1
|
Baduel E, Smilov M, Epelboin L. French Guiana and AGS: a path to uncovering hidden clues. Expert Rev Clin Immunol 2025; 21:507-519. [PMID: 40056092 DOI: 10.1080/1744666x.2025.2475984] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2024] [Accepted: 03/03/2025] [Indexed: 04/02/2025]
Abstract
INTRODUCTION This article is a narrative review exploring how research in French Guiana could unlock the mysteries surrounding Alpha-Gal Syndrome (AGS), a recently identified IgE-mediated allergy with delayed reactions to exposure to non-Catarrhine mammalian-derived products. Although fewer than 10 cases have been reported across Latin America, two case series involving 11 and 18 patients with AGS have been documented in French Guiana. AREAS COVERED This article discusses risk factors such as ethnicity, prior pathogen-induced immunization to α-Gal, vectors responsible for AGS, their environment and ecosystems, observed phenotypes, and therapeutic implications for sensitized individuals. Literature research was based on PubMed between 12/2023 and 08/2024, using: α-Gal/Alpha-1,3-Galactose/galactose-α 1,3-galactose/Red meat allergy/Mammalian meat allergy/Alpha gal syndrome/Antivipmyn. Grey literature from French Guiana were obtained from Prof. Loïc Epelboin. EXPERT OPINION Advancing AGS research in French Guiana could yield valuable epidemiological insights, as existing data predominantly stem from European, North American, Australian, and Japanese contexts - regions with comparatively lower diversity in tick species, their mammalian hosts, associated pathogens, and parasitic infestations. Additionally, French Guiana presents unique therapeutic scenarios, such as Viperidae envenomation and transfusions under inventory constraints, that merit further investigation.
Collapse
Affiliation(s)
- Evrard Baduel
- Unité des maladies infectieuses et tropicales, Centre hospitalier de Cayenne, Cayenne, French Guiana
- Université des Antilles, Faculté de médecine Hyacinthe Bastaraud, Pointe-à-Pitre, Guadeloupe
| | - Magdalena Smilov
- Service d'Allergologie, Centre Hospitalier Intercommunal Robert Ballanger, Aulnay Sous-Bois, France
| | - Loïc Epelboin
- Unité des maladies infectieuses et tropicales, Centre hospitalier de Cayenne, Cayenne, French Guiana
- Centre d'Investigation Clinique Antilles-Guyane, CIC Inserm 1424, CH de Cayenne, French Guiana
| |
Collapse
|
2
|
McCladdie T, Herman M. Alpha-Gal Syndrome: An Emerging Tick-Borne Allergy to Red Meat. Cureus 2025; 17:e79746. [PMID: 40161126 PMCID: PMC11954431 DOI: 10.7759/cureus.79746] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/26/2025] [Indexed: 04/02/2025] Open
Abstract
Alpha-gal syndrome (AGS) is a delayed-onset food allergy triggered by an immune response to galactose-α-1,3-galactose (alpha-gal), a carbohydrate associated with Lone Star tick bites. A 45-year-old female presented with a 9-month history of nausea and abdominal pain consistently associated with red meat consumption. Initial workup, including routine labs, imaging, and endoscopy, was unremarkable, but specific IgE testing confirmed AGS. Management included strict avoidance of red meat, carrying an epinephrine auto-injector, and referral to an allergist for education and long-term care. This case highlights the diagnostic challenges posed by the delayed reaction and the importance of dietary vigilance and emergency preparedness. Increased awareness of AGS is essential, especially in regions where tick exposure is prevalent.
Collapse
Affiliation(s)
- Tyanna McCladdie
- Osteopathic Medicine, Philadelphia College of Osteopathic Medicine, Moultrie, USA
| | | |
Collapse
|
3
|
Darsow U, Gelincik A, Jappe U, Platts-Mills TA, Ünal D, Biedermann T. Algorithms in allergy: An algorithm for alpha-Gal syndrome diagnosis and treatment, 2024 update. Allergy 2024; 79:3169-3172. [PMID: 39175257 DOI: 10.1111/all.16291] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2024] [Revised: 07/25/2024] [Accepted: 08/16/2024] [Indexed: 08/24/2024]
Affiliation(s)
- U Darsow
- Department of Dermatology and Allergy Biederstein, TUM School of Medicine and Health, Technical University of Munich, Munich, Germany
| | - A Gelincik
- Division of Immunology and Allergic Diseases, Department of Internal Medicine, Istanbul Faculty of Medicine, Istanbul University, Istanbul, Turkey
| | - U Jappe
- Division of Clinical and Molecular Allergology, Research Center Borstel, Airway Research, Center North (ARCN), Member of the German Center for Lung Research, Borstel, Germany
- Interdisciplinary Allergy Outpatient Clinic, Department of Pneumology, University of Luebeck, Luebeck, Germany
| | - T A Platts-Mills
- School of Medicine, Department of Medicine, Division of Asthma, Allergy, and Immunology, University of Virginia, Charlottesville, Virginia, USA
| | - D Ünal
- Division of Immunology and Allergic Diseases, Department of Internal Medicine, Istanbul Faculty of Medicine, Istanbul University, Istanbul, Turkey
| | - T Biedermann
- Department of Dermatology and Allergy Biederstein, TUM School of Medicine and Health, Technical University of Munich, Munich, Germany
| |
Collapse
|
4
|
Díaz-Sánchez S, Vaz-Rodrigues R, Contreras M, Rafael M, Villar M, González-García A, Artigas-Jerónimo S, Gortázar C, de la Fuente J. Zebrafish gut microbiota composition in response to tick saliva biomolecules correlates with allergic reactions to mammalian meat consumption. Microbiol Res 2024; 285:127786. [PMID: 38820703 DOI: 10.1016/j.micres.2024.127786] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Revised: 05/24/2024] [Accepted: 05/25/2024] [Indexed: 06/02/2024]
Abstract
The α-Gal syndrome (AGS) is an IgE-mediated tick borne-allergy that results in delayed anaphylaxis to the consumption of mammalian meat and products containing α-Gal. Considering that α-Gal-containing microbiota modulates natural antibody production to this glycan, this study aimed to evaluate the influence on tick salivary compounds on the gut microbiota composition in the zebrafish (Danio rerio) animal model. Sequencing of 16 S rDNA was performed in a total of 75 zebrafish intestine samples, representing different treatment groups: PBS control, Ixodes ricinus tick saliva, tick saliva non-protein fraction (NPF), tick saliva protein fraction (PF), and tick saliva protein fractions 1-5 with NPF (F1-5). The results revealed that treatment with tick saliva and different tick salivary fractions, combined with α-Gal-positive dog food feeding, resulted in specific variations in zebrafish gut microbiota composition at various taxonomic levels and affected commensal microbial alpha and beta diversities. Metagenomics results were corroborated by qPCR, supporting the overrepresentation of phylum Firmicutes in the tick saliva group, phylum Fusobacteriota in group F1, and phylum Cyanobacteria in F2 and F5 compared to the PBS-control. qPCRs results at genus level sustained significant enrichment of Plesiomonas spp. in groups F3 and F5, Rhizobium spp. in NPF and F4, and Cloacibacterium spp. dominance in the PBS control group. This study provides new results on the role of gut microbiota in allergic reactions to tick saliva components using a zebrafish model of AGS. Overall, gut microbiota composition in response to tick saliva biomolecules may be associated with allergic reactions to mammalian meat consumption in AGS.
Collapse
Affiliation(s)
- Sandra Díaz-Sánchez
- Departamento de Bioquímica, Microbiología, Biología Celular y Genética, Área de Microbiología, Entrada Campus Anchieta, 4, Universidad de La Laguna, La Laguna, Tenerife, Canary Islands 38200, Spain
| | - Rita Vaz-Rodrigues
- SaBio. Instituto de Investigación en Recursos Cinegéticos IREC-CSIC-UCLM-JCCM, Ronda de Toledo 12, Ciudad Real 13071, Spain
| | - Marinela Contreras
- SaBio. Instituto de Investigación en Recursos Cinegéticos IREC-CSIC-UCLM-JCCM, Ronda de Toledo 12, Ciudad Real 13071, Spain
| | - Marta Rafael
- SaBio. Instituto de Investigación en Recursos Cinegéticos IREC-CSIC-UCLM-JCCM, Ronda de Toledo 12, Ciudad Real 13071, Spain
| | - Margarita Villar
- SaBio. Instituto de Investigación en Recursos Cinegéticos IREC-CSIC-UCLM-JCCM, Ronda de Toledo 12, Ciudad Real 13071, Spain; Biochemistry Section, Faculty of Science and Chemical Technologies, University of Castilla-La Mancha, Ciudad Real 13071, Spain
| | - Almudena González-García
- SaBio. Instituto de Investigación en Recursos Cinegéticos IREC-CSIC-UCLM-JCCM, Ronda de Toledo 12, Ciudad Real 13071, Spain
| | - Sara Artigas-Jerónimo
- Biochemistry Section, Faculty of Science and Chemical Technologies, University of Castilla-La Mancha, Ciudad Real 13071, Spain
| | - Christian Gortázar
- SaBio. Instituto de Investigación en Recursos Cinegéticos IREC-CSIC-UCLM-JCCM, Ronda de Toledo 12, Ciudad Real 13071, Spain
| | - José de la Fuente
- SaBio. Instituto de Investigación en Recursos Cinegéticos IREC-CSIC-UCLM-JCCM, Ronda de Toledo 12, Ciudad Real 13071, Spain; Department of Veterinary Pathobiology, Center for Veterinary Health Sciences, Oklahoma State University, Stillwater, OK 74078, USA.
| |
Collapse
|
5
|
Warren CM, Sehgal S, Sicherer SH, Gupta RS. Epidemiology and the Growing Epidemic of Food Allergy in Children and Adults Across the Globe. Curr Allergy Asthma Rep 2024; 24:95-106. [PMID: 38214821 DOI: 10.1007/s11882-023-01120-y] [Citation(s) in RCA: 30] [Impact Index Per Article: 30.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/22/2023] [Indexed: 01/13/2024]
Abstract
PURPOSE OF REVIEW Food allergies are immune-mediated, complex disorders, which are the source of increasing health concern worldwide. The goal of this review is to present an updated summary of the food allergy (FA) burden among children and adults across different populations, focusing on research from the past 5 years. RECENT FINDINGS FAs impact a growing number of global residents-particularly those residing in higher-income, industrialized regions. Moreover, growing epidemiologic evidence suggests that the population health burden of non-IgE-mediated FAs, such as food protein-induced enterocolitis syndrome, may also be higher than previously reported. FA is a complex trait that impacts infants, children, as well as adults across the globe. The population health burden of both IgE- and non-IgE-mediated FAs is likely to grow in the absence of rapid advances and widespread implementation of effective FA prevention and treatment interventions. Systematic epidemiological research initiatives are needed, both nationally and globally, to better understand and reduce the burden of these allergic diseases.
Collapse
Affiliation(s)
- Christopher M Warren
- Center for Food Allergy and Asthma Research, Northwestern University Feinberg School of Medicine, Chicago, IL, USA.
| | - Shruti Sehgal
- Center for Food Allergy and Asthma Research, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | - Scott H Sicherer
- Elliot and Roslyn Jaffe Food Allergy Institute, Division of Allergy and Immunology, Kravis Children's Hospital, Department of Pediatrics, Icahn School of Medicine at Mount Sinai, New York City, NY, USA
| | - Ruchi S Gupta
- Center for Food Allergy and Asthma Research, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
- Ann and Robert H Lurie Children's Hospital of Chicago, Chicago, IL, USA
| |
Collapse
|
6
|
Perusko M, Grundström J, Eldh M, Hamsten C, Apostolovic D, van Hage M. The α-Gal epitope - the cause of a global allergic disease. Front Immunol 2024; 15:1335911. [PMID: 38318181 PMCID: PMC10838981 DOI: 10.3389/fimmu.2024.1335911] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2023] [Accepted: 01/02/2024] [Indexed: 02/07/2024] Open
Abstract
The galactose-α-1,3-galactose (α-Gal) epitope is the cause of a global allergic disease, the α-Gal syndrome (AGS). It is a severe form of allergy to food and products of mammalian origin where IgE against the mammalian carbohydrate, α-Gal, is the cause of the allergic reactions. Allergic reactions triggered by parenterally administered α-Gal sources appear immediately, but those triggered via the oral route appear with a latency of several hours. The α-Gal epitope is highly immunogenic to humans, apes and old-world monkeys, all of which produce anti-α-Gal antibodies of the IgM, IgA and IgG subclasses. Strong evidence suggests that in susceptible individuals, class switch to IgE occurs after several tick bites. In this review, we discuss the strong immunogenic role of the α-Gal epitope and its structural resemblance to the blood type B antigen. We emphasize the broad abundance of α-Gal in different foods and pharmaceuticals and the allergenicity of various α-Gal containing molecules. We give an overview of the association of tick bites with the development of AGS and describe innate and adaptive immune response to tick saliva that possibly leads to sensitization to α-Gal. We further discuss a currently favored hypothesis explaining the mechanisms of the delayed effector phase of the allergic reaction to α-Gal. We highlight AGS from a clinical point of view. We review the different clinical manifestations of the disease and the prevalence of sensitization to α-Gal and AGS. The usefulness of various diagnostic tests is discussed. Finally, we provide different aspects of the management of AGS. With climate change and global warming, the tick density is increasing, and their geographic range is expanding. Thus, more people will be affected by AGS which requires more knowledge of the disease.
Collapse
Affiliation(s)
- Marija Perusko
- Division of Immunology and Allergy, Department of Medicine Solna, Karolinska Institutet, and Karolinska University Hospital, Stockholm, Sweden
- Center for Molecular Medicine, Karolinska Institutet, Stockholm, Sweden
- Innovative Centre of the Faculty of Chemistry, University of Belgrade, Belgrade, Serbia
| | - Jeanette Grundström
- Division of Immunology and Allergy, Department of Medicine Solna, Karolinska Institutet, and Karolinska University Hospital, Stockholm, Sweden
- Center for Molecular Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Maria Eldh
- Division of Immunology and Allergy, Department of Medicine Solna, Karolinska Institutet, and Karolinska University Hospital, Stockholm, Sweden
- Center for Molecular Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Carl Hamsten
- Division of Immunology and Allergy, Department of Medicine Solna, Karolinska Institutet, and Karolinska University Hospital, Stockholm, Sweden
- Center for Molecular Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Danijela Apostolovic
- Division of Immunology and Allergy, Department of Medicine Solna, Karolinska Institutet, and Karolinska University Hospital, Stockholm, Sweden
- Center for Molecular Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Marianne van Hage
- Division of Immunology and Allergy, Department of Medicine Solna, Karolinska Institutet, and Karolinska University Hospital, Stockholm, Sweden
- Center for Molecular Medicine, Karolinska Institutet, Stockholm, Sweden
| |
Collapse
|
7
|
McGill SK, Levin ME, Shaheen NJ, Cotton CC, Platts-Mills TA, Commins SP. Gastrointestinal-isolated Distress is Common in Alpha-gal Allergic Patients on Mammalian Meat Challenge. J Clin Gastroenterol 2024; 58:80-84. [PMID: 36728603 PMCID: PMC10314969 DOI: 10.1097/mcg.0000000000001827] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/18/2022] [Accepted: 12/03/2022] [Indexed: 02/03/2023]
Abstract
BACKGROUND AND AIMS Alpha-gal allergy causes a delayed reaction to mammalian meats and has been reported worldwide. Patients with the allergy may present with isolated gastrointestinal (GI) symptoms, but this phenotype is poorly understood. METHODS We pooled and analyzed symptoms and demographics of patients from two prospective cohorts of patients with a diagnosis of alpha-gal allergy who reacted after eating mammalian meat under observation. We compared the characteristics of patients who demonstrated GI-isolated symptoms on a challenge with those who exhibited symptoms outside the GI tract (skin, respiratory, and circulatory). RESULTS Among the 91 children and adult alpha-gal allergic patients who exhibited symptoms after oral challenge with mammalian meat, 72.5% experienced GI distress with one or more GI symptoms, which was the most frequent class of symptoms, compared with skin changes in 57.1% and respiratory distress in 5.5%. The most common GI symptoms were abdominal pain (71%) and vomiting (22.0%). GI-isolated symptoms occurred in 37 patients (40.7%) who reacted, and those patients reacted more quickly than patients who exhibited systemic symptoms (median onset of symptoms in GI-isolated group 90 min vs 120 min) and were more likely to be children than adults (relative risk=1.94, 95% CI: 1.04-3.63). CONCLUSIONS Isolated-GI distress occurred in 4 in every 10 alpha-gal allergic individuals who developed symptoms on oral food challenge with mammalian meat. Alpha-gal allergic patients, particularly children, may exhibit GI distress alone, and adult and pediatric gastroenterologists should be aware of the diagnosis and management of the allergy.
