1
|
Gilbert KM, LeCates RF, Galbraith AA, Maglione PJ, Argetsinger S, Rider NL, Farmer JR, Ong MS. Diagnostic disparities in inborn errors of immunity: From clinical suspicion to diagnosis. THE JOURNAL OF ALLERGY AND CLINICAL IMMUNOLOGY. GLOBAL 2025; 4:100407. [PMID: 39991621 PMCID: PMC11847075 DOI: 10.1016/j.jacig.2025.100407] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/13/2024] [Revised: 09/23/2024] [Accepted: 11/16/2024] [Indexed: 02/25/2025]
Abstract
Background Emerging evidence suggests that inborn errors of immunity (IEI) are underdiagnosed among underserved populations. However, there remains a lack of national studies evaluating diagnostic disparities in IEI. Objective We examined disparities in the timely IEI diagnosis and related health outcomes. Methods A retrospective analysis was performed of a US national claims database (years 2007 to 2021). Participants included patients diagnosed with an "unspecified immune deficiency" (uID) and presented with IEI-related symptoms, who later received an IEI diagnosis (n = 1429). We quantified the diagnostic interval from clinical suspicion (uID) to IEI diagnosis and examined its association with sociodemographic factors and related health outcomes. Results The median (interquartile range) diagnostic interval was 369 (126-808) days. Diagnostic interval was 14% longer among patients residing in predominantly non-White neighborhoods, compared with those in predominantly White neighborhoods (P = .04), despite having more severe IEI-related symptoms at uID diagnosis and significantly more health care encounters for pneumonia (incidence rate ratio, 2.24; 95% confidence interval, 1.40-3.70) and sepsis (incidence rate ratio, 2.15; 95% confidence interval, 1.21-3.99) in the year after uID diagnosis. Residence in neighborhoods with greater deprivation was also associated with more severe IEI-related symptoms and greater health care utilization in the year after uID diagnosis. Older age was associated with longer diagnostic interval (P < .001). Longer diagnostic interval was associated with a longer interval to receiving IgR therapy (hazard ratio, 0.64; 95% confidence interval, 0.49-0.83). Conclusion We observed significant racial and socioeconomic disparities in the timeliness of IEI diagnosis and IEI-related outcomes. Further studies are needed to address the underlying factors contributing to diagnostic inequity.
Collapse
Affiliation(s)
- Karen M. Gilbert
- Department of Population Medicine, Harvard Pilgrim Health Care Institute, Boston, Mass
| | - Robert F. LeCates
- Department of Population Medicine, Harvard Pilgrim Health Care Institute, Boston, Mass
| | - Alison A. Galbraith
- Pulmonary Center and Section of Pulmonary, Allergy, Sleep and Critical Care, Boston, Mass
| | - Paul J. Maglione
- Boston University Chobanian and Avedisian School of Medicine and Boston Medical Center, Boston, Mass
| | - Stephanie Argetsinger
- Department of Population Medicine, Harvard Pilgrim Health Care Institute, Boston, Mass
| | - Nicholas L. Rider
- Department of Health Systems & Implementation Science, Virginia Tech Carilion School of Medicine, Roanoke, Va
| | - Jocelyn R. Farmer
- Program in Clinical Immunodeficiency, Division of Allergy & Immunology, Beth Israel Lahey Health, Burlington, Mass
| | - Mei-Sing Ong
- Department of Population Medicine, Harvard Pilgrim Health Care Institute, Boston, Mass
- Harvard Medical School, Boston, Mass
| |
Collapse
|
2
|
Gilbert KM, McLaughlin HM, Farmer JR, Ong MS. Disparities in Genetic Testing for Inborn Errors of Immunity. THE JOURNAL OF ALLERGY AND CLINICAL IMMUNOLOGY. IN PRACTICE 2025; 13:388-395.e3. [PMID: 39579980 PMCID: PMC11807750 DOI: 10.1016/j.jaip.2024.11.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/01/2024] [Revised: 10/30/2024] [Accepted: 11/13/2024] [Indexed: 11/25/2024]
Abstract
BACKGROUND Inequities in genetic testing have been documented in a range of diseases, and no-charge genetic testing programs have been proposed as a means to enhance access. However, no studies have examined disparities in genetic testing for inborn errors of immunity (IEI) and the impact of no-charge programs on testing equity. OBJECTIVE To examine socioeconomic, geographic, and racial disparities in the uptake of genetic testing for IEI in the United States and the impact of a no-charge sponsored program on testing equity. METHODS This was a retrospective cohort analysis of (1) a national claims database capturing individuals with IEI (n = 18,603), and (2) data from a clinical genetic testing laboratory capturing patients with IEI participating in a no-charge sponsored program (n = 6,681) and a non-sponsored program (n = 29,579) for IEI genetic testing. RESULTS Among patients with IEI captured in the claims database, those residing in areas of greater deprivation (odds ratio [OR] = 0.95; 95% CI, 0.92-0.98), rural areas (OR = 0.82; 95% CI, 0.71-0.96), and non-White neighborhoods (OR = 0.89, 95% CI 0.81-0.98) were less likely to undergo genetic testing. Participants in the sponsored IEI genetic testing program lived in areas of greater deprivation compared with the non-sponsored program (median, 46 vs 42; P < .001). However, historically excluded racial groups were underrepresented in both the sponsored and non-sponsored programs relative to disease burden. CONCLUSIONS We found significant disparities in genetic testing for IEI. Although eliminating the financial barriers to testing reduced socioeconomic disparities in genetic testing for IEI, racial disparities persisted. Further research is needed to address barriers to testing among underserved populations.
