1
|
Kim Y, Cho H, Jang B, Lee M, Park KT. Molecular characterization of emerging multi-drug resistant Clostridium perfringens isolated from pork production chains in Korea. Food Microbiol 2025; 128:104729. [PMID: 39952749 DOI: 10.1016/j.fm.2025.104729] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2024] [Revised: 12/29/2024] [Accepted: 01/08/2025] [Indexed: 02/17/2025]
Abstract
Clostridium perfringens is a common cause of foodborne illnesses and is involved in human and animal gastrointestinal diseases. Surveillance of C. perfringens in the pork production chain is crucial to manage the risk of pathogen transmission. This study aimed to investigate the prevalence, antimicrobial resistance profile, and genomic characteristics of C. perfringens in pork production chains in Korea. The overall prevalence of C. perfringens was 23.6% (330/1397), with 48.8 (178/365), 16.6 (138/832), and 7.0% (14/200) in pig farms, slaughterhouses, and retail markets, respectively. Toxinotyping revealed 98.9% type A and 1.1% type C isolates. Among them, 29.1% carried the beta-2 toxin gene. Antimicrobial susceptibility tests identified 20 multi-drug resistant isolates, with the highest resistance against tetracycline (65.1%). Whole-genome sequencing further revealed 17 antimicrobial resistance and 12 virulence genes. Subsequent phylogenetic analysis identified three clonal clusters, two of which revealed a clonal relationship with human clinical isolates reported in China. The ST408 isolate from the retail pork meat, IJCP45, harboured the optrA gene in a plasmid and was identical to known optrA-carrying plasmids in C. perfringens from livestock in China, suggesting the introduction and dissemination of optrA by the transmission of a specific plasmid in east Asian countries. To our knowledge, this is the first comprehensive study of C. perfringens in the pork meat production system as an "One Health" approach. The study findings provide baseline data for the distribution and genetic characteristics of pig-associated C. perfringens in Korea and indicate the zoonotic transmission potential of C. perfringens from pigs to humans.
Collapse
Affiliation(s)
- Yeona Kim
- Department of Digital Anti-aging and Healthcare, Inje University, Gimhae, 50834, Republic of Korea
| | - Hyeonwoo Cho
- Department of Biological Sciences, Inje University, Gimhae, 50834, Republic of Korea
| | - Beomsoon Jang
- Department of Biological Sciences, Inje University, Gimhae, 50834, Republic of Korea
| | - Miru Lee
- Department of Biological Sciences, Inje University, Gimhae, 50834, Republic of Korea
| | - Kun Taek Park
- Department of Digital Anti-aging and Healthcare, Inje University, Gimhae, 50834, Republic of Korea; Department of Biological Sciences, Inje University, Gimhae, 50834, Republic of Korea.
| |
Collapse
|
2
|
Yanxia S, Xuewei W, Gang L, Wei J. Analysis on characteristics and multilocus sequence typing of Clostridium perfringens in western China. J Antimicrob Chemother 2025; 80:216-226. [PMID: 39545426 DOI: 10.1093/jac/dkae399] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2024] [Accepted: 10/16/2024] [Indexed: 11/17/2024] Open
Abstract
OBJECTIVES The objective of this study was to identify and analyse the distribution characteristics, toxin genotyping and antimicrobial susceptibility of Clostridium perfringens and to investigate its resistance mechanisms and genetic characteristics. METHODS The MICs of various antibiotics against C. perfringens were determined using the agar dilution method, and resistance genes and toxin genotypes were detected by PCR. Genetic relationships were analysed using MLST. WGS was conducted on the DNB system and PacBio platforms. RESULTS Analysis of 36 strains of C. perfringens revealed that the major toxin types were types C and F, with 86.1% of the strains isolated from bile samples. Of these, 30.6% of the strains exhibited MDR, with resistance rates of 75.0%, 52.8% and 52.8% for penicillin, clindamycin and ampicillin, respectively; however, no resistance to metronidazole and carbapenems was observed. MLST analysis identified 29 STs, including 14 novel types. ST221 and ST498 were the dominant types. The WGS revealed that the most prevalent virulence factors are plc (100.0%), nagH (100.0%), colA (100.0%), nanJ (100.0%), entB (100%), nanH (97.0%), entA (97.0%) and nanI (90.9%). Among these factors, the primary determinants of tetracycline resistance are tetA (66.7%) and tetB (78.8%), which represent the most frequently detected antibiotic resistance genes. CONCLUSIONS This study indicates that the infection rate of C. perfringens is relatively high, with the majority of isolated strains exhibiting MDR. The observed high levels of antibiotic resistance, combined with the significant genetic diversity of these strains, suggest a potential public health risk.
