the symptoms of IBSN rarely changed. We also found that the presence of IBSN-enriched genera ( Enterobacter and Enterococcus ) are unaffected by rifaximin therapy. CONCLUSIONS IBS-D patients overlapping with SIBO showed noticeably different fecal microbial composition and function compared with IBS-D only. The better response to rifaximin in those comorbid patients might associate with their different gut microbiota, which suggests that BT is necessary before IBS-D diagnosis and use of rifaximin. REGISTRATION Chinese Clinical Trial Registry, ChiCTR1800017911.
Collapse
Affiliation(s)
- Zuojing Liu
- Department of Gastroenterology, Peking University Third Hospital, Haidian District, Beijing 100191, China
| | - Shiwei Zhu
- Department of Ultrasound, Peking University Third Hospital, Haidian District, Beijing 100191, China
| | - Meibo He
- Institute of Systems Biomedicine, School of Basic Medical Sciences, Peking University Health Science Center, Beijing 100191, China
| | - Mo Li
- Department of Biomedical Engineering, College of Engineering, Peking University, Beijing 100187, China
| | - Hui Wei
- Department of Gastroenterology, Peking University Third Hospital, Haidian District, Beijing 100191, China
| | - Lu Zhang
- Department of Gastroenterology, Peking University Third Hospital, Haidian District, Beijing 100191, China
| | - Qinghua Sun
- Department of Gastroenterology, Peking University Third Hospital, Haidian District, Beijing 100191, China
| | - Qiong Jia
- Department of Gastroenterology, Peking University Third Hospital, Haidian District, Beijing 100191, China
| | - Nan Hu
- Department of Gastroenterology, Peking University Third Hospital, Haidian District, Beijing 100191, China
| | - Yuan Fang
- Department of Gastroenterology, Peking University Third Hospital, Haidian District, Beijing 100191, China
| | - Lijin Song
- Department of Gastroenterology, Peking University Third Hospital, Haidian District, Beijing 100191, China
| | - Chen Zhou
- Department of Gastroenterology, Peking University Third Hospital, Haidian District, Beijing 100191, China
| | - Heqing Tao
- Department of Gastroenterology, Peking University Third Hospital, Haidian District, Beijing 100191, China
| | - John Y Kao
- Division of Gastroenterology, Department of Internal Medicine, University of Michigan Health System, 6520 MSRB I, SPC 5682, 1150 West Medical Center Drive, Ann Arbor, MI 48109, USA
| | - Huaiqiu Zhu
- Department of Biomedical Engineering, College of Engineering, Peking University, Beijing 100187, China
| | - Chung Owyang
- Division of Gastroenterology, Department of Internal Medicine, University of Michigan Health System, 6520 MSRB I, SPC 5682, 1150 West Medical Center Drive, Ann Arbor, MI 48109, USA
| | - Liping Duan
- Department of Gastroenterology, Peking University Third Hospital, Haidian District, Beijing 100191, China
| |
Collapse
|
23
|
Genome-wide siRNA screening reveals several host receptors for the binding of human gut commensal Bifidobacterium bifidum. NPJ Biofilms Microbiomes 2022; 8:50. [PMID: 35768415 PMCID: PMC9243078 DOI: 10.1038/s41522-022-00312-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2021] [Accepted: 05/31/2022] [Indexed: 11/08/2022] Open
Abstract
Bifidobacterium spp. are abundant gut commensals, especially in breast-fed infants. Bifidobacteria are associated with many health-promoting effects including maintenance of epithelial barrier and integrity as well as immunomodulation. However, the protective mechanisms of bifidobacteria on intestinal epithelium at molecular level are poorly understood. In this study, we developed a high-throughput in vitro screening assay to explore binding receptors of intestinal epithelial cells for Bifidobacterium bifidum. Short interfering RNAs (siRNA) were used to silence expression of each gene in the Caco-2 cell line one by one. The screen yielded four cell surface proteins, SERPINB3, LGICZ1, PKD1 and PAQR6, which were identified as potential receptors as the siRNA knock-down of their expression decreased adhesion of B. bifidum to the cell line repeatedly during the three rounds of siRNA screening. Furthermore, blocking of these host cell proteins by specific antibodies decreased the binding of B. bifidum significantly to Caco-2 and HT29 cell lines. All these molecules are located on the surface of epithelial cells and three out of four, SERPINB3, PKD1 and PAQR6, are involved in the regulation of cellular processes related to proliferation, differentiation and apoptosis as well as inflammation and immunity. Our results provide leads to the first steps in the mechanistic cascade of B. bifidum-host interactions leading to regulatory effects in the epithelium and may partly explain how this commensal bacterium is able to promote intestinal homeostasis.
Collapse
|
24
|
Shehata AM, Paswan VK, Attia YA, Abougabal MS, Khamis T, Alqosaibi AI, Alnamshan MM, Elmazoudy R, Abaza MA, Salama EAA, El-Saadony MT, Saad AM, Abdel-Moneim AME. In ovo Inoculation of Bacillus subtilis and Raffinose Affects Growth Performance, Cecal Microbiota, Volatile Fatty Acid, Ileal Morphology and Gene Expression, and Sustainability of Broiler Chickens ( Gallus gallus). Front Nutr 2022; 9:903847. [PMID: 35711554 PMCID: PMC9194610 DOI: 10.3389/fnut.2022.903847] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2022] [Accepted: 05/04/2022] [Indexed: 11/13/2022] Open
Abstract
Banning antibiotic growth promoters has negatively impacted poultry production and sustainability, which led to exploring efficient alternatives such as probiotics, probiotics, and synbiotics. Effect of in ovo injection of Bacillus subtilis, raffinose, and their synbiotics on growth performance, cecal microbial population and volatile fatty acid concentration, ileal histomorphology, and ileal gene expression was investigated in broilers (Gallus gallus) raised for 21 days. On 300 h of incubation, a total of 1,500 embryonated eggs were equally allotted into 10 groups. The first was non-injected (NC) and the remaining in ovo injected with sterile distilled water (PC), B. subtilis 4 × 105 and 4 × 106 CFU (BS1 and BS2), Raffinose 2 and 3 mg (R1 and R2), B. subtilis 4 × 105 CFU + raffinose 2 mg (BS1R1), B. subtilis 4 × 105 CFU + raffinose 3 mg (BS1R2), B. subtilis 4 × 106 CFU + raffinose 2 mg (BS2R1), and B. subtilis 4 × 106 CFU + raffinose 3 mg (BS2R2). At hatch, 60 chicks from each group were randomly chosen, divided into groups of 6 replicates (10 birds/replicate), and fed with a corn–soybean-based diet. In ovo inoculation of B. subtilis and raffinose alone or combinations significantly improved body weight, feed intake, and feed conversion ratio of 21-day-old broilers compared to NC. Cecal concentrations of butyric, pentanoic, propionic, and isobutyric acids were significantly elevated in R1, R2, BS2R1, and BS2R2, whereas isovaleric and acetic acids were significantly increased in R1 and BS2R1 compared to NC. Cecal microbial population was significantly altered in treated groups. Ileal villus height was increased (p < 0.001) in BS1, R2, and BS2R2 compared to NC. The mRNA expression of mucin-2 was upregulated (p < 0.05) in synbiotic groups except for BS1R1. Vascular endothelial growth factor (VEGF) expression was increased (p < 0.05) in BS2, R1, BS1R1, and BS1R2 compared to NC. SGLT-1 expression was upregulated (p < 0.05) in all treated birds except those of R1 group compared to NC. The mRNA expressions of interleukin (IL)-2 and toll-like receptor (TLR)-4 were downregulated (p < 0.05) in BS2 and R1 for IL-2 and BS1R1 and BS2R2 for TLR-4. It was concluded that in ovo B. subtilis, raffinose, and synbiotics positively affected growth performance, cecal microbiota, gut health, immune responses, and thus the sustainability of production in 21-day-old broilers.
Collapse
Affiliation(s)
- Abdelrazeq M Shehata
- Department of Animal Production, Faculty of Agriculture, Al-Azhar University, Cairo, Egypt.,Department of Dairy Science and Food Technology, Institute of Agricultural Sciences, Banaras Hindu University, Varanasi, India
| | - Vinod K Paswan
- Department of Dairy Science and Food Technology, Institute of Agricultural Sciences, Banaras Hindu University, Varanasi, India
| | - Youssef A Attia
- Department of Animal and Poultry Production, Faculty of Agriculture, Damanhour University, Damanhour, Egypt.,Sustainable Agriculture Research Group, Department of Agriculture, Faculty of Environmental Sciences, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Mohammed Sh Abougabal
- Department of Animal Production, Faculty of Agriculture, Al-Azhar University, Cairo, Egypt
| | - Tarek Khamis
- Department of Pharmacology, Faculty of Veterinary Medicine, Zagazig University, Zagazig, Egypt.,Laboratory of Biotechnology, Faculty of Veterinary Medicine, Zagazig University, Zagazig, Egypt
| | - Amany I Alqosaibi
- Biology Department, College of Science, Imam Abdulrahman Bin Faisal University, Dammam, Saudi Arabia
| | - Mashael M Alnamshan
- Biology Department, College of Science, Imam Abdulrahman Bin Faisal University, Dammam, Saudi Arabia
| | - Reda Elmazoudy
- Biology Department, College of Science, Imam Abdulrahman Bin Faisal University, Dammam, Saudi Arabia
| | - Mohamed A Abaza
- Avian and Rabbit Diseases Department, Faculty of Veterinary Medicine, Benha University, Banha, Egypt
| | - Ehab A A Salama
- Agricultural Botany Department, Faculty of Agriculture (Saba Basha), Alexandria University, Alexandria, Egypt
| | - Mohamed T El-Saadony
- Department of Agricultural Microbiology, Faculty of Agriculture, Zagazig University, Zagazig, Egypt
| | - Ahmed M Saad
- Biochemistry Department, Faculty of Agriculture, Zagazig University, Zagazig, Egypt
| | | |
Collapse
|
25
|
Ishikawa E, Yamada T, Yamaji K, Serata M, Fujii D, Umesaki Y, Tsuji H, Nomoto K, Ito M, Okada N, Nagaoka M, Gomi A. Critical roles of a housekeeping sortase of probiotic Bifidobacterium bifidum in bacterium-host cell crosstalk. iScience 2021; 24:103363. [PMID: 34825137 PMCID: PMC8603203 DOI: 10.1016/j.isci.2021.103363] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2020] [Revised: 04/09/2021] [Accepted: 10/25/2021] [Indexed: 10/30/2022] Open
Abstract
Bifidobacterium bifidum YIT 10347 (BF-1) is adhesive in vitro. Here we studied the molecular aspects of the BF-1 adhesion process. We identified and characterized non-adhesive mutants and found that a class E housekeeping sortase was critical for the adhesion to mucin. These mutants were significantly less adhesive to GCIY cells than was the wild type (WT), which protected GCIY cells against acid treatment more than did a non-adhesive mutant. The non-adhesive mutants aberrantly accumulated precursors of putative sortase-dependent proteins (SDPs). Recombinant SDPs bound to mucin. Disruption of the housekeeping sortase influenced expression of SDPs and pilus components. Mutants defective in a pilin or in an SDP showed the same adhesion properties as WT. Therefore, multiple SDPs and pili seem to work cooperatively to achieve adhesion, and the housekeeping sortase is responsible for cell wall anchoring of its substrates to ensure their proper biological function.