Collapse
Affiliation(s)
| | - Michael E Levin
- Department of Pediatric Allergology, University of Cape Town, Cape Town, South Africa
| | | | | | | | - Scott P Commins
- Division of Allergy and Immunology, University of North Carolina at Chapel Hill, Chapel Hill, NC
| |
Collapse
|
8
|
Leder J, Diederich A, Patel B, Bowie M, Renwick CM, Mangunta V. Perioperative Considerations in Alpha-Gal Syndrome: A Review. Cureus 2024; 16:e53208. [PMID: 38425598 PMCID: PMC10902671 DOI: 10.7759/cureus.53208] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/29/2024] [Indexed: 03/02/2024] Open
Abstract
Galactose-⍺-1, 3-galactose (alpha-gal) is an oligosaccharide found in mammalian tissues that causes allergic reactions in patients with alpha-gal syndrome (AGS). AGS is a hypersensitivity reaction notable for both immediate and delayed allergic and anaphylactic symptoms. As a tick-based disease, AGS has gained increasing prevalence across the United States and can have a significant influence on which medications are safe for patients. Many medications used within the operating room and intensive care units have inactive ingredients that can be mammalian-derived and therefore should be vetted before administering to patients with AGS. Management of patients with AGS involves diligent action in the preoperative and perioperative settings to reduce patient exposure to potentially harmful medications. In conducting a comprehensive risk stratification assessment, the anesthesia team should identify any at-risk patients and determine which medications they have safely tolerated in the past. Despite obtaining a complete history, not all patients with AGS will be identified preoperatively. The perioperative team should understand which common medications pose a risk of containing alpha-gal moieties (e.g., heparins, gelatin capsules, vaccines, lidocaine patches, surgifoam, etc.). For this reason, this paper includes a compendium of common anesthetic medications that have been cross-referenced for ingredients that have the potential to cause an AGS reaction. Any potentially unsafe medications have been identified such that medical providers can cross-reference with the ingredients listed at their respective institutions.
Collapse
Affiliation(s)
- John Leder
- Department of Cardiothoracic Intensive Care Nursing, University of Virginia, Charlottesville, USA
| | - Anna Diederich
- Department of Anesthesiology, University of Virginia School of Medicine, Charlottesville, USA
| | - Bhavik Patel
- Department of Anesthesiology, University of Virginia School of Medicine, Charlottesville, USA
| | - Mark Bowie
- Department of Clinical Pharmacy, University of Virginia School of Medicine, Charlottesville, USA
| | - Christian M Renwick
- Department of Anesthesiology, University of Virginia School of Medicine, Charlottesville, USA
| | - Venkat Mangunta
- Division of Cardiothoracic Anesthesia, Department of Anesthesiology, Lehigh Valley Health Network, Allentown, USA
| |
Collapse
|
9
|
Germán-Sánchez A, Alonso-Llamazares A, García-González F, Matala-Ahmed B, Melgar-Reyes CS, Antepara-Ercoreca I. Diagnostic validity of specific immunoglobulin E levels to alpha-gal in alpha-gal syndrome: a cross-sectional analysis. ALLERGY, ASTHMA, AND CLINICAL IMMUNOLOGY : OFFICIAL JOURNAL OF THE CANADIAN SOCIETY OF ALLERGY AND CLINICAL IMMUNOLOGY 2023; 19:102. [PMID: 38037176 PMCID: PMC10691071 DOI: 10.1186/s13223-023-00856-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/11/2023] [Accepted: 11/06/2023] [Indexed: 12/02/2023]
Abstract
BACKGROUND The diagnosis of Alpha-gal Syndrome (AGS) is based on the presence of symptoms after being exposed to potential sources of alpha-gal together with values of specific IgE (sIgE) to alpha-gal ≥ 0.1 kUA/L or ≥ 0.35 kUA/L. The aim of this study was to evaluate the diagnostic validity of sIgE levels to alpha-gal ≥ 0.1 kUA/L for identifying AGS. METHODS This was a cross-sectional analysis of adult patients with available data on sIgE levels to alpha-gal, classified into two groups according to the presence (Group 1) or absence (Group 2) of symptoms after being exposed to potential sources of alpha-gal. Values of sIgE to alpha-gal ≥ 0.1 kUA/l were considered a positive result. A descriptive analysis of internal and external validity parameters was performed in the entire population and adjusted by sex. RESULTS The study included 33 individuals in Group 1 and 65 in Group 2, with a mean age of around 47 years. The analysis of internal validity parameters revealed a high sensitivity, specificity, and positive probability ratio, with higher sensitivity in men and higher specificity in women. The analysis of external validity parameters showed a high negative predictive value and global value in all populations and both sexes. However, the positive predictive value was relatively high in men, but low in women. CONCLUSIONS Our results suggest that sIgE levels ≥ 0.1 kUA/L may be a useful tool for the diagnosis of AGS, although other factors and diagnostic techniques should also be considered.
Collapse
Affiliation(s)
- Adrián Germán-Sánchez
- Allergy Department, Basurto University Hospital, Bilbao, Spain.
- Allergy Department, Castellon University General Hospital, Avda/ Benicassim, 128, Castelló de la Plana 12004 (Castelló, Castellon, Spain.
| | | | | | | | | | | |
Collapse
|
10
|
Sharma SR, Choudhary SK, Vorobiov J, Commins SP, Karim S. Tick bite-induced Alpha-Gal Syndrome and Immunologic Responses in an Alpha-Gal Deficient Murine Model. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.11.09.566281. [PMID: 38014105 PMCID: PMC10680608 DOI: 10.1101/2023.11.09.566281] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/29/2023]
Abstract
Introduction Alpha-Gal Syndrome (AGS) is a delayed allergic reaction due to specific IgE antibodies targeting galactose-α-1,3-galactose (α-gal), a carbohydrate found in red meat. This condition has gained significant attention globally due to its increasing prevalence, with more than 450,000 cases estimated in the United States alone. Previous research has established a connection between AGS and tick bites, which sensitize individuals to α-gal antigens and elevate the levels of α-gal specific IgE. However, the precise mechanism by which tick bites influence the hosťs immune system and contribute to the development of AGS remains poorly understood. This study investigates various factors related to ticks and the host associated with the development of AGS following a tick bite, using mice with a targeted disruption of alpha-1,3-galactosyltransferase (AGKO) as a model organism. Methods Lone-star tick (Amblyomma americanum) and gulf-coast tick (Amblyomma maculatum) nymphs were used to sensitize AGKO mice, followed by pork meat challenge. Tick bite site biopsies from sensitized and non-sensitized mice were subjected to mRNA gene expression analysis to assess the host immune response. Antibody responses in sensitized mice were also determined. Results Our results showed a significant increase in the titer of total IgE, IgG1, and α-gal IgG1 antibodies in the lone-star tick-sensitized AGKO mice compared to the gulf-coast tick-sensitized mice. Pork challenge in Am. americanum -sensitized mice led to a decline in body temperature after the meat challenge. Gene expression analysis revealed that Am. americanum bites direct mouse immunity toward Th2 and facilitate host sensitization to the α-gal antigen, while Am. maculatum did not. Conclusion This study supports the hypothesis that specific tick species may increase the risk of developing α-gal-specific IgE and hypersensitivity reactions or AGS, thereby providing opportunities for future research on the mechanistic role of tick and host-related factors in AGS development.
Collapse
Affiliation(s)
- Surendra Raj Sharma
- School of Biological, Environment and Earth Sciences, The University of Southern Mississippi, Hattiesburg, MS 39406, USA
| | - Shailesh K Choudhary
- Department of Medicine & Pediatrics, University of North Carolina, Chapel Hill, NC 27599-7280, USA
| | - Julia Vorobiov
- Department of Medicine & Pediatrics, University of North Carolina, Chapel Hill, NC 27599-7280, USA
| | - Scott P Commins
- Department of Medicine & Pediatrics, University of North Carolina, Chapel Hill, NC 27599-7280, USA
| | - Shahid Karim
- School of Biological, Environment and Earth Sciences, The University of Southern Mississippi, Hattiesburg, MS 39406, USA
| |
Collapse
|
11
|
Reddy S, Yi L, Shields B, Platts-Mills T, Wilson J, Flowers RH. Alpha-gal syndrome: A review for the dermatologist. J Am Acad Dermatol 2023; 89:750-757. [PMID: 37150300 DOI: 10.1016/j.jaad.2023.04.054] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2023] [Revised: 04/03/2023] [Accepted: 04/05/2023] [Indexed: 05/09/2023]
Abstract
Alpha-gal syndrome (AGS) is an allergy to "red meat" and other mammalian products due to immunoglobulin E (IgE) antibodies against the sugar moiety galactose-alpha-1,3-galactose (alpha-gal), which is acquired following tick bites. Clinically, AGS presents with urticaria, abdominal pain, nausea, and occasionally anaphylaxis, and has wide inter- and intra-personal variability. Because symptom onset is generally delayed by 2 to 6 hours after meat consumption, AGS can be easily confused with other causes of urticaria and anaphylaxis, such as chronic spontaneous urticaria (CSU) and mast cell activation syndrome (MCAS). Diagnosis relies on a combination of clinical history, positive alpha-gal IgE blood testing and improvement on a mammalian-restricted diet. Management of the syndrome centers primarily on avoidance of mammalian meats (and occasionally dairy and other products) as well as acute management of allergic symptoms. Counseling about tick avoidance measures is also important as AGS will wane over time in many patients.
Collapse
Affiliation(s)
- Soumya Reddy
- Department of Dermatology, University of Virginia, Charlottesville, Virginia.
| | - Lauren Yi
- Department of Dermatology, University of Virginia, Charlottesville, Virginia
| | - Bridget Shields
- Department of Dermatology, University of Wisconsin School of Medicine and Public Health, Madison, Wisconsin
| | - Thomas Platts-Mills
- Division of Allergy and Clinical Immunology, Department of Medicine, University of Virginia, Charlottesville, Virginia
| | - Jeffrey Wilson
- Division of Allergy and Clinical Immunology, Department of Medicine, University of Virginia, Charlottesville, Virginia
| | - R Hal Flowers
- Department of Dermatology, University of Virginia, Charlottesville, Virginia
| |
Collapse
|
12
|
Tepetam M, Yegin Katran Z, Bayraktar Barın R, Çakmak Uğurlu B. Delayed anaphylaxis due to Alpha-gal allergy: A modified desensitization protocol with red meat in an adult patient. Tuberk Toraks 2023; 71:318-324. [PMID: 37740636 PMCID: PMC10795274 DOI: 10.5578/tt.20239714] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2023] [Accepted: 08/07/2023] [Indexed: 09/24/2023] Open
Abstract
Alpha-gal allergy is the sensitization to Alpha-gal present in saliva when a tick bites and the development of an IgE-mediated reaction to Alpha-gal also present in red meat by cross-reactivity. In contrast to other food allergies, symptoms occur as late as 2-6 hours after a meal. Prick to prick testing with nonmammalian meat in combination with cooked mammalian meat is recommended for diagnosis. However, the main diagnostic test is Alpha-gal sIgE> 0.1 IU/mL. The primary recommendation in patients with Alpha-gal syndrome is to prevent new tick bites and avoid all mammalian meats. Since most of the dishes in our country's food culture contain red meat, elimination diet may adversely affect patients quality of life. In the management of these patients, the option of desensitization with red meat can be considered by evaluating the benefit-risk ratio together with the patient. Our patient with a history of tick bites and a reaction pattern ranging from urticaria to anaphylaxis two hours after meat consumption was evaluated for Alpha gal allergy. The patient was found to be positive by prick-to-prick with cooked red meat. In addition, the high level of Alpha-gal specific IgE (27.3 Ku/L) confirmed the Alpha-gal allergy, and the decision to apply desensitization with red meat was taken. There are only two literatures on this subject, one of which includes two adult cases and the other a single pediatric case. Since a reaction developed in the fifth step of the 27-step desensitization scheme (Ünal et al.), which we took as a reference, which led to a dose increase of more than 100 times, we modified the protocol by using an intermediate steps. We repeated the prick-to-prick test with red meat after desensitization in our case who successfully completed the modified desensitization protocol. Observation of more than half reduction in test edema diameter concretely supports the success of our modified desensitization protocol.
Collapse
Affiliation(s)
- M.E. Tepetam
- Clinic of Immunology and Allergy, University of Health Sciences
Süreyyapaşa Chest Diseases and Thoracic Surgery Training and Research
Hospital, İstanbul, Türkiye
| | - Z. Yegin Katran
- Clinic of Immunology and Allergy, University of Health Sciences
Süreyyapaşa Chest Diseases and Thoracic Surgery Training and Research
Hospital, İstanbul, Türkiye
| | - R. Bayraktar Barın
- Clinic of Immunology and Allergy, University of Health Sciences
Süreyyapaşa Chest Diseases and Thoracic Surgery Training and Research
Hospital, İstanbul, Türkiye
| | - B. Çakmak Uğurlu
- Clinic of Pulmonology, University of Health Sciences, Süreyyapaşa Chest
Diseases and Thoracic Surgery Training and Research Hospital, İstanbul,
Türkiye
| |
Collapse
|
13
|
Božan M, Vukičević Lazarević V, Marković I, Morović‐Vergles J, Mitrović J. Alpha-gal syndrome-Food or drug allergy: A case report. Clin Case Rep 2023; 11:e7830. [PMID: 37636877 PMCID: PMC10448237 DOI: 10.1002/ccr3.7830] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2023] [Revised: 08/01/2023] [Accepted: 08/06/2023] [Indexed: 08/29/2023] Open
Abstract
Alpha-gal syndrome is an immunoglobulin E-mediated hypersensitivity characterized by delayed allergic reactions to ingested products containing alpha-gal carbohydrate. We present a patient with recurrent urticaria and suspected repaglinide hypersensitivity, who was eventually diagnosed with alpha-gal syndrome, wanting to emphasize possible drug allergy misdiagnosis and required caution with the medication choice.
Collapse
Affiliation(s)
- Marina Božan
- Special Hospital for Pulmonary DiseasesZagrebCroatia
| | | | - Ivan Marković
- Special Hospital for Pulmonary DiseasesZagrebCroatia
| | - Jadranka Morović‐Vergles
- Division of Clinical Immunology, Allergology and Rheumatology, Department of Internal MedicineDubrava University HospitalZagrebCroatia
- School of MedicineUniversity of ZagrebZagrebCroatia
| | - Joško Mitrović
- Division of Clinical Immunology, Allergology and Rheumatology, Department of Internal MedicineDubrava University HospitalZagrebCroatia
- School of Medicine and Faculty of Pharmacy and BiochemistryUniversity of ZagrebZagrebCroatia
| |
Collapse
|
14
|
Benders-Guedj M, Köberle M, Hofmann H, Biedermann T, Darsow U. High-risk groups for alpha-gal sensitization. Allergol Select 2023; 7:140-148. [PMID: 37705677 PMCID: PMC10495941 DOI: 10.5414/alx02424e] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2023] [Accepted: 06/27/2023] [Indexed: 09/15/2023] Open
Abstract
BACKGROUND Tick bite-induced IgE-mediated reactions to the oligosaccharide galactose α-1,3-galactose (alpha-gal) are increasingly recognized. This study investigated alpha-gal sensitization in three groups with different tick bite exposure. MATERIALS AND METHODS Specific IgE antibodies to alpha-gal and total IgE were investigated in 485 patients with Lyme borreliosis with different disease manifestations and compared to a control group of 200 randomly selected patients without increased exposure to tick bites. A group of 232 hunters and forest workers served as a model for multiple tick bites. RESULTS Specific IgE (sIgE) antibodies to alpha-gal (> 0.1 kU/L) were found in 12.6% of all borreliosis samples compared to the control group with 9% (relative risk 1.4; 95% CI 0.85 - 2.3; not significant (n.s.). The highest prevalence of sIgE to alpha-gal was observed in hunters and forest service employees (22.8%, relative risk 2.5; 95% CI 1.5 - 4.2; p < 0.001). Higher age and elevated total IgE were also associated with alpha-gal sensitization. CONCLUSION IgE sensitization to alpha-gal tends to be more frequent in tick-exposed patients with borreliosis than in controls (n.s.). Moreover, hunters and forest workers show an even higher rate of elevated IgE to alpha-gal. Thus, frequent tick contact may result in alpha-gal sensitization. In the area of Munich, the prevalence of alpha-gal sensitization appears lower than in the state of Baden-Württemberg and lower than in the USA, which may be due to the difference in tick species or the frequency of tick exposure. This study could show that alpha-gal sensitization and presumably alpha-gal syndrome does not seem to be a modern problem but existed already more than 30 years ago.
Collapse
Affiliation(s)
- Marie Benders-Guedj
- Department of Dermatology and Allergy Biederstein, Faculty of Medicine, Technical University of Munich, Munich, Germany
| | - Martin Köberle
- Department of Dermatology and Allergy Biederstein, Faculty of Medicine, Technical University of Munich, Munich, Germany
| | - Heidelore Hofmann
- Department of Dermatology and Allergy Biederstein, Faculty of Medicine, Technical University of Munich, Munich, Germany
| | - Tilo Biedermann
- Department of Dermatology and Allergy Biederstein, Faculty of Medicine, Technical University of Munich, Munich, Germany
| | - Ulf Darsow
- Department of Dermatology and Allergy Biederstein, Faculty of Medicine, Technical University of Munich, Munich, Germany
| |
Collapse
|
15
|
Iweala OI. α-Gal Syndrome: Busting Paradigms in Food Allergy. ANNALS OF INTERNAL MEDICINE. CLINICAL CASES 2023; 2:e230578. [PMID: 39555229 PMCID: PMC11567157 DOI: 10.7326/aimcc.2023.0578] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 11/19/2024]
Abstract
α-Gal syndrome, also known as red or mammalian meat allergy, results from immunoglobulin E-mediated hypersensitivity responses to the carbohydrate galactose-α-1,3-galactose (α-gal). Patients with α-gal syndrome experience immediate onset of allergic symptoms following the injection of pharmaceutical products containing α-gal. However, it typically takes 2 hours or more after dietary α-gal ingestion before patients with α-gal syndrome experience immunoglobulin E-mediated hypersensitivity responses. The case report by Heffes-Doon and colleagues highlights the lack of official guidelines on when and how to reintroduce mammalian meat products into the diet when there is clear laboratory evidence of declining α-gal immunoglobulin E levels.