Collapse
Affiliation(s)
- Shao Yanxia
- School of Clinical Medicine, Ningxia Medical University, Yinchuan, People's Republic of China
| | - Wang Xuewei
- Medical Records Department, General Hospital of Ningxia Medical University, Yinchuan, People's Republic of China
| | - Li Gang
- Ningxia Key Laboratory of Clinical and Pathogenic Microbiology, General Hospital of Ningxia Medical University, Yinchuan 750001, People's Republic of China
- Medical Experimental Center, General Hospital of Ningxia Medical University, Yinchuan 750001, People's Republic of China
| | - Jia Wei
- Ningxia Key Laboratory of Clinical and Pathogenic Microbiology, General Hospital of Ningxia Medical University, Yinchuan 750001, People's Republic of China
- Medical Experimental Center, General Hospital of Ningxia Medical University, Yinchuan 750001, People's Republic of China
| |
Collapse
|
3
|
Zhang M, Yin Z. Comparative Phylogenetic Analysis and Protein Prediction Reveal the Taxonomy and Diverse Distribution of Virulence Factors in Foodborne Clostridium Strains. Evol Bioinform Online 2024; 20:11769343241294153. [PMID: 39502941 PMCID: PMC11536399 DOI: 10.1177/11769343241294153] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Accepted: 10/10/2024] [Indexed: 11/08/2024] Open
Abstract
Background Clostridium botulinum and Clostridium perfringens, 2 major foodborne pathogenic fusobacteria, have a variety of virulent protein types with nervous and enterotoxic pathogenic potential, respectively. Objective The relationship between the molecular evolution of the 2 Clostridium genomes and virulence proteins was studied via a bioinformatics prediction method. The genetic stability, main features of gene coding and structural characteristics of virulence proteins were compared and analyzed to reveal the phylogenetic characteristics, diversity, and distribution of virulence factors of foodborne Clostridium strains. Methods The phylogenetic analysis was performed via composition vector and average nucleotide identity based methods. Evolutionary distances of virulence genes relative to those of housekeeping genes were calculated via multilocus sequence analysis. Bioinformatics software and tools were used to predict and compare the main functional features of genes encoding virulence proteins, and the structures of virulence proteins were predicted and analyzed through homology modeling and a deep learning algorithm. Results According to the diversity of toxins, genome evolution tended to cluster based on the protein-coding virulence genes. The evolutionary transfer distances of virulence genes relative to those of housekeeping genes in C. botulinum strains were greater than those in C. perfringens strains, and BoNTs and alpha toxin proteins were located extracellularly. The BoNTs have highly similar structures, but BoNT/A/B and BoNT/E/F have significantly different conformations. The beta2 toxin monomer structure is similar to but simpler than the alpha toxin monomer structure, which has 2 mobile loops in the N-terminal domain. The C-terminal domain of the CPE trimer forms a "claudin-binding pocket" shape, which suggests biological relevance, such as in pore formation. Conclusions According to the genotype of protein-coding virulence genes, the evolution of Clostridium showed a clustering trend. The genetic stability, functional and structural characteristics of foodborne Clostridium virulence proteins reveal the taxonomy and diverse distribution of virulence factors.
Collapse
Affiliation(s)
- Ming Zhang
- School of Yunkang Medicine and Health, Nanfang College, Guangzhou, Guangdong, China
| | - Zhenzhen Yin
- School of Yunkang Medicine and Health, Nanfang College, Guangzhou, Guangdong, China
| |
Collapse
|
4
|
Ali T, Sarwar A, Anjum AA. Alpha toxin production potential and antibiotic resistance patterns of clostridium perfringens isolates from meat samples. Anim Biosci 2024; 37:1970-1978. [PMID: 38938034 PMCID: PMC11541028 DOI: 10.5713/ab.24.0210] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2024] [Revised: 05/01/2024] [Accepted: 06/03/2024] [Indexed: 06/29/2024] Open
Abstract
OBJECTIVE This research aimed to analyze the prevalence, molecular characteristics, toxinotyping, alpha toxin production potential, and antibiotic resistance pattern of Clostridium perfringens (C. perfringens) isolates in meat samples collected from various sources. METHODS Sixty meat samples were screened for alpha toxin using enzyme-linked immunosorbent assay, revealing a positivity rate of 13.3%, predominantly in raw poultry meat. Subsequent culturing on Perfringens agar identified nine samples harboring characteristic C. perfringens colonies, primarily isolated from raw poultry meat. Molecular confirmation through 16S rRNA gene amplification and sequencing authenticated twelve isolates as C. perfringens, with nine strains exhibiting genetic resemblance to locally isolated strains. Toxinotyping assays targeting alpha toxin-specific genes confirmed all nine isolates as type A C. perfringens, with no detection of beta or epsilon toxin genes. Hemolytic assays demonstrated varying alpha toxin production potentials among isolates, with accession number OQ721004.1 displaying the highest production capacity. Moreover, antibiotic resistance profiling revealed multi-drug resistance patterns among the isolates. RESULTS The study identified distinct clusters within C. perfringens strains, indicating variations. Phylogenetic analysis delineated genetic relatedness among strains, elucidating potential evolutionary paths and divergences. CONCLUSION The findings underscore the need for robust surveillance and control measures to mitigate the risk of C. perfringens contamination in meat products, particularly in raw poultry meat. Enhanced monitoring and prudent antimicrobial stewardship practices are warranted in both veterinary and clinical settings to address the observed antibiotic resistance profiles and prevent foodborne outbreaks.