Collapse
Affiliation(s)
- Eiji Ishikawa
- Yakult Central Institute, 5-11 Izumi, Kunitachi-shi, Tokyo 186-8650, Japan
| | - Tetsuya Yamada
- Yakult Central Institute, 5-11 Izumi, Kunitachi-shi, Tokyo 186-8650, Japan
| | - Kazuaki Yamaji
- Yakult Central Institute, 5-11 Izumi, Kunitachi-shi, Tokyo 186-8650, Japan
| | - Masaki Serata
- Yakult Central Institute, 5-11 Izumi, Kunitachi-shi, Tokyo 186-8650, Japan
| | - Daichi Fujii
- Yakult Central Institute, 5-11 Izumi, Kunitachi-shi, Tokyo 186-8650, Japan
| | - Yoshinori Umesaki
- Yakult Central Institute, 5-11 Izumi, Kunitachi-shi, Tokyo 186-8650, Japan
| | - Hirokazu Tsuji
- Yakult Central Institute, 5-11 Izumi, Kunitachi-shi, Tokyo 186-8650, Japan
| | - Koji Nomoto
- Yakult Central Institute, 5-11 Izumi, Kunitachi-shi, Tokyo 186-8650, Japan.,Tokyo University of Agriculture, 1-1-1 Sakuragaoka, Setagaya-ku, Tokyo 156-8502, Japan
| | - Masahiro Ito
- Department of Microbiology, School of Pharmacy, Kitasato University, 5-9-1 Shirokane, Minato-ku, Tokyo 108-8641, Japan
| | - Nobuhiko Okada
- Department of Microbiology, School of Pharmacy, Kitasato University, 5-9-1 Shirokane, Minato-ku, Tokyo 108-8641, Japan
| | - Masato Nagaoka
- Yakult Central Institute, 5-11 Izumi, Kunitachi-shi, Tokyo 186-8650, Japan
| | - Atsushi Gomi
- Yakult Central Institute, 5-11 Izumi, Kunitachi-shi, Tokyo 186-8650, Japan
| |
Collapse
|
26
|
Nour MA, El-Hindawy MM, Abou-Kassem DE, Ashour EA, Abd El-Hack ME, Mahgoub S, Aboelenin SM, Soliman MM, El-Tarabily KA, Abdel-Moneim AME. Productive performance, fertility and hatchability, blood indices and gut microbial load in laying quails as affected by two types of probiotic bacteria. Saudi J Biol Sci 2021; 28:6544-6555. [PMID: 34764770 PMCID: PMC8568992 DOI: 10.1016/j.sjbs.2021.07.030] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2021] [Revised: 06/16/2021] [Accepted: 07/06/2021] [Indexed: 01/23/2023] Open
Abstract
This study investigated two kinds of probiotic bacteria (Bacillus toyonensis, B1 and Bifidobacterium bifidum, B2) on laying Japanese quail’s performance, egg quality, fertility and hatchability, blood biochemical characteristics and microbiological parameters. A total of 270 mature quails (180 females and 90 males) were distributed into ten groups in a completely randomized design at eight weeks of age. The experimental groups were as follows: T1: basal diet only (control); T2-T5, basal diet plus 0.05, 0.075, 0.10 and 0.125% B1, respectively; T6: basal diet plus 0.10% B2; T7-T10: basal diet plus 0.05, 0.075, 0.10 and 0.125% B1 plus 0.05% B2, respectively. Results revealed that egg number (EN) and egg weight (EW) were gradually increased (P < 0.01) as the levels of both probiotic types increased. The feed conversion ratio (FCR) was significantly (P < 0.05) better within the total experimental period (8–20 weeks) due to B1 alone or/with B2 supplementation. Values of yolk percentage (Y%) were statistically (P < 0.01) higher only at 8–20 weeks of age and T10 recorded the highest value. By increasing the level of probiotics, fertility and hatchability percentages (F% and H%) were gradually increased (P < 0.01 and P < 0.05). Creatinine (CR) level was statistically reduced in birds fed T4 diet. Also, urea-N and aspartate aminotransferase (AST) levels were reduced in treated birds. The opposite was found regarding alkaline phosphatase (ALP). Conclusively, using B1 and B2 enhanced the productive performance, some egg quality traits, fertility and hatchability, digestive enzyme activities, and reduced the harmful bacteria in the gut of laying Japanese quail. Our findings could recommend to apply T4 (basal diet + 0.10 % B1), T6 (basal diet + 0.10% B2) and T9 (basal diet + 0.10% B1 + 0.05% B2) levels for the best results.
Collapse
Affiliation(s)
- Mohamed A Nour
- Poultry Department, Faculty of Agriculture, Zagazig University, Zagazig 44511, Egypt
| | - Mohamed M El-Hindawy
- Poultry Department, Faculty of Agriculture, Zagazig University, Zagazig 44511, Egypt
| | - Diaa E Abou-Kassem
- Animal and Poultry Production Department, Faculty of Technology and Development, Zagazig University, Zagazig 44511, Egypt
| | - Elwy A Ashour
- Poultry Department, Faculty of Agriculture, Zagazig University, Zagazig 44511, Egypt
| | - Mohamed E Abd El-Hack
- Poultry Department, Faculty of Agriculture, Zagazig University, Zagazig 44511, Egypt
| | - Samir Mahgoub
- Agricultural Microbiology Department, Faculty of Agriculture, Zagazig University, Zagazig 44111, Egypt
| | - Salama M Aboelenin
- Biology Department, Turabah University College, Taif University, P.O. Box 11099, Taif 21944, Saudi Arabia
| | - Mohamed M Soliman
- Clinical Laboratory Sciences Department, Turabah University College, Taif University, P.O. Box 11099, Taif 21944, Saudi Arabia
| | - Khaled A El-Tarabily
- Department of Biology, College of Science, United Arab Emirates University, 15551 Al-Ain, United Arab Emirates.,Harry Butler Institute, Murdoch University, Murdoch, 6150, Western Australia, Australia
| | - Abdel-Moneim E Abdel-Moneim
- Biological Application Department, Nuclear Research Center, Atomic Energy Authority, Abou-Zabael 13759, Egypt
| |
Collapse
|
27
|
Fei Y, Chen Z, Han S, Zhang S, Zhang T, Lu Y, Berglund B, Xiao H, Li L, Yao M. Role of prebiotics in enhancing the function of next-generation probiotics in gut microbiota. Crit Rev Food Sci Nutr 2021; 63:1037-1054. [PMID: 34323634 DOI: 10.1080/10408398.2021.1958744] [Citation(s) in RCA: 41] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
With the development of high-throughput DNA sequencing and molecular analysis technologies, next-generation probiotics (NGPs) are increasingly gaining attention as live bacterial therapeutics for treatment of diseases. However, compared to traditional probiotics, NGPs are much more vulnerable to the harsh conditions in the human gastrointestinal tract, and their functional mechanisms in the gut are more complex. Prebiotics have been confirmed to play a critical role in improving the function and viability of traditional probiotics. Defined as substrates that are selectively utilized by host microorganisms conferring a health benefit, prebiotics are also important for NGPs. This review summarizes potential prebiotics for use with NGPs and clarifies their characteristics and functional mechanisms. Then we particularly focus on illustrating the protective effects of various prebiotics by enhancing the antioxidant capacity and their resistance to digestive fluids. We also elucidate the role of prebiotics in regulating anti-bacterial effects, intestinal barrier maintenance, and cross-feeding mechanisms of NPGs. With the expanding range of candidate NGPs and prebiotic substrates, more studies need to be conducted to comprehensively elucidate the interactions between prebiotics and NGPs outside and inside hosts, in order to boost their nutritional and healthcare applications.