Collapse
Affiliation(s)
- Onyinye I. Iweala
- Department of Medicine, Thurston Arthritis Research Center, Division of Rheumatology, Allergy, and Immunology and Department of Pediatrics, Food Allergy Initiative, Division of Allergy and Immunology, University of North Carolina School of Medicine, Chapel Hill, North Carolina
| |
Collapse
|
16
|
Clinical Use of the ImmunoCAP Inhibition Test in the Diagnosis of Meat Allergy Caused by a Tick Bite in an Adult Male with No Previous Atopic History. Life (Basel) 2023; 13:life13030699. [PMID: 36983854 PMCID: PMC10056941 DOI: 10.3390/life13030699] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2023] [Revised: 02/19/2023] [Accepted: 03/03/2023] [Indexed: 03/08/2023] Open
Abstract
(1) Background: alpha-gal syndrome (AGS) is a serious, potentially life-threatening allergic reaction. This is a type of food allergy to red meat and other mammalian products (e.g., gelatin). In Poland, this problem seems to be rare or, more likely, very underdiagnosed. The diagnosis of AGS is difficult. It seems that the knowledge about this syndrome is insufficient. There are no effective diagnostic tools able to clearly diagnose this cross-reactive allergy. This paper presents the clinical application of a non-standard method in the diagnosis of a cross-reactive allergy using the example of AGS. (2) Methods: standard tests for in vitro allergy diagnostics and the non-standard ImmunoCAP inhibition test(IT) were carried out for serum collected from a patient with a red meat allergy. (3) Results: the serum concentration of anti-α-Gal IgE was very high (302 kUA/L), and IgE antibodies toanti-mammalian-meat allergens were found. The level of IgE antibodies to mammalian meat allergens decreased after blocking on α-GAL-CAP. The concentration of anti-α-Gal IgE decreased after blocking on CAPs coated with various mammalian meat allergens. Blocking with allergens of poultry meat did not affect the concentration of anti-α-Gal IgE. (4) Conclusions: the ImmunoCAP ITseems to be a useful tool in the diagnosis of cross-reactive allergies. Based on their clinical history and test results, the patient was diagnosed with AGS caused by a primary sensitization to α-Gal after a tick bite. This is the second case of AGS described in Poland and the first in Pomerania.
Collapse
|
17
|
Warren C, Nimmagadda SR, Gupta R, Levin M. The epidemiology of food allergy in adults. Ann Allergy Asthma Immunol 2023; 130:276-287. [PMID: 36509408 DOI: 10.1016/j.anai.2022.11.026] [Citation(s) in RCA: 23] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2022] [Revised: 10/31/2022] [Accepted: 11/23/2022] [Indexed: 12/13/2022]
Abstract
The prevalence and awareness of food allergy (FA) among US adults is arguably at a historical high, both with respect to primary immunoglobulin E-mediated food hypersensitivity and other food-triggered conditions that operate through a variety of immunologic mechanisms (eg, pollen-FA syndrome, alpha-gal syndrome, food protein-induced enterocolitis syndrome, eosinophilic esophagitis). Worryingly, not only are many adults retaining childhood-onset food allergies as they age into adulthood, it seems that many adults are experiencing adult-onset allergies to previously tolerated foods, with correspondingly adverse physical, and psychological health impacts. Consequently, this review aims to summarize what is currently known about the epidemiology and population-level burden of FA among adult populations in North America and around the globe. This article also provides insights into the natural history of these conditions and what we need to know as we look to the future to support effective care and prevent FA.
Collapse
Affiliation(s)
- Christopher Warren
- Department of Preventive Medicine, Feinberg School of Medicine, Northwestern University, Evanston, Illinois; Center for Food Allergy and Asthma Research, Institute for Public Health and Medicine, Feinberg School of Medicine, Northwestern University, Evanston, Illinois.
| | - Sai R Nimmagadda
- Center for Food Allergy and Asthma Research, Institute for Public Health and Medicine, Feinberg School of Medicine, Northwestern University, Evanston, Illinois; Division of Allergy and Immunology, Ann and Robert H. Lurie Children's Hospital of Chicago, Chicago, Illinois
| | - Ruchi Gupta
- Center for Food Allergy and Asthma Research, Institute for Public Health and Medicine, Feinberg School of Medicine, Northwestern University, Evanston, Illinois; Ann and Robert H. Lurie Children's Hospital of Chicago, Department of Pediatrics, Chicago, Illinois
| | - Michael Levin
- Division Paediatric Allergology, University of Cape Town, Cape Town, South Africa
| |
Collapse
|
18
|
Lee CJ, McGill SK. Food Allergies and Alpha-gal Syndrome for the Gastroenterologist. Curr Gastroenterol Rep 2023; 25:21-30. [PMID: 36705797 DOI: 10.1007/s11894-022-00860-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/02/2022] [Indexed: 01/28/2023]
Abstract
PURPOSE OF REVIEW Food allergies are typically not considered as a cause of gastrointestinal (GI) distress without additional allergic symptoms, apart from celiac disease and eosinophilic esophagitis. However, recent reports of patients with alpha-gal syndrome who presented with GI-only symptoms like abdominal pain, vomiting, and diarrhea challenge this paradigm. Alpha-gal syndrome is an IgE-mediated allergy characterized by delayed reactions after eating mammalian meat or mammalian-derived products that contain galactose-alpha-1,3-galactose (alpha-gal). The purpose of this review is to discuss our current understanding of food allergies, GI illness, and the GI manifestations of alpha-gal syndrome. RECENT FINDINGS Among Southeastern U.S. GI clinic patients who screened positive for serum alpha-gal IgE, a majority of patients reported significant symptom improvement on an alpha-gal-avoidant diet, suggesting that the allergy had played a role in their GI symptoms. Diagnosis of alpha-gal syndrome is typically made with concerning allergic symptoms, elevated alpha-gal specific IgE in the serum, and symptom improvement on an alpha-gal avoidant diet. Alpha-gal syndrome can cause a delayed allergic response that is increasingly recognized worldwide, including among patients with predominant GI symptoms.
Collapse
Affiliation(s)
- Christopher J Lee
- Department of Internal Medicine, University of North Carolina at Chapel Hill, 130 Mason Farm Road, Chapel Hill, NC, 27514, USA
| | - Sarah K McGill
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, University of North Carolina at Chapel Hill, 130 Mason Farm Road, Chapel Hill, NC, 27514, USA.
| |
Collapse
|
19
|
Binder AM, Cherry-Brown D, Biggerstaff BJ, Jones ES, Amelio CL, Beard CB, Petersen LR, Kersh GJ, Commins SP, Armstrong PA. Clinical and laboratory features of patients diagnosed with alpha-gal syndrome-2010-2019. Allergy 2023; 78:477-487. [PMID: 36178236 PMCID: PMC10092820 DOI: 10.1111/all.15539] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2021] [Revised: 08/26/2022] [Accepted: 08/29/2022] [Indexed: 02/01/2023]
Abstract
BACKGROUND Alpha-gal syndrome (AGS) is an IgE-mediated allergy to galactose-alpha-1,3-galactose. Clinical presentation ranges from hives to anaphylaxis; episodes typically occur 2-6 h after exposure to alpha-gal-containing products. In the United States, lone star tick bites are associated with the development of AGS. To characterize features of AGS, we evaluated a cohort of patients presenting for care at the University of North Carolina, focusing on symptoms, severity, and identifying features unique to specific alpha-gal-containing product exposures. METHODS We performed a chart review and descriptive analysis of 100 randomly selected patients with AGS during 2010-2019. RESULTS Median age at onset was 53 years, 56% were female, 95% reported White race, 86% reported a history of tick bite, and 75% met the criteria for anaphylaxis based on the involvement of ≥2 organ systems. Those reporting dairy reactions were significantly less likely to report isolated mucocutaneous symptoms (3% vs. 24%; ratio [95% CI]: 0.1 [0.1, 0.3]) than those who tolerated dairy, and were more likely to report gastrointestinal symptoms (79% vs. 59%; ratio [95% CI]: 1.3 [0.7, 2.6]), although this difference was not statistically significant. Dairy-tolerant patients demonstrated higher alpha-gal sIgE titers (as a percentage of total IgE) than dairy-reactive patients (GM 4.1 [95% CI: 2.7, 6.1] vs. GM 2.5 [95% CI: 1.3, 4.8], respectively; ratio -1.6 [95% CI: -1.0, 3.9]). CONCLUSION While tick exposure is common in the southern United States, nearly all AGS patients reported a tick bite. Gastrointestinal symptoms were prominent among those reporting reactions to dairy. Anaphylaxis was common, underscoring the severity and need to raise awareness of AGS among patients and providers.
Collapse
Affiliation(s)
- Alison M Binder
- Division of Vector-Borne Diseases, Centers for Disease Control and Prevention, Fort Collins, Colorado, USA
| | - Dena Cherry-Brown
- Division of Vector-Borne Diseases, Centers for Disease Control and Prevention, Fort Collins, Colorado, USA
| | - Brad J Biggerstaff
- Division of Vector-Borne Diseases, Centers for Disease Control and Prevention, Fort Collins, Colorado, USA
| | - Emma S Jones
- Division of Vector-Borne Diseases, Centers for Disease Control and Prevention, Fort Collins, Colorado, USA
| | - Claire L Amelio
- University of North Carolina, Chapel Hill, North Carolina, USA
| | - Charles B Beard
- Division of Vector-Borne Diseases, Centers for Disease Control and Prevention, Fort Collins, Colorado, USA
| | - Lyle R Petersen
- Division of Vector-Borne Diseases, Centers for Disease Control and Prevention, Fort Collins, Colorado, USA
| | - Gilbert J Kersh
- Division of Vector-Borne Diseases, Centers for Disease Control and Prevention, Fort Collins, Colorado, USA
| | - Scott P Commins
- University of North Carolina, Chapel Hill, North Carolina, USA
| | - Paige A Armstrong
- Division of Vector-Borne Diseases, Centers for Disease Control and Prevention, Fort Collins, Colorado, USA
| |
Collapse
|
20
|
Macdougall JD, Thomas KO, Iweala OI. The Meat of the Matter: Understanding and Managing Alpha-Gal Syndrome. Immunotargets Ther 2022; 11:37-54. [PMID: 36134173 PMCID: PMC9484563 DOI: 10.2147/itt.s276872] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2022] [Accepted: 09/02/2022] [Indexed: 11/23/2022] Open
Abstract
Alpha-gal syndrome is an unconventional food allergy, characterized by IgE-mediated hypersensitivity responses to the glycan galactose-alpha-1,3-galactose (alpha-gal) and not to a food-protein. In this review, we discuss how alpha-gal syndrome reframes our current conception of the mechanisms of pathogenesis of food allergy. The development of alpha-gal IgE is associated with tick bites though the possibility of other parasites promoting sensitization to alpha-gal remains. We review the immune cell populations involved in the sensitization and effector phases of alpha-gal syndrome and describe the current understanding of why allergic responses to ingested alpha-gal can be delayed by several hours. We review the foundation of management in alpha-gal syndrome, namely avoidance, but also discuss the use of antihistamines, mast cell stabilizers, and the emerging role of complementary and alternative therapies, biological products, and oral immunotherapy in the management of this condition. Alpha-gal syndrome influences the safety and tolerability of medications and medical devices containing or derived from mammalian products and impacts quality of life well beyond food choices.
Collapse
Affiliation(s)
- Jessica D Macdougall
- Department of Medicine, Thurston Arthritis Research Center, Division of Rheumatology, Allergy, and Immunology, Chapel Hill, NC, 27599, USA.,Department of Pediatrics, University of North Carolina Food Allergy Initiative, Division of Allergy and Immunology, University of North Carolina School of Medicine, Chapel Hill, NC, 27599, USA
| | - Kevin O Thomas
- Department of Medicine, Thurston Arthritis Research Center, Division of Rheumatology, Allergy, and Immunology, Chapel Hill, NC, 27599, USA.,Department of Pediatrics, University of North Carolina Food Allergy Initiative, Division of Allergy and Immunology, University of North Carolina School of Medicine, Chapel Hill, NC, 27599, USA
| | - Onyinye I Iweala
- Department of Medicine, Thurston Arthritis Research Center, Division of Rheumatology, Allergy, and Immunology, Chapel Hill, NC, 27599, USA.,Department of Pediatrics, University of North Carolina Food Allergy Initiative, Division of Allergy and Immunology, University of North Carolina School of Medicine, Chapel Hill, NC, 27599, USA
| |
Collapse
|
21
|
Nakagawa Y, Chinuki Y, Ogino R, Yamasaki K, Aiba S, Ugajin T, Yokozeki H, Kitamura K, Morita E. Cohort study of subclinical sensitization against galactose‐α‐1,3‐galactose in Japan: Prevalence and regional variations. J Dermatol 2022; 49:1268-1277. [PMID: 36093796 DOI: 10.1111/1346-8138.16570] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2022] [Revised: 07/27/2022] [Accepted: 08/19/2022] [Indexed: 11/28/2022]
Abstract
Sensitization to galactose-α-1,3-galactose (α-Gal) leads to the development of α-Gal syndrome, which includes red meat allergy and cetuximab-induced anaphylaxis. Since tick bites represent the main cause of α-Gal sensitization, it was speculated that sensitization to α-Gal occurs throughout Japan. However, few cohort studies have investigated α-Gal sensitization in Japan. Therefore, we aimed to elucidate the subclinical sensitization rate to α-Gal in Japan. Sera were obtained from 300 participants without food or cetuximab allergy at Shimane University Hospital (Shimane prefecture), Tokyo Medical and Dental University Hospital (Tokyo metropolis), and Tohoku University Hospital (Miyagi prefecture). ImmunoCAP-bovine thyroglobulin (BTG), ImmunoCAP-beef, and IgE immunoblotting with cetuximab were performed to detect α-Gal-specific IgE. Clinical information was collected from participants using a questionnaire. The overall positivity rate of ImmunoCAP-BTG was 4.0% without significant inter-institute differences, whereas that for ImmunoCAP-beef was 9.7% with a significant inter-institute difference. Tokyo Medical and Dental University Hospital (19.0%) had the highest positivity rate. The positivity rate based on cetuximab IgE immunoblotting was 2.7%, without any significant inter-institute differences. The overall positivity rate for both ImmunoCAP-BTG and cetuximab immunoblotting was 2.0%, with a significant inter-institute difference; 5.0% of Shimane University Hospital was the highest. Two cases showed sensitization against the non-α-Gal epitope of cetuximab. The overall positivity rate for both ImmunoCAP-beef and cetuximab immunoblotting was 1.3%, without significant inter-institute differences. Male sex was associated with positive beef-specific IgE. The prevalence of subclinical sensitization to α-Gal is estimated at 2.0%-4.0% in Japan and may be higher in rural areas, supporting an association between tick bites and α-Gal sensitization. In contrast, the prevalence of subclinical sensitization to beef is 9.7% in Japan and is highest in Tokyo Metropolis, suggesting the presence of another IgE-binding epitope apart from α-Gal and another sensitization route in the sensitization to beef IgE.