Collapse
Affiliation(s)
- Tehreem Ali
- Department of Microbiology, University of Central Punjab, Lahore 54000,
Pakistan
| | - Arslan Sarwar
- Department of Microbiology, University of Central Punjab, Lahore 54000,
Pakistan
| | - Aftab Ahmad Anjum
- Institute of Microbiology, University of Veterinary and Animal Sciences, Lahore 54000,
Pakistan
| |
Collapse
|
5
|
Wang XY, Meng FH, Zhang MY, Li FX, Lei YX, Ma ZG, Li JQ, Lou YN, Chu YF, Ma K, Yu SX. Gut Lactococcus garvieae promotes protective immunity to foodborne Clostridium perfringens infection. Microbiol Spectr 2024; 12:e0402523. [PMID: 39190634 PMCID: PMC11448249 DOI: 10.1128/spectrum.04025-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2023] [Accepted: 07/19/2024] [Indexed: 08/29/2024] Open
Abstract
The gut microbiota, a pivotal component of the intestinal mucosal barrier, is critical for host resistance to enteric pathogen infection. Here, we report a novel function of the potentially probiotic Lactococcus garvieae strain LG1 (L. garvieae strain LG1) in maintaining intestinal mucosal barrier integrity and protecting against foodborne Clostridium perfringens (C. perfringens) infection. L. garvieae was isolated from the intestinal contents of Chinese Mongolian sheep (MS) and exhibited potential probiotic properties. In a C. perfringens enterocolitis model, L. garvieae-pretreated mice were less susceptible to C. perfringens infection compared with Phosphate buffered solution (PBS)-pretreated mice, which manifested as higher survival rates, lower pathogen loads, less weight loss, mild clinical symptoms and intestinal damage, and minor inflammation. Further mechanistic analysis showed that L. garvieae could ameliorate the disruption of intestinal permeability and maintain the integrity of the intestinal mucosal barrier by promoting the expression of tight junction proteins and mucoproteins. Moreover, L. garvieae was also able to facilitate antimicrobial peptide expression and ameliorate dysbiosis of the gut microbiota caused by C. perfringens. Together, these findings highlight the prospect of immunomodulatory potentially probiotic L. garvieae and might offer valuable strategies for prophylaxis and/or treatment of pathogenic C. perfringens mucosal infection. IMPORTANCE C. perfringens necrotic enteritis leads to losses of about US $2 billion to the poultry industry worldwide every year. Worse, US Centers for Disease Control and Prevention (CDC) has estimated that C. perfringens causes nearly 1 million foodborne illnesses in the United States annually. Nowadays, the treatment recommendation is a combination of a broad-spectrum synergistic penicillin with clindamycin or a carbapenem, despite growing scientific concern over antibiotic resistance. The global understanding of the gut microbiome for C. perfringens infection may provide important insights into the intervention. L. garvieae originated from Mongolian sheep intestine, exhibited potentially probiotic properties, and was able to limit C. perfringens enterocolitis and pathogenic colonization. Importantly, we found that L. garvieae limits C. perfringens invasion via improving intestinal mucosal barrier function. Also, L. garvieae alleviates C. perfringens-induced gut microbiota dysbiosis. It allowed us to convince that utilization of probiotics to promote protective immunity against pathogens infection is of pivotal importance.
Collapse
Affiliation(s)
- Xue-Yin Wang
- State Key Laboratory of Reproductive Regulation and Breeding of Grassland Livestock, College of Life Sciences, Inner Mongolia University, Hohhot, China
| | - Fan-Hua Meng
- State Key Laboratory of Reproductive Regulation and Breeding of Grassland Livestock, College of Life Sciences, Inner Mongolia University, Hohhot, China
| | - Ming-Yue Zhang
- State Key Laboratory of Reproductive Regulation and Breeding of Grassland Livestock, College of Life Sciences, Inner Mongolia University, Hohhot, China
| | - Fen-Xin Li
- State Key Laboratory of Reproductive Regulation and Breeding of Grassland Livestock, College of Life Sciences, Inner Mongolia University, Hohhot, China
| | - Yu-Xin Lei
- State Key Laboratory of Reproductive Regulation and Breeding of Grassland Livestock, College of Life Sciences, Inner Mongolia University, Hohhot, China
| | - Zhao-Guo Ma
- State Key Laboratory of Reproductive Regulation and Breeding of Grassland Livestock, College of Life Sciences, Inner Mongolia University, Hohhot, China
| | - Jia-Qi Li
- State Key Laboratory of Reproductive Regulation and Breeding of Grassland Livestock, College of Life Sciences, Inner Mongolia University, Hohhot, China
| | - Ya-Nan Lou
- State Key Laboratory of Reproductive Regulation and Breeding of Grassland Livestock, College of Life Sciences, Inner Mongolia University, Hohhot, China
| | - Yue-Feng Chu
- State Key Laboratory for Animal Disease Control and Prevention, College of Veterinary Medicine, Lanzhou University, Lanzhou Veterinary Research Institute, Chinese Academy agricultural Sciences, Lanzhou, China
| | - Ke Ma
- State Key Laboratory for Animal Disease Control and Prevention, College of Veterinary Medicine, Lanzhou University, Lanzhou Veterinary Research Institute, Chinese Academy agricultural Sciences, Lanzhou, China
| | - Shui-Xing Yu
- State Key Laboratory of Reproductive Regulation and Breeding of Grassland Livestock, College of Life Sciences, Inner Mongolia University, Hohhot, China
- Inner Mongolia Engineering Technology Research Center of Germplasm Resources Conservation and Utilization, College of Life Sciences, Inner Mongolia University, Hohhot, China
| |
Collapse
|
6
|
