1
|
Angélica Margarita PV, Armando Roberto CM. Exercise and Sinonasal Diseases: Key Interactions and Management Pearls. Immunol Allergy Clin North Am 2025; 45:1-11. [PMID: 39608871 DOI: 10.1016/j.iac.2024.08.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2024]
Abstract
The nose filters, moistens, and warms inspired air at rest and during activity. Exercise is associated with an increase in nasal airflow and a decrease in resistance to that flow. Mechanistically, changes in the nasal mucosa during exercise may increase neutrophilic infiltration, impair olfaction, and prolong mucociliary transport time. The increased exposure to substances in the exercise environment may also produce rhinitis. Clinically, the prevalence of rhinitis and upper airway infections is increased in athletes. Allergic and non-allergic rhinitis, and rhinosinusitis may be diagnosed clinically, with other studies supporting the diagnosis; their main treatments are topical steroids, antihistamines, and saline.
Collapse
Affiliation(s)
- Portillo-Vásquez Angélica Margarita
- Epidemiology and Statistics Coordination, Instituto Nacional de Enfermedades Respiratorias "Ismael Cosío Villegas"; Instituto Nacional de Enfermedades Respiratorias "Ismael Cosío Villegas".
| | | |
Collapse
|
2
|
Kistler W, Villiger M, Villiger B, Yazici D, Pat Y, Mitamura Y, Ardicli S, Skolnick S, Dhir R, Akdis M, Nadeau K, Ogulur I, Akdis CA. Epithelial barrier theory in the context of nutrition and environmental exposure in athletes. Allergy 2024; 79:2912-2923. [PMID: 39011970 DOI: 10.1111/all.16221] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Revised: 06/18/2024] [Accepted: 06/28/2024] [Indexed: 07/17/2024]
Abstract
Exposure to toxic substances, introduced into our daily lives during industrialization and modernization, can disrupt the epithelial barriers in the skin, respiratory, and gastrointestinal systems, leading to microbial dysbiosis and inflammation. Athletes and physically active individuals are at increased risk of exposure to agents that damage the epithelial barriers and microbiome, and their extreme physical exercise exerts stress on many organs, resulting in tissue damage and inflammation. Epithelial barrier-damaging substances include surfactants and enzymes in cleaning products, laundry and dishwasher detergents, chlorine in swimming pools, microplastics, air pollutants such as ozone, particulate matter, and diesel exhaust. Athletes' high-calorie diet often relies on processed foods that may contain food emulsifiers and other additives that may cause epithelial barrier dysfunction and microbial dysbiosis. The type of the material used in the sport equipment and clothing and their extensive exposure may increase the inflammatory effects. Excessive travel-related stress, sleep disturbances and different food and microbe exposure may represent additional factors. Here, we review the detrimental impact of toxic agents on epithelial barriers and microbiome; bring a new perspective on the factors affecting the health and performance of athletes and physically active individuals.
Collapse
Affiliation(s)
- Walter Kistler
- Medical Committee International Ice Hockey Federation, Zürich, Switzerland
- Swiss Research Institute for Sports Medicine (SRISM), Davos, Switzerland
- Department of Sports Medicine, Davos Hospital, Davos, Switzerland
| | - Michael Villiger
- Swiss Research Institute for Sports Medicine (SRISM), Davos, Switzerland
- Department of Sports Medicine, Davos Hospital, Davos, Switzerland
| | - Beat Villiger
- Swiss Research Institute for Sports Medicine (SRISM), Davos, Switzerland
- Department of Sports Medicine, Davos Hospital, Davos, Switzerland
| | - Duygu Yazici
- Swiss Institute of Allergy and Asthma Research (SIAF), University of Zurich, Davos, Switzerland
| | - Yagiz Pat
- Swiss Institute of Allergy and Asthma Research (SIAF), University of Zurich, Davos, Switzerland
| | - Yasutaka Mitamura
- Swiss Institute of Allergy and Asthma Research (SIAF), University of Zurich, Davos, Switzerland