Collapse
Affiliation(s)
- Yusei Nakagawa
- Department of Dermatology, Faculty of Medicine Shimane University Izumo Japan
| | - Yuko Chinuki
- Department of Dermatology, Faculty of Medicine Shimane University Izumo Japan
| | - Ryohei Ogino
- Department of Dermatology, Faculty of Medicine Shimane University Izumo Japan
- Department of Frontier Science for Pharmacotherapy, Graduate School of Biomedical and Health Sciences Hiroshima University Hiroshima Japan
| | - Kenshi Yamasaki
- Department of Dermatology, Graduate School of Medicine Tohoku University Sendai Japan
| | - Setsuya Aiba
- Department of Dermatology, Graduate School of Medicine Tohoku University Sendai Japan
| | - Tsukasa Ugajin
- Department of Dermatology, Graduate School Tokyo Medical and Dental University Tokyo Japan
| | - Hiroo Yokozeki
- Department of Dermatology, Graduate School Tokyo Medical and Dental University Tokyo Japan
| | - Kaoru Kitamura
- Immuno Diagnostic Division Thermo Fischer Diagnostics KK Tokyo Japan
| | - Eishin Morita
- Department of Dermatology, Faculty of Medicine Shimane University Izumo Japan
| |
Collapse
|
22
|
Vaz-Rodrigues R, Mazuecos L, de la Fuente J. Current and Future Strategies for the Diagnosis and Treatment of the Alpha-Gal Syndrome (AGS). J Asthma Allergy 2022; 15:957-970. [PMID: 35879928 PMCID: PMC9307871 DOI: 10.2147/jaa.s265660] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2022] [Accepted: 07/12/2022] [Indexed: 11/23/2022] Open
Abstract
The α-Gal syndrome (AGS) is a pathognomonic immunoglobulin E (IgE)-mediated delayed anaphylaxis in foods containing the oligosaccharide galactose-α-1,3-galactose (α-Gal) such as mammalian meat or dairy products. Clinical presentation of AGS can also comprise immediate hypersensitivity due to anticancer therapy, gelatin-containing vaccines or mammalian serum-based antivenom. The IgE initial sensitization is caused by hard-bodied tick bites and symptomatic individuals typically develop delayed pruritus, urticaria, angioedema, anaphylaxis, malaise or gut-related symptoms. Due to inapparent presentation, delayed reactions and a wide variety of patients´ clinical history, the AGS diagnosis and treatment remain challenging. This review covers not only current diagnostic methods used for AGS such as the skin prick test (SPT), the oral food challenge (OFC), anti-α-Gal IgE levels measurement and the basophil activation test (BAT), but also potentially relevant next-generation diagnostic tools like the mast cell activation test (MAT), the histamine-release (HR) assay, omics technologies and model-based reasoning (MBR). Moreover, it focuses on the therapeutical medical and non-medical methods available and current research methods that are being applied in order to elucidate the molecular, physiological and immune mechanisms underlying this allergic disorder. Lastly, future treatment and preventive tools are also discussed, being of utmost importance for the identification of tick salivary molecules, with or without α-Gal modifications, that trigger IgE sensitivity as they could be the key for further vaccine development. Bearing in mind climate change, the tick-host paradigm will shift towards an increasing number of AGS cases in new regions worldwide, which will pose new challenges for clinicians in the future.
Collapse
Affiliation(s)
- Rita Vaz-Rodrigues
- SaBio (Health and Biotechnology), Instituto de Investigación en Recursos Cinegéticos IREC (CSIC-UCLM-JCCM), Ciudad Real, 13005, Spain
| | - Lorena Mazuecos
- SaBio (Health and Biotechnology), Instituto de Investigación en Recursos Cinegéticos IREC (CSIC-UCLM-JCCM), Ciudad Real, 13005, Spain
| | - José de la Fuente
- SaBio (Health and Biotechnology), Instituto de Investigación en Recursos Cinegéticos IREC (CSIC-UCLM-JCCM), Ciudad Real, 13005, Spain.,Department of Veterinary Pathobiology, Center for Veterinary Health Sciences, Oklahoma State University, Stillwater, OK, 74078, USA
| |
Collapse
|
23
|
Carson AS, Gardner A, Iweala OI. Where's the Beef? Understanding Allergic Responses to Red Meat in Alpha-Gal Syndrome. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2022; 208:267-277. [PMID: 35017216 PMCID: PMC8928418 DOI: 10.4049/jimmunol.2100712] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/19/2021] [Accepted: 10/19/2021] [Indexed: 01/17/2023]
Abstract
Alpha-gal syndrome (AGS) describes a collection of symptoms associated with IgE-mediated hypersensitivity responses to the glycan galactose-alpha-1,3-galactose (alpha-gal). Individuals with AGS develop delayed hypersensitivity reactions, with symptoms occurring >2 h after consuming mammalian ("red") meat and other mammal-derived food products. The mechanisms of pathogenesis driving this paradigm-breaking food allergy are not fully understood. We review the role of tick bites in the development of alpha-gal-specific IgE and highlight innate and adaptive immune cells possibly involved in alpha-gal sensitization. We discuss the impact of alpha-gal glycosylation on digestion and metabolism of alpha-gal glycolipids and glycoproteins, and the implications for basophil and mast cell activation and mediator release that generate allergic symptoms in AGS.
Collapse
Affiliation(s)
- Audrey S. Carson
- Department of Medicine, Thurston Arthritis Research Center, Division of Rheumatology, Allergy, and Immunology,Department of Pediatrics, University of North Carolina Food Allergy Initiative, Division of Allergy and Immunology, University of North Carolina School of Medicine, Chapel Hill, NC, USA
| | - Aliyah Gardner
- Department of Medicine, Thurston Arthritis Research Center, Division of Rheumatology, Allergy, and Immunology,Department of Pediatrics, University of North Carolina Food Allergy Initiative, Division of Allergy and Immunology, University of North Carolina School of Medicine, Chapel Hill, NC, USA
| | - Onyinye I. Iweala
- Department of Medicine, Thurston Arthritis Research Center, Division of Rheumatology, Allergy, and Immunology,Department of Pediatrics, University of North Carolina Food Allergy Initiative, Division of Allergy and Immunology, University of North Carolina School of Medicine, Chapel Hill, NC, USA
| |
Collapse
|
24
|
Abstract
IgE-mediated food allergies affect both children and adults and are associated with dramatic decreases in the quality of life. In the majority of cases, food allergens have to be avoided which may be difficult, particularly in patients who suffer from life-threatening symptoms following the ingestion of minimal doses of food allergens. Several novel therapeutic approaches have been studied during the recent past and are summarized in this review. Therapies with novel therapeutic monoclonal antibodies, innovative allergen-specific immunotherapies using subcutaneous, sublingual, or epicutaneous routes, and oral immunotherapies leading to increases of individual thresholds of tolerable foods upon their continuous ingestion showed promising results which may change future management strategies in moderate to severe food allergy.
Collapse
Affiliation(s)
- Barbara Bohle
- Department of Pathophysiology and Allergy Research, Center for Pathophysiology, Infectiology and Immunology, Medical University of Vienna, Vienna, Austria.
| | - Thomas Werfel
- Division of Immunodermatology and Allergy Research, Department of Dermatology and Allergy, Hannover Medical School, Hanover, Germany
| |
Collapse
|
25
|
Saretta F, Giovannini M, Mori F, Arasi S, Liotti L, Pecoraro L, Barni S, Castagnoli R, Mastrorilli C, Caminiti L, Marseglia GL, Novembre E. Alpha-Gal Syndrome in Children: Peculiarities of a "Tick-Borne" Allergic Disease. Front Pediatr 2021; 9:801753. [PMID: 35004549 PMCID: PMC8732990 DOI: 10.3389/fped.2021.801753] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/25/2021] [Accepted: 11/17/2021] [Indexed: 11/13/2022] Open
Abstract
The alpha-gal syndrome is an allergic syndrome that comprises two clinical pictures: an immediate hypersensitivity to drugs containing alpha-gal and a delayed hypersensitivity to the ingestion of red mammalian meat. This allergic syndrome is often under-recognized, and patients are mislabeled with diagnosis as spontaneous urticaria or idiopathic anaphylaxis. Even though less frequently, children could also be of interest, especially in tick-endemic areas. In most cases, a positive anamnesis for tick bites months before the onset of symptoms is recorded. The clinical manifestations could range from asymptomatic cases to severe anaphylaxis. The most frequently used diagnostic test is the determination of specific IgE for alpha-gal. Oral provocation test is usually reserved to unclear cases or to verify tolerance after diet. No long-term follow-up studies have been published, although an elimination diet could lead to a decrease of specific IgE for alpha-gal and a possible reintroduction of some avoided foods. This paper provides a literature review, focused on pediatric age, and an evaluation of available diagnostic tests. We analyze the correlation between tick bites and symptom onset and unfold the different clinical pictures to help clinicians to promptly recognized this syndrome. Lastly, we address unmet needs in this specific allergy.
Collapse
Affiliation(s)
- Francesca Saretta
- Pediatric Department, Latisana-Palmanova Hospital, Azienda Sanitaria Universitaria Friuli Centrale, Udine, Italy
| | - Mattia Giovannini
- Allergy Unit, Department of Pediatrics, Meyer Children's University Hospital, Florence, Italy
| | - Francesca Mori
- Allergy Unit, Department of Pediatrics, Meyer Children's University Hospital, Florence, Italy
| | - Stefania Arasi
- Translational Research in Pediatric Specialties Area, Division of Allergy, Bambino Gesù Children's Hospital (IRCCS), Rome, Italy
| | - Lucia Liotti
- Department of Pediatrics, Salesi Children's Hospital, AOU Ospedali Riuniti Ancona, Ancona, Italy
| | - Luca Pecoraro
- Department of Medicine, University of Verona, Verona, Italy
- Maternal and Child Department, ASST Mantua, Mantova, Italy
| | - Simona Barni
- Allergy Unit, Department of Pediatrics, Meyer Children's University Hospital, Florence, Italy
| | - Riccardo Castagnoli
- Department of Pediatrics, Pediatric Clinic, Fondazione IRCCS Policlinico San Matteo, University of Pavia, Pavia, Italy
| | - Carla Mastrorilli
- Pediatric Unit and Emergency, University Hospital Consortium Corporation Polyclinic of Bari, Pediatric Hospital Giovanni XXIII, Bari, Italy
| | - Lucia Caminiti
- Department of Human Pathology in Adult and Development Age “Gaetano Barresi,” Allergy Unit, Department of Pediatrics, AOU Policlinico Gaetano Martino, Messina, Italy
| | - Gian Luigi Marseglia
- Department of Pediatrics, Pediatric Clinic, Fondazione IRCCS Policlinico San Matteo, University of Pavia, Pavia, Italy
| | - Elio Novembre
- Allergy Unit, Department of Pediatrics, Meyer Children's University Hospital, Florence, Italy
| |
Collapse
|
26
|
Román-Carrasco P, Hemmer W, Cabezas-Cruz A, Hodžić A, de la Fuente J, Swoboda I. The α-Gal Syndrome and Potential Mechanisms. FRONTIERS IN ALLERGY 2021; 2:783279. [PMID: 35386980 PMCID: PMC8974695 DOI: 10.3389/falgy.2021.783279] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2021] [Accepted: 11/08/2021] [Indexed: 12/17/2022] Open
Abstract
The α-Gal syndrome is a complex allergic disease characterized by the development of specific IgE antibodies against the carbohydrate galactose-α-1,3-galactose (α-Gal), an oligosaccharide present in cells and tissues of non-primate mammals. Individuals with IgE antibodies to α-Gal suffer from a delayed form of anaphylaxis following red meat consumption. There are several features that make the α-Gal syndrome such a unique allergic disease and distinguish it from other food allergies: (1) symptoms causing IgE antibodies are directed against a carbohydrate moiety, (2) the unusual delay between the consumption of the food and the onset of the symptoms, and (3) the fact that primary sensitization to α-Gal occurs via tick bites. This review takes a closer look at the immune response against α-Gal, in healthy and in α-Gal allergic individuals. Furthermore, the similarities and differences between immune response against α-Gal and against the other important glycan moieties associated with allergies, namely cross-reactive carbohydrate determinants (CCDs), are discussed. Then different mechanisms are discussed that could contribute to the delayed onset of symptoms after consumption of mammalian meat. Moreover, our current knowledge on the role of tick bites in the sensitization process is summarized. The tick saliva has been shown to contain proteins carrying α-Gal, but also bioactive molecules, such as prostaglandin E2, which is capable of stimulating an increased expression of anti-inflammatory cytokines while promoting a decrease in the production of proinflammatory mediators. Together these components might promote Th2-related immunity and trigger a class switch to IgE antibodies directed against the oligosaccharide α-Gal. The review also points to open research questions that remain to be answered and proposes future research directions, which will help to get a better understanding and lead to a better management of the disease.
Collapse
Affiliation(s)
- Patricia Román-Carrasco
- Molecular Biotechnology Section, FH Campus Wien, University of Applied Sciences, Vienna, Austria
| | | | - Alejandro Cabezas-Cruz
- Anses, INRAE, Ecole Nationale Vétérinaire d'Alfort, UMR BIPAR, Laboratoire de Santé Animale, Maisons-Alfort, France
| | - Adnan Hodžić
- Department of Pathobiology, Institute of Parasitology, University of Veterinary Medicine Vienna, Vienna, Austria
| | - José de la Fuente
- SaBio, Instituto de Investigación de Recursos Cinegéticos, IREC-CSIC-UCLM-JCCM, Ciudad Real, Spain
- Department of Veterinary Pathobiology, Center for Veterinary Health Sciences, Oklahoma State University, Stillwater, OK, United States
| | - Ines Swoboda
- Molecular Biotechnology Section, FH Campus Wien, University of Applied Sciences, Vienna, Austria
| |
Collapse
|
27
|
Epelboin L, Roche F, Dueymes M, Guillot G, Duron O, Nacher M, Djossou F, Soria A. Allergy to Mammalian Meat Linked to Alpha-Gal Syndrome Potentially After Tick Bite in the Amazon: A Case Series. Am J Trop Med Hyg 2021; 105:1396-1403. [PMID: 34544046 PMCID: PMC8592224 DOI: 10.4269/ajtmh.20-1630] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2020] [Accepted: 04/19/2021] [Indexed: 12/11/2022] Open
Abstract
The past decade has seen the emergence of a new type of food allergy occurring after ingestion of mammalian meat. This allergy is related to immunoglobulin (Ig)E specific for galactose-alpha-1,3 galactose (α-Gal). Originally described in the United States in 2009, other cases have subsequently been described in Australia and in Europe, but still very few in Latin America. The purpose of this study was to show the existence of this pathology in French Guiana and to describe the historical, clinical, and biological characteristics of these patients. Patients reporting an allergy to mammalian meat were included between September 2017 and August 2019. Eleven patients were included, nine of whom exhibited digestive symptoms; four, urticaria reactions; three, respiratory reactions; and five angioedema. The time between ingestion of red meat and reaction varied between 1.5 and 6 hours. The implicated meats were most often beef and pork. All patients had been regularly exposed to tick bites before the appearance of symptoms. All the samples (n = 7) were positive for anti-α-Gal anti-mammalian meats IgE. All the patients were Caucasian French expatriates. This study confirms the presence of this new entity in French Guiana and is the largest reported in Latin America. Our results do not clearly allow us to state that tick bites are the cause of this allergy, but all patients reported being exposed regularly to these arthropods.
Collapse
Affiliation(s)
- Loïc Epelboin
- Infectious and Tropical Diseases Department, Centre Hospitalier Andrée Rosemon, Cayenne, French Guiana.,Equipe EA 3593, Ecosystèmes Amazoniens et Pathologie Tropicale, Université de la Guyane, Cayenne, French Guiana.,Centre d'Investigation Clinique, INSERM 1424, Centre Hospitalier Andrée Rosemon, Cayenne, French Guiana
| | - Florent Roche
- Université des Antilles et de la Guyane, Faculté de Médecine Hyacinthe Basturaud, Pointe-à-Pitre, France
| | - Maryvonne Dueymes
- Equipe EA 3593, Ecosystèmes Amazoniens et Pathologie Tropicale, Université de la Guyane, Cayenne, French Guiana.,Laboratory of Medical Biology, Centre Hospitalier Andrée Rosemon, Cayenne, French Guiana
| | - Geneviève Guillot
- Department of Pneumology and Gastroenterology, Centre Hospitalier Andrée Rosemon, Cayenne, French Guiana
| | - Olivier Duron
- Maladies Infectieuses et Vecteurs: Écologie, Génétique, Évolution et Contrôle, Centre National de la Recherche Scientifique, Institut pour la Recherche et le Développement, Université de Montpellier, Montpellier, France
| | - Mathieu Nacher
- Centre d'Investigation Clinique, INSERM 1424, Centre Hospitalier Andrée Rosemon, Cayenne, French Guiana
| | - Félix Djossou
- Infectious and Tropical Diseases Department, Centre Hospitalier Andrée Rosemon, Cayenne, French Guiana.,Equipe EA 3593, Ecosystèmes Amazoniens et Pathologie Tropicale, Université de la Guyane, Cayenne, French Guiana
| | - Angèle Soria
- Tenon Hospital, Dermatology-Allergology Department, Sorbonne University, Paris, France
| |
Collapse
|
28
|
Saleem M, Nilsson C. A pediatric case of tick-bite-Induced meat allergy and recall urticaria. Clin Case Rep 2021; 9:e04773. [PMID: 34594551 PMCID: PMC8462437 DOI: 10.1002/ccr3.4773] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2021] [Revised: 07/29/2021] [Accepted: 08/03/2021] [Indexed: 11/06/2022] Open
Abstract
Alpha-gal syndrome should be suspected also in children in case of typical allergic symptoms in the evening or night during tick seasons and the event of recall urticaria. It is, however, still a challenge for both patients and clinicians.