Ningsih N, Respati AN, Astuti D, Triswanto T, Purnamayanti L, Yano AA, Putra RP, Jayanegara A, Ratriyanto A, Irawan A. Efficacy of Bacillus subtilis to replace in-feed antibiotics of broiler chickens under necrotic enteritis-challenged experiments: a systematic review and meta-analysis. Poult Sci 2023; 102:102923. [PMID: 37494807 PMCID: PMC10393822 DOI: 10.1016/j.psj.2023.102923] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2023] [Revised: 06/24/2023] [Accepted: 07/02/2023] [Indexed: 07/28/2023] Open
Abstract
Necrotic enteritis (NE) and coccidiosis are among the most prevalent infectious diseases in broiler chickens, contributing to large profitability losses. Bacillus subtilis is a promising direct-fed probiotic to counter various pathogens infection in broiler chickens. Here, we performed a meta-analysis to investigate the effects of B. subtilis on broiler chickens performance. A total of 28 studies were selected according to a PRISMA checklist. Random-effect model and mixed-effect model of meta-analysis were fitted to estimate the overall effects of B. subtilis (BS) treatment compared to either the control group (CON) or NE-infected group (NEinf) as a baseline. Hedges' g effect size and its variance were used as estimators of standardized mean difference (SMD) calculation where the results were presented at a 95% confidence interval (95% CI) of the SMD. Overall, NEinf broiler chickens depressed (P < 0.01) body weight (BW), average daily gain (ADG), and feed intake, and elevated (P < 0.01) feed conversion ratio (FCR). Treatment with BS improved ADG and final BW of NEinf with no difference (P = 0.15) between BS and antibiotics (AB), indicating that they had comparable efficacy to treat NE in broiler chickens. BS supplemented to uninfected CON (BSS) improved (P < 0.01) final BW, ADG, and FCR. Compared to CON, BS, and AB failed to recover the FCR but these treatments decreased (P < 0.01) FCR when compared to the NEinf group with similar efficacy (P = 0.97). As expected, NEinf birds had a higher mortality rate (P < 0.01) and higher lesion score (P < 0.01) compared to CON, and treatment using AB and BS successfully decreased (P < 0.01) the mortality rate and lesion score. Compared to BS, AB was more effective to lower (P = 0.01) mortality rate, but comparable (P = 0.65) to minimize lesion score. To conclude, B. subtilis could be an effective natural additive to replace in-feed antibiotics in broiler chickens challenged with C. perfringens. However, the efficacy to reduce mortality rate was better with antibiotics treatment.
Collapse
Affiliation(s)
- Niati Ningsih
- Department of Animal Science, Politeknik Negeri Jember, Jember 68101, Indonesia
| | - Adib Norma Respati
- Department of Animal Science, Politeknik Negeri Jember, Jember 68101, Indonesia
| | - Dian Astuti
- Agrotechnology Innovation Center, Universitas Gadjah Mada, Sleman 55573, Indonesia
| | - T Triswanto
- Department of Feed Technology, PT. Charoen Pokphand Indonesia, Jakarta Utara 14350, Indonesia
| | - Lailatul Purnamayanti
- Animal Husbandry Study Program, Politeknik Selaparang Lombok, West Nusa Tenggara 83653, Indonesia
| | | | - Reza Pratama Putra
- Animal Health Vocational Program, Jambi University, Muaro Jambi 36361, Indonesia
| | - Anuraga Jayanegara
- Department of Nutrition and Feed Technology, Faculty of Animal Science, IPB University, Bogor 16680, Indonesia
| | | | - Agung Irawan
- Universitas Sebelas Maret, Surakarta 57126, Indonesia; Department of Animal and Rangeland Sciences, Oregon State University, Corvallis, OR 97331, USA.
| |
Collapse
|
7
|
García-Vela S, Martínez-Sancho A, Said LB, Torres C, Fliss I. Pathogenicity and Antibiotic Resistance Diversity in Clostridium perfringens Isolates from Poultry Affected by Necrotic Enteritis in Canada. Pathogens 2023; 12:905. [PMID: 37513752 PMCID: PMC10383762 DOI: 10.3390/pathogens12070905] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2023] [Revised: 06/16/2023] [Accepted: 06/30/2023] [Indexed: 07/30/2023] Open
Abstract
Necrotic enteritis (NE) caused by C. perfringens is one of the most common diseases of poultry and results in a huge economic loss to the poultry industry, with resistant clostridial strains being a serious concern and making the treatment difficult. Whole-genome sequencing approaches represent a good tool to determine resistance profiles and also shed light for a better understanding of the pathogen. The aim of this study was to characterize, at the genomic level, a collection of 20 C. perfringens isolates from poultry affected by NE, giving special emphasis to resistance mechanisms and production of bacteriocins. Antimicrobial resistance genes were found, with the tet genes (associated with tetracycline resistance) being the most prevalent. Interestingly, two isolates carried the erm(T) gene associated with erythromycin resistance, which has only been reported in other Gram-positive bacteria. Twelve of the isolates were toxinotyped as type A and seven as type G. Other virulence factors encoding hyaluronases and sialidases were frequently detected, as well as different plasmids. Sequence types (ST) revealed a high variability of the isolates, finding new allelic combinations. Among the isolates, C. perfringens MLG7307 showed unique characteristics; it presented a toxin combination that made it impossible to toxinotype, and, despite being identified as C. perfringens, it lacked the housekeeping gene colA. Genes encoding bacteriocin BCN5 were found in five isolates even though no antimicrobial activity could be detected in those isolates. The bcn5 gene of three of our isolates was similar to one previously reported, showing two polymorphisms. Concluding, this study provides insights into the genomic characteristics of C. perfringens and a better understanding of this avian pathogen.