| | - Sena Ardicli
- Swiss Institute of Allergy and Asthma Research (SIAF), University of Zurich, Davos, Switzerland
| | - Stephen Skolnick
- Swiss Institute of Allergy and Asthma Research (SIAF), University of Zurich, Davos, Switzerland
- Seed Health Inc., Los Angeles, California, USA
| | - Raja Dhir
- Seed Health Inc., Los Angeles, California, USA
| | - Mübeccel Akdis
- Swiss Institute of Allergy and Asthma Research (SIAF), University of Zurich, Davos, Switzerland
| | - Kari Nadeau
- Department of Environmental Health, T.H. Chan School of Public Health, Harvard University, Boston, Massachusetts, USA
| | - Ismail Ogulur
- Swiss Institute of Allergy and Asthma Research (SIAF), University of Zurich, Davos, Switzerland
| | - Cezmi A Akdis
- Swiss Research Institute for Sports Medicine (SRISM), Davos, Switzerland
- Swiss Institute of Allergy and Asthma Research (SIAF), University of Zurich, Davos, Switzerland
| |
Collapse
|
3
|
He T, Song T. Exercise-induced bronchoconstriction in elite athletes: a narrative review. PHYSICIAN SPORTSMED 2023; 51:549-557. [PMID: 36373406 DOI: 10.1080/00913847.2022.2148137] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/10/2022] [Accepted: 11/11/2022] [Indexed: 11/16/2022]
Abstract
Exercise-induced bronchoconstriction (EIB) is the most common chronic disease among elite athletes and when left untreated, can impact both respiratory health and sports performance. In recent years, there has been an increase in the awareness and detection of EIB in elite athletes. This narrative review aims to evaluate the risk, prevention, diagnosis, medication, and anti-doping policies of EIB in elite athletes, and to provide more references for athletes with EIB. The results showed that athletes of endurance, winter, and water sports generally have a higher prevalence of EIB than athletes of other sports. Adaptive warm-up before formal exercise and using heat exchange masks at low temperatures are effective ways for athletes to prevent EIB. For physicians, the exercise challenge test and eucapnic voluntary hyperpnea are the recommended diagnostic methods for EIB in athletes. The treatment of athletes with EIB is medication-based, such as inhaled corticosteroids and beta-2 agonists, but current anti-doping policies should be considered when used.
Collapse
Affiliation(s)
- Tianchang He
- Department of research, Shenyang Sport University, Shenyang, Liaoning, China
| | - Tienan Song
- Department of research, Shenyang Sport University, Shenyang, Liaoning, China
| |
Collapse
|
4
|
Rodriguez Bauza DE, Silveyra P. Asthma, atopy, and exercise: Sex differences in exercise-induced bronchoconstriction. Exp Biol Med (Maywood) 2021; 246:1400-1409. [PMID: 33794694 DOI: 10.1177/15353702211003858] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Asthma is a chronic inflammatory lung disease affecting approximately 7.7% of the US population. Sex differences in the prevalence, incidence, and severity of asthma have been widely described throughout the lifespan, showing higher rates in boys than girls before puberty, but a reversed pattern in adults. Asthma is often associated with atopy, i.e. the tendency to develop allergic diseases, and can be worsened by environmental stimuli and/or exercise. While not exclusive to patients with asthma, exercise-induced bronchoconstriction (EIB) is a common complication of athletes and individuals who exercise regularly. Currently, there is limited research on sex differences in EIB and its relationship with atopy and asthma in men and women. In this minireview, we summarize the available literature on this topic. Overall, the collective knowledge supports the notion that physiological changes triggered during exercise affect males and females differently, suggesting an interaction among sex, exercise, sex hormones, and atopic status in the course of EIB pathophysiology. Understanding these differences is important to provide personalized management plans to men and women who exercise regularly and suffer from underlying asthma and/or atopy.