Collapse
Affiliation(s)
- May Saleem
- Sachs’ Children and Youth HospitalStockholmSweden
| | - Caroline Nilsson
- Clinical Science and EducationSödersjukhusetKarolinska InstituteSachs’ Children and Youth HospitalStockholmSweden
| |
Collapse
|
29
|
Platts‐Mills TA, Hilger C, Jappe U, van Hage M, Gadermaier G, Spillner E, Lidholm J, Keshavarz B, Aalberse RC, van Ree R, Goodman RE, Pomés A. Carbohydrate epitopes currently recognized as targets for IgE antibodies. Allergy 2021; 76:2383-2394. [PMID: 33655520 DOI: 10.1111/all.14802] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2020] [Revised: 02/17/2021] [Accepted: 02/26/2021] [Indexed: 12/11/2022]
Abstract
Until recently, glycan epitopes have not been documented by the WHO/IUIS Allergen Nomenclature Sub-Committee. This was in part due to scarce or incomplete information on these oligosaccharides, but also due to the widely held opinion that IgE to these epitopes had little or no relevance to allergic symptoms. Most IgE-binding glycans recognized up to 2008 were considered to be "classical" cross-reactive carbohydrate determinants (CCD) that occur in insects, some helminths and throughout the plant kingdom. Since 2008, the prevailing opinion on lack of clinical relevance of IgE-binding glycans has been subject to a reevaluation. This was because IgE specific for the mammalian disaccharide galactose-alpha-1,3-galactose (alpha-gal) was identified as a cause of delayed anaphylaxis to mammalian meat in the United States, an observation that has been confirmed by allergists in many parts of the world. Several experimental studies have shown that oligosaccharides with one or more terminal alpha-gal epitopes can be attached as a hapten to many different mammalian proteins or lipids. The classical CCDs also behave like haptens since they can be expressed on proteins from multiple species. This is the explanation for extensive in vitro cross-reactivity related to CCDs. Because of these developments, the Allergen Nomenclature Sub-Committee recently decided to include glycans as potentially allergenic epitopes in an adjunct section of its website (www.allergen.org). In this article, the features of the main glycan groups known to be involved in IgE recognition are revisited, and their characteristic structural, functional, and clinical features are discussed.
Collapse
Affiliation(s)
- Thomas A. Platts‐Mills
- WHO/IUIS Allergen Nomenclature Sub‐Committee
- Division of Allergy and Immunology University of Virginia Charlottesville Virginia USA
| | - Christiane Hilger
- WHO/IUIS Allergen Nomenclature Sub‐Committee
- Department of Infection and Immunity Luxembourg Institute of Health Esch‐sur‐Alzette Luxembourg
| | - Uta Jappe
- WHO/IUIS Allergen Nomenclature Sub‐Committee
- Division of Clinical and Molecular Allergology, Research Center Borstel AirwayResearch Center North (ARCN)German Center for Lung Research Borstel Germany
- Interdisciplinary Allergy Outpatient Clinic, Department of Internal Medicine and Pneumology University of Lübeck Lübeck Germany
| | - Marianne van Hage
- WHO/IUIS Allergen Nomenclature Sub‐Committee
- Department of Medicine Solna, Division of Immunology and Allergy Karolinska Institutet & Karolinska University Hospital Stockholm Sweden
| | - Gabriele Gadermaier
- WHO/IUIS Allergen Nomenclature Sub‐Committee
- Department of Biosciences Paris Lodron University of Salzburg Salzburg Austria
| | - Edzard Spillner
- WHO/IUIS Allergen Nomenclature Sub‐Committee
- Department of Biological and Chemical Engineering Aarhus University Denmark
| | - Jonas Lidholm
- WHO/IUIS Allergen Nomenclature Sub‐Committee
- Thermo Fisher Scientific Uppsala Sweden
| | - Behnam Keshavarz
- Division of Allergy and Immunology University of Virginia Charlottesville Virginia USA
| | - Rob C. Aalberse
- Department of Immunopathology Sanquin Amsterdam The Netherlands
| | - Ronald van Ree
- WHO/IUIS Allergen Nomenclature Sub‐Committee
- Departments of Experimental Immunology and of Otorhinolaryngology Amsterdam University Medical Centers, Academic Medical Center Amsterdam The Netherlands
| | - Richard E. Goodman
- WHO/IUIS Allergen Nomenclature Sub‐Committee
- Food Allergy Research & Resource Program University of Nebraska Lincoln Nebraska USA
| | - Anna Pomés
- WHO/IUIS Allergen Nomenclature Sub‐Committee
- Basic Research, Indoor Biotechnologies, Inc. Charlottesville Virginia USA
| |
Collapse
|
30
|
Murangi T, Prakash P, Moreira BP, Basera W, Botha M, Cunningham S, Facey-Thomas H, Halajian A, Joshi L, Ramjith J, Falcone FH, Horsnell W, Levin ME. Ascaris lumbricoides and ticks associated with sensitization to galactose α1,3-galactose and elicitation of the alpha-gal syndrome. J Allergy Clin Immunol 2021; 149:698-707.e3. [PMID: 34333031 DOI: 10.1016/j.jaci.2021.07.018] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2021] [Revised: 06/23/2021] [Accepted: 07/13/2021] [Indexed: 11/16/2022]
Abstract
BACKGROUND IgE to galactose alpha-1,3 galactose (alpha-gal) causes alpha-gal syndrome (delayed anaphylaxis after ingestion of mammalian meat). Development of sensitization has been attributed to tick bites; however, the possible role of other parasites has not been well studied. OBJECTIVE Our aims were to assess the presence, relative abundances, and site of localization of alpha-gal-containing proteins in common ectoparasites and endoparasites endemic in an area of high prevalence of alpha-gal syndrome, as well as to investigate the ability of ascaris antigens to elicit a reaction in a humanized rat basophil in vitro sensitization model. METHODS Levels of total IgE, Ascaris-specific IgE, and alpha-gal IgE were measured in sera from patients with challenge-proven alpha-gal syndrome and from controls without allergy. The presence, concentration, and localization of alpha-gal in parasites were assessed by ELISA, Western blotting, and immunohistochemistry. The ability of Ascaris lumbricoides antigen to elicit IgE-dependent reactivity was demonstrated by using the RS-ATL8 basophil reporter system. RESULTS Alpha-gal IgE level correlated with A lumbricoides-specific IgE level. Alpha-gal protein at 70 to 130 kDa was detected in A lumbricoides at concentrations higher than those found in Rhipicephalus evertsi and Amblyomma hebraeum ticks. Immunohistochemistry was used to localize alpha-gal in tick salivary acini and the helminth gut. Non-alpha-gal-containing A lumbricoides antigens activated RS-ATL8 basophils primed with serum from subjects with alpha-gal syndrome. CONCLUSION We demonstrated the presence, relative abundances, and site of localization of alpha-gal-containing proteins in parasites. The activation of RS-ATL8 IgE reporter cells primed with serum from subjects with alpha-gal syndrome on exposure to non-alpha-gal-containing A lumbricoides proteins indicates a possible role of exposure to A lumbricoides in alpha-gal sensitization and clinical reactivity.
Collapse
Affiliation(s)
- Tatenda Murangi
- Wellcome Centre for Infectious Diseases Research in Africa, Institute of Infectious Disease and Molecular Medicine, Department of Pathology, Division of immunology, University of Cape Town, Cape Town, South Africa
| | - Prema Prakash
- Institute of Parasitology, Biomedical Research Center Seltersberg, Justus Liebig University Giessen, Giessen, Germany
| | - Bernardo Pereira Moreira
- Institute of Parasitology, Biomedical Research Center Seltersberg, Justus Liebig University Giessen, Giessen, Germany
| | - Wisdom Basera
- School of Public Health and Family Medicine, University of Cape Town, Cape Town, South Africa; Burden of Disease Research Unit, South African Medical Research Council, Cape Town, South Africa
| | - Maresa Botha
- Division of Paediatric Allergy, Department of Paediatrics, University of Cape Town, Cape Town, South Africa
| | - Stephen Cunningham
- Glycoscience Group, Biomedical Sciences, National University of Ireland Galway, Galway, Ireland
| | - Heidi Facey-Thomas
- Division of Paediatric Allergy, Department of Paediatrics, University of Cape Town, Cape Town, South Africa
| | - Ali Halajian
- Research Administration and Development, University of Limpopo, Sovenga, South Africa
| | - Lokesh Joshi
- Glycoscience Group, Biomedical Sciences, National University of Ireland Galway, Galway, Ireland
| | - Jordache Ramjith
- Department for Health Evidence, Biostatistics Research Group, Radboud Institute for Health Sciences, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Franco H Falcone
- Institute of Parasitology, Biomedical Research Center Seltersberg, Justus Liebig University Giessen, Giessen, Germany
| | - William Horsnell
- Wellcome Centre for Infectious Diseases Research in Africa, Institute of Infectious Disease and Molecular Medicine, Department of Pathology, Division of immunology, University of Cape Town, Cape Town, South Africa; Institute of Microbiology and Infection, College of Medical and Dental Sciences, University of Birmingham, Birmingham, United Kingdom
| | - Michael E Levin
- Division of Paediatric Allergy, Department of Paediatrics, University of Cape Town, Cape Town, South Africa.
| |
Collapse
|
31
|
Galili U. Increasing Efficacy of Enveloped Whole-Virus Vaccines by In situ Immune-Complexing with the Natural Anti-Gal Antibody. MEDICAL RESEARCH ARCHIVES 2021; 9:2481. [PMID: 34853815 PMCID: PMC8631339 DOI: 10.18103/mra.v9i7.2481] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
The appearance of variants of mutated virus in course of the Covid-19 pandemic raises concerns regarding the risk of possible formation of variants that can evade the protective immune response elicited by the single antigen S-protein gene-based vaccines. This risk may be avoided by inclusion of several antigens in vaccines, so that a variant that evades the immune response to the S-protein of SARS-CoV-2 virus will be destroyed by the protective immune response against other viral antigens. A simple way for preparing multi-antigenic enveloped-virus vaccines is using the inactivated whole-virus as vaccine. However, immunogenicity of such vaccines may be suboptimal because of poor uptake of the vaccine by antigen-presenting-cells (APC) due to electrostatic repulsion by the negative charges of sialic-acid on both the glycan-shield of the vaccinating virus and on the carbohydrate-chains (glycans) of APC. In addition, glycan-shield can mask many antigenic peptides. These effects of the glycan-shield can be reduced and immunogenicity of the vaccinating virus markedly increased by glycoengineering viral glycans for replacing sialic-acid units on glycans with α-gal epitopes (Galα1-3Galβ1-4GlcNAc-R). Vaccination of humans with inactivated whole-virus presenting α-gal epitopes (virusα-gal) results in formation of immune-complexes with the abundant natural anti-Gal antibody that binds to viral α-gal epitopes at the vaccination site. These immune-complexes are targeted to APC for rigorous uptake due to binding of the Fc portion of immunecomplexed anti-Gal to Fcγ receptors on APC. The APC further transport the large amounts of internalized vaccinating virus to regional lymph nodes, process and present the virus antigenic peptides for the activation of many clones of virus specific helper and cytotoxic T-cells. This elicits a protective cellular and humoral immune response against multiple viral antigens and an effective immunological memory. The immune response to virusα-gal vaccine was studied in mice producing anti-Gal and immunized with inactivated influenza-virusα-gal. These mice demonstrated 100-fold increase in titer of the antibodies produced, a marked increase in T-cell response, and a near complete protection against challenge with a lethal dose of live influenza-virus, in comparison to a similar vaccine lacking α-gal epitopes. This glycoengineering can be achieved in vitro by enzymatic reaction with neuraminidase removing sialic-acid and with recombinant α1,3galactosyltransferase (α1,3GT) synthesizing α-gal epitopes, by engineering host-cells to contain several copies of the α1,3GT gene (GGTA1), or by transduction of this gene in a replication-defective adenovirus vector into host-cells. Theoretically, these methods for increased immunogenicity may be applicable to all enveloped viruses with N-glycans on their envelope.
Collapse
Affiliation(s)
- Uri Galili
- Department of Medicine, Rush Medical College, Chicago, IL, USA
| |
Collapse
|
32
|
Choudhary SK, Karim S, Iweala OI, Choudhary S, Crispell G, Sharma SR, Addison CT, Kulis M, Herrin BH, Little SE, Commins SP. Tick salivary gland extract induces alpha-gal syndrome in alpha-gal deficient mice. IMMUNITY INFLAMMATION AND DISEASE 2021; 9:984-990. [PMID: 34034363 PMCID: PMC8342229 DOI: 10.1002/iid3.457] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/01/2020] [Revised: 02/08/2021] [Accepted: 03/15/2021] [Indexed: 12/29/2022]
Abstract
Introduction Alpha‐gal syndrome (AGS) is characterized by delayed hypersensitivity to non‐primate mammalian meat in people having specific immunoglobulin E (sIgE) to the oligosaccharide galactose‐alpha‐1,3‐galactose. AGS has been linked to tick bites from Amblyomma americanum (Aa) in the U.S. A small animal model of meat allergy is needed to study the mechanism of alpha‐gal sensitization, the effector phase leading to delayed allergic responses and potential therapeutics to treat AGS. Methods Eight‐ to ten‐weeks old mice with a targeted inactivation of alpha‐1,3‐galactosyltransferase (AGKO) were injected intradermally with 50 μg of Aa tick salivary gland extract (TSGE) on days 0, 7, 21, 28, 42, and 49. Total IgE and alpha‐gal sIgE were quantitated on Day 56 by enzyme‐linked immunosorbent assay. Mice were challenged orally with 400 mg of cooked pork kidney homogenate or pork fat. Reaction severity was assessed by measuring a drop in core body temperature and scoring allergic signs. Results Compared to control animals, mice treated with TSGE had 190‐fold higher total IgE on Day 56 (0.60 ± 0.12 ng/ml vs. 113.2 ± 24.77 ng/ml; p < 0.001). Alpha‐gal sIgE was also produced in AGKO mice following TSGE sensitization (undetected vs. 158.4 ± 72.43 pg/ml). Further, sensitized mice displayed moderate clinical allergic signs along with a drop in core body temperature of ≥2°C as an objective measure of a systemic allergic reaction. Interestingly, female mice had higher total IgE responses to TSGE treatment but male mice had larger declines in mean body temperature. Conclusion TSGE‐sensitized AGKO mice generate sIgE to alpha‐gal and demonstrate characteristic allergic responses to pork fat and pork kidney. In keeping with the AGS responses documented in humans, mice reacted more rapidly to organ meat than to high fat pork challenge. This mouse model establishes the central role of tick bites in the development of AGS and provides a small animal model to mechanistically study mammalian meat allergy.
Collapse
Affiliation(s)
- Shailesh K Choudhary
- Division of Allergy, Immunology and Rheumatology, Thurston Arthritis Research Center, University of North Carolina, Chapel Hill, North Carolina, USA
| | - Shahid Karim
- Center for Molecular and Cellular Biosciences, Department of Cell and Molecular Biology, School of Biological, Environmental, and Earth Sciences, The University of Southern Mississippi, Hattiesburg, Mississippi, USA
| | - Onyinye I Iweala
- Division of Allergy, Immunology and Rheumatology, Thurston Arthritis Research Center, University of North Carolina, Chapel Hill, North Carolina, USA.,UNC Food Allergy Initiative, Department of Pediatrics, University of North Carolina, Chapel Hill, North Carolina, USA
| | - Shivangi Choudhary
- Division of Allergy, Immunology and Rheumatology, Thurston Arthritis Research Center, University of North Carolina, Chapel Hill, North Carolina, USA
| | - Gary Crispell
- Center for Molecular and Cellular Biosciences, Department of Cell and Molecular Biology, School of Biological, Environmental, and Earth Sciences, The University of Southern Mississippi, Hattiesburg, Mississippi, USA
| | - Surendra Raj Sharma
- Center for Molecular and Cellular Biosciences, Department of Cell and Molecular Biology, School of Biological, Environmental, and Earth Sciences, The University of Southern Mississippi, Hattiesburg, Mississippi, USA
| | - Claire T Addison
- Division of Allergy, Immunology and Rheumatology, Thurston Arthritis Research Center, University of North Carolina, Chapel Hill, North Carolina, USA
| | - Mike Kulis
- UNC Food Allergy Initiative, Department of Pediatrics, University of North Carolina, Chapel Hill, North Carolina, USA
| | - Brian H Herrin
- Department of Diagnostic Medicine and Pathobiology, Kansas State University, Manhattan, Kansas, USA
| | - Susan E Little
- Department of Veterinary Pathobiology, Oklahoma State University, Stillwater, Oklahoma, USA
| | - Scott P Commins
- Division of Allergy, Immunology and Rheumatology, Thurston Arthritis Research Center, University of North Carolina, Chapel Hill, North Carolina, USA.,UNC Food Allergy Initiative, Department of Pediatrics, University of North Carolina, Chapel Hill, North Carolina, USA
| |
Collapse
|
33
|
Tick-human interactions: from allergic klendusity to the α-Gal syndrome. Biochem J 2021; 478:1783-1794. [PMID: 33988703 DOI: 10.1042/bcj20200915] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2021] [Revised: 04/06/2021] [Accepted: 04/21/2021] [Indexed: 11/17/2022]
Abstract
Ticks and the pathogens they transmit, including bacteria, viruses, protozoa, and helminths, constitute a growing burden for human and animal health worldwide. The ability of some animal species to acquire resistance to blood-feeding by ticks after a single or repeated infestation is known as acquired tick resistance (ATR). This resistance has been associated to tick-specific IgE response, the generation of skin-resident memory CD4+ T cells, basophil recruitment, histamine release, and epidermal hyperplasia. ATR has also been associated with protection to tick-borne tularemia through allergic klendusity, a disease-escaping ability produced by the development of hypersensitivity to an allergen. In addition to pathogen transmission, tick infestation in humans is associated with the α-Gal syndrome (AGS), a type of allergy characterized by an IgE response against the carbohydrate Galα1-3Gal (α-Gal). This glycan is present in tick salivary proteins and on the surface of tick-borne pathogens such as Borrelia burgdorferi and Anaplasma phagocytophilum, the causative agents of Lyme disease and granulocytic anaplasmosis. Most α-Gal-sensitized individuals develop IgE specific against this glycan, but only a small fraction develop the AGS. This review summarizes our current understanding of ATR and its impact on the continuum α-Gal sensitization, allergy, and the AGS. We propose that the α-Gal-specific IgE response in humans is an evolutionary adaptation associated with ATR and allergic klendusity with the trade-off of developing AGS.