Collapse
Affiliation(s)
- Sara García-Vela
- Department of Food Science, University of Laval, Quebec, QC QCG1V0A6, Canada
- Area of Biochemistry and Molecular Biology, OneHealth-UR Research Group, University of La Rioja, 26006 Logrono, La Rioja, Spain
| | - Agustí Martínez-Sancho
- Area of Biochemistry and Molecular Biology, OneHealth-UR Research Group, University of La Rioja, 26006 Logrono, La Rioja, Spain
| | - Laila Ben Said
- Department of Food Science, University of Laval, Quebec, QC QCG1V0A6, Canada
| | - Carmen Torres
- Area of Biochemistry and Molecular Biology, OneHealth-UR Research Group, University of La Rioja, 26006 Logrono, La Rioja, Spain
| | - Ismail Fliss
- Department of Food Science, University of Laval, Quebec, QC QCG1V0A6, Canada
| |
Collapse
|
8
|
Beres C, Colobatiu L, Tabaran A, Mihaiu R, Mihaiu M. Prevalence and Characterisation of Clostridium perfringens Isolates in Food-Producing Animals in Romania. Microorganisms 2023; 11:1373. [PMID: 37374875 DOI: 10.3390/microorganisms11061373] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2023] [Revised: 05/19/2023] [Accepted: 05/22/2023] [Indexed: 06/29/2023] Open
Abstract
The aim of the current study was to investigate the prevalence of Clostridium perfringens (C. perfringens) recovered from animal faeces, as well as to determine the antimicrobial susceptibility of such isolates. A total of 14 (14/100; 14%) C. perfringens isolates were isolated from the 100 analysed samples (twelve recovered from faecal samples collected from pigs and two from veal calves' faecal samples). The preponderant genotype was type A, with all isolates being cpa-positive. The most potent antimicrobial agents against C. perfringens proved to be vancomycin, rifampicin and lincomycin. A strong resistance to tetracycline (71.4%), penicillin (64.2%), erythromycin (42.8%) and enrofloxacin (35.7%) was also observed. To the best of our knowledge, this is the first analysis regarding the prevalence, characterization and antimicrobial susceptibility of C. perfringens in food-producing animals in Romania, adding further evidence for the probable role of animals as a source of resistant C. perfringens strains.
Collapse
Affiliation(s)
- Corina Beres
- Department of Animal Breeding and Food Science, Faculty of Veterinary Medicine, University of Agricultural Sciences and Veterinary Medicine, Manastur Street No. 3/5, 400372 Cluj-Napoca, Romania
| | - Liora Colobatiu
- Department of Medical Devices, Faculty of Pharmacy, Iuliu Hatieganu University of Medicine and Pharmacy, Victor Babes Street No. 8, 400012 Cluj-Napoca, Romania
| | - Alexandra Tabaran
- Department of Animal Breeding and Food Science, Faculty of Veterinary Medicine, University of Agricultural Sciences and Veterinary Medicine, Manastur Street No. 3/5, 400372 Cluj-Napoca, Romania
| | - Romolica Mihaiu
- Department of Management, Faculty of Economic Sciences and Business Administration, Babes Bolyai University, Mihail Kogalniceanu Street No.1, 400084 Cluj-Napoca, Romania
| | - Marian Mihaiu
- Department of Animal Breeding and Food Science, Faculty of Veterinary Medicine, University of Agricultural Sciences and Veterinary Medicine, Manastur Street No. 3/5, 400372 Cluj-Napoca, Romania
| |
Collapse
|
9
|
Gomaa NH, El-Aziz NKA, El-Naenaeey ESY, Abdelaziz WS, Sewid AH. Antimicrobial potential of myricetin-coated zinc oxide nanocomposite against drug-resistant Clostridium perfringens. BMC Microbiol 2023; 23:79. [PMID: 36949384 PMCID: PMC10031903 DOI: 10.1186/s12866-023-02800-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2022] [Accepted: 02/20/2023] [Indexed: 03/24/2023] Open
Abstract
BACKGROUND Clostridium perfringens (C. perfringens) is an important pathogen in livestock animals and humans causing a wide array of systemic and enteric diseases. The current study was performed to investigate the inhibitory activity of myricetin (MYR), polyvinyl alcohol (PVA), and zinc oxide (ZnO) nanocomposite against growth and α-hemolysin of C. perfringens isolated from beef meat and chicken sources. RESULTS The overall occurrence of C. perfringens was 29.8%. The prevalence of C. perfringens was higher in chicken (38.3%) than in beef meat products (10%). The antimicrobial susceptibility testing revealed that C. perfringens isolates exhibited high resistance levels for metronidazole (93%), bacitracin (89%), penicillin G (84%), and lincomycin (76%). Of note, 1% of C. perfringens isolates were pandrug-resistant (PDR), 4% were extensive drug-resistant (XDR), while 91% were multidrug-resistant. The results of broth microdilution technique revealed that all tested C. perfringens isolates were susceptible to MYR-loaded ZnO/PVA with minimum inhibitory concentrations (MICs) ranged from 0.125 to 2 µg/mL. Moreover, the MYR either alone or combined with the nanocomposite had no cytotoxic activities on chicken red blood cells (cRBCs). Transcriptional modifications of MYR, ZnO, ZnO/PVA, and ZnO/PVA/MYR nanocomposite were determined, and the results showed significant down-regulation of α-hemolysin fold change to 0.5, 0.7, 0.6, and 0.28, respectively compared to the untreated bacteria. CONCLUSION This is an in vitro study reporting the antimicrobial potential of MYR-coated ZnO nanocomposite as an effective therapeutic candidate against C. perfringens. An in vivo approach is the next step to provide evidence for applying these alternatives in the treatment and prevention of C. perfringens-associated diseases.