Collapse
Affiliation(s)
| | - Patricia Silveyra
- Biobehavioral Laboratory, The University of North Carolina at Chapel Hill, School of Nursing, Chapel Hill, NC 27599, USA.,Department of Environmental and Occupational Health, Indiana University School of Public Health, Bloomington, IN 47405, USA
| |
Collapse
|
5
|
Rodriguez Bauza DE, Silveyra P. Sex Differences in Exercise-Induced Bronchoconstriction in Athletes: A Systematic Review and Meta-Analysis. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2020; 17:ijerph17197270. [PMID: 33027929 PMCID: PMC7579110 DOI: 10.3390/ijerph17197270] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/26/2020] [Revised: 09/30/2020] [Accepted: 10/02/2020] [Indexed: 12/24/2022]
Abstract
Exercise-induced bronchoconstriction (EIB) is a common complication of athletes and individuals who exercise regularly. It is estimated that about 90% of patients with underlying asthma (a sexually dimorphic disease) experience EIB; however, sex differences in EIB have not been studied extensively. With the goal of better understanding the prevalence of EIB in males and females, and because atopy has been reported to occur at higher rates in athletes, in this study, we investigated sex differences in EIB and atopy in athletes. A systematic literature review identified 60 studies evaluating EIB and/or atopy in post-pubertal adult athletes (n = 7501). Collectively, these studies reported: (1) a 23% prevalence of EIB in athletes; (2) a higher prevalence of atopy in male vs. female athletes; (3) a higher prevalence of atopy in athletes with EIB; (4) a significantly higher rate of atopic EIB in male vs. female athletes. Our analysis indicates that the physiological changes that occur during exercise may differentially affect male and female athletes, and suggest an interaction between male sex, exercise, and atopic status in the course of EIB. Understanding these sex differences is important to provide personalized management plans to athletes with underlying asthma and/or atopy.
Collapse
Affiliation(s)
| | - Patricia Silveyra
- Biobehavioral Laboratory, The University of North Carolina at Chapel Hill, Chapel Hill, NC 27713, USA
- Correspondence:
| |
Collapse
|
6
|
de la Iglesia R, Espinosa-Salinas I, Lopez-Silvarrey FJ, Ramos-Alvarez JJ, Segovia JC, Colmenarejo G, Borregon-Rivilla E, Marcos-Pasero H, Aguilar-Aguilar E, Loria-Kohen V, Reglero G, Ramirez-de Molina A. A Potential Endurance Algorithm Prediction in the Field of Sports Performance. Front Genet 2020; 11:711. [PMID: 32849773 PMCID: PMC7431952 DOI: 10.3389/fgene.2020.00711] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2020] [Accepted: 06/11/2020] [Indexed: 11/13/2022] Open
Abstract
Sport performance is influenced by several factors, including genetic susceptibility. In the past years, specific single nucleotide polymorphisms have been associated to sport performance; however, these effects should be considered in multivariable prediction systems since they are related to a polygenic inheritance. The aim of this study was to design a genetic endurance prediction score (GES) of endurance performance and analyze its association with anthropometric, nutritional and sport efficiency variables in a cross-sectional study within fifteen male cyclists. A statistically significant positive relationship between GES and the VO2 maximum (P = 0.033), VO2 VT1 (P = 0.049) and VO2 VT2 (P < 0.001) was observed. Moreover, additional remarkable associations between genotype and the anthropometric, nutritional and sport performance variables, were achieved. In addition, an interesting link between the habit of consuming caffeinated beverages and the GES was observed. The outcomes of the present study indicate a potential use of this genetic prediction algorithm in the sports' field, which may facilitate the finding of genetically talented athletes, improve their training and food habits, as well as help in the improvement of physical conditions of amateurs.
Collapse
Affiliation(s)
- Rocio de la Iglesia
- Departamento de Ciencias Farmacéuticas y de la Salud, Facultad de Farmacia, Universidad San Pablo-CEU, CEU Universities, Alcorcón, Spain
| | - Isabel Espinosa-Salinas
- Nutrition and Clinical Trials Unit, GENYAL Platform IMDEA-Food Institute, CEI UAM + CSIC, Madrid, Spain
| | - F Javier Lopez-Silvarrey
- Facultad de Ciencias de la Salud, Universidad Camilo José Cela, Madrid, Spain.,Sannus Clinic, Madrid, Spain
| | - J Jose Ramos-Alvarez
- Departamento de Radiología, Rehabilitación y Fisioterapia, Universidad Complutense de Madrid, Madrid, Spain
| | - J Carlos Segovia
- Facultad de Ciencias de la Salud, Universidad Camilo José Cela, Madrid, Spain.,Sannus Clinic, Madrid, Spain