Collapse
Affiliation(s)
- Karen M Gilbert
- Department of Population Medicine, Harvard Pilgrim Health Care Institute, Boston, Mass.
| | | | - Jocelyn R Farmer
- Clinical Immunodeficiency Program of Beth Israel Lahey Health, Division of Allergy and Immunology, Lahey Hospital and Medical Center, Burlington, Mass
| | - Mei-Sing Ong
- Department of Population Medicine, Harvard Pilgrim Health Care Institute and Harvard Medical School, Boston, Mass
| |
Collapse
|
3
|
Beers BJ, Similuk MN, Ghosh R, Seifert BA, Jamal L, Kamen M, Setzer MR, Jodarski C, Duncan R, Hunt D, Mixer M, Cao W, Bi W, Veltri D, Karlins E, Zhang L, Li Z, Oler AJ, Jevtich K, Yu Y, Hullfish H, Bielekova B, Frischmeyer-Guerrerio P, Dang Do A, Huryn LA, Olivier KN, Su HC, Lyons JJ, Zerbe CS, Rao VK, Keller MD, Freeman AF, Holland SM, Franco LM, Walkiewicz MA, Yan J. Chromosomal microarray analysis supplements exome sequencing to diagnose children with suspected inborn errors of immunity. Front Immunol 2023; 14:1172004. [PMID: 37215141 PMCID: PMC10196392 DOI: 10.3389/fimmu.2023.1172004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2023] [Accepted: 04/04/2023] [Indexed: 05/24/2023] Open
Abstract
Purpose Though copy number variants (CNVs) have been suggested to play a significant role in inborn errors of immunity (IEI), the precise nature of this role remains largely unexplored. We sought to determine the diagnostic contribution of CNVs using genome-wide chromosomal microarray analysis (CMA) in children with IEI. Methods We performed exome sequencing (ES) and CMA for 332 unrelated pediatric probands referred for evaluation of IEI. The analysis included primary, secondary, and incidental findings. Results Of the 332 probands, 134 (40.4%) received molecular diagnoses. Of these, 116/134 (86.6%) were diagnosed by ES alone. An additional 15/134 (11.2%) were diagnosed by CMA alone, including two likely de novo changes. Three (2.2%) participants had diagnostic molecular findings from both ES and CMA, including two compound heterozygotes and one participant with two distinct diagnoses. Half of the participants with CMA contribution to diagnosis had CNVs in at least one non-immune gene, highlighting the clinical complexity of these cases. Overall, CMA contributed to 18/134 diagnoses (13.4%), increasing the overall diagnostic yield by 15.5% beyond ES alone. Conclusion Pairing ES and CMA can provide a comprehensive evaluation to clarify the complex factors that contribute to both immune and non-immune phenotypes. Such a combined approach to genetic testing helps untangle complex phenotypes, not only by clarifying the differential diagnosis, but in some cases by identifying multiple diagnoses contributing to the overall clinical presentation.