Collapse
Affiliation(s)
- Yiqiu Fei
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, China
| | - Zuobing Chen
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, China
| | - Shengyi Han
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, China
| | - Shuobo Zhang
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, China
| | - Tianfang Zhang
- Department of Rehabilitation Medicine, First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, China
| | - Yanmeng Lu
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, China
| | - Björn Berglund
- Department of Biomedical and Clinical Sciences, Linköping University, Linköping, Sweden
| | - Hang Xiao
- Department of Food Science, University of Massachusetts, Amherst, MA, USA
| | - Lanjuan Li
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, China
| | - Mingfei Yao
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, China
| |
Collapse
|
28
|
Effect of graded levels of dietary Bacillus toyonensis and Bifidobacterium bifidum supplementation on growth, carcass traits and ileal histomorphometry and microbiota of growing quails. Saudi J Biol Sci 2021; 28:4532-4541. [PMID: 34354439 PMCID: PMC8325023 DOI: 10.1016/j.sjbs.2021.04.054] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2021] [Revised: 04/14/2021] [Accepted: 04/18/2021] [Indexed: 11/30/2022] Open
Abstract
This experiment investigated the role of graded dietary levels of two probiotic strains (Bacillus toyonensis; BT and Bifidobacterium bifidum; BB) on the growth rate, carcass traits, physiological and histological aspects of growing Japanese quail. One thousand and three hundred sixty one-day-old un-sexed Japanese quail chicks were distributed randomly into ten groups. The 1st group served as a control and fed the basal diet without supplement while the 2nd, 3rd, 4th and 5th groups received the control diet supplemented with 0.05, 0.075, 0.10 and 0.125% BT, respectively. The 6th group fed the control diet plus 0.10% BB while the remaining groups (7th to 10th) received the basal diet incorporated with the previous levels of BT rich with 0.05% BB. Dietary supplementation of BT and/or BB increased body weight and gain; however, feed intake and feed conversion were not affected. Amylase activity was significantly elevated in 5th, 7th and 9th groups, while lipase activity was improved in all treatment groups except 3rd and 6th groups. Results obtained concluded that dietary supplementation of BT with or without BB is useful for performance, digestive enzyme activities, blood cholesterols, antioxidant status and ileal histomorphometry and microbiota of growing Japanese quail.
Collapse
|
29
|
Patra AK, Kar I. Heat stress on microbiota composition, barrier integrity, and nutrient transport in gut, production performance, and its amelioration in farm animals. JOURNAL OF ANIMAL SCIENCE AND TECHNOLOGY 2021; 63:211-247. [PMID: 33987600 PMCID: PMC8071753 DOI: 10.5187/jast.2021.e48] [Citation(s) in RCA: 63] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 02/02/2021] [Revised: 02/17/2021] [Accepted: 02/19/2021] [Indexed: 12/18/2022]
Abstract
Livestock species experience several stresses, particularly weaning,
transportation, overproduction, crowding, temperature, and diseases in their
life. Heat stress (HS) is one of the most stressors, which is encountered in
livestock production systems throughout the world, especially in the tropical
regions and is likely to be intensified due to global rise in environmental
temperature. The gut has emerged as one of the major target organs affected by
HS. The alpha- and beta-diversity of gut microbiota composition are altered due
to heat exposure to animals with greater colonization of pathogenic microbiota
groups. HS also induces several changes in the gut including damages of
microstructures of the mucosal epithelia, increased oxidative insults, reduced
immunity, and increased permeability of the gut to toxins and pathogens.
Vulnerability of the intestinal barrier integrity leads to invasion of
pathogenic microbes and translocation of antigens to the blood circulations,
which ultimately may cause systematic inflammations and immune responses.
Moreover, digestion of nutrients in the guts may be impaired due to reduced
enzymatic activity in the digesta, reduced surface areas for absorption and
injury to the mucosal structure and altered expressions of the nutrient
transport proteins and genes. The systematic hormonal changes due to HS along
with alterations in immune and inflammatory responses often cause reduced feed
intake and production performance in livestock and poultry. The altered
microbiome likely orchestrates to the hosts for various relevant biological
phenomena occurring in the body, but the exact mechanisms how functional
communications occur between the microbiota and HS responses are yet to be
elucidated. This review aims to discuss the effects of HS on microbiota
composition, mucosal structure, oxidant-antioxidant balance mechanism, immunity,
and barrier integrity in the gut, and production performance of farm animals
along with the dietary ameliorations of HS. Also, this review attempts to
explain the mechanisms how these biological responses are affected by HS.
Collapse
Affiliation(s)
- Amlan Kumar Patra
- Department of Animal Nutrition, West Bengal University of Animal and Fishery Sciences, Kolkata, West Bengal 700037, India
| | - Indrajit Kar
- Department of Avian Sciences, West Bengal University of Animal and Fishery Sciences, Kolkata, West Bengal 700037, India
| |
Collapse
|
30
|
Li C, Cui L, Wang X, Yan Z, Wang S, Zheng Y. Using intestinal flora to distinguish non-alcoholic steatohepatitis from non-alcoholic fatty liver. J Int Med Res 2020; 48:300060520978122. [PMID: 33327816 PMCID: PMC7747123 DOI: 10.1177/0300060520978122] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Objective To explore specific flora in mouse models of non-alcoholic steatohepatitis
(NASH) to improve NASH diagnostic protocols. Methods Sixty mice were divided into normal diet (ND, 20 mice) and
high-fat/high-sugar diet (HFSD) groups (40 mice). After 8 weeks of feeding,
10 mice in the ND group and 20 mice in the HFSD group were sacrificed to
create the short-term ND and non-alcoholic fatty liver (NAFL) groups,
respectively. After 16 weeks of feeding, the remaining mice were sacrificed
to create the long-term ND and NASH groups, respectively. We then examined
fecal flora, serum biochemical indices, and lipopolysaccharide and tumor
necrosis factor-α levels and analyzed liver tissue. Results The relative abundance of Lactobacillus,
Desulfovibrio, Ruminiclostridium 9,
and Turicibacter differed between NASH and NAFL mice, and
the areas under the receiver operating characteristic curve of the four
genera for diagnosing NASH were 0.705, 0.734, 0.737, and 0.937. The
non-alcoholic fatty liver disease activity score was positively correlated
with the relative abundance of Desulfovibrio (r = 0.353),
Ruminiclostridium 9 (r = 0.431), and
Turicibacter (r = 0.688). Conclusions The relative abundance of Lactobacillus,
Desulfovibrio, Ruminiclostridium, and
Turicibacter may help distinguish NASH from NAFL.
Collapse
Affiliation(s)
- Chao Li
- Medical School of Chinese PLA, Beijing, China.,Department of Gastroenterology, the Sixth Medical Center, Chinese PLA General Hospital, Beijing, China
| | - Lihong Cui
- Medical School of Chinese PLA, Beijing, China.,Department of Gastroenterology, the Sixth Medical Center, Chinese PLA General Hospital, Beijing, China
| | - Xiaohui Wang
- Department of Gastroenterology, the Sixth Medical Center, Chinese PLA General Hospital, Beijing, China
| | - Zhihui Yan
- Department of Gastroenterology, the Sixth Medical Center, Chinese PLA General Hospital, Beijing, China
| | - Shaoxin Wang
- Department of Gastroenterology, the Sixth Medical Center, Chinese PLA General Hospital, Beijing, China
| | - Yan Zheng
- Department of Gastroenterology, the Sixth Medical Center, Chinese PLA General Hospital, Beijing, China
| |
Collapse
|
31
|
Bifidobacteriumlongum subsp. infantis CECT7210 ( B. infantis IM-1 ®) Displays In Vitro Activity against Some Intestinal Pathogens. Nutrients 2020; 12:nu12113259. [PMID: 33114404 PMCID: PMC7693895 DOI: 10.3390/nu12113259] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2020] [Revised: 09/25/2020] [Accepted: 10/21/2020] [Indexed: 02/06/2023] Open
Abstract
Certain non-digestible oligosaccharides (NDO) are specifically fermented by bifidobacteria along the human gastrointestinal tract, selectively favoring their growth and the production of health-promoting metabolites. In the present study, the ability of the probiotic strain Bifidobacterium longum subsp. infantis CECT7210 (herein referred to as B. infantis IM-1®) to utilize a large range of oligosaccharides, or a mixture of oligosaccharides, was investigated. The strain was able to utilize all prebiotics screened. However, galactooligosaccharides (GOS), and GOS-containing mixtures, effectively increased its growth to a higher extent than the other prebiotics. The best synbiotic combination was used to examine the antimicrobial activity against Escherichia coli, Cronobacter sakazakii, Listeria monocytogenes and Clostridium difficile in co-culture experiments. C. difficile was inhibited by the synbiotic, but it failed to inhibit E. coli. Moreover, Cr. sakazakii growth decreased during co-culture with B. infantis IM-1®. Furthermore, adhesion experiments using the intestinal cell line HT29 showed that the strain IM-1® was able to displace some pathogens from the enterocyte layer, especially Cr. sakazakii and Salmonella enterica, and prevented the adhesion of Cr. sakazakii and Shigella sonnei. In conclusion, a new synbiotic (probiotic strain B. infantis IM-1® and GOS) appears to be a potential effective supplement for maintaining infant health. However, further studies are needed to go more deeply into the mechanisms that allow B.infantis IM-1® to compete with enteropathogens.
Collapse
|
32
|
Dong R, Bai M, Zhao J, Wang D, Ning X, Sun S. A Comparative Study of the Gut Microbiota Associated With Immunoglobulin a Nephropathy and Membranous Nephropathy. Front Cell Infect Microbiol 2020; 10:557368. [PMID: 33194798 PMCID: PMC7606180 DOI: 10.3389/fcimb.2020.557368] [Citation(s) in RCA: 64] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2020] [Accepted: 09/15/2020] [Indexed: 12/15/2022] Open
Abstract
The pathogenesis of immunoglobulin A nephropathy (IgAN) and membranous nephropathy (MN) is characterized by immune dysregulation, which is related to gut dysbiosis. The aim of the study was to compare the gut microbiota of patients with IgAN and MN vs. healthy controls. We used 16S rDNA amplicon sequencing to investigate the bacterial communities of 44 patients with kidney biopsy-proven IgAN, 40 patients with kidney biopsy-proven MN, and 30 matched healthy controls (HC). The abundance of Escherichia-Shigella and Defluviitaleaceae_incertae_sedis were significantly higher in IgAN than in HC, whereas lower abundances were observed for Roseburia, Lachnospiraceae_unclassified, Clostridium_sensu_stricto_1, and Fusobacterium. Furthermore, the abundance of Escherichia-Shigella, Peptostreptococcaceae_incertae_sedis, Streptococcus, and Enterobacteriaceae_unclassified increased, while that of Lachnospira, Lachnospiraceae_unclassified, Clostridium_sensu_stricto_1, and Veillonella decreased in MN. The abundance of Megasphaera and Bilophila was higher, whereas that of Megamonas, Veillonella, Klebsiella, and Streptococcus was lower in patients with IgAN than in those with MN. Analysis of the correlations showed that in the IgAN group, Prevotella was positively correlated, while Klebsiella, Citrobacter, and Fusobacterium were negatively correlated with the level of serum albumin. Positive correlation also existed between Bilophila and Crescents in the Oxford classification of IgAN. In the MN group, negative correlation was observed between Escherichia-Shigella and proteinuria, Bacteroides and Klebsiella showed positive correlation with the MN stage. Patients with IgAN and MN exhibited gut microbial signatures distinct from healthy controls. Our study suggests the potential of gut microbiota as specific biomarker and contributor in the pathogenesis of IgAN and MN.