Collapse
Affiliation(s)
- Nada H Gomaa
- Department of Microbiology, Faculty of Veterinary Medicine, Zagazig University, Zagazig, 44511, Sharkia, Egypt
| | - Norhan K Abd El-Aziz
- Department of Microbiology, Faculty of Veterinary Medicine, Zagazig University, Zagazig, 44511, Sharkia, Egypt.
| | - El-Sayed Y El-Naenaeey
- Department of Microbiology, Faculty of Veterinary Medicine, Zagazig University, Zagazig, 44511, Sharkia, Egypt
| | - Walaa S Abdelaziz
- Avian and Rabbit Medicine Department, Faculty of Veterinary Medicine, Zagazig University, Zagazig, 44511, Egypt
| | - Alaa H Sewid
- Department of Microbiology, Faculty of Veterinary Medicine, Zagazig University, Zagazig, 44511, Sharkia, Egypt
| |
Collapse
|
10
|
Mohiuddin M, Song Z, Liao S, Qi N, Li J, Lv M, Lin X, Cai H, Hu J, Liu S, Zhang J, Gu Y, Sun M. Animal Model Studies, Antibiotic Resistance and Toxin Gene Profile of NE Reproducing Clostridium perfringens Type A and Type G Strains Isolated from Commercial Poultry Farms in China. Microorganisms 2023; 11:microorganisms11030622. [PMID: 36985195 PMCID: PMC10059142 DOI: 10.3390/microorganisms11030622] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2023] [Revised: 02/12/2023] [Accepted: 02/23/2023] [Indexed: 03/05/2023] Open
Abstract
Poultry necrotic enteritis (NE) is a complex and multifactorial disease caused by Clostridium perfringens types. Earlier, the disease was prevented and/or controlled through the addition of in-feed antibiotics and antimicrobial growth promoters (AGPs). The ban on the use of these agents as feed additives has been a major reason for re-emergence of this disease leading to huge economic losses to the world poultry industry. Understanding the pathogenesis of NE by developing an effective experimental model remains challenging and lacks consistency owing to the involvement of several critical factors involved in causing lesions of disease in the field. In this study, locally characterized C. perfringens types, i.e., ACP (toxinotype A), and GCP (toxinotype G), obtained from NE outbreaks on commercial farms in China (2020–2022), were used to experimentally induce NE in Specific-Pathogen-Free (SPF) chicks. The lesion scores observed on day 20 were 1.9 ± 1.10 (GCP strain) and 1.5 ± 1.08 (ACP strain), and both had significant difference as compared to the control group. The inclusion of fishmeal in addition to oral clostridial dose, i.e., fishmeal (day 7 onward) + Clostridia (7.5 × 108 cfu/mL consecutively for 04 days) induced a lesion score of 2.0 ± 1.15 in respective groups. Use of coccidia (Eimeria necatrix) on day 9 followed by clostridia challenge enhanced the lesion scores to 2.5 ± 1.08 and 2.2 ± 1.23 for type G and type A strains, respectively. When both predisposing factors (coccidia + fish meal) were given together, i.e., fishmeal (day 7 onward) and coccidia (day 9) along with clostridia, the lesion scores were 3.2 ± 1.22 (GCP + coccidia + fish meal) and 3.0 ± 1.15 (ACP + coccidia + fish meal). These results were significantly different from group 1 (ACP) and 2 (GCP), in which only C. perfringens was used to induce NE. The clinical signs as well as histopathological lesions in experimentally induced groups were found similar as reported in the literature. The two type G strains identified in this study were also used for susceptibility testing against various drugs. Both strains were found to be resistant to amikacin, doxycycline, metronidazole, neomycin, nystatin, polymyxin B, streptomycin, and tetracycline. Variable susceptibility was seen against ceftriaxone, florfenicol, gentamicin, and kanamycin drugs. Amoxicillin, ampicillin, cefotaxime, ciprofloxacin, enrofloxacin, ofloxacin, and penicillin were effective drugs based upon their low level of resistance and therefore they might be preferred over other antimicrobial agents for proper treatment/prophylaxis of NE infections. Further studies are needed to study the pathogenesis of NE in detail in experimentally induced models along with continuous monitoring of the resistance pattern of C. perfringens strains in the field.
Collapse
Affiliation(s)
- Mudassar Mohiuddin
- Key Laboratory of Livestock Disease Prevention of Guangdong Province, Key Laboratory of Avian Influenza and Other Major Poultry Diseases Prevention and Control, Ministry of Agriculture and Rural Affairs, Institute of Animal Health, Guangdong Academy of Agricultural Sciences, Guangzhou 510640, China
- Department of Microbiology, Faculty of Veterinary and Animal Sciences, The Islamia University of Bahawalpur, Bahawalpur 63100, Pakistan
| | - Zhongfeng Song
- Key Laboratory of Livestock Disease Prevention of Guangdong Province, Key Laboratory of Avian Influenza and Other Major Poultry Diseases Prevention and Control, Ministry of Agriculture and Rural Affairs, Institute of Animal Health, Guangdong Academy of Agricultural Sciences, Guangzhou 510640, China
- College of Animal Science and Technology, Anhui Science and Technology University, Chuzhou 233100, China
| | - Shenquan Liao
- Key Laboratory of Livestock Disease Prevention of Guangdong Province, Key Laboratory of Avian Influenza and Other Major Poultry Diseases Prevention and Control, Ministry of Agriculture and Rural Affairs, Institute of Animal Health, Guangdong Academy of Agricultural Sciences, Guangzhou 510640, China