| | - Gonzalo Colmenarejo
- Biostatistics and Bioinformatics Unit, IMDEA Food CEI UAM + CSIC, Madrid, Spain
| | - Elena Borregon-Rivilla
- Nutrition and Clinical Trials Unit, GENYAL Platform IMDEA-Food Institute, CEI UAM + CSIC, Madrid, Spain
| | - Helena Marcos-Pasero
- Nutrition and Clinical Trials Unit, GENYAL Platform IMDEA-Food Institute, CEI UAM + CSIC, Madrid, Spain
| | - Elena Aguilar-Aguilar
- Nutrition and Clinical Trials Unit, GENYAL Platform IMDEA-Food Institute, CEI UAM + CSIC, Madrid, Spain
| | - Viviana Loria-Kohen
- Nutrition and Clinical Trials Unit, GENYAL Platform IMDEA-Food Institute, CEI UAM + CSIC, Madrid, Spain
| | - Guillermo Reglero
- Nutrition and Clinical Trials Unit, GENYAL Platform IMDEA-Food Institute, CEI UAM + CSIC, Madrid, Spain.,Department of Production and Characterization of Novel Foods, Institute of Food Science Research (CIAL) CEI UAM + CSIC, Madrid, Spain
| | - Ana Ramirez-de Molina
- Nutrition and Clinical Trials Unit, GENYAL Platform IMDEA-Food Institute, CEI UAM + CSIC, Madrid, Spain
| |
Collapse
|
7
|
Exercise-induced bronchoconstriction in elite or endurance athletes:: Pathogenesis and diagnostic considerations. Ann Allergy Asthma Immunol 2020; 125:47-54. [PMID: 32035936 DOI: 10.1016/j.anai.2020.01.023] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2019] [Revised: 01/27/2020] [Accepted: 01/28/2020] [Indexed: 11/23/2022]
Abstract
OBJECTIVE To review the pathogenesis and evaluation of exercise-induced bronchoconstriction pertaining to the elite or endurance athlete, as well as propose a diagnostic algorithm based on the current literature. DATA SOURCES Studies were identified using Ovid MEDLINE and reference lists of key articles. STUDY SELECTIONS Randomized controlled trials were selected when available. Systematic reviews and meta-analyses of peer-reviewed literature were included, as were retrospective studies and observational studies of clinical interest. RESULTS Exercise-induced bronchoconstriction (EIB) is the physiologic entity in which exercise induces acute narrowing of the airways and occurs in patients both with and without asthma. It may present with or without respiratory symptoms, and the underlying cause is likely attributable to environment stressors to the airway encountered during exercise. These include the osmotic effects of inhaled dry air, temperature variations, autonomic nervous system dysregulation, sensory nerve reactivity, and airway epithelial injury. Deposition of allergens, particulate matter, and gaseous pollutants into the airway also contribute. Elite and endurance athletes are exposed to these stressors more frequently and in greater duration than the general population. CONCLUSION A greater awareness of EIB among elite and endurance athletes is needed, and a thorough evaluation should be performed if EIB is suspected in this population. We propose an algorithm to aid in this evaluation. Symptoms should not be solely relied on for diagnosis but should be taken into the context of bronchoprovocative challenges, which should replicate the competitive environment as closely as possible. Further research is needed to validate these tests' predictive values.
Collapse
|
8
|
Couto M, Kurowski M, Moreira A, Bullens DMA, Carlsen K, Delgado L, Kowalski ML, Seys SF. Mechanisms of exercise-induced bronchoconstriction in athletes: Current perspectives and future challenges. Allergy 2018; 73:8-16. [PMID: 28599081 DOI: 10.1111/all.13224] [Citation(s) in RCA: 51] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/05/2017] [Indexed: 01/08/2023]
Abstract
The evidence of exercise-induced bronchoconstriction (EIB) without asthma (EIBwA ) occurring in athletes led to speculate about different endotypes inducing respiratory symptoms within athletes. Classical postulated mechanisms for bronchial obstruction in this population include the osmotic and the thermal hypotheses. More recently, the presence of epithelial injury and inflammation in the airways of athletes was demonstrated. In addition, neuronal activation has been suggested as a potential modulator of bronchoconstriction. Investigation of these emerging mechanisms is of major importance as EIB is a significant problem for both recreational and competitive athletes and is the most common chronic condition among Olympic athletes, with obvious implications for their competing performance, health and quality of life. Hereby, we summarize the latest achievements in this area and identify the current gaps of knowledge so that future research heads toward better defining the etiologic factors and mechanisms involved in development of EIB in elite athletes as well as essential aspects to ultimately propose preventive and therapeutic measures.