Collapse
Affiliation(s)
- Ruijuan Dong
- Department of Nephrology, Xijing Hospital, The Fourth Military Medical University, Xi'an, China
| | - Ming Bai
- Department of Nephrology, Xijing Hospital, The Fourth Military Medical University, Xi'an, China
| | - Jin Zhao
- Department of Nephrology, Xijing Hospital, The Fourth Military Medical University, Xi'an, China
| | - Di Wang
- Department of Nephrology, Xijing Hospital, The Fourth Military Medical University, Xi'an, China
| | - Xiaoxuan Ning
- Department of Geriatrics, Xijing Hospital, The Fourth Military Medical University, Xi'an, China
| | - Shiren Sun
- Department of Nephrology, Xijing Hospital, The Fourth Military Medical University, Xi'an, China
| |
Collapse
|
33
|
Abou-Kassem DE, Elsadek MF, Abdel-Moneim AE, Mahgoub SA, Elaraby GM, Taha AE, Elshafie MM, Alkhawtani DM, Abd El-Hack ME, Ashour EA. Growth, carcass characteristics, meat quality, and microbial aspects of growing quail fed diets enriched with two different types of probiotics (Bacillus toyonensis and Bifidobacterium bifidum). Poult Sci 2020; 100:84-93. [PMID: 33357710 PMCID: PMC7772674 DOI: 10.1016/j.psj.2020.04.019] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2019] [Revised: 04/07/2020] [Accepted: 04/12/2020] [Indexed: 12/23/2022] Open
Abstract
The present investigation aimed to explore the impact of dietary graded levels of 2 types of probiotic bacteria (Bacillus toyonensis [BT] and Bifidobacterium bifidum [BB]) on growth, carcass traits, meat quality, and bacteriology of growing Japanese quail reared under the cage system. One thousand three hundred sixty Japanese quail day-old chicks were randomly divided into 10 groups (8 replicates each). Birds were fed a basal diet (control, T1) and the basal diet plus 0.05, 0.075, 0.10, and 0.125% BT (T2, T3, T4, and T5, respectively), 0.10% BB (T6), and the same previous doses of BT plus 0.05% BB (T7, T8, T9, and T10, respectively). Results showed a significant (P < 0.001) increase in final BW and weight gain because of probiotic supplementation (except T2 for weight gain). Both feed intake and feed conversion ratio did not differ during the overall experimental period (1–42 D of age) except feed intake that was reduced in T2 and increased in T5 and T9 groups. All carcass traits studied were significantly (P < 0.01) affected by probiotics, and the combination between BT and BB in group T8 increased all studied parameters as compared with the other treatment groups. The quail meat color of redness a∗ and L∗ values, thiobarbituric content, cooking loss, proteolysis, and total coliform were decreased (P < 0.001) by probiotic treatment. In general, supplementing BT, BB, or their combination to the basal diet delayed the proliferation of pathogenic bacteria in the diet and intestine. Using BT and BB as feed supplements enhanced growth performance and meat quality of quails as well as diminished pathogenic bacteria proliferation in their diet and intestine. As per our results, we can recommend the application of T5 and T8 to T10 levels for the best performance, carcass traits, and meat quality of growing quails.
Collapse
Affiliation(s)
- D E Abou-Kassem
- Animal and Poultry Production Department, Faculty of Technology and Development, Zagazig University, Zagazig, Egypt
| | - M F Elsadek
- Department of Community Health Sciences, College of Applied Medical Sciences, King Saud University, Saudi Arabia; Nutrition and Food Science Department, Helwan University, Helwan, Egypt.
| | - A E Abdel-Moneim
- Biological Application Department, Nuclear Research Center, Atomic Energy Authority, Abu-Zaabal 13759, Egypt
| | - S A Mahgoub
- Department of Microbiology, Faculty of Agriculture, Zagazig University, Zagazig 44111, Egypt
| | - G M Elaraby
- Food Science Department, Faculty of Agriculture, Zagazig University, Zagazig, Egypt
| | - A E Taha
- Department of Animal Husbandry and Animal Wealth Development, Faculty of Veterinary Medicine, Alexandria University, Rasheed, Edfina 22758, Egypt
| | - M M Elshafie
- Department of Community Health Sciences, College of Applied Medical Sciences, King Saud University, Saudi Arabia
| | - D M Alkhawtani
- Department of Community Health Sciences, College of Applied Medical Sciences, King Saud University, Saudi Arabia
| | - M E Abd El-Hack
- Poultry Department, Faculty of Agriculture, Zagazig University, Zagazig 44511, Egypt.
| | - E A Ashour
- Poultry Department, Faculty of Agriculture, Zagazig University, Zagazig 44511, Egypt
| |
Collapse
|
34
|
Turroni F, Milani C, Duranti S, Lugli GA, Bernasconi S, Margolles A, Di Pierro F, van Sinderen D, Ventura M. The infant gut microbiome as a microbial organ influencing host well-being. Ital J Pediatr 2020; 46:16. [PMID: 32024556 PMCID: PMC7003403 DOI: 10.1186/s13052-020-0781-0] [Citation(s) in RCA: 93] [Impact Index Per Article: 18.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/06/2019] [Accepted: 01/29/2020] [Indexed: 12/16/2022] Open
Abstract
Initial establishment of the human gut microbiota is generally believed to occur immediately following birth, involving key gut commensals such as bifidobacteria that are acquired from the mother. The subsequent development of this early gut microbiota is driven and modulated by specific dietary compounds present in human milk that support selective colonization. This represents a very intriguing example of host-microbe co-evolution, where both partners are believed to benefit. In recent years, various publications have focused on dissecting microbial infant gut communities and their interaction with their human host, being a determining factor in host physiology and metabolic activities. Such studies have highlighted a reduction of microbial diversity and/or an aberrant microbiota composition, sometimes referred to as dysbiosis, which may manifest itself during the early stage of life, i.e., in infants, or later stages of life. There are growing experimental data that may explain how the early human gut microbiota affects risk factors related to adult health conditions. This concept has fueled the development of various nutritional strategies, many of which are based on probiotics and/or prebiotics, to shape the infant microbiota. In this review, we will present the current state of the art regarding the infant gut microbiota and the role of key commensal microorganisms like bifidobacteria in the establishment of the first microbial communities in the human gut.
Collapse
Affiliation(s)
- Francesca Turroni
- Laboratory of Probiogenomics, Department of Chemistry, Life Sciences, and Environmental Sustainability, University of Parma, Parco Area delle Scienze 11a, 43124, Parma, Italy
- Microbiome Research Hub, University of Parma, Parma, Italy
| | - Christian Milani
- Laboratory of Probiogenomics, Department of Chemistry, Life Sciences, and Environmental Sustainability, University of Parma, Parco Area delle Scienze 11a, 43124, Parma, Italy
| | - Sabrina Duranti
- Laboratory of Probiogenomics, Department of Chemistry, Life Sciences, and Environmental Sustainability, University of Parma, Parco Area delle Scienze 11a, 43124, Parma, Italy
| | - Gabriele Andrea Lugli
- Laboratory of Probiogenomics, Department of Chemistry, Life Sciences, and Environmental Sustainability, University of Parma, Parco Area delle Scienze 11a, 43124, Parma, Italy
| | | | - Abelardo Margolles
- Departamento de Microbiologia y Bioquimica de Productos Lacteos, IPLA - CSIC, Villaviciosa, Asturias, Spain
- Instituto de Investigación Sanitaria del Principado de Asturias-ISPA, Oviedo, Spain
| | | | - Douwe van Sinderen
- School of Microbiology & APC Microbiome Institute, University College Cork, Cork, Ireland
| | - Marco Ventura
- Laboratory of Probiogenomics, Department of Chemistry, Life Sciences, and Environmental Sustainability, University of Parma, Parco Area delle Scienze 11a, 43124, Parma, Italy.
- Microbiome Research Hub, University of Parma, Parma, Italy.
| |
Collapse
|
35
|
Pyclik M, Srutkova D, Schwarzer M, Górska S. Bifidobacteria cell wall-derived exo-polysaccharides, lipoteichoic acids, peptidoglycans, polar lipids and proteins - their chemical structure and biological attributes. Int J Biol Macromol 2019; 147:333-349. [PMID: 31899242 DOI: 10.1016/j.ijbiomac.2019.12.227] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2019] [Revised: 12/13/2019] [Accepted: 12/24/2019] [Indexed: 02/07/2023]
Abstract
A variety of health benefits has been documented to be associated with the consumption of probiotic bacteria, namely bifidobacteria and lactobacilli. Thanks to the scientific advances in recent years we are beginning to understand the molecular mechanisms by which bacteria in general and probiotic bacteria in particular act as host physiology and immune system modulators. More recently, the focus has shifted from live bacteria towards bacteria-derived defined molecules, so called postbiotics. These molecules may represent safer alternative compared to the live bacteria while retaining the desired effects on the host. The excellent source of effector macromolecules is the bacterial envelope. It contains compounds that are pivotal in the adhesion phenomenon, provide direct bacteria-to-host signaling capacity and the associated physiological impact and immunomodulatory properties of bacteria. Here we comprehensively review the structure and biological role of Bifidobacterium surface and cell wall molecules: exopolysaccharides, cell wall polysaccharides, lipoteichoic acids, polar lipids, peptidoglycans and proteins. We discuss their involvement in direct signaling to the host cells and their described immunomodulatory effects.