| | - Nanshan Qi
- Key Laboratory of Livestock Disease Prevention of Guangdong Province, Key Laboratory of Avian Influenza and Other Major Poultry Diseases Prevention and Control, Ministry of Agriculture and Rural Affairs, Institute of Animal Health, Guangdong Academy of Agricultural Sciences, Guangzhou 510640, China
| | - Juan Li
- Key Laboratory of Livestock Disease Prevention of Guangdong Province, Key Laboratory of Avian Influenza and Other Major Poultry Diseases Prevention and Control, Ministry of Agriculture and Rural Affairs, Institute of Animal Health, Guangdong Academy of Agricultural Sciences, Guangzhou 510640, China
| | - Minna Lv
- Key Laboratory of Livestock Disease Prevention of Guangdong Province, Key Laboratory of Avian Influenza and Other Major Poultry Diseases Prevention and Control, Ministry of Agriculture and Rural Affairs, Institute of Animal Health, Guangdong Academy of Agricultural Sciences, Guangzhou 510640, China
| | - Xuhui Lin
- Key Laboratory of Livestock Disease Prevention of Guangdong Province, Key Laboratory of Avian Influenza and Other Major Poultry Diseases Prevention and Control, Ministry of Agriculture and Rural Affairs, Institute of Animal Health, Guangdong Academy of Agricultural Sciences, Guangzhou 510640, China
| | - Haiming Cai
- Key Laboratory of Livestock Disease Prevention of Guangdong Province, Key Laboratory of Avian Influenza and Other Major Poultry Diseases Prevention and Control, Ministry of Agriculture and Rural Affairs, Institute of Animal Health, Guangdong Academy of Agricultural Sciences, Guangzhou 510640, China
| | - Junjing Hu
- Key Laboratory of Livestock Disease Prevention of Guangdong Province, Key Laboratory of Avian Influenza and Other Major Poultry Diseases Prevention and Control, Ministry of Agriculture and Rural Affairs, Institute of Animal Health, Guangdong Academy of Agricultural Sciences, Guangzhou 510640, China
| | - Shaobing Liu
- Key Laboratory of Livestock Disease Prevention of Guangdong Province, Key Laboratory of Avian Influenza and Other Major Poultry Diseases Prevention and Control, Ministry of Agriculture and Rural Affairs, Institute of Animal Health, Guangdong Academy of Agricultural Sciences, Guangzhou 510640, China
- College of Animal Science and Technology, Anhui Science and Technology University, Chuzhou 233100, China
| | - Jianfei Zhang
- Key Laboratory of Livestock Disease Prevention of Guangdong Province, Key Laboratory of Avian Influenza and Other Major Poultry Diseases Prevention and Control, Ministry of Agriculture and Rural Affairs, Institute of Animal Health, Guangdong Academy of Agricultural Sciences, Guangzhou 510640, China
| | - Youfang Gu
- College of Animal Science and Technology, Anhui Science and Technology University, Chuzhou 233100, China
- Correspondence: (Y.G.); (M.S.)
| | - Mingfei Sun
- Key Laboratory of Livestock Disease Prevention of Guangdong Province, Key Laboratory of Avian Influenza and Other Major Poultry Diseases Prevention and Control, Ministry of Agriculture and Rural Affairs, Institute of Animal Health, Guangdong Academy of Agricultural Sciences, Guangzhou 510640, China
- Correspondence: (Y.G.); (M.S.)
| |
Collapse
|
11
|
Wu D, Luo R, Gong G, Zhang L, Huang J, Cai C, Li Y, Irshad I, Song R, Suolang S. Antimicrobial susceptibility and multilocus sequence typing of Clostridium perfringens isolated from yaks in Qinghai-Tibet plateau, China. Front Vet Sci 2022; 9:1022215. [DOI: 10.3389/fvets.2022.1022215] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2022] [Accepted: 09/20/2022] [Indexed: 11/13/2022] Open
Abstract
Clostridium perfringens (C. perfringens) is an opportunistic pathogen that cause necrotic enteritis, food poisoning and even death in animals. In this study, we explored the prevalence, antibiotic resistance and genetic diversity of Clostridium perfringens isolated from yak in the Qinghai-Tibet plateau, China. A total of 744 yak fecal samples were collected and assessed for toxin genes, antimicrobial susceptibility and multilocus sequence typing (MLST). Results indicated that 144 out of 744 (19.35%) yak fecal samples were tested to be positive for C. perfringens, 75% (n = 108, 108/144) were C. perfringens type A, 17.36% (n = 25, 25/144) were C. perfringens type C, 2.78% (n = 4, 4/144) were C. perfringens type D, and 4.86% (n = 7, 7/144) were C. perfringens type F. In addition, 2.78% (n = 4, 4/144) of the isolates were positive for cpb2 toxin gene. Antimicrobial susceptibility testing revealed that 98.61% (142/144) of the isolates showed multiple-antibiotic resistance. According to MLST and phylogenetic tree, 144 yak-derived C. perfringens isolates had an average of 12.95 alleles and could be divided into 89 sequence types (STs) and clustered in 11 clonal complexes (CCs). The most of isolates belong to type A with a considerable genetic diversity, having Simpson index up to 0.9754. MLST and phylogenetic analysis showed that the isolates under the same clade came from multiple regions. Cross-transmission among isolates and interconnectedness were observed in the genetic evolution. According to the study, the most of the isolates exhibited broad-spectrum antibacterial resistance, diverse alleles, and multiple lethal toxin genes of C. perfringens.