Collapse
Affiliation(s)
- M. Couto
- Allergy Unit Hospital & Instituto CUF Porto Porto Portugal
| | - M. Kurowski
- Department of Immunology, Rheumatology and Allergy Healthy Ageing Research Centre Medical University of Łódź Łódź Poland
| | - A. Moreira
- Basic and Clinical Immunology Department of Pathology Faculty of Medicine University of Porto Porto Portugal
- Serviço de Imunoalergologia Centro Hospitalar São João E.P.E. Porto Portugal
| | - D. M. A. Bullens
- Laboratory of Pediatric Immunology Department of Microbiology and Immunology KU Leuven Leuven Belgium
- Division of Pediatrics UZ Leuven Leuven Belgium
| | - K.‐H. Carlsen
- Institute for Clinical Medicine University of Oslo Oslo Norway
| | - L. Delgado
- Basic and Clinical Immunology Department of Pathology Faculty of Medicine University of Porto Porto Portugal
- Serviço de Imunoalergologia Centro Hospitalar São João E.P.E. Porto Portugal
| | - M. L. Kowalski
- Department of Immunology, Rheumatology and Allergy Healthy Ageing Research Centre Medical University of Łódź Łódź Poland
| | - S. F. Seys
- Laboratory of Clinical Immunology Department of Microbiology and Immunology KU Leuven Leuven Belgium
| |
Collapse
|
9
|
Kusunoki T, Takeuchi J, Morimoto T, Sakuma M, Mukaida K, Yasumi T, Nishikomori R, Heike T. Sports activities enhance the prevalence of rhinitis symptoms in schoolchildren. Pediatr Allergy Immunol 2016; 27:209-13. [PMID: 26613558 DOI: 10.1111/pai.12516] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 11/22/2015] [Indexed: 11/28/2022]
Abstract
BACKGROUND To evaluate the association between sports activities and allergic symptoms, especially rhinitis, among schoolchildren. METHODS This longitudinal survey of schoolchildren collected data from questionnaires regarding allergic symptoms based on the International Study of Asthma and Allergies in Childhood (ISAAC) program and sports participation that were distributed to the parents of children at all 12 public primary schools in Ohmi-Hachiman City, Shiga Prefecture, Japan. Data were collected annually from 2011 until 2014, when the children reached 10 years of age. Blood samples were obtained in 2014, and the levels of immunoglobulin (Ig)E specific to four inhalant allergens were measured. RESULTS Data from 558 children were analyzed. At 10 years of age, prevalence of asthma and eczema did not differ significantly, while rhinitis was significantly higher (p = 0.009) among children who participated in sports. Prevalence of rhinitis increased as the frequency or duration of sports participation increased (p < 0.01). The prevalence of new-onset rhinitis increased significantly among 10-year-olds with increasing duration of participation in sports (p = 0.03). Among those who participated in continuous sports activities, the prevalence of rhinitis was significantly higher with prolonged eczema (p = 0.006). Sports activities did not increase sensitization to inhalant allergens. CONCLUSION Sports activities enhance the prevalence of rhinitis in schoolchildren. Prolonged eczema, together with sports participation, further promotes the symptoms. The mechanisms of these novel findings warrant further investigation.
Collapse
Affiliation(s)
- Takashi Kusunoki
- Department of Pediatrics, Shiga Medical Center for Children, Shiga, Japan
| | | | - Takeshi Morimoto
- Department of Clinical Epidemiology, Hyogo College of Medicine, Nishinomiya, Hyogo, Japan
| | - Mio Sakuma
- Department of Clinical Epidemiology, Hyogo College of Medicine, Nishinomiya, Hyogo, Japan
| | | | - Takahiro Yasumi
- Department of Pediatrics, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Ryuta Nishikomori
- Department of Pediatrics, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Toshio Heike
- Department of Pediatrics, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| |
Collapse
|
10
|
Burns J, Mason C, Mueller N, Ohlander J, Zock JP, Drobnic F, Wolfarth B, Heinrich J, Omenaas E, Stensrud T, Nowak D, Radon K. Asthma prevalence in Olympic summer athletes and the general population: An analysis of three European countries. Respir Med 2015; 109:813-20. [PMID: 26013359 DOI: 10.1016/j.rmed.2015.05.002] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/15/2015] [Revised: 04/30/2015] [Accepted: 05/03/2015] [Indexed: 11/17/2022]
Abstract
BACKGROUND Some studies have shown a higher prevalence of asthma in elite athletes as compared to the general population. It is inconclusive to what extent certain sport categories are especially affected. The present study offered a unique opportunity to assess these differences in asthma prevalence in the general population and elite summer athletes from a wide range of sport disciplines across various geographical areas. METHODS Cross-sectional data for 1568 general population participants from the European Community Respiratory Health Survey II and 546 elite athletes from the Global Allergy and Asthma European Network Olympic study from three European countries were analyzed. Using logistic regression, the asthma risks associated with athlete sport practice, endurance level and aquatic sport practice, respectively, were investigated. RESULTS Athletes in the highest endurance category had increased risk of doctor-diagnosed asthma (OR 3.5; 95% CI 1.7-7.5), asthma symptoms (OR 3.0; CI 1.5-6.0) and asthma symptoms or medication use (OR 3.5; CI 1.8-6.7) compared to the general population. Aquatic athletes were at increased risk of doctor-diagnosed asthma (OR 2.0; CI 1.1-3.9), asthma symptoms (OR 2.6; CI 1.3-5.0) and asthma symptoms or medication use (OR 2.3; CI 1.2-4.4) when compared to individuals not involved in aquatic sports. Regarding the entire athlete population, no increase in asthma was found when compared to the general population. CONCLUSIONS Practice of very high endurance and aquatic sports may be associated with increased asthma risks. Athlete participation as such showed no association with asthma risk.