Collapse
Affiliation(s)
- Marcelina Pyclik
- Laboratory of Microbiome Immunobiology, Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, Weigla 12, 53-114 Wroclaw, Poland
| | - Dagmar Srutkova
- Laboratory of Gnotobiology, Institute of Microbiology of the Czech Academy of Sciences, Novy Hradek, Czech Republic
| | - Martin Schwarzer
- Laboratory of Gnotobiology, Institute of Microbiology of the Czech Academy of Sciences, Novy Hradek, Czech Republic.
| | - Sabina Górska
- Laboratory of Microbiome Immunobiology, Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, Weigla 12, 53-114 Wroclaw, Poland.
| |
Collapse
|
36
|
Turroni F, Duranti S, Milani C, Lugli GA, van Sinderen D, Ventura M. Bifidobacterium bifidum: A Key Member of the Early Human Gut Microbiota. Microorganisms 2019; 7:microorganisms7110544. [PMID: 31717486 PMCID: PMC6920858 DOI: 10.3390/microorganisms7110544] [Citation(s) in RCA: 78] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2019] [Revised: 10/29/2019] [Accepted: 11/07/2019] [Indexed: 12/30/2022] Open
Abstract
Bifidobacteria typically represent the most abundant bacteria of the human gut microbiota in healthy breast-fed infants. Members of the Bifidobacterium bifidum species constitute one of the dominant taxa amongst these bifidobacterial communities and have been shown to display notable physiological and genetic features encompassing adhesion to epithelia as well as metabolism of host-derived glycans. In the current review, we discuss current knowledge concerning particular biological characteristics of the B. bifidum species that support its specific adaptation to the human gut and their implications in terms of supporting host health.
Collapse
Affiliation(s)
- Francesca Turroni
- Laboratory of Probiogenomics, Department of Chemistry, Life Sciences and Environmental Sustainability, University of Parma, 43124 Parma, Italy; (S.D.); (C.M.); (G.A.L.); (M.V.)
- Microbiome Research Hub, University of Parma, 43124 Parma, Italy
- Correspondence:
| | - Sabrina Duranti
- Laboratory of Probiogenomics, Department of Chemistry, Life Sciences and Environmental Sustainability, University of Parma, 43124 Parma, Italy; (S.D.); (C.M.); (G.A.L.); (M.V.)
| | - Christian Milani
- Laboratory of Probiogenomics, Department of Chemistry, Life Sciences and Environmental Sustainability, University of Parma, 43124 Parma, Italy; (S.D.); (C.M.); (G.A.L.); (M.V.)
| | - Gabriele Andrea Lugli
- Laboratory of Probiogenomics, Department of Chemistry, Life Sciences and Environmental Sustainability, University of Parma, 43124 Parma, Italy; (S.D.); (C.M.); (G.A.L.); (M.V.)
| | - Douwe van Sinderen
- School of Microbiology, University College Cork, T12 YT20 Cork, Ireland;
- APC Microbiome Institute, University College Cork, T12 YT20 Cork, Ireland
| | - Marco Ventura
- Laboratory of Probiogenomics, Department of Chemistry, Life Sciences and Environmental Sustainability, University of Parma, 43124 Parma, Italy; (S.D.); (C.M.); (G.A.L.); (M.V.)
- Microbiome Research Hub, University of Parma, 43124 Parma, Italy
| |
Collapse
|
37
|
Ghiamati Yazdi F, Soleimanian-Zad S, van den Worm E, Folkerts G. Turmeric Extract: Potential Use as a Prebiotic and Anti-Inflammatory Compound? PLANT FOODS FOR HUMAN NUTRITION (DORDRECHT, NETHERLANDS) 2019; 74:293-299. [PMID: 31098880 DOI: 10.1007/s11130-019-00733-x] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/02/2023]
Abstract
Prebiotics are regarded as the non-digestible food constituents that are selectively consumed by health-promoting bacteria (probiotics). In fact, a number of active metabolites is released due to intensive interaction between prebiotics and probiotics in the gut which exert local and systemic beneficial effects including regulation of intestinal disorders and modulation of host immunity. Turmeric is one of the most important medicinal herbaceous that is derived from Curcuma longa rhizome. Curcumin is a well-recognized component of turmeric which contributes to the prevention of multiple inflammatory diseases. Despite curcumin as a well-known compound, few researches have focused on the turmeric extract (TE) and its potential as prebiotic and anti-inflammatory compound. The aim of this study was to evaluate the prebiotic potential and some functional-structural properties of TE. The Fourier-transform-infrared spectroscopy (FTIR) spectrum of TE showed identical peaks that belonged to β configuration in pyranose and glycosidic bonds. High performance liquid chromatography (HPLC) analysis revealed the presence of potent phenolic and flavonoid anti-oxidants and curcuminoids, and some functional monosaccharides. TE demonstrated excellent resistance to artificial human gastric and intestine juice compared to the standard prebiotic (inulin) (p ≤ 0.05). Interestingly, our time course experiment showed that TE not only is digested by probiotics including Lactobacillus rhamnosus GG (LGG) and Bifidobacterium animalis BB12, but also supports the growth of these bacteria even after 72 h (p ≤ 0.05). To our knowledge, this is the first report evaluating prebiotic potential of TE and exploring its suppressive effects on LPS induced IL-8 production in HT29-19A cell line.
Collapse
Affiliation(s)
- Fariba Ghiamati Yazdi
- Department of Food Science and Technology, College of Agriculture, Isfahan University of Technology, Isfahan, 84156-83111, Iran
- Department of Pharmaceutical Sciences, Faculty of Science, Division of Pharmacology, Utrecht University, Universiteitsweg 99, 3584, CG, Utrecht, The Netherlands
| | - Sabihe Soleimanian-Zad
- Department of Food Science and Technology, College of Agriculture, Isfahan University of Technology, Isfahan, 84156-83111, Iran.
| | - Edwin van den Worm
- Department of Pharmaceutical Sciences, Faculty of Science, Division of Pharmacology, Utrecht University, Universiteitsweg 99, 3584, CG, Utrecht, The Netherlands
| | - Gert Folkerts
- Department of Pharmaceutical Sciences, Faculty of Science, Division of Pharmacology, Utrecht University, Universiteitsweg 99, 3584, CG, Utrecht, The Netherlands
| |
Collapse
|
38
|
Bifidobacterial Transfer from Mother to Child as Examined by an Animal Model. Microorganisms 2019; 7:microorganisms7090293. [PMID: 31461893 PMCID: PMC6780879 DOI: 10.3390/microorganisms7090293] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2019] [Revised: 08/21/2019] [Accepted: 08/22/2019] [Indexed: 01/12/2023] Open
Abstract
Bifidobacteria commonly constitute the most abundant group of microorganisms in the healthy infant gut. Their intestinal establishment is believed to be maternally driven, and their acquisition has even been postulated to occur during pregnancy. In the current study, we evaluated bifidobacterial mother-to infant transmission events in a rat model by means of quantitative PCR (qPCR), as well as by Internally Transcribed Spacer (ITS) bifidobacterial profiling. The occurrence of strains supplied by mothers during pregnancy to their corresponding newborns was observed and identified by analysis immediately following C-section delivery. These findings provide intriguing support for the existence of an unknown route to facilitate bifidobacterial transfer during the very early stages of life.
Collapse
|
39
|
Mangin I, Dossou-Yovo F, Lévêque C, Dessoy MV, Sawoo O, Suau A, Pochart P. Oral administration of viable Bifidobacterium pseudolongum strain Patronus modified colonic microbiota and increased mucus layer thickness in rat. FEMS Microbiol Ecol 2019; 94:5090401. [PMID: 30184128 DOI: 10.1093/femsec/fiy177] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2018] [Accepted: 09/03/2018] [Indexed: 12/13/2022] Open
Abstract
This study aimed at evaluating the alteration of the colonic microbiota and the changes in the mucus layer thickness induced by oral administration of living bifidobacteria in rats. The study was performed on rats fed with Bifidobacterium pseudolongum strain Patronus (1010 bacteria per day for 7 days). This bacterial administration led to a large increase of mucus thickness (57%, P < 0.05). Both quantitative PCR and high-throughput sequencing of bacterial 16S rRNA gene revealed a significant increase of the amount of the Bifidobacterium genus in the microbiota of rats fed with the strain Patronus, associated with a decrease of Akkermansia muciniphila. The increase in mucus thickness could be due to an increase of the bifidobacteria per se or via the decrease of A. muciniphila, a major mucin-degrading species. As the mucus layer plays an essential role in gut protection, our data enlighten the importance of studying mucus-degrading bacteria for understanding the underlying etiology of diseases such as intestinal bowel diseases and to implement new therapeutic strategies.