Collapse
|
34
|
Binder AM, Commins SP, Altrich ML, Wachs T, Biggerstaff BJ, Beard CB, Petersen LR, Kersh GJ, Armstrong PA. Diagnostic testing for galactose-alpha-1,3-galactose, United States, 2010 to 2018. Ann Allergy Asthma Immunol 2021; 126:411-416.e1. [PMID: 33422649 PMCID: PMC10961706 DOI: 10.1016/j.anai.2020.12.019] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2020] [Revised: 12/13/2020] [Accepted: 12/28/2020] [Indexed: 12/30/2022]
Abstract
BACKGROUND Alpha-gal syndrome (AGS) is an emerging immunoglobulin E (IgE)-mediated allergy to galactose-alpha-1,3-galactose (alpha-gal). The geographic distribution and burden of AGS in the United States are unknown. OBJECTIVE To characterize alpha-gal IgE testing patterns and describe the trends and distribution from 2010 to 2018 in the United States. METHODS This retrospective analysis included all persons tested for alpha-gal IgE antibodies by Viracor-IBT Laboratories (Lee's Summit, Missouri), the primary site of testing in the United States. Data included age and sex of person tested, specimen state of origin, collection date, and result value; persons with at least 1 positive test result (≥0.1 kU/L) were compared with negatives. Proportions tested and with positive test results were calculated using the US Census population estimates. RESULTS Overall, 122,068 specimens from 105,674 persons were tested for alpha-gal IgE during July 1, 2010, to December 31, 2018. Nearly one-third (34,256, 32.4%) had at least 1 positive result. The number of persons receiving positive test results increased 6-fold from 1110 in 2011 to 7798 in 2018. Of those receiving positive test results, mean [SD] age was 46.9 (19.8) years; men were more likely to test positive than women (43.3% vs 26.0%). Arkansas, Virginia, Kentucky, Oklahoma, and Missouri had the highest number of persons who were tested and had a positive result per 100,000 population. CONCLUSION More than 34,000 persons, most presumably symptomatic, have received positive test results for IgE antibodies to alpha-gal, suggesting AGS is an increasingly recognized public health problem. The geographic distribution of persons who tested positive is consistent with exposure to Amblyomma americanum ticks.
Collapse
Affiliation(s)
- Alison M Binder
- Division of Vector-Borne Diseases, National Center for Emerging and Zoonotic Infectious Diseases, Centers for Disease Control and Prevention, Fort Collins, Colorado.
| | - Scott P Commins
- Division of Rheumatology, Allergy, and Immunology, University of North Carolina, Chapel Hill, North Carolina
| | | | | | - Brad J Biggerstaff
- Division of Vector-Borne Diseases, National Center for Emerging and Zoonotic Infectious Diseases, Centers for Disease Control and Prevention, Fort Collins, Colorado
| | - Charles B Beard
- Division of Vector-Borne Diseases, National Center for Emerging and Zoonotic Infectious Diseases, Centers for Disease Control and Prevention, Fort Collins, Colorado
| | - Lyle R Petersen
- Division of Vector-Borne Diseases, National Center for Emerging and Zoonotic Infectious Diseases, Centers for Disease Control and Prevention, Fort Collins, Colorado
| | - Gilbert J Kersh
- Division of Vector-Borne Diseases, National Center for Emerging and Zoonotic Infectious Diseases, Centers for Disease Control and Prevention, Fort Collins, Colorado
| | - Paige A Armstrong
- Division of Vector-Borne Diseases, National Center for Emerging and Zoonotic Infectious Diseases, Centers for Disease Control and Prevention, Fort Collins, Colorado
| |
Collapse
|
35
|
Iweala OI, Choudhary SK, Addison CT, Commins SP. T and B Lymphocyte Transcriptional States Differentiate between Sensitized and Unsensitized Individuals in Alpha-Gal Syndrome. Int J Mol Sci 2021; 22:ijms22063185. [PMID: 33804792 PMCID: PMC8003943 DOI: 10.3390/ijms22063185] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2021] [Revised: 03/08/2021] [Accepted: 03/17/2021] [Indexed: 12/12/2022] Open
Abstract
The mechanisms of pathogenesis driving alpha-gal syndrome (AGS) are not fully understood. Differences in immune gene expression between AGS individuals and non-allergic controls may illuminate molecular pathways and targets critical for AGS development. We performed immune expression profiling with RNA from the peripheral blood mononuclear cells (PBMCs) of seven controls, 15 AGS participants, and two participants sensitized but not allergic to alpha-gal using the NanoString nCounter PanCancer immune profiling panel, which includes 770 genes from 14 different cell types. The top differentially expressed genes (DEG) between AGS subjects and controls included transcription factors regulating immune gene expression, such as the NFκB pathway (NFKBIA, NFKB2, REL), antigen presentation molecules, type 2/allergic immune responses, itch, and allergic dermatitis. The differential expression of genes linked to T and B cell function was also identified, including transcription factor BCL-6, markers of antigen experience (CD44) and memory (CD27), chemokine receptors (CXCR3, CXCR6), and regulators of B-cell proliferation, cell cycle entry and immunoglobulin production (CD70). The PBMCs from AGS subjects also had increased TNF and IFN-gamma mRNA expression compared to controls. AGS is associated with a distinct gene expression profile in circulating PBMCs. DEGs related to antigen presentation, antigen-experienced T-cells, and type 2 immune responses may promote the development of alpha-gal specific IgE and the maintenance of AGS.
Collapse
Affiliation(s)
- Onyinye I. Iweala
- Department of Pediatrics, University of North Carolina Food Allergy Initiative, Division of Allergy, Immunology and Rheumatology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA; (S.K.C.); (C.T.A.); (S.P.C.)
- Thurston Arthritis Research Center, Division of Rheumatology, Allergy, and Immunology, Department of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
- Correspondence:
| | - Shailesh K. Choudhary
- Department of Pediatrics, University of North Carolina Food Allergy Initiative, Division of Allergy, Immunology and Rheumatology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA; (S.K.C.); (C.T.A.); (S.P.C.)
- Thurston Arthritis Research Center, Division of Rheumatology, Allergy, and Immunology, Department of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Claire T. Addison
- Department of Pediatrics, University of North Carolina Food Allergy Initiative, Division of Allergy, Immunology and Rheumatology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA; (S.K.C.); (C.T.A.); (S.P.C.)
- Thurston Arthritis Research Center, Division of Rheumatology, Allergy, and Immunology, Department of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Scott P. Commins
- Department of Pediatrics, University of North Carolina Food Allergy Initiative, Division of Allergy, Immunology and Rheumatology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA; (S.K.C.); (C.T.A.); (S.P.C.)
- Thurston Arthritis Research Center, Division of Rheumatology, Allergy, and Immunology, Department of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| |
Collapse
|
36
|
Richards NE, Richards RD. Alpha-Gal Allergy as a Cause of Intestinal Symptoms in a Gastroenterology Community Practice. South Med J 2021; 114:169-173. [PMID: 33655311 DOI: 10.14423/smj.0000000000001223] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
OBJECTIVES Immunoglobulin E (IgE) to galactose-α-1,3-galactose (alpha-gal) is a recently appreciated cause of allergic reactions to mammalian meat and dairy. In eastern North America Lone Star tick bites are the dominant mode of sensitization. Classically the alpha-gal syndrome manifests with urticaria, gastrointestinal symptoms, and/or anaphylaxis, but increasingly there are reports of isolated gastrointestinal symptoms without other common allergic manifestations. The objective of this retrospective study was to determine the frequency of IgE to alpha-gal in patients presenting with unexplained gastrointestinal symptoms to a community gastroenterology practice, and to evaluate the symptom response to the removal of mammalian products from the diet in alpha-gal-positive individuals. METHODS An electronic medical record database was used to identify patients with alpha-gal IgE laboratory testing performed within the past 4 years. These charts were reviewed for alpha-gal test results, abdominal pain, diarrhea, nausea and vomiting, hives, bronchospasm, diagnosis of irritable bowel syndrome, postprandial exacerbation of symptoms, meat exacerbation of symptoms, patient recall of tick bite, other simultaneous gastrointestinal tract diagnoses, and clinical improvement with mammalian food product avoidance. RESULTS A total of 1112 adult patients underwent alpha-gal IgE testing and 359 (32.3%) were positive. Gastrointestinal symptoms were similar in those positive and negative for alpha-gal seroreactivity. Of the 359 alpha-gal-positive patients, 122 had follow-up data available and 82.0% of these improved on a diet free of mammalian products. Few patients reported hives (3.9%) or bronchospasm (2.2%). Serum alpha-gal IgE titers ranged from 0.1 to >100 kU/L, with an average of 3.43 kU/L and a median of 0.94 kU/L. CONCLUSIONS Clinicians practicing in the region of the Lone Star tick habitat need to be aware that patients with IgE to alpha-gal can manifest with isolated abdominal pain and diarrhea, and these patients respond well to dietary exclusion of mammalian products.
Collapse
|
37
|
Mittermann I, Dzoro S, Gattinger P, Botha M, Basera W, Facey-Thomas HE, Gaunt B, Genuneit J, Gray CL, Hlela C, Flicker S, Lunjani N, Mankahla A, Ramjith J, Valenta R, Levin ME. Molecular IgE sensitization profiles of urban and rural children in South Africa. Pediatr Allergy Immunol 2021; 32:234-241. [PMID: 32969537 DOI: 10.1111/pai.13377] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/16/2020] [Revised: 09/01/2020] [Accepted: 09/10/2020] [Indexed: 12/27/2022]
Abstract
BACKGROUND Allergens can act as disease-triggering factors in atopic dermatitis (AD) patients. The aim of the study was to elucidate the molecular IgE sensitization profile in children with and without AD living in urban and rural areas of South Africa. METHODS Specific IgE reactivity was assessed in 166 Black South African children aged 9-38 months using a comprehensive panel of microarrayed allergens. According to clinical characterization children fell in four groups, urban AD cases (n = 32), urban controls (non-AD, n = 40), rural cases (n = 49) and rural controls (non-AD, n = 45). RESULTS IgE reactivity to at least one of the allergens was detected in 94% of urban and 86% of rural AD children. House dust mite (HDM; 81% urban, 74% rural AD) and animal-derived allergens (50% urban, 31% rural AD) were the most frequently recognized respiratory allergens, whereas IgE to pollen allergens was almost absent. Urban AD children showed significantly higher frequency of IgE reactivity (50%) to mouse lipocalin, Mus m 1, than rural AD children (12%). The most frequently recognized food allergens were from egg (63% urban, 43% rural AD), peanut (31% vs 41%), and soybean (22% vs 27%), whereas milk sensitization was rare. α-gal-specific IgE almost exclusively occurred in rural children (AD: 14%, non-AD: 49%). CONCLUSION Molecular allergy diagnosis detects frequent IgE sensitization to HDM, animal but not pollen allergens and to egg, peanut, and soy, but not milk allergens in African AD children. Urban AD children reacted more often to Mus m 1, whereas α-gal sensitization is more common in rural children likely due to parasite exposure.
Collapse
Affiliation(s)
- Irene Mittermann
- Division of Immunopathology, Department of Pathophysiology and Allergy Research, Center for Pathophysiology, Infectiology and Immunology, Medical University of Vienna, Vienna, Austria
| | - Sheron Dzoro
- Division of Immunopathology, Department of Pathophysiology and Allergy Research, Center for Pathophysiology, Infectiology and Immunology, Medical University of Vienna, Vienna, Austria
| | - Pia Gattinger
- Division of Immunopathology, Department of Pathophysiology and Allergy Research, Center for Pathophysiology, Infectiology and Immunology, Medical University of Vienna, Vienna, Austria
| | - Maresa Botha
- Division of Paediatric Allergy, Department of Paediatrics, University of Cape Town, Cape Town, South Africa
| | - Wisdom Basera
- School of Public Health and Family Medicine, Faculty of Health Sciences, University of Cape Town, Cape Town, South Africa
| | - Heidi E Facey-Thomas
- Division of Paediatric Allergy, Department of Paediatrics, University of Cape Town, Cape Town, South Africa
| | - Ben Gaunt
- Eastern Cape Department of Health, Zithulele Hospital, Mqanduli, South Africa.,Institute of Epidemiology and Medical Biometry, Ulm University, Ulm, Germany
| | - Jon Genuneit
- Pediatric Epidemiology, Department of Pediatrics, Medical Faculty, Leipzig University, Leipzig, Germany
| | - Claudia L Gray
- School of Public Health and Family Medicine, Faculty of Health Sciences, University of Cape Town, Cape Town, South Africa
| | - Carol Hlela
- Department of Dermatology, University of Cape Town, Cape Town, South Africa
| | - Sabine Flicker
- Division of Immunopathology, Department of Pathophysiology and Allergy Research, Center for Pathophysiology, Infectiology and Immunology, Medical University of Vienna, Vienna, Austria
| | - Nonhlanhla Lunjani
- Division of Paediatric Allergy, Department of Paediatrics, University of Cape Town, Cape Town, South Africa
| | - Avumile Mankahla
- Eastern Cape Department of Health, Zithulele Hospital, Mqanduli, South Africa
| | - Jordache Ramjith
- Department for Health Evidence, Biostatistics Research Group, Radboud Institute for Health Sciences, Radboud University Medical Center, Nijmegen, The Netherlands.,Division of Epidemiology & Biostatistics, School of Public Health & Family Medicine, University of Cape Town, Cape Town, South Africa
| | - Rudolf Valenta
- Division of Immunopathology, Department of Pathophysiology and Allergy Research, Center for Pathophysiology, Infectiology and Immunology, Medical University of Vienna, Vienna, Austria.,NRC Institute of Immunology FMBA of Russia, Moscow, Russia.,Laboratory of Immunopathology, Department of Clinical Immunology and Allergy, Sechenov First Moscow State Medical University, Moscow, Russia.,Karl Landsteiner University for Health Sciences, Krems, Austria
| | - Michael E Levin
- Division of Paediatric Allergy, Department of Paediatrics, University of Cape Town, Cape Town, South Africa.,INVIVO Planetary Health Network, Research subgroup of the Worldwide Universities Network
| |
Collapse
|
38
|
Pacheco I, Fernández de Mera IG, Feo Brito F, Gómez Torrijos E, Villar M, Contreras M, Lima-Barbero JF, Doncel-Pérez E, Cabezas-Cruz A, Gortázar C, de la Fuente J. Characterization of the anti-α-Gal antibody profile in association with Guillain-Barré syndrome, implications for tick-related allergic reactions. Ticks Tick Borne Dis 2021; 12:101651. [PMID: 33465663 DOI: 10.1016/j.ttbdis.2021.101651] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2020] [Revised: 10/01/2020] [Accepted: 01/05/2021] [Indexed: 01/13/2023]
Abstract
Humans evolved by losing the capacity to synthesize the glycan Galα1-3Galβ1-(3)4GlcNAc-R (α-Gal), which resulted in the capacity to develop a protective response mediated by anti-α-Gal IgM/IgG antibodies against pathogens containing this modification on membrane proteins. As an evolutionary trade-off, humans can develop the alpha-Gal syndrome (AGS), a recently diagnosed disease mainly associated with allergic reactions to mammalian meat consumption. The etiology of the AGS is the exposure to tick bites and the IgE antibody response against α-Gal-containing glycoproteins and glycolipids. The objective of this study was to characterize the anti-α-Gal antibody response in association with the immune-mediated peripheral neuropathy, Guillain-Barré syndrome (GBS), and compare it with different factors known to modulate the antibody response to α-Gal such as exposure to tick bites and development of allergic reactions in response to tick bites. The results showed a significant decrease in the IgM/IgG response to α-Gal in GBS patients when compared to healthy individuals. In contrast, the IgM/IgG levels to α-Gal did not change in patients with allergic reactions to tick bites. The IgE response was not affected in GBS patients, but as expected, the IgE levels significantly increased in individuals exposed to tick bites and patients with tick-associated allergies. These results suggest that the immune pathways of anti-α-Gal IgM/IgG and IgE production are independent. Further studies should consider the susceptibility to allergic reactions to tick bites in GBS patients.