Collapse
Affiliation(s)
- Jacob Burns
- Institute and Outpatient Clinic for Occupational, Social and Environmental Medicine, University Hospital Munich (LMU), Ziemssenstrasse 1, Munich, Germany
| | - Catherine Mason
- Institute and Outpatient Clinic for Occupational, Social and Environmental Medicine, University Hospital Munich (LMU), Ziemssenstrasse 1, Munich, Germany
| | - Natalie Mueller
- Institute and Outpatient Clinic for Occupational, Social and Environmental Medicine, University Hospital Munich (LMU), Ziemssenstrasse 1, Munich, Germany; Centre for Research in Environmental Epidemiology (CREAL), C/ Doctor Aiguader 88, Barcelona, Spain; Universitat Pompeu Fabra (UPF), Plaça de la Mercè 10-12, Barcelona, Spain; CIBER Epidemiología y Salud Pública (CIBERESP), Melchor Fernández Almagro, 3-5, Madrid, Spain.
| | - Johan Ohlander
- Institute and Outpatient Clinic for Occupational, Social and Environmental Medicine, University Hospital Munich (LMU), Ziemssenstrasse 1, Munich, Germany
| | - Jan-Paul Zock
- Centre for Research in Environmental Epidemiology (CREAL), C/ Doctor Aiguader 88, Barcelona, Spain; Universitat Pompeu Fabra (UPF), Plaça de la Mercè 10-12, Barcelona, Spain; CIBER Epidemiología y Salud Pública (CIBERESP), Melchor Fernández Almagro, 3-5, Madrid, Spain; Netherlands Institute for Health Services Research (NIVEL), Otterstraat 118-124, Utrecht, The Netherlands
| | - Franchek Drobnic
- Medical Services FC Barcelona and Sport Physiology, GIRSANE CAR, Av. Alcalde Barnils 3-5, Sant Cugat del Vallès, Spain
| | - Bernd Wolfarth
- Preventive and Rehabilitative Sports Medicine, Technical University Munich (TUM), Georg-Brauchle-Ring 56-58, Munich, Germany
| | - Joachim Heinrich
- Institute of Epidemiology I, Helmholtz Zentrum München, Ingolstädter Landstr. 1, Neuherberg, Germany
| | - Ernst Omenaas
- Centre for Clinical Research, Haukeland University Hospital, Jonas Liesvei 65, Bergen, Norway
| | - Trine Stensrud
- Norwegian School of Sport Sciences (NIH), Mailbox 4014, Ulleval Stadion, Oslo, Norway
| | - Dennis Nowak
- Institute and Outpatient Clinic for Occupational, Social and Environmental Medicine, University Hospital Munich (LMU), Ziemssenstrasse 1, Munich, Germany
| | - Katja Radon
- Institute and Outpatient Clinic for Occupational, Social and Environmental Medicine, University Hospital Munich (LMU), Ziemssenstrasse 1, Munich, Germany
| |
Collapse
|
11
|
Effects of heat and different humidity levels on aerobic and anaerobic exercise performance in athletes. J Exerc Sci Fit 2013. [DOI: 10.1016/j.jesf.2013.04.002] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
|
12
|
Sastre B, Fernández-Nieto M, Rodríguez-Nieto MJ, Aguado E, Sastre J, del Pozo V. Distinctive bronchial inflammation status in athletes: basophils, a new player. Eur J Appl Physiol 2012; 113:703-11. [PMID: 22918559 DOI: 10.1007/s00421-012-2475-9] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2012] [Accepted: 08/03/2012] [Indexed: 01/06/2023]
Abstract
The aim of the study was to establish bronchial inflammation status and to measure eicosanoids in sputum obtained from active elite athletes. A total of 68 subjects were enrolled. Twelve were non-athletes and non-asthmatic (NAtNAs), 21 non-athlete asthmatics (NAtAs), 11 athlete non-asthmatics (AtNAs), and 24 athletes with asthma (AtAs) with positive indirect or direct bronchial challenges. Induced sputum was used to measure cells and eicosanoids. Sputum differential cell counts in all the subject groups revealed eosinophilia with the exception of NAtNAs control subjects. Athletes with and without diagnosed asthma