Collapse
|
12
|
Yadav JP, Kaur S, Dhaka P, Vijay D, Bedi JS. Prevalence, molecular characterization, and antimicrobial resistance profile of Clostridium perfringens from India: A scoping review. Anaerobe 2022; 77:102639. [PMID: 36108893 DOI: 10.1016/j.anaerobe.2022.102639] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2022] [Revised: 04/27/2022] [Accepted: 09/07/2022] [Indexed: 11/01/2022]
Abstract
Clostridium perfringens is one of the most important foodborne pathogens that causes histotoxic diseases and intestinal infections in both humans and animals. The present scoping review has been designed to analyze the literature published during 2000-2021 from India on the prevalence, molecular characterization, and antimicrobial resistance profile of C. perfringens isolates recovered from humans, animals, animal-based foods, and associated environmental samples. The peer-reviewed articles retrieved from four electronic databases (Google Scholar, PubMed, Science Direct, and Web of Science) were assessed using PRISMA-ScR guidelines. A total of 32 studies from India were selected on the basis of their relevance and inclusion criteria. The overall prevalence of C. perfringens among domestic animals having history of clinical symptoms and among healthy animals was found to be 65.8% (508/772) and 42.8% (493/1152), respectively. The pathogen was also detected in clinically affected wild animals (75%), healthy wild animals (35.4%), and captive birds (24.5%). The detection of C. perfringens among poultry having necrotic enteritis and among healthy birds was found to be 66.8% (321/480) and 25.6% (80/312), respectively. The detection of pathogen among animal-based foods (i.e., meat, milk, and fish and their products) and environmental samples depicted a prevalence of 20.8% (325/1562) and 30.2% (23/76), respectively. However, the prevalence of C. perfringens among humans having history of diarrhea and among healthy humans was found to be 25% (70/280) and 23.2% (36/155), respectively. The genotyping of C. perfringens isolates revealed that toxin type A was found to be the most prevalent genotype. Along with the alpha toxin gene (cpa), beta (cpb), epsilon (etx), iota (itx), enterotoxin (cpe), beta-2 toxin (cpb2), and NetB (netB) toxins were also detected in different combinations. Antimicrobial resistance profile of C. perfringens isolates recovered from different sources demonstrated that the highest resistance was detected against sulphonamides (76.8%) and tetracycline (41.3%) by phenotypic and genotypic detection methods, respectively. Comprehensive scientific studies covering different geographical areas at the human-animal-environment interface are crucial to generalize the real magnitude of C. perfringens-associated problem in India and for establishing a reliable database.
Collapse
Affiliation(s)
- Jay Prakash Yadav
- Department of Veterinary Public Health and Epidemiology, College of Veterinary Science, Guru Angad Dev Veterinary and Animal Sciences University, Rampura Phul, Bathinda, 151103, India.
| | - Simranpreet Kaur
- Centre for One Health, College of Veterinary Science, Guru Angad Dev Veterinary and Animal Sciences University, Ludhiana, 141004, India
| | - Pankaj Dhaka
- Centre for One Health, College of Veterinary Science, Guru Angad Dev Veterinary and Animal Sciences University, Ludhiana, 141004, India
| | - Deepthi Vijay
- Department of Veterinary Public Health, College of Veterinary and Animal Sciences, Mannuthy, Thrissur, 680651, India
| | - Jasbir Singh Bedi
- Centre for One Health, College of Veterinary Science, Guru Angad Dev Veterinary and Animal Sciences University, Ludhiana, 141004, India
| |
Collapse
|
13
|
Santos RAND, Abdel-Nour J, McAuley C, Moore SC, Fegan N, Fox EM. Clostridium perfringens associated with dairy farm systems show diverse genotypes. Int J Food Microbiol 2022; 382:109933. [PMID: 36166891 DOI: 10.1016/j.ijfoodmicro.2022.109933] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2022] [Revised: 08/08/2022] [Accepted: 09/13/2022] [Indexed: 10/14/2022]
Abstract
Clostridium perfringens is a bacterial species of importance to both public and animal health. Frequently found in food system environments, it presents a risk to food animal health such as dairy herds, and may cross contaminate associated ingredients or food products, with potential to cause sporadic and outbreaks of disease in human populations, including gastroenteric illness. In this study, we characterized C. perfringens isolated from bovine, caprine, and ovine dairy farm systems (n = 8, 11 and 4, respectively). Isolates were phenotypically screened for antimicrobial sensitivity profiling, and subjected to whole genome sequencing to elucidate related genetic markers, as well as examine virulence gene markers, mobile genetic elements, and other features. Both toxin type A and type D isolates were identified (78 % and 22 % of isolates, respectively), including 20 novel sequence types. Resistance to clindamycin was most prevalent among antibiotics screened (30 %), followed by erythromycin (13 %), then penicillin and tetracycline (4 %), although an additional 3 isolates were non-susceptible to tetracycline. Most isolates harboured plasmids, which mobilised virulence markers such as etx, cpb2, and resistance markers tetA(P), tetB(P), and erm(Q), on conjugative plasmids. The presence of type D isolates on caprine farms emphasizes the need for control efforts to prevent infection and potential enterotoxemia. Clostridium perfringens enterotoxin (cpe) was not identified, suggesting lower risk of gastrointestinal illness from contaminated foods, the presence of other virulence and antimicrobial resistance markers suggests farm hygiene remains an important consideration to help ensure food safety of associated dairy foods produced.
Collapse
Affiliation(s)
| | | | - Cathy McAuley
- CSIRO Agriculture and Food, Werribee, VIC 3030, Australia
| | - Sean C Moore
- CSIRO Agriculture and Food, Cooper Plains, QLD 4108, Australia
| | - Narelle Fegan
- CSIRO Agriculture and Food, Cooper Plains, QLD 4108, Australia
| | - Edward M Fox
- Department of Applied Sciences, Northumbria University, Newcastle upon Tyne, UK.
| |
Collapse
|