Collapse
Affiliation(s)
- Breanna J. Beers
- National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, United States
| | - Morgan N. Similuk
- National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, United States
| | - Rajarshi Ghosh
- National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, United States
| | - Bryce A. Seifert
- National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, United States
| | - Leila Jamal
- National Cancer Institute, National Institutes of Health, Bethesda, MD, United States
| | - Michael Kamen
- National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, United States
| | - Michael R. Setzer
- National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, United States
| | - Colleen Jodarski
- National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, United States
| | - Rylee Duncan
- National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, United States
| | - Devin Hunt
- National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, United States
| | - Madison Mixer
- National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, United States
| | - Wenjia Cao
- National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, United States
| | - Weimin Bi
- Baylor Genetics, Houston, TX, United States
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, United States
| | - Daniel Veltri
- National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, United States
| | - Eric Karlins
- National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, United States
| | - Lingwen Zhang
- National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, United States
| | - Zhiwen Li
- National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, United States
| | - Andrew J. Oler
- National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, United States
| | - Kathleen Jevtich
- National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, United States
| | - Yunting Yu
- National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, United States
| | - Haley Hullfish
- National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, United States
| | - Bibiana Bielekova
- National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, United States
| | - Pamela Frischmeyer-Guerrerio
- National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, United States
| | - An Dang Do
- Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD, United States
| | - Laryssa A. Huryn
- National Eye Institute, National Institutes of Health, Bethesda, MD, United States
| | - Kenneth N. Olivier
- Division of Pulmonary Diseases and Critical Care Medicine, School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States
| | - Helen C. Su
- National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, United States
| | - Jonathan J. Lyons
- National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, United States
| | - Christa S. Zerbe
- National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, United States
| | - V. Koneti Rao
- National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, United States
| | - Michael D. Keller
- National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, United States
| | - Alexandra F. Freeman
- National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, United States
| | - Steven M. Holland
- National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, United States
| | - Luis M. Franco
- National Institute of Arthritis and Musculoskeletal and Skin Diseases, National Institutes of Health, Bethesda, MD, United States
| | - Magdalena A. Walkiewicz
- National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, United States
| | - Jia Yan
- National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, United States
| |
Collapse
|
4
|
Alemayehu T, Vinh DC. A Novel Mutation Leading to Wiskott-Aldrich Syndrome in an Ethiopian Boy: a Case Report and a Review of Literature. J Clin Immunol 2023:10.1007/s10875-023-01487-7. [PMID: 37052865 DOI: 10.1007/s10875-023-01487-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2023] [Accepted: 04/04/2023] [Indexed: 04/14/2023]
Abstract
Wiskott-Aldrich syndrome is an X-linked recessive primary immune-deficiency disorder very rarely reported from black African children. A 12-year old boy with recurrent sinopulmonary and diarrheal infections, eczema, thrombocytopenia, and low platelet volume was found by whole genome sequencing to harbor a predicted pathogenic c.1205dupC (p.Pro403Alafs*92) variant of a mutation in the WAS gene - confirming the diagnosis. This case report summarizes his presentation and management and provides a useful summary of the diagnosis and the responsible novel genetic mutation.
Collapse
Affiliation(s)
- Tinsae Alemayehu
- Division of Infectious Diseases and Travel Medicine, American Medical Center, Addis Ababa, Ethiopia.
- Division of Pediatric Infectious Diseases, Department of Pediatrics and Child Health, St. Paul's Hospital Millennium Medical College, Addis Ababa, Ethiopia.
| | - Donald C Vinh
- Division of Infectious Diseases, McGill University Health Centre; Director, Centre of Excellence for Genetic Research in Infection and Immunity, Research Institute - McGill University Health Centre, Montreal, QC, Canada
| |
Collapse
|
5
|
Impact of Genetic Diagnosis on the Outcome of Hematopoietic Stem Cell Transplant in Primary Immunodeficiency Disorders. J Clin Immunol 2023; 43:636-646. [PMID: 36495401 PMCID: PMC9958161 DOI: 10.1007/s10875-022-01403-5] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2022] [Accepted: 10/31/2022] [Indexed: 12/14/2022]
Abstract
To evaluate the relationship between knowledge of genetic diagnosis before HSCT and outcome, we reviewed all HSCTs for primary immune deficiencies (PID) performed at UCSF from 2007 through 2018. SCID, a distinct entity identified since 2010 in California by newborn screening and treated early, was considered separately. The underlying genetic condition was known at the time of HSCT in 85% of cases. Graft failure was less frequent in patients with a genetic diagnosis (19% with a genetic diagnosis versus 47% without, p = 0.020). Furthermore, event-free survival and overall survival (OS) at 5 years were better for those with a genetic diagnosis (78% with versus 44% without, p = 0.006; and 93% versus 60% without, p = 0.0002, respectively). OS at 5 years was superior for known-genotype patients with both SCID (p = 0.010) and non-SCID PID (p = 0.010). There was no difference in OS between HSCT done in 2007-2010 compared to more recently (p = 0.19). These data suggest that outcomes of HSCT for PID with known genotype may reflect specific experience and literature, or that a substantial proportion of patients with PID of undetermined genotype may have had underlying conditions for which HSCT may carry greater risk. The higher rate of graft failure in PID with unknown genotype may be in part explained by insufficient conditioning, which in turn could be dictated by compromised organ function in patients undergoing HSCT late in the course. Widespread availability of PID gene sequencing as standard care can provide genetic diagnoses for most patients with PID prior to HSCT, permitting optimization of transplant approach.