showed a significant increase in bronchial epithelial cells and lymphocytes present in their sputum. Also, flow cytometry revealed that a significantly higher number of basophils were present in sputum from athletes (without and with asthma) when compared with non-athletes (without and with asthma). Asthmatic athletes and non-athletes showed a higher increase in LTC(4) levels and PGE(2) metabolites in sputum when compared with healthy controls. The present study identifies basophils as a new player present in athletes bronchial inflammation defining athlete status and not necessarily associated with exercise-induced bronchoconstriction.
Collapse
Affiliation(s)
- Beatriz Sastre
- Immunology Department, IIS-Fundación Jiménez-Díaz, Avda. Reyes Católicos 2, 28040 Madrid, Spain
| | | | | | | | | | | |
Collapse
|
13
|
Current World Literature. Curr Opin Allergy Clin Immunol 2012; 12:91-4. [DOI: 10.1097/aci.0b013e32834fd85c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
14
|
Roth M. Is there a regulatory role of immunoglobulins on tissue forming cells relevant in chronic inflammatory lung diseases? J Allergy (Cairo) 2011; 2011:721517. [PMID: 22121383 PMCID: PMC3216316 DOI: 10.1155/2011/721517] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2011] [Accepted: 08/29/2011] [Indexed: 11/17/2022] Open
Abstract
Epithelial cells, fibroblasts and smooth muscle cells together form and give structure to the airway wall. These three tissue forming cell types are structure giving elements and participate in the immune response to inhaled particles including allergens and dust. All three cell types actively contribute to the pathogenesis of chronic inflammatory lung diseases such as asthma and chronic obstructive pulmonary disease (COPD). Tissue forming cells respond directly to allergens through activated immunoglobulins which then bind to their corresponding cell surface receptors. It was only recently reported that allergens and particles traffic through epithelial cells without modification and bind to the immunoglobulin receptors on the surface of sub-epithelial mesenchymal cells. In consequence, these cells secrete pro-inflammatory cytokines, thereby extending the local inflammation. Furthermore, activation of the immunoglobulin receptors can induce proliferation and tissue remodeling of the tissue forming cells. New studies using anti-IgE antibody therapy indicate that the inhibition of immunoglobulins reduces the response of tissue forming cells. The unmeasured questions are: (i) why do tissue forming cells express immunoglobulin receptors and (ii) do tissue forming cells process immunoglobulin receptor bound particles? The focus of this review is to provide an overview of the expression and function of various immunoglobulin receptors.
Collapse
Affiliation(s)
- Michael Roth
- Pulmonary Cell Research, Department of Research and Pneumology, University Hospital Basel, 4031 Basel, Switzerland
| |
Collapse
|
15
|
Sensitivity of bronchopulmonary receptors to cold and heat mediated by transient receptor potential cation channel subtypes in an ex vivo rat lung preparation. Respir Physiol Neurobiol 2011; 177:327-32. [DOI: 10.1016/j.resp.2011.05.011] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2011] [Revised: 05/11/2011] [Accepted: 05/12/2011] [Indexed: 11/24/2022]
|
16
|
Alternatives to chlorinated pools for those with asthma and allergic rhinitis. Ann Allergy Asthma Immunol 2011; 107:183-4. [PMID: 21802031 DOI: 10.1016/j.anai.2011.05.015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2011] [Accepted: 05/17/2011] [Indexed: 11/23/2022]
|