Collapse
Affiliation(s)
- Iván Pacheco
- SaBio, Instituto de Investigación en Recursos Cinegéticos IREC-CSIC-UCLM-JCCM, Ronda de Toledo s/n, 13005, Ciudad Real, Spain
| | - Isabel G Fernández de Mera
- SaBio, Instituto de Investigación en Recursos Cinegéticos IREC-CSIC-UCLM-JCCM, Ronda de Toledo s/n, 13005, Ciudad Real, Spain
| | - Francisco Feo Brito
- Allergy Section, General University Hospital of Ciudad Real, Calle Obispo Rafael Torija s/n, 13005, Ciudad Real, Spain
| | - Elisa Gómez Torrijos
- Allergy Section, General University Hospital of Ciudad Real, Calle Obispo Rafael Torija s/n, 13005, Ciudad Real, Spain
| | - Margarita Villar
- SaBio, Instituto de Investigación en Recursos Cinegéticos IREC-CSIC-UCLM-JCCM, Ronda de Toledo s/n, 13005, Ciudad Real, Spain; Biochemistry Section, Faculty of Science and Chemical Technologies, and Regional Centre for Biomedical Research (CRIB), University of Castilla-La Mancha, 13071, Ciudad Real, Spain
| | - Marinela Contreras
- Interdisciplinary Laboratory of Clinical Analysis, Interlab-UMU, Regional Campus of International Excellence Campus Mare Nostrum, University of Murcia, Espinardo, 30100, Murcia, Spain
| | - José Francisco Lima-Barbero
- SaBio, Instituto de Investigación en Recursos Cinegéticos IREC-CSIC-UCLM-JCCM, Ronda de Toledo s/n, 13005, Ciudad Real, Spain
| | - Ernesto Doncel-Pérez
- Laboratorio de Química Neuro-Regenerativa, Hospital Nacional de Parapléjicos, Servicio de Salud de Castilla La Mancha (SESCAM), Finca La Peraleda s/n, 45071, Toledo, Spain
| | - Alejandro Cabezas-Cruz
- UMR BIPAR, INRAE, ANSES, Ecole Nationale Vétérinaire d'Alfort, Université Paris-Est, Maisons-Alfort, 94700, France
| | - Christian Gortázar
- SaBio, Instituto de Investigación en Recursos Cinegéticos IREC-CSIC-UCLM-JCCM, Ronda de Toledo s/n, 13005, Ciudad Real, Spain
| | - José de la Fuente
- SaBio, Instituto de Investigación en Recursos Cinegéticos IREC-CSIC-UCLM-JCCM, Ronda de Toledo s/n, 13005, Ciudad Real, Spain; Department of Veterinary Pathobiology, Center for Veterinary Health Sciences, Oklahoma State University, Stillwater, OK, 74078, USA.
| |
Collapse
|
39
|
Abstract
PURPOSE OF REVIEW Alpha-gal syndrome encompasses a constellation of symptoms associated with immune-mediated hypersensitivity responses to galactose-alpha-1,3-galactose (alpha-gal). The purpose of this review is to discuss our current understanding of the etiology, clinical symptoms, natural history, epidemiology, and management of alpha-gal syndrome. RECENT FINDINGS Sensitization to alpha-gal is associated with bites from ectoparasites like the lone star tick Amblyomma americanum. Allergic reactions in alpha-gal syndrome are often delayed and inconsistent. The magnitude of the allergic response depends on co-factors like exercise and alcohol consumption and the amount of alpha-gal and fat present in the food. Assaying alpha-gal-specific IgE in the serum is the primary diagnostic test used to confirm the allergy. Long-term management of the condition involves avoidance of both mammalian food products and tick bites. SUMMARY Alpha-gal syndrome disrupts the current paradigm for understanding food allergy. Exposure to an ectoparasite is critical for the development of specific IgE antibodies underlying sensitization, and allergic reactions depend on the activation of mast cells and basophils sensitized with IgE against a carbohydrate rather than a protein. Research in this field may lead to the development of improved diagnostic and therapeutic tools that can revolutionize the management of patients with alpha-gal syndrome.
Collapse
|
40
|
de la Fuente J, Urra JM, Contreras M, Pacheco I, Ferreras-Colino E, Doncel-Pérez E, Fernández de Mera IG, Villar M, Cabrera CM, Gómez Hernando C, Vargas Baquero E, Blanco García J, Rodríguez Gómez J, Velayos Galán A, Feo Brito F, Gómez Torrijos E, Cabezas-Cruz A, Gortázar C. A dataset for the analysis of antibody response to glycan alpha-Gal in individuals with immune-mediated disorders. F1000Res 2020; 9:1366. [PMID: 34408852 PMCID: PMC8361808 DOI: 10.12688/f1000research.27495.1] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 11/19/2020] [Indexed: 04/04/2024] Open
Abstract
Humans evolved by losing the capacity to synthesize the glycan Galα1-3Galβ1-(3)4GlcNAc-R (α-Gal), which resulted in the development of a protective response mediated by anti-α-Gal IgM/IgG/IgA antibodies against pathogens containing this modification on membrane proteins. As an evolutionary trade-off, humans can develop the alpha-Gal syndrome (AGS), a recently diagnosed disease mediated by anti-α-Gal IgE antibodies and associated with allergic reactions to mammalian meat consumption and tick bites. However, the anti-α-Gal antibody response may be associated with other immune-mediated disorders such as those occurring in patients with COVID-19 and Guillain-Barré syndrome (GBS). Here, we provide a dataset (209 entries) on the IgE/IgM/IgG/IgA anti-α-Gal antibody response in healthy individuals and patients diagnosed with AGS, tick-borne allergies, GBS and COVID-19. The data allows correlative analyses of the anti-α-Gal antibody response with factors such as patient and clinical characteristics, record of tick bites, blood group, age and sex. These analyses could provide insights into the role of anti-α-Gal antibody response in disease symptomatology and possible protective mechanisms.
Collapse
Affiliation(s)
- José de la Fuente
- SaBio, Instituto de Investigación en Recursos Cinegéticos IREC, Ciudad Real, 13005, Spain
- Department of Veterinary Pathobiology, Center for Veterinary Health Sciences, Oklahoma State University, Stillwater, OK, 74078, USA
| | - José Miguel Urra
- Immunology Department, Hospital General Universitario de Ciudad Real, Ciudad Real, 13005, Spain
- School of Medicine, Universidad de Castilla la Mancha (UCLM), Ciudad Real, 13005, Spain
| | - Marinela Contreras
- Interdisciplinary Laboratory of Clinical Analysis, Interlab-UMU, Regional Campus of International Excellence Campus Mare Nostrum, University of Murcia, Murcia, 30100, Spain
| | - Iván Pacheco
- SaBio, Instituto de Investigación en Recursos Cinegéticos IREC, Ciudad Real, 13005, Spain
| | - Elisa Ferreras-Colino
- SaBio, Instituto de Investigación en Recursos Cinegéticos IREC, Ciudad Real, 13005, Spain
| | - Ernesto Doncel-Pérez
- Hospital Nacional de Parapléjicos, Servicio de Salud de Castilla La Mancha, Toledo, 45071, Spain
| | | | - Margarita Villar
- SaBio, Instituto de Investigación en Recursos Cinegéticos IREC, Ciudad Real, 13005, Spain
- Biochemistry Section, Faculty of Science and Chemical Technologies, and Regional Centre for Biomedical Research (CRIB), University of Castilla-La Mancha, Ciudad Real, 13071, Spain
| | - Carmen M. Cabrera
- Immunology Department, Hospital General Universitario de Ciudad Real, Ciudad Real, 13005, Spain
- School of Medicine, Universidad de Castilla la Mancha (UCLM), Ciudad Real, 13005, Spain
| | | | - Eduardo Vargas Baquero
- Hospital Nacional de Parapléjicos, Servicio de Salud de Castilla La Mancha, Toledo, 45071, Spain
| | - Javier Blanco García
- Hospital Nacional de Parapléjicos, Servicio de Salud de Castilla La Mancha, Toledo, 45071, Spain
| | - Javier Rodríguez Gómez
- Hospital Nacional de Parapléjicos, Servicio de Salud de Castilla La Mancha, Toledo, 45071, Spain
| | - Alberto Velayos Galán
- Servicio de Neurología, Hospital General La Mancha Centro, Alcázar de San Juan, 13600, Spain
| | - Francisco Feo Brito
- Allergy Section, General University Hospital of Ciudad Real, Ciudad Real, 13005, Spain
| | - Elisa Gómez Torrijos
- Allergy Section, General University Hospital of Ciudad Real, Ciudad Real, 13005, Spain
| | - Alejandro Cabezas-Cruz
- UMR BIPAR, INRAE, ANSES, Ecole Nationale Vétérinaire d'Alfort, Université Paris-Est, Maisons-Alfort, 94700, France
| | - Christian Gortázar
- SaBio, Instituto de Investigación en Recursos Cinegéticos IREC, Ciudad Real, 13005, Spain
| |
Collapse
|
41
|
de la Fuente J, Urra JM, Contreras M, Pacheco I, Ferreras-Colino E, Doncel-Pérez E, Fernández de Mera IG, Villar M, Cabrera CM, Gómez Hernando C, Vargas Baquero E, Blanco García J, Rodríguez Gómez J, Velayos Galán A, Feo Brito F, Gómez Torrijos E, Cabezas-Cruz A, Gortázar C. A dataset for the analysis of antibody response to glycan alpha-Gal in individuals with immune-mediated disorders. F1000Res 2020; 9:1366. [PMID: 34408852 PMCID: PMC8361808 DOI: 10.12688/f1000research.27495.2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 05/21/2021] [Indexed: 01/01/2023] Open
Abstract
Humans evolved by losing the capacity to synthesize the glycan Galα1-3Galβ1-(3)4GlcNAc-R (α-Gal), which resulted in the development of a protective response mediated by anti-α-Gal IgM/IgG/IgA antibodies against pathogens containing this modification on membrane proteins. As an evolutionary trade-off, humans can develop the alpha-Gal syndrome (AGS), a recently diagnosed disease mediated by anti-α-Gal IgE antibodies and associated with allergic reactions to mammalian meat consumption and tick bites. However, the anti-α-Gal antibody response may be associated with other immune-mediated disorders such as those occurring in patients with COVID-19 and Guillain-Barré syndrome (GBS). Here, we provide a dataset (209 entries) on the IgE/IgM/IgG/IgA anti-α-Gal antibody response in healthy individuals and patients diagnosed with AGS, tick-borne allergies, GBS and COVID-19. The data allows correlative analyses of the anti-α-Gal antibody response with factors such as patient and clinical characteristics, record of tick bites, blood group, age and sex. These analyses could provide insights into the role of anti-α-Gal antibody response in disease symptomatology and possible protective mechanisms.
Collapse
Affiliation(s)
- José de la Fuente
- SaBio, Instituto de Investigación en Recursos Cinegéticos IREC, Ciudad Real, 13005, Spain
- Department of Veterinary Pathobiology, Center for Veterinary Health Sciences, Oklahoma State University, Stillwater, OK, 74078, USA
| | - José Miguel Urra
- Immunology Department, Hospital General Universitario de Ciudad Real, Ciudad Real, 13005, Spain
- School of Medicine, Universidad de Castilla la Mancha (UCLM), Ciudad Real, 13005, Spain
| | - Marinela Contreras
- Interdisciplinary Laboratory of Clinical Analysis, Interlab-UMU, Regional Campus of International Excellence Campus Mare Nostrum, University of Murcia, Murcia, 30100, Spain
| | - Iván Pacheco
- SaBio, Instituto de Investigación en Recursos Cinegéticos IREC, Ciudad Real, 13005, Spain
| | - Elisa Ferreras-Colino
- SaBio, Instituto de Investigación en Recursos Cinegéticos IREC, Ciudad Real, 13005, Spain
| | - Ernesto Doncel-Pérez
- Hospital Nacional de Parapléjicos, Servicio de Salud de Castilla La Mancha, Toledo, 45071, Spain
| | | | - Margarita Villar
- SaBio, Instituto de Investigación en Recursos Cinegéticos IREC, Ciudad Real, 13005, Spain
- Biochemistry Section, Faculty of Science and Chemical Technologies, and Regional Centre for Biomedical Research (CRIB), University of Castilla-La Mancha, Ciudad Real, 13071, Spain
| | - Carmen M. Cabrera
- Immunology Department, Hospital General Universitario de Ciudad Real, Ciudad Real, 13005, Spain
- School of Medicine, Universidad de Castilla la Mancha (UCLM), Ciudad Real, 13005, Spain
| | | | - Eduardo Vargas Baquero
- Hospital Nacional de Parapléjicos, Servicio de Salud de Castilla La Mancha, Toledo, 45071, Spain
| | - Javier Blanco García
- Hospital Nacional de Parapléjicos, Servicio de Salud de Castilla La Mancha, Toledo, 45071, Spain
| | - Javier Rodríguez Gómez
- Hospital Nacional de Parapléjicos, Servicio de Salud de Castilla La Mancha, Toledo, 45071, Spain
| | - Alberto Velayos Galán
- Servicio de Neurología, Hospital General La Mancha Centro, Alcázar de San Juan, 13600, Spain
| | - Francisco Feo Brito
- Allergy Section, General University Hospital of Ciudad Real, Ciudad Real, 13005, Spain
| | - Elisa Gómez Torrijos
- Allergy Section, General University Hospital of Ciudad Real, Ciudad Real, 13005, Spain
| | - Alejandro Cabezas-Cruz
- UMR BIPAR, INRAE, ANSES, Ecole Nationale Vétérinaire d'Alfort, Université Paris-Est, Maisons-Alfort, 94700, France
| | - Christian Gortázar
- SaBio, Instituto de Investigación en Recursos Cinegéticos IREC, Ciudad Real, 13005, Spain
| |
Collapse
|
42
|
Lieberman JA, Camargo CA, Pistiner M, Wang J. Pediatrician perspectives on symptom presentation and treatment of acute allergic reactions. Ann Allergy Asthma Immunol 2020; 126:273-277. [PMID: 33232828 DOI: 10.1016/j.anai.2020.11.010] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2020] [Revised: 11/13/2020] [Accepted: 11/17/2020] [Indexed: 10/22/2022]
Abstract
BACKGROUND Anaphylaxis remains difficult to diagnose and epinephrine underused. OBJECTIVE To better understand the thoughts of pediatricians regarding when acute allergic reactions constitute anaphylaxis and when epinephrine should be given by conducting an anonymous online survey. METHODS The survey consisted of 8 case-based scenarios of allergic reactions with the following 2 questions on each case: (1) does this case represent anaphylaxis? and (2) if this patient immediately presented to you, would you treat the patient with epinephrine during the reaction? RESULTS A total of 1001 responses were analyzed. When assessing all cases combined, there was discordance in whether a case represented anaphylaxis and administration of epinephrine was warranted in 8% of the cases. An average of 5% of all the respondents suggested that the case represented anaphylaxis but would not warrant epinephrine, whereas an average of 3% suggested that the case did not represent anaphylaxis but that epinephrine was warranted. CONCLUSION The results of this survey reveal that there is discordance among pediatricians on when an allergic reaction is considered anaphylaxis and when epinephrine is warranted. These data highlight the need for continued improvement of the definition of anaphylaxis and continued need for education regarding the diagnosis and management of anaphylaxis.
Collapse
Affiliation(s)
- Jay A Lieberman
- Department of Pediatrics, The University of Tennessee Health Science Center, Memphis, Tennessee; Division of Pulmonology, Allergy, and Immunology, Department of Pediatrics, Le Bonheur Children's Hospital, Memphis, Tennessee.
| | - Carlos A Camargo
- Department of Emergency Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts
| | - Michael Pistiner
- Division of Allergy and Immunology, Department of Pediatrics, MassGeneral Hospital for Children, Harvard Medical School, Boston, Massachusetts
| | - Julie Wang
- Division of Allergy and Immunology, Department of Pediatrics, The Elliot and Roslyn Jaffe Food Allergy Institute, Icahn School of Medicine at Mount Sinai, New York, New York
| |
Collapse
|
43
|
Hils M, Wölbing F, Hilger C, Fischer J, Hoffard N, Biedermann T. The History of Carbohydrates in Type I Allergy. Front Immunol 2020; 11:586924. [PMID: 33163001 PMCID: PMC7583601 DOI: 10.3389/fimmu.2020.586924] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2020] [Accepted: 09/07/2020] [Indexed: 12/20/2022] Open
Abstract
Although first described decades ago, the relevance of carbohydrate specific antibodies as mediators of type I allergy had not been recognized until recently. Previously, allergen specific IgE antibodies binding to carbohydrate epitopes were considered to demonstrate a clinically irrelevant cross-reactivity. However, this changed following the discovery of type I allergies specifically mediated by oligosaccharide structures. Especially the emerging understanding of red meat allergy characterized by IgE directed to the oligosaccharide alpha-gal showed that carbohydrate-mediated reactions can result in life threatening systemic anaphylaxis which in contrast to former assumptions proves a high clinical relevance of some carbohydrate allergens. Within the scope of this review article, we illustrate the historical development of carbohydrate-allergen-research, reaching from only diagnostically relevant crossreactive-carbohydrate-determinants to clinically important antigens mediating type I allergy. Focusing on clinical and immunological features of the alpha-gal syndrome, we highlight the discovery of oligosaccharides as potentially highly immunogenic antigens and mediators of type I allergy, report what is known about the route of sensitization and the immunological mechanisms involved in sensitization and elicitation phase of allergic responses as well as currently available diagnostic and therapeutic tools. Finally, we briefly report on carbohydrates being involved in type I allergies different from alpha-gal.