Collapse
|
6
|
Vaseghi-Shanjani M, Snow AL, Margolis DJ, Latrous M, Milner JD, Turvey SE, Biggs CM. Atopy as Immune Dysregulation: Offender Genes and Targets. THE JOURNAL OF ALLERGY AND CLINICAL IMMUNOLOGY. IN PRACTICE 2022; 10:1737-1756. [PMID: 35680527 DOI: 10.1016/j.jaip.2022.04.001] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/14/2021] [Revised: 04/06/2022] [Accepted: 04/06/2022] [Indexed: 06/15/2023]
Abstract
Allergic diseases are a heterogeneous group of disorders resulting from exaggerated type 2 inflammation. Although typically viewed as polygenic multifactorial disorders caused by the interaction of several genes with the environment, we have come to appreciate that allergic diseases can also be caused by monogenic variants affecting the immune system and the skin epithelial barrier. Through a myriad of genetic association studies and high-throughput sequencing tools, many monogenic and polygenic culprits of allergic diseases have been described. Identifying the genetic causes of atopy has shaped our understanding of how these conditions occur and how they may be treated and even prevented. Precision diagnostic tools and therapies that address the specific molecular pathways implicated in allergic inflammation provide exciting opportunities to improve our care for patients across the field of allergy and immunology. Here, we highlight offender genes implicated in polygenic and monogenic allergic diseases and list targeted therapeutic approaches that address these disrupted pathways.
Collapse
Affiliation(s)
- Maryam Vaseghi-Shanjani
- Department of Pediatrics, British Columbia Children's Hospital, University of British Columbia, Vancouver, British Columbia, Canada; Experimental Medicine Program, Faculty of Medicine, University of British Columbia, Vancouver, British Columbia, Canada
| | - Andrew L Snow
- Department of Pharmacology and Molecular Therapeutics, Uniformed Services University of the Health Sciences, Bethesda, Md
| | - David J Margolis
- Department of Dermatology and Dermatologic Surgery, University of Pennsylvania Medical Center, Philadelphia, Pa; Department of Biostatistics, Epidemiology, and Informatics, University of Pennsylvania Medical Center, Philadelphia, Pa
| | - Meriem Latrous
- Department of Pediatrics, British Columbia Children's Hospital, University of British Columbia, Vancouver, British Columbia, Canada
| | - Joshua D Milner
- Department of Pediatrics, Columbia University Irving Medical Center, New York, NY
| | - Stuart E Turvey
- Department of Pediatrics, British Columbia Children's Hospital, University of British Columbia, Vancouver, British Columbia, Canada; Experimental Medicine Program, Faculty of Medicine, University of British Columbia, Vancouver, British Columbia, Canada
| | - Catherine M Biggs
- Department of Pediatrics, British Columbia Children's Hospital, University of British Columbia, Vancouver, British Columbia, Canada; St Paul's Hospital, Vancouver, British Columbia, Canada.
| |
Collapse
|
7
|
Zampella J, Cohen B. Consideration of underlying immunodeficiency in refractory or recalcitrant warts: A review of the literature. SKIN HEALTH AND DISEASE 2022; 2:e98. [PMID: 35665206 PMCID: PMC9060099 DOI: 10.1002/ski2.98] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/14/2021] [Revised: 01/12/2022] [Accepted: 01/16/2022] [Indexed: 11/16/2022]
Abstract
Although the exact mechanisms have yet to be elucidated, it is clear that cellular immunity plays a role in clearance of human papillomavirus (HPV) infections as it relates to the development of warts. Patients with extensive, recalcitrant, or treatment‐refractory warts may have an underlying immune system impairment at the root of HPV susceptibility. Early recognition of genetic disorders associated with immunologic defects that allow for recalcitrant HPV infection may expedite appropriate treatment for patients. Early recognition is often pivotal in preventing subsequent morbidity and/or mortality that may arise from inborn errors of immunity, such as WHIM (Warts, Hypogammaglobulinemia, Infections, Myelokathexis) syndrome. Among these, cervical cancer is one of the most common malignancies associated with HPV, can be fatal if not treated early, and is seen more frequently in patients with underlying immune deficiencies. A review of diseases with susceptibility to HPV provides clues to understanding the pathophysiology of warts. We also present diagnostic guidance to facilitate the recognition of inborn errors of immunity in patients with extensive and/or recalcitrant HPV infections.