Collapse
Affiliation(s)
- Irène Mangin
- MIcrobial Ecology Laboratory (MIEL), Conservatoire national des arts et métiers, F-75003 Paris, France.,EA4065 Faculté des Sciences Pharmaceutiques et Biologiques, Université Paris Descartes, F-75006 Paris, France.,Department of chemistry, life and health sciences, Conservatoire national des arts et métiers, F-75003 Paris, France
| | - Flore Dossou-Yovo
- MIcrobial Ecology Laboratory (MIEL), Conservatoire national des arts et métiers, F-75003 Paris, France.,Department of chemistry, life and health sciences, Conservatoire national des arts et métiers, F-75003 Paris, France
| | - Christophe Lévêque
- MIcrobial Ecology Laboratory (MIEL), Conservatoire national des arts et métiers, F-75003 Paris, France.,EA4065 Faculté des Sciences Pharmaceutiques et Biologiques, Université Paris Descartes, F-75006 Paris, France.,Department of chemistry, life and health sciences, Conservatoire national des arts et métiers, F-75003 Paris, France
| | - Marie-Vincent Dessoy
- MIcrobial Ecology Laboratory (MIEL), Conservatoire national des arts et métiers, F-75003 Paris, France.,EA4065 Faculté des Sciences Pharmaceutiques et Biologiques, Université Paris Descartes, F-75006 Paris, France.,Department of chemistry, life and health sciences, Conservatoire national des arts et métiers, F-75003 Paris, France
| | - Olivier Sawoo
- MIcrobial Ecology Laboratory (MIEL), Conservatoire national des arts et métiers, F-75003 Paris, France.,Department of chemistry, life and health sciences, Conservatoire national des arts et métiers, F-75003 Paris, France
| | - Antonia Suau
- Department of chemistry, life and health sciences, Conservatoire national des arts et métiers, F-75003 Paris, France.,University of Grenoble Alpes, Laboratoire Technologies de l'Ingénierie Médicale et de la Complexité - Informatique, Mathématiques et Applications (TIMC-IMAG), F-38000 Grenoble, France.,Centre National de Recherche Scientifique (CNRS), TIMC-IMAG, F-38000 Grenoble, France
| | - Philippe Pochart
- MIcrobial Ecology Laboratory (MIEL), Conservatoire national des arts et métiers, F-75003 Paris, France.,EA4065 Faculté des Sciences Pharmaceutiques et Biologiques, Université Paris Descartes, F-75006 Paris, France.,Department of chemistry, life and health sciences, Conservatoire national des arts et métiers, F-75003 Paris, France
| |
Collapse
|
40
|
Duranti S, Lugli GA, Milani C, James K, Mancabelli L, Turroni F, Alessandri G, Mangifesta M, Mancino W, Ossiprandi MC, Iori A, Rota C, Gargano G, Bernasconi S, Di Pierro F, Sinderen D, Ventura M. Bifidobacterium bifidum
and the infant gut microbiota: an intriguing case of microbe‐host co‐evolution. Environ Microbiol 2019; 21:3683-3695. [DOI: 10.1111/1462-2920.14705] [Citation(s) in RCA: 40] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2018] [Revised: 06/03/2019] [Accepted: 06/04/2019] [Indexed: 02/07/2023]
Affiliation(s)
- Sabrina Duranti
- Laboratory of Probiogenomics, Department of Chemistry, Life Sciences, and Environmental SustainabilityUniversity of Parma Parma Italy
| | - Gabriele Andrea Lugli
- Laboratory of Probiogenomics, Department of Chemistry, Life Sciences, and Environmental SustainabilityUniversity of Parma Parma Italy
| | - Christian Milani
- Laboratory of Probiogenomics, Department of Chemistry, Life Sciences, and Environmental SustainabilityUniversity of Parma Parma Italy
| | - Kieran James
- APC Microbiome Institute and School of Microbiology, Bioscience InstituteNational University of Ireland Cork Ireland
| | - Leonardo Mancabelli
- Laboratory of Probiogenomics, Department of Chemistry, Life Sciences, and Environmental SustainabilityUniversity of Parma Parma Italy
| | - Francesca Turroni
- Laboratory of Probiogenomics, Department of Chemistry, Life Sciences, and Environmental SustainabilityUniversity of Parma Parma Italy
- Microbiome Research HubUniversity of Parma Parma Italy
| | - Giulia Alessandri
- Department of Veterinary Medical ScienceUniversity of Parma Parma Italy
| | | | - Walter Mancino
- APC Microbiome Institute and School of Microbiology, Bioscience InstituteNational University of Ireland Cork Ireland
| | - Maria Cristina Ossiprandi
- Microbiome Research HubUniversity of Parma Parma Italy
- Department of Veterinary Medical ScienceUniversity of Parma Parma Italy
| | - Alexandra Iori
- Neonatal Intensive Care Unit, Obstetric and Pediatric Department, IRCCSArcispedale Santa Maria Nuova Reggio Emilia Italy
| | - Claudio Rota
- Neonatal Intensive Care Unit, Obstetric and Pediatric Department, IRCCSArcispedale Santa Maria Nuova Reggio Emilia Italy
| | - Giancarlo Gargano
- Neonatal Intensive Care Unit, Obstetric and Pediatric Department, IRCCSArcispedale Santa Maria Nuova Reggio Emilia Italy
| | | | | | - Douwe Sinderen
- APC Microbiome Institute and School of Microbiology, Bioscience InstituteNational University of Ireland Cork Ireland
- Department of Veterinary Medical ScienceUniversity of Parma Parma Italy
| | - Marco Ventura
- Laboratory of Probiogenomics, Department of Chemistry, Life Sciences, and Environmental SustainabilityUniversity of Parma Parma Italy
- Microbiome Research HubUniversity of Parma Parma Italy
| |
Collapse
|
41
|
Engevik MA, Luk B, Chang-Graham AL, Hall A, Herrmann B, Ruan W, Endres BT, Shi Z, Garey KW, Hyser JM, Versalovic J. Bifidobacterium dentium Fortifies the Intestinal Mucus Layer via Autophagy and Calcium Signaling Pathways. mBio 2019; 10:e01087-19. [PMID: 31213556 PMCID: PMC6581858 DOI: 10.1128/mbio.01087-19] [Citation(s) in RCA: 171] [Impact Index Per Article: 28.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2019] [Accepted: 05/11/2019] [Indexed: 02/07/2023] Open
Abstract
Much remains unknown about how the intestinal microbiome interfaces with the protective intestinal mucus layer. Bifidobacterium species colonize the intestinal mucus layer and can modulate mucus production by goblet cells. However, select Bifidobacterium strains can also degrade protective glycans on mucin proteins. We hypothesized that the human-derived species Bifidobacterium dentium would increase intestinal mucus synthesis and expulsion, without extensive degradation of mucin glycans. In silico data revealed that B. dentium lacked the enzymes necessary to extensively degrade mucin glycans. This finding was confirmed by demonstrating that B. dentium could not use naive mucin glycans as primary carbon sources in vitro To examine B. dentium mucus modulation in vivo, Swiss Webster germfree mice were monoassociated with live or heat-killed B. dentium Live B. dentium-monoassociated mice exhibited increased colonic expression of goblet cell markers Krüppel-like factor 4 (Klf4), Trefoil factor 3 (Tff3), Relm-β, Muc2, and several glycosyltransferases compared to both heat-killed B. dentium and germfree counterparts. Likewise, live B. dentium-monoassociated colon had increased acidic mucin-filled goblet cells, as denoted by Periodic Acid-Schiff-Alcian Blue (PAS-AB) staining and MUC2 immunostaining. In vitro, B. dentium-secreted products, including acetate, were able to increase MUC2 levels in T84 cells. We also identified that B. dentium-secreted products, such as γ-aminobutyric acid (GABA), stimulated autophagy-mediated calcium signaling and MUC2 release. This work illustrates that B. dentium is capable of enhancing the intestinal mucus layer and goblet cell function via upregulation of gene expression and autophagy signaling pathways, with a net increase in mucin production.IMPORTANCE Microbe-host interactions in the intestine occur along the mucus-covered epithelium. In the gastrointestinal tract, mucus is composed of glycan-covered proteins, or mucins, which are secreted by goblet cells to form a protective gel-like structure above the epithelium. Low levels of mucin or alterations in mucin glycans are associated with inflammation and colitis in mice and humans. Although current literature links microbes to the modulation of goblet cells and mucins, the molecular pathways involved are not yet fully understood. Using a combination of gnotobiotic mice and mucus-secreting cell lines, we have identified a human-derived microbe, Bifidobacterium dentium, which adheres to intestinal mucus and secretes metabolites that upregulate the major mucin MUC2 and modulate goblet cell function. Unlike other Bifidobacterium species, B. dentium does not extensively degrade mucin glycans and cannot grow on mucin alone. This work points to the potential of using B. dentium and similar mucin-friendly microbes as therapeutic agents for intestinal disorders with disruptions in the mucus barrier.