Collapse
Affiliation(s)
- Miriam Hils
- Department of Dermatology and Allergy Biederstein, School of Medicine, Technical University of Munich, Munich, Germany
| | - Florian Wölbing
- Department of Dermatology and Allergy Biederstein, School of Medicine, Technical University of Munich, Munich, Germany
| | - Christiane Hilger
- Department of Infection and Immunity, Luxembourg Institute of Health (LIH), Esch-sur-Alzette, Luxembourg
| | - Jörg Fischer
- Department of Dermatology, Faculty of Medicine, Eberhard Karls University Tübingen, Tübingen, Germany
| | - Nils Hoffard
- Department of Dermatology and Allergy Biederstein, School of Medicine, Technical University of Munich, Munich, Germany
| | - Tilo Biedermann
- Department of Dermatology and Allergy Biederstein, School of Medicine, Technical University of Munich, Munich, Germany
- Clinical Unit Allergology, Helmholtz Zentrum München, German Research Center for Environmental 10 Health GmbH, Neuherberg, Germany
| |
Collapse
|
44
|
de la Fuente J, Cabezas-Cruz A, Pacheco I. Alpha-gal syndrome: challenges to understanding sensitization and clinical reactions to alpha-gal. Expert Rev Mol Diagn 2020; 20:905-911. [PMID: 32628573 DOI: 10.1080/14737159.2020.1792781] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
INTRODUCTION The α-Gal syndrome (AGS) is a type of allergy characterized by an IgE antibody response against the carbohydrate Galα1-3Galβ1-4GlcNAc-R (α-Gal). Tick bites are recognized as the most important cause of anti-α-Gal IgE antibody increase in humans. Several risk factors have been associated with the development of AGS, but their integration into a standardized disease diagnosis has proven challenging. AREAS COVERED Herein we discuss the current AGS diagnosis based on anti-α-Gal IgE titers and propose an algorithm that considers all co-factors in the clinical history of α-Gal-sensitized patients to be incorporated into the AGS diagnosis. The need for identification of host-derived gene markers and tick-derived proteins for the diagnosis of the AGS is also discussed. EXPERT OPINION The current AGS diagnosis based on anti-α-Gal IgE titers has limitations because not all patients sensitized to α-Gal and with anti-α-Gal IgE antibodies higher than the cutoff (0.35 IU/ml) develop anaphylaxis to mammalian meat and AGS. The basophil activation test proposed to differentiate between patients with AGS and asymptomatic α-Gal sensitization cannot be easily implemented as a generalized clinical test. In coming years, the algorithm proposed here could be used in a mobile application for easier AGS diagnosis in the clinical practice.
Collapse
Affiliation(s)
- José de la Fuente
- SaBio. Instituto De Investigación En Recursos Cinegéticos IREC-CSIC-UCLM-JCCM , Ciudad Real, Spain.,Department of Veterinary Pathobiology, Center for Veterinary Health Sciences, Oklahoma State University , Stillwater OK, USA
| | - Alejandro Cabezas-Cruz
- UMR BIPAR, INRAE, ANSES, Ecole Nationale Vétérinaire d'Alfort, Université Paris-Est , Maisons-Alfort, France
| | - Iván Pacheco
- SaBio. Instituto De Investigación En Recursos Cinegéticos IREC-CSIC-UCLM-JCCM , Ciudad Real, Spain
| |
Collapse
|
45
|
Commins SP. Diagnosis & management of alpha-gal syndrome: lessons from 2,500 patients. Expert Rev Clin Immunol 2020; 16:667-677. [PMID: 32571129 PMCID: PMC8344025 DOI: 10.1080/1744666x.2020.1782745] [Citation(s) in RCA: 91] [Impact Index Per Article: 18.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2020] [Accepted: 06/11/2020] [Indexed: 10/24/2022]
Abstract
INTRODUCTION Alpha-gal Syndrome (AGS) is a unique allergy to non-primate mammalian meat (and derived-products) that is associated with tick bites and is due to a specific IgE antibody to the oligosaccharide galactose-α-1,3-galactose (alpha-gal). AGS has many novel features that broaden the paradigm of food allergy, including that reactions are delayed 3-6 hours after exposure and patients have frequently tolerated red meat for many years prior to the development of allergic reactions. Due to the ubiquitous inclusion of mammal-derived materials in foods, medications, personal products and stabilizing compounds, full avoidance is difficult to achieve. AREAS COVERED This review describes the author's experience with diagnosis, management, and design of appropriate avoidance for patients with AGS and provides clinicians with practical advice for care of these patients. EXPERT OPINION The number of patients with AGS is rising and may have exceeded awareness of the diagnosis amongst healthcare providers. In summarizing experience gained to thus far, we hope to create a resource for identifying and managing this unique allergic syndrome.
Collapse
Affiliation(s)
- Scott P Commins
- Division of Allergy, Immunology and Rheumatology, University of North Carolina School of Medicine, Chapel Hill, North Carolina, USA
| |
Collapse
|
46
|
Kiewiet MBG, Apostolovic D, Starkhammar M, Grundström J, Hamsten C, van Hage M. Clinical and Serological Characterization of the α-Gal Syndrome—Importance of Atopy for Symptom Severity in a European Cohort. THE JOURNAL OF ALLERGY AND CLINICAL IMMUNOLOGY-IN PRACTICE 2020; 8:2027-2034.e2. [DOI: 10.1016/j.jaip.2020.02.016] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/27/2019] [Revised: 02/07/2020] [Accepted: 02/09/2020] [Indexed: 12/16/2022]
|
47
|
Caraballo L, Valenta R, Puerta L, Pomés A, Zakzuk J, Fernandez-Caldas E, Acevedo N, Sanchez-Borges M, Ansotegui I, Zhang L, van Hage M, Abel-Fernández E, Karla Arruda L, Vrtala S, Curin M, Gronlund H, Karsonova A, Kilimajer J, Riabova K, Trifonova D, Karaulov A. The allergenic activity and clinical impact of individual IgE-antibody binding molecules from indoor allergen sources. World Allergy Organ J 2020; 13:100118. [PMID: 32373267 PMCID: PMC7195550 DOI: 10.1016/j.waojou.2020.100118] [Citation(s) in RCA: 40] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2020] [Revised: 03/27/2020] [Accepted: 03/30/2020] [Indexed: 02/07/2023] Open
Abstract
A large number of allergens have been discovered but we know little about their potential to induce inflammation (allergenic activity) and symptoms. Nowadays, the clinical importance of allergens is determined by the frequency and intensity of their IgE antibody binding (allergenicity). This is a rather limited parameter considering the development of experimental allergology in the last 20 years and the criteria that support personalized medicine. Now it is known that some allergens, in addition to their IgE antibody binding properties, can induce inflammation through non IgE mediated pathways, which can increase their allergenic activity. There are several ways to evaluate the allergenic activity, among them the provocation tests, the demonstration of non-IgE mediated pathways of inflammation, case control studies of IgE-binding frequencies, and animal models of respiratory allergy. In this review we have explored the current status of basic and clinical research on allergenic activity of indoor allergens and confirm that, for most of them, this important property has not been investigated. However, during recent years important advances have been made in the field, and we conclude that for at least the following, allergenic activity has been demonstrated: Der p 1, Der p 2, Der p 5 and Blo t 5 from HDMs; Per a 10 from P. americana; Asp f 1, Asp f 2, Asp f 3, Asp f 4 and Asp f 6 from A. fumigatus; Mala s 8 and Mala s 13 from M. sympodialis; Alt a 1 from A. alternata; Pen c 13 from P. chrysogenum; Fel d 1 from cats; Can f 1, Can f 2, Can f 3, Can f 4 and Can f 5 from dogs; Mus m 1 from mice and Bos d 2 from cows. Defining the allergenic activity of other indoor IgE antibody binding molecules is necessary for a precision-medicine-oriented management of allergic diseases.
Collapse
Affiliation(s)
- Luis Caraballo
- Institute for Immunological Research, University of Cartagena, Cartagena, Colombia
- Corresponding author. Institute for Immunological Research, University of Cartagena, Cartagena de Indias, Colombia.
| | - Rudolf Valenta
- Division of Immunopathology, Department of Pathophysiology and Allergy Research, Center for Pathophysiology, Infectiology and Immunology, Medical University of Vienna, Vienna, Austria
- NRC Institute of Immunology FMBA of Russia, Moscow, Russian Federation
- Department of Clinical Immunology and Allergy, Laboratory of Immunopathology, Sechenov First Moscow State Medical University, Moscow, Russia
| | - Leonardo Puerta
- Institute for Immunological Research, University of Cartagena, Cartagena, Colombia
| | - Anna Pomés
- Indoor Biotechnologies, Inc. Charlottesville, VA, USA
| | - Josefina Zakzuk
- Institute for Immunological Research, University of Cartagena, Cartagena, Colombia
| | | | - Nathalie Acevedo
- Institute for Immunological Research, University of Cartagena, Cartagena, Colombia
| | - Mario Sanchez-Borges
- Allergy and Clinical Immunology Department, Centro Médico Docente La Trinidad, Caracas, Venezuela
| | - Ignacio Ansotegui
- Department of Allergy & Immunology Hospital Quironsalud Bizkaia, Bilbao, Spain
| | - Luo Zhang
- Department of Otolaryngology Head and Neck Surgery, Beijing Tongren Hospital, Capital Medical University, Beijing, 100730, China
| | - Marianne van Hage
- Department of Medicine Solna, Division of Immunology and Allergy, Karolinska Institutet and Karolinska University Hospital, Stockholm, Sweden
| | - Eva Abel-Fernández
- Inmunotek, Madrid, Spain and University of South Florida College of Medicine, Tampa, USA
| | - L. Karla Arruda
- Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, SP, Brazil
| | - Susanne Vrtala
- Division of Immunopathology, Department of Pathophysiology and Allergy Research, Center for Pathophysiology, Infectiology and Immunology, Medical University of Vienna, Vienna, Austria
| | - Mirela Curin
- Division of Immunopathology, Department of Pathophysiology and Allergy Research, Center for Pathophysiology, Infectiology and Immunology, Medical University of Vienna, Vienna, Austria
| | - Hans Gronlund
- Department of Clinical Neuroscience, Karolinska Institute, Stockholm, Sweden
| | - Antonina Karsonova
- Department of Clinical Immunology and Allergy, Laboratory of Immunopathology, Sechenov First Moscow State Medical University, Moscow, Russia
| | - Jonathan Kilimajer
- Inmunotek, Madrid, Spain and University of South Florida College of Medicine, Tampa, USA
| | - Ksenja Riabova
- Department of Clinical Immunology and Allergy, Laboratory of Immunopathology, Sechenov First Moscow State Medical University, Moscow, Russia
| | - Daria Trifonova
- Department of Clinical Immunology and Allergy, Laboratory of Immunopathology, Sechenov First Moscow State Medical University, Moscow, Russia
| | - Alexander Karaulov
- Department of Clinical Immunology and Allergy, Laboratory of Immunopathology, Sechenov First Moscow State Medical University, Moscow, Russia
| |
Collapse
|
48
|
Hodžić A, Mateos-Hernández L, Fréalle E, Román-Carrasco P, Alberdi P, Pichavant M, Risco-Castillo V, Le Roux D, Vicogne J, Hemmer W, Auer H, Swoboda I, Duscher GG, de la Fuente J, Cabezas-Cruz A. Infection with Toxocara canis Inhibits the Production of IgE Antibodies to α-Gal in Humans: Towards a Conceptual Framework of the Hygiene Hypothesis? Vaccines (Basel) 2020; 8:E167. [PMID: 32268573 PMCID: PMC7349341 DOI: 10.3390/vaccines8020167] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2020] [Revised: 03/16/2020] [Accepted: 03/29/2020] [Indexed: 02/07/2023] Open
Abstract
α-Gal syndrome (AGS) is a type of anaphylactic reaction to mammalian meat characterized by an immunoglobulin (Ig)E immune response to the oligosaccharide α-Gal (Galα1-3Galβ1-4GlcNAc-R). Tick bites seems to be a prerequisite for the onset of the allergic disease in humans, but the implication of non-tick parasites in α-Gal sensitization has also been deliberated. In the present study, we therefore evaluated the capacity of helminths (Toxocara canis, Ascaris suum, Schistosoma mansoni), protozoa (Toxoplasma gondii), and parasitic fungi (Aspergillus fumigatus) to induce an immune response to α-Gal. For this, different developmental stages of the infectious agents were tested for the presence of α-Gal. Next, the potential correlation between immune responses to α-Gal and the parasite infections was investigated by testing sera collected from patients with AGS and those infected with the parasites. Our results showed that S. mansoni and A. fumigatus produce the terminal α-Gal moieties, but they were not able to induce the production of specific antibodies. By contrast, T. canis, A. suum and T. gondii lack the α-Gal epitope. Furthermore, the patients with T. canis infection had significantly decreased anti-α-Gal IgE levels when compared to the healthy controls, suggesting the potential role of this nematode parasite in suppressing the allergic response to the glycan molecule. This rather intriguing observation is discussed in the context of the 'hygiene hypothesis'. Taken together, our study provides new insights into the relationships between immune responses to α-Gal and parasitic infections. However, further investigations should be undertaken to identify T. canis components with potent immunomodulatory properties and to assess their potential to be used in immunotherapy and control of AGS.
Collapse
Affiliation(s)
- Adnan Hodžić
- Institute of Parasitology, Department of Pathobiology, University of Veterinary Medicine Vienna, 1210 Vienna, Austria
| | - Lourdes Mateos-Hernández
- UMR BIPAR, INRAE, ANSES, Ecole Nationale Vétérinaire d’Alfort, Université Paris-Est, 94706 Maisons-Alfort, France; (L.M.-H.); (D.L.R.)
| | - Emilie Fréalle
- CNRS, Inserm, CHU Lille, Institut Pasteur de Lille, U1019–UMR 8204–CIIL–Center for Infection and Immunity of Lille, University of Lille, F-59000 Lille, France;
- CHU Lille, Laboratory of Parasitology and Mycology, F-59000 Lille, France;
| | - Patricia Román-Carrasco
- Molecular Biotechnology Section, FH Campus Wien, University of Applied Sciences, 1030 Vienna, Austria; (P.R.-C.); (I.S.)
| | - Pilar Alberdi
- SaBio, Instituto de Investigación en Recursos Cinegéticos (IREC-CSIC-UCLM-JCCM), Ronda de Toledo s/n, 13005 Ciudad Real, Spain; (P.A.); (J.d.l.F.)
| | - Muriel Pichavant
- CHU Lille, Laboratory of Parasitology and Mycology, F-59000 Lille, France;
| | - Veronica Risco-Castillo
- EA 7380 Dynamyc, UPEC, USC, ANSES, Ecole Nationale Vétérinaire d’Alfort, Université Paris-Est, 94706 Maisons-Alfort, France;
| | - Delphine Le Roux
- UMR BIPAR, INRAE, ANSES, Ecole Nationale Vétérinaire d’Alfort, Université Paris-Est, 94706 Maisons-Alfort, France; (L.M.-H.); (D.L.R.)
| | - Jérôme Vicogne
- CNRS, Inserm, CHU Lille, Institut Pasteur de Lille, U1019–UMR9017–CIIL–Center for Infection and Immunity of Lille, University of Lille, F-59000 Lille, France;
| | | | - Herbert Auer
- Department of Medical Parasitology, Institute of Specific Prophylaxis and Tropical Medicine, Center of Pathophysiology, Infectiology and Immunology, Medical University of Vienna, 1090 Vienna, Austria;
| | - Ines Swoboda
- Molecular Biotechnology Section, FH Campus Wien, University of Applied Sciences, 1030 Vienna, Austria; (P.R.-C.); (I.S.)
| | | | - José de la Fuente
- SaBio, Instituto de Investigación en Recursos Cinegéticos (IREC-CSIC-UCLM-JCCM), Ronda de Toledo s/n, 13005 Ciudad Real, Spain; (P.A.); (J.d.l.F.)
- Department of Veterinary Pathobiology, Center for Veterinary Health Sciences, Oklahoma State University, Stillwater, OK 74078, USA
| | - Alejandro Cabezas-Cruz
- UMR BIPAR, INRAE, ANSES, Ecole Nationale Vétérinaire d’Alfort, Université Paris-Est, 94706 Maisons-Alfort, France; (L.M.-H.); (D.L.R.)
| |
Collapse
|
49
|
Diagnostic Challenges in Anaphylaxis. THE JOURNAL OF ALLERGY AND CLINICAL IMMUNOLOGY-IN PRACTICE 2020; 8:1177-1184. [DOI: 10.1016/j.jaip.2019.11.003] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/08/2019] [Revised: 11/04/2019] [Accepted: 11/05/2019] [Indexed: 12/18/2022]
|
50
|
Ballas ZK. AAAAI Foundation Faculty Development awardees: 2020. J Allergy Clin Immunol 2020; 145:1148-1152. [DOI: 10.1016/j.jaci.2020.02.012] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2020] [Accepted: 02/18/2020] [Indexed: 12/24/2022]
|