Collapse
Affiliation(s)
- J. Zampella
- Ronald O. Perelman Department of Dermatology NYU Grossman School of Medicine New York New York USA
| | - B. Cohen
- Division of Pediatric Dermatology Johns Hopkins University School of Medicine Baltimore Maryland USA
| |
Collapse
|
8
|
Health-related quality of life in primary immunodeficiencies: Impact of delayed diagnosis and treatment burden. Clin Immunol 2022; 236:108931. [DOI: 10.1016/j.clim.2022.108931] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2021] [Accepted: 01/13/2022] [Indexed: 12/28/2022]
|
9
|
The changing diagnostic world in allergy and immunology. Ann Allergy Asthma Immunol 2021; 127:1-2. [PMID: 34154786 DOI: 10.1016/j.anai.2021.05.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2021] [Accepted: 05/09/2021] [Indexed: 11/21/2022]
|
10
|
Engelbrecht C, Urban M, Schoeman M, Paarwater B, van Coller A, Abraham DR, Cornelissen H, Glashoff R, Esser M, Möller M, Kinnear C, Glanzmann B. Clinical Utility of Whole Exome Sequencing and Targeted Panels for the Identification of Inborn Errors of Immunity in a Resource-Constrained Setting. Front Immunol 2021; 12:665621. [PMID: 34093558 PMCID: PMC8176954 DOI: 10.3389/fimmu.2021.665621] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2021] [Accepted: 05/05/2021] [Indexed: 11/13/2022] Open
Abstract
Primary immunodeficiency disorders (PIDs) are inborn errors of immunity (IEI) that cause immune system impairment. To date, more than 400 single-gene IEI have been well defined. The advent of next generation sequencing (NGS) technologies has improved clinical diagnosis and allowed for discovery of novel genes and variants associated with IEI. Molecular diagnosis provides clear clinical benefits for patients by altering management, enabling access to certain treatments and facilitates genetic counselling. Here we report on an 8-year experience using two different NGS technologies, namely research-based WES and targeted gene panels, in patients with suspected IEI in the South African healthcare system. A total of 52 patients' had WES only, 26 had a targeted gene panel only, and 2 had both panel and WES. Overall, a molecular diagnosis was achieved in 30% (24/80) of patients. Clinical management was significantly altered in 67% of patients following molecular results. All 24 families with a molecular diagnosis received more accurate genetic counselling and family cascade testing. Results highlight the clinical value of expanded genetic testing in IEI and its relevance to understanding the genetic and clinical spectrum of the IEI-related disorders in Africa. Detection rates under 40% illustrate the complexity and heterogeneity of these disorders, especially in an African population, thus highlighting the need for expanded genomic testing and research to further elucidate this.