Collapse
Affiliation(s)
- Melinda A Engevik
- Department of Pathology and Immunology, Baylor College of Medicine, Houston, Texas, USA
- Department of Pathology, Texas Children's Hospital, Houston, Texas, USA
| | - Berkley Luk
- Department of Pathology and Immunology, Baylor College of Medicine, Houston, Texas, USA
- Department of Pathology, Texas Children's Hospital, Houston, Texas, USA
| | - Alexandra L Chang-Graham
- Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, Texas, USA
| | - Anne Hall
- Department of Pathology and Immunology, Baylor College of Medicine, Houston, Texas, USA
- Department of Pathology, Texas Children's Hospital, Houston, Texas, USA
| | - Beatrice Herrmann
- Department of Pathology and Immunology, Baylor College of Medicine, Houston, Texas, USA
- Department of Pathology, Texas Children's Hospital, Houston, Texas, USA
| | - Wenly Ruan
- Department of Pathology and Immunology, Baylor College of Medicine, Houston, Texas, USA
- Department of Pathology, Texas Children's Hospital, Houston, Texas, USA
| | - Bradley T Endres
- Department of Pharmacy Practice and Translational Research, University of Houston College of Pharmacy, Houston, Texas, USA
| | - Zhongcheng Shi
- Department of Pathology and Immunology, Baylor College of Medicine, Houston, Texas, USA
- Department of Pathology, Texas Children's Hospital, Houston, Texas, USA
| | - Kevin W Garey
- Department of Pharmacy Practice and Translational Research, University of Houston College of Pharmacy, Houston, Texas, USA
| | - Joseph M Hyser
- Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, Texas, USA
| | - James Versalovic
- Department of Pathology and Immunology, Baylor College of Medicine, Houston, Texas, USA
- Department of Pathology, Texas Children's Hospital, Houston, Texas, USA
| |
Collapse
|
42
|
Achi SC, Halami PM. In Vitro Comparative Analysis of Probiotic and Functional Attributes of Indigenous Isolates of Bifidobacteria. Curr Microbiol 2019; 76:304-311. [PMID: 30600360 DOI: 10.1007/s00284-018-1615-9] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2018] [Accepted: 12/14/2018] [Indexed: 12/20/2022]
Abstract
In the present study, probiotic, safety and functional characteristics of eight indigenous bifidobacterial isolates were compared to identify suitable strains for functional food application. Among the isolates, six strains of Bifidobacterium longum and one each of Bifidobacterium breve and Bifidobacterium bifidum were identified by 16S rRNA, xfp and hsp60 gene sequencing. Diversity among these strains was established by RAPD and Rep-PCR. Genes associated with sortase-dependent pili (SDP) (credited for role in adhesion) and serpin (immunomodulation) which can serve as potential marker genes for rapid identification of probiotic Bifidobacterium, was also evaluated. All the isolates exhibited potential probiotic, functional (antimicrobial activity, antioxidant activity, phytase activity, milk fermentation ability) and safety attributes. However, among them, B. breve NCIM5671 exhibited, better tolerance to low pH, amylase activity and exopolysaccharide producing ability. B. bifidum NCIM5697 and B. longum NCIM5672 demonstrated higher adherence ability to Caco-2 cells. NCIM5697 also displayed exopolysaccharide producing ability while NCIM5672 showed strong antibacterial activity against pathogens tested. Further, with respect to presence of adhesion marker genes, disparity was observed among B. longum strains. B. longum NCIM5684 and B. longum NCIM5686 displayed presence of subunits of SDP reported to be present in B. breve. In addition, B. longum NCIM5686 also lacked SDP present in all other B. longum isolates. B. breve NCIM5671, B. longum NCIM5672 and B. bifidum NCIM5697 with appreciable traits qualifies as potential probiotic cultures. Further, the variations observed in molecular and functional characteristics of isolates signify genetic diversity among the cultures.
Collapse
Affiliation(s)
- Sajan C Achi
- Academy of Scientific and Innovative Research (AcSIR), CSIR-Central Food Technological Research Institute campus, Mysuru, India.,Microbiology and Fermentation Technology Department, CSIR-Central Food Technological Research Institute, 570020, Mysuru, India
| | - Prakash M Halami
- Academy of Scientific and Innovative Research (AcSIR), CSIR-Central Food Technological Research Institute campus, Mysuru, India. .,Microbiology and Fermentation Technology Department, CSIR-Central Food Technological Research Institute, 570020, Mysuru, India.
| |
Collapse
|
43
|
Zhu L, Liao R, Wu N, Zhu G, Yang C. Heat stress mediates changes in fecal microbiome and functional pathways of laying hens. Appl Microbiol Biotechnol 2018; 103:461-472. [DOI: 10.1007/s00253-018-9465-8] [Citation(s) in RCA: 85] [Impact Index Per Article: 12.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2018] [Revised: 09/25/2018] [Accepted: 10/08/2018] [Indexed: 12/12/2022]
|
44
|
Duranti S, Vivo V, Zini I, Milani C, Mangifesta M, Anzalone R, Mancabelli L, Viappiani A, Cantoni AM, Barocelli E, van Sinderen D, Bertoni S, Turroni F. Bifidobacterium bifidum PRL2010 alleviates intestinal ischemia/reperfusion injury. PLoS One 2018; 13:e0202670. [PMID: 30161157 PMCID: PMC6116995 DOI: 10.1371/journal.pone.0202670] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2018] [Accepted: 08/07/2018] [Indexed: 02/01/2023] Open
Abstract
Mesenteric ischemia/reperfusion is a clinical emergency with high morbidity and mortality due to the transient reduction of blood supply to the bowel. In recent years, the critical contribution of gut microbiome to human health and proper gastrointestinal functions has gradually emerged. In the current study, we investigated the protective effects of five days supplementation with Bifidobacterium bifidum PRL2010 in a murine model of gut ischemia/reperfusion. Our findings indicate that animals pretreated with B. bifidum PRL2010 showed lower neutrophil recruitment in the lungs, remarkably reduced bacterial translocation and decreased transcription levels of TNFalpha and IL-10 both in liver and kidneys, at the same time increasing those of IL-12 in kidneys. Inhibiting the adhesion of pathogenic bacteria and boosting host innate immunity responses are among the possible protective mechanisms enacted by the probiotic. These results demonstrate that short-period treatment with B. bifidum PRL2010 is a potential strategy to dampen remote organ injury due to mesenteric ischemia/reperfusion.
Collapse
Affiliation(s)
- Sabrina Duranti
- Laboratory of Probiogenomics, Department of Chemical Sciences, Life Sciences, and Environmental Sustainability, University of Parma, Parma, Italy
| | - Valentina Vivo
- Food and Drug Department, University of Parma, Parma, Italy
| | - Irene Zini
- Food and Drug Department, University of Parma, Parma, Italy
| | - Christian Milani
- Laboratory of Probiogenomics, Department of Chemical Sciences, Life Sciences, and Environmental Sustainability, University of Parma, Parma, Italy
| | | | - Rosaria Anzalone
- Laboratory of Probiogenomics, Department of Chemical Sciences, Life Sciences, and Environmental Sustainability, University of Parma, Parma, Italy
| | - Leonardo Mancabelli
- Laboratory of Probiogenomics, Department of Chemical Sciences, Life Sciences, and Environmental Sustainability, University of Parma, Parma, Italy
| | - Alice Viappiani
- Laboratory of Probiogenomics, Department of Chemical Sciences, Life Sciences, and Environmental Sustainability, University of Parma, Parma, Italy
| | | | - Elisabetta Barocelli
- Laboratory of Probiogenomics, Department of Chemical Sciences, Life Sciences, and Environmental Sustainability, University of Parma, Parma, Italy
| | - Douwe van Sinderen
- APC Microbiome Institute and School of Microbiology, Bioscience Institute, National University of Ireland, Cork, Ireland
| | - Simona Bertoni
- Food and Drug Department, University of Parma, Parma, Italy
- * E-mail:
| | - Francesca Turroni
- Laboratory of Probiogenomics, Department of Chemical Sciences, Life Sciences, and Environmental Sustainability, University of Parma, Parma, Italy
- Microbiome Research Hub, University of Parma, Parma, Italy
| |
Collapse
|
45
|
Liu Z, Zhang Z, Qiu L, Zhang F, Xu X, Wei H, Tao X. Characterization and bioactivities of the exopolysaccharide from a probiotic strain of Lactobacillus plantarum WLPL04. J Dairy Sci 2017; 100:6895-6905. [PMID: 28711240 DOI: 10.3168/jds.2016-11944] [Citation(s) in RCA: 124] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2016] [Accepted: 05/11/2017] [Indexed: 12/17/2022]
Abstract
Exopolysaccharide (EPS) was extracted and purified from Lactobacillus plantarum WLPL04, which has been confirmed previously as a potential probiotic for its antagonistic and immune-modulating activity. It has a molecular weight of 6.61 × 104 Da, consisting of xylose, glucose, and galactose in an approximate molar ratio of 3.4:1.8:1. Microstructural studies demonstrated that the EPS appeared as a smooth sheet structure with many homogeneous rod-shaped lumps. The preliminary in vitro assays indicated that the EPS could significantly inhibit the adhesion of Escherichia coli O157:H7 to HT-29 cells in competition, replacement, and inhibition assays at a dose of 1.0 mg/mL, with an inhibition rate of 20.24 ± 2.23, 29.71 ± 1.21, and 30.57 ± 1.73%, respectively. Additionally, the EPS exhibited strong inhibition against biofilm formation by pathogenic bacteria, including Pseudomonas aeruginosa CMCC10104, E. coli O157:H7, Salmonella Typhimurium ATCC13311, and Staphylococcus aureus CMCC26003. Furthermore, the EPS showed good inhibitory activity against the proliferation of HT-29 cells. The characteristics and bioactivities of this EPS may make it a promising candidate in developing functional food.
Collapse
Affiliation(s)
- Zhengqi Liu
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang 330047, China
| | - Zhihong Zhang
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang 330047, China
| | - Liang Qiu
- School of Life Sciences, Jiangxi University of Traditional Chinese Medicine, Nanchang, 330004, China
| | - Fen Zhang
- School of Life Sciences, Nanchang University, Nanchang 330031, China
| | - Xiongpeng Xu
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang 330047, China
| | - Hua Wei
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang 330047, China
| | - Xueying Tao
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang 330047, China.
| |
Collapse
|
46
|
Bifidobacterium Bacteremia: Clinical Characteristics and a Genomic Approach To Assess Pathogenicity. J Clin Microbiol 2017; 55:2234-2248. [PMID: 28490487 DOI: 10.1128/jcm.00150-17] [Citation(s) in RCA: 51] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2017] [Accepted: 05/02/2017] [Indexed: 02/07/2023] Open
Abstract
Bifidobacteria are commensals that colonize the orogastrointestinal tract and rarely cause invasive human infections. However, an increasing number of bifidobacterial blood culture isolates has lately been observed in Norway. In order to investigate the pathogenicity of the Bifidobacterium species responsible for bacteremia, we studied Bifidobacterium isolates from 15 patients for whom cultures of blood obtained from 2013 to 2015 were positive. We collected clinical data and analyzed phenotypic and genotypic antibiotic susceptibility. All isolates (11 Bifidobacterium longum, 2 B. breve, and 2 B. animalis isolates) were subjected to whole-genome sequencing. The 15 patients were predominantly in the extreme lower or upper age spectrum, many were severely immunocompromised, and 11 of 15 had gastrointestinal tract-related conditions. In two elderly patients, the Bifidobacterium bacteremia caused a sepsis-like picture, interpreted as the cause of death. Most bifidobacterial isolates had low MICs (≤0.5 mg/liter) to beta-lactam antibiotics, vancomycin, and clindamycin and relatively high MICs to ciprofloxacin and metronidazole. We performed a pangenomic comparison of invasive and noninvasive B. longum isolates based on 65 sequences available from GenBank and the sequences of 11 blood culture isolates from this study. Functional annotation identified unique genes among both invasive and noninvasive isolates of Bifidobacterium Phylogenetic clusters of invasive isolates were identified for a subset of the B. longum subsp. longum isolates. However, there was no difference in the number of putative virulence genes between invasive and noninvasive isolates. In conclusion, Bifidobacterium has an invasive potential in the immunocompromised host and may cause a sepsis-like picture. Using comparative genomics, we could not delineate specific pathogenicity traits characterizing invasive isolates.
Collapse
|
47
|
Anaerobic Probiotics: The Key Microbes for Human Health. ADVANCES IN BIOCHEMICAL ENGINEERING/BIOTECHNOLOGY 2017; 156:397-431. [PMID: 26907552 DOI: 10.1007/10_2015_5008] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Human gastrointestinal microbiota (HGIM) incorporate a large number of microbes from different species. Anaerobic bacteria are the dominant organisms in this microbial consortium and play a crucial role in human health. In addition to their functional role as the main source of many essential metabolites for human health, they are considered as biotherapeutic agents in the regulation of different human metabolites. They are also important in the prevention and in the treatment of different physical and mental diseases. Bifidobacteria are the dominant anaerobic bacteria in HGIM and are widely used in the development of probiotic products for infants, children and adults. To develop bifidobacteria-based bioproducts, therefore, it is necessary to develop a large-scale biomass production platform based on a good understanding of the ideal medium and bioprocessing parameters for their growth and viability. In addition, high cell viability should be maintained during downstream processing and storage of probiotic cell powder or the final formulated product. In this work we review the latest information about the biology, therapeutic activities, cultivation and industrial production of bifidobacteria.
Collapse
|
48
|
Riaz Rajoka MS, Shi J, Zhu J, Shao D, Huang Q, Yang H, Jin M. Capacity of lactic acid bacteria in immunity enhancement and cancer prevention. Appl Microbiol Biotechnol 2017; 101:35-45. [PMID: 27888334 DOI: 10.1007/s00253-016-8005-7] [Citation(s) in RCA: 56] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2016] [Revised: 11/09/2016] [Accepted: 11/11/2016] [Indexed: 02/06/2023]
Abstract
Lactic acid bacteria are associated with the human gastrointestinal tract. They are important for maintaining the balance of microflora in the human gut. An increasing number of published research reports in recent years have denoted the importance of producing interferon-gamma and IgA for treatment of disease. These agents can enhance the specific and nonspecific immune systems that are dependent on specific bacterial strains. The mechanisms of these effects were revealed in this investigation, where the cell walls of these bacteria were modulated by the cytokine pathways, while the whole bacterial cell mediated the host cell immune system and regulated the production of tumor necrosis factors and interleukins. A supplement of highly active lactic acid bacteria strains provided significant potential to enhance host's immunity, offering prevention from many diseases including some cancers. This review summarizes the current understanding of the function of lactic acid bacteria immunity enhancement and cancer prevention.
Collapse
Affiliation(s)
- Muhammad Shahid Riaz Rajoka
- Key Laboratory for Space Bioscience and Space Biotechnology, School of Life Sciences, Northwestern Polytechnical University, Xi'an, 710072, Shaanxi, People's Republic of China
| | - Junling Shi
- Key Laboratory for Space Bioscience and Space Biotechnology, School of Life Sciences, Northwestern Polytechnical University, Xi'an, 710072, Shaanxi, People's Republic of China.
| | - Jing Zhu
- Key Laboratory for Space Bioscience and Space Biotechnology, School of Life Sciences, Northwestern Polytechnical University, Xi'an, 710072, Shaanxi, People's Republic of China
| | - Dongyan Shao
- Key Laboratory for Space Bioscience and Space Biotechnology, School of Life Sciences, Northwestern Polytechnical University, Xi'an, 710072, Shaanxi, People's Republic of China
| | - Qingsheng Huang
- Key Laboratory for Space Bioscience and Space Biotechnology, School of Life Sciences, Northwestern Polytechnical University, Xi'an, 710072, Shaanxi, People's Republic of China
| | - Hui Yang
- Key Laboratory for Space Bioscience and Space Biotechnology, School of Life Sciences, Northwestern Polytechnical University, Xi'an, 710072, Shaanxi, People's Republic of China
| | - Mingliang Jin
- Key Laboratory for Space Bioscience and Space Biotechnology, School of Life Sciences, Northwestern Polytechnical University, Xi'an, 710072, Shaanxi, People's Republic of China
| |
Collapse
|
49
|
Sarkar A, Mandal S. Bifidobacteria-Insight into clinical outcomes and mechanisms of its probiotic action. Microbiol Res 2016; 192:159-171. [PMID: 27664734 DOI: 10.1016/j.micres.2016.07.001] [Citation(s) in RCA: 114] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2016] [Revised: 06/12/2016] [Accepted: 07/07/2016] [Indexed: 02/07/2023]
Abstract
The invasion of pathogens causes a disruption of the gut homeostasis. Innate immune responses and those triggered by endogenous microbiota form the first line of defence in our body. Pathogens often successfully overcome the resistances offered, calling for therapeutic intervention. Conventional strategy involving antibiotics might eradicate pathogens, but often leave the gut uncolonised and susceptible to recurrences. Probiotic supplements are useful alternatives. Bifidobacterium is one of widely studied probiotic genus, effective in restoring gut homeostasis. Mechanisms of probiotic action of bifidobacteria are several, often with strain-specificity. Analysis of streamlined literature reports reveal that although most studies report the probiotic aspect of bifidobacteria, sporadic documented contradictory results exist, challenging its therapeutic application and prompting studies to unambiguously establish the strain-associated probiotic activity and negate adverse effects prior to its clinical administration. Multi-strain/combinatorial therapy possibly relies on a combination of underlying operating mechanisms, each contributing towards enhanced probiotic efficacy, understanding which could help in developing customised formulations against targeted pathogens. Bifidogenic activity is also mediated by surface-associated structural components such as exopolysaccharides, lipoteichoic acids along with metabolites and bifidocins. This highlights scope for developing advanced structural therapeutic strategy which might be pivotal in replacing intact cell probiotics therapy.
Collapse
Affiliation(s)
- Amrita Sarkar
- School of Chemistry and Manchester Institute of Biotechnology, The University of Manchester, 131 Princess Street, Manchester M1 7DN, UK.
| | - Santanu Mandal
- School of Chemistry and Manchester Institute of Biotechnology, The University of Manchester, 131 Princess Street, Manchester M1 7DN, UK
| |
Collapse
|
50
|
Gagnon M, Vimont A, Darveau A, Fliss I, Jean J. Study of the Ability of Bifidobacteria of Human Origin to Prevent and Treat Rotavirus Infection Using Colonic Cell and Mouse Models. PLoS One 2016; 11:e0164512. [PMID: 27727323 PMCID: PMC5058500 DOI: 10.1371/journal.pone.0164512] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2016] [Accepted: 09/25/2016] [Indexed: 12/11/2022] Open
Abstract
Rotavirus is the leading cause of severe acute gastroenteritis among children worldwide. Despite effective vaccines, inexpensive alternatives such as probiotics are needed. The aim of this study was to assess the ability of probiotic candidate Bifidobacterium thermophilum RBL67 to inhibit rotavirus infection. Bacterial adhesion to intestinal cells and interference with viral attachment were evaluated in vitro. B. thermophilum RBL67 displayed adhesion indexes of 625 ± 84 and 1958 ± 318 on Caco-2 and HT-29 cells respectively and was comparable or superior to four other bifidobacteria, including B. longum ATCC 15707 and B. pseudolongum ATCC 25526 strains. Incubation of B. thermophilum RBL67 for 30 min before (exclusion) and simultaneously (competition) with human rotavirus strain Wa decreased virus attachment by 2.0 ± 0.1 and 1.5 ± 0.1 log10 (by 99.0% and 96.8% respectively). Displacement of virus already present was negligible. In CD-1 suckling mice fed B. thermophilum RBL67 challenged with simian rotavirus SA-11, pre-infection feeding with RBL 67 was more effective than post-infection feeding, reducing the duration of diarrhea, limiting epithelial lesions, reducing viral replication in the intestine, accelerating recovery, and stimulating the humoral specific IgG and IgM response, without inducing any adverse effect. B. thermophilum RBL67 had little effect on intestinal IgA titer. These results suggest that humoral immunoglobulin might provide protection against the virus and that B. thermophilum RBL67 has potential as a probiotic able to inhibit rotavirus infection and ultimately reduce its spread.
Collapse
Affiliation(s)
- Mélanie Gagnon
- Institute of Nutrition and Functional Foods, Department of Food Science, Laval University, Quebec, Quebec, Canada
| | - Allison Vimont
- Institute of Nutrition and Functional Foods, Department of Food Science, Laval University, Quebec, Quebec, Canada
| | - André Darveau
- Department of Biochemistry, Microbiology and Bioinformatics, Laval University, Quebec, Quebec, Canada
| | - Ismaïl Fliss
- Institute of Nutrition and Functional Foods, Department of Food Science, Laval University, Quebec, Quebec, Canada
| | - Julie Jean
- Institute of Nutrition and Functional Foods, Department of Food Science, Laval University, Quebec, Quebec, Canada
- * E-mail:
| |
Collapse
|