Collapse
Affiliation(s)
- Clair Engelbrecht
- SAMRC Centre for Tuberculosis Research, DSI-NRF Centre of Excellence for Biomedical Tuberculosis Research, Division of Molecular Biology and Human Genetics, Faculty of Medicine and Health Sciences, Stellenbosch University, Cape Town, South Africa
| | - Michael Urban
- SAMRC Centre for Tuberculosis Research, DSI-NRF Centre of Excellence for Biomedical Tuberculosis Research, Division of Molecular Biology and Human Genetics, Faculty of Medicine and Health Sciences, Stellenbosch University, Cape Town, South Africa
| | - Mardelle Schoeman
- SAMRC Centre for Tuberculosis Research, DSI-NRF Centre of Excellence for Biomedical Tuberculosis Research, Division of Molecular Biology and Human Genetics, Faculty of Medicine and Health Sciences, Stellenbosch University, Cape Town, South Africa
| | - Brandon Paarwater
- SAMRC Centre for Tuberculosis Research, DSI-NRF Centre of Excellence for Biomedical Tuberculosis Research, Division of Molecular Biology and Human Genetics, Faculty of Medicine and Health Sciences, Stellenbosch University, Cape Town, South Africa
| | - Ansia van Coller
- Immunology Unit, Division of Medical Microbiology, National Health Laboratory Service and Faculty of Medicine and Health Sciences, Stellenbosch University, Tygerberg Hospital, Cape Town, South Africa
| | - Deepthi Raju Abraham
- Department of Paediatrics and Child Health, Faculty of Medicine and Health Sciences, Stellenbosch University, Tygerberg Hospital, Cape Town, South Africa
| | - Helena Cornelissen
- Division of Haematopathology, National Health Laboratory Service, Faculty of Medicine and Health Sciences, Stellenbosch University, Tygerberg Hospital, Cape Town, South Africa
| | - Richard Glashoff
- Immunology Unit, Division of Medical Microbiology, National Health Laboratory Service and Faculty of Medicine and Health Sciences, Stellenbosch University, Tygerberg Hospital, Cape Town, South Africa
| | - Monika Esser
- Immunology Unit, Division of Medical Microbiology, National Health Laboratory Service and Faculty of Medicine and Health Sciences, Stellenbosch University, Tygerberg Hospital, Cape Town, South Africa.,Department of Paediatrics and Child Health, Faculty of Medicine and Health Sciences, Stellenbosch University, Tygerberg Hospital, Cape Town, South Africa
| | - Marlo Möller
- SAMRC Centre for Tuberculosis Research, DSI-NRF Centre of Excellence for Biomedical Tuberculosis Research, Division of Molecular Biology and Human Genetics, Faculty of Medicine and Health Sciences, Stellenbosch University, Cape Town, South Africa
| | - Craig Kinnear
- SAMRC Centre for Tuberculosis Research, DSI-NRF Centre of Excellence for Biomedical Tuberculosis Research, Division of Molecular Biology and Human Genetics, Faculty of Medicine and Health Sciences, Stellenbosch University, Cape Town, South Africa.,SAMRC Genomics Centre, Cape Town, South Africa
| | - Brigitte Glanzmann
- SAMRC Centre for Tuberculosis Research, DSI-NRF Centre of Excellence for Biomedical Tuberculosis Research, Division of Molecular Biology and Human Genetics, Faculty of Medicine and Health Sciences, Stellenbosch University, Cape Town, South Africa
| |
Collapse
|
11
|
Abraham RS. How to evaluate for immunodeficiency in patients with autoimmune cytopenias: laboratory evaluation for the diagnosis of inborn errors of immunity associated with immune dysregulation. HEMATOLOGY. AMERICAN SOCIETY OF HEMATOLOGY. EDUCATION PROGRAM 2020; 2020:661-672. [PMID: 33275711 PMCID: PMC7727558 DOI: 10.1182/hematology.2020000173] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
The identification of genetic disorders associated with dysregulated immunity has upended the notion that germline pathogenic variants in immune genes universally result in susceptibility to infection. Immune dysregulation (autoimmunity, autoinflammation, lymphoproliferation, and malignancy) and immunodeficiency (susceptibility to infection) represent 2 sides of the same coin and are not mutually exclusive. Also, although autoimmunity implies dysregulation within the adaptive immune system and autoinflammation indicates disordered innate immunity, these lines may be blurred, depending on the genetic defect and diversity in clinical and immunological phenotypes. Patients with immune dysregulatory disorders may present to a variety of clinical specialties, depending on the dominant clinical features. Therefore, awareness of these disorders, which may manifest at any age, is essential to avoid a protracted diagnostic evaluation and associated complications. Availability of and access to expanded immunological testing has altered the diagnostic landscape for immunological diseases. Nonetheless, there are constraints in using these resources due to a lack of awareness, challenges in systematic and logical evaluation, interpretation of results, and using results to justify additional advanced testing, when needed. The ability to molecularly characterize immune defects and develop "bespoke" therapy and management mandates a new paradigm for diagnostic evaluation of these patients. The immunological tests run the gamut from triage to confirmation and can be used for both diagnosis and refinement of treatment or management strategies. However, the complexity of testing and interpretation of results often necessitates dialogue between laboratory immunologists and specialty physicians to ensure timely and appropriate use of testing and delivery of care.
Collapse
Affiliation(s)
- Roshini S Abraham
- Department of Pathology and Laboratory Medicine, Nationwide Children's Hospital, Columbus, OH
| |
Collapse
|
12
|
Clinically relevant immunology for practitioner. Ann Allergy Asthma Immunol 2020; 123:422-423. [PMID: 31676019 DOI: 10.1016/j.anai.2019.08.461] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2019] [Accepted: 08/29/2019] [Indexed: 11/23/2022]
|