1
|
Sadeghi M, Kareva I, Pogudin G, Sontag ED. Quantitative Pharmacology Methods for Bispecific T Cell Engagers. Bull Math Biol 2025; 87:85. [PMID: 40413295 DOI: 10.1007/s11538-025-01455-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2024] [Accepted: 04/23/2025] [Indexed: 05/27/2025]
Abstract
T Cell Engager (TCE)s are an exciting therapeutic modality in immuno-oncology that acts to bypass antigen presentation and forms a direct link between cancer and immune cells in the Tumor Microenvironment (TME). TCEs are efficacious only when the drug is bound to both immune and cancer cell targets. Therefore, approaches that maximize the formation of the drug-target trimer in the TME are expected to increase the drug's efficacy. In this study, we quantitatively investigate how the concentration of ternary complex and its biodistribution depend on both the targets' specific properties and the design characteristics of the TCE, and specifically on the binding kinetics of the drug to its targets. A simplified mathematical model of drug-target interactions is considered here, with insights from the "three-body" problem applied to the model. Parameter identifiability analysis performed on the model demonstrates that steady state data, which is often available at the early pre-clinical stages, is sufficient to estimate the binding affinity of the TCE molecule to both targets. We used the model to analyze several existing antibodies, both clinically approved and under development, to explore their common kinetic features. The manuscript concludes with an assessment of a full quantitative pharmacology model that accounts for drug disposition into the peripheral compartment.
Collapse
Affiliation(s)
- Mahdiar Sadeghi
- Department of Electrical and Computer Engineering, Northeastern University, Boston, MA, USA
- Quantitative Pharmacology, EMD Serono Inc, Merck KGaA, Billerica, Massachusetts, USA
| | - Irina Kareva
- Quantitative Pharmacology, EMD Serono Inc, Merck KGaA, Billerica, Massachusetts, USA
- Department of Bioengineering, Northeastern University, Boston, MA, USA
| | - Gleb Pogudin
- LIX, CNRS, École Polytechnique, Institute Polytechnique de Paris, Palaiseau, France
| | - Eduardo D Sontag
- Department of Electrical and Computer Engineering, Northeastern University, Boston, MA, USA.
- Department of Bioengineering, Northeastern University, Boston, MA, USA.
- Laboratory of Systems Pharmacology, Harvard Medical School, Boston, MA, USA.
| |
Collapse
|
2
|
Ahn HM, Jung BK, Hong J, Hong D, Yoon AR, Yun CO. Enhanced potency of immune checkpoint inhibitors against poorly immunological solid tumors by immune stimulatory oncolytic adenoviruses-mediated remodeling of the tumor microenvironment. Mol Med 2025; 31:175. [PMID: 40335925 PMCID: PMC12057182 DOI: 10.1186/s10020-025-01223-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2024] [Accepted: 04/22/2025] [Indexed: 05/09/2025] Open
Abstract
Immune checkpoint inhibitor (ICI) have shown promising results against a variety of solid tumors across clinical trials. However, ICI monotherapy is often ineffective in patients with non-immunogenic tumors that exhibit high level of immunosuppression and low level of tumor infiltrating lymphocytes. To address these limitations, we have investigated a combination of ICIs [anti-PD-1 antibody (αPD-1), anti-PD-L1 antibody (αPD-L1), or anti-CTLA-4 antibody (αCTLA-4)] with several different immune stimulatory oncolytic adenoviruses (Ads) expressing different combinations of antitumor cytokines or immune modulatory factors [e.g., (1) interleukin (IL)-12 and granulocyte-macrophage colony-stimulating factor (GM-CSF; RdB/IL12/GMCSF), (2) IL-12 and short hairpin ribonucleic acid (shRNA) targeting vascular endothelial growth factor (RdB/IL12/shVEGF), (3) IL-12 and decorin (RdB/IL12/DCN), (4) GM-CSF, and thymidine kinase (RdB/IL12/GMCSF-TK), or (5) IL-12, GM-CSF, and relaxin (RdB/IL12/GMCSF-RLX)] to overcome tumor-induced immunosuppression. Through comparative evaluation of combination therapy regimens, our findings have identified αPD-1 as the optimal ICI candidate to synergize with different oncolytic Ads to induce potent antitumor immune response against poorly immunological solid tumors.
Collapse
Affiliation(s)
- Hyo Min Ahn
- GeneMedicine Co., Ltd, 222 Wangsimni-Ro, Seongdong-Gu, Seoul, Republic of Korea
| | - Bo-Kyeong Jung
- GeneMedicine Co., Ltd, 222 Wangsimni-Ro, Seongdong-Gu, Seoul, Republic of Korea
| | - JinWoo Hong
- GeneMedicine Co., Ltd, 222 Wangsimni-Ro, Seongdong-Gu, Seoul, Republic of Korea
| | - Dayoung Hong
- Department of Bioengineering, College of Engineering, Hanyang University, Seoul, Republic of Korea
| | - A-Rum Yoon
- Department of Bioengineering, College of Engineering, Hanyang University, Seoul, Republic of Korea.
- Institute of Nano Science and Technology (INST), Hanyang University, Seoul, Republic of Korea.
- Hanyang Institute of Bioscience and Biotechnology (HY-IBB), Hanyang University, Seoul, Republic of Korea.
| | - Chae-Ok Yun
- Department of Bioengineering, College of Engineering, Hanyang University, Seoul, Republic of Korea.
- Institute of Nano Science and Technology (INST), Hanyang University, Seoul, Republic of Korea.
- Hanyang Institute of Bioscience and Biotechnology (HY-IBB), Hanyang University, Seoul, Republic of Korea.
- GeneMedicine Co., Ltd, 222 Wangsimni-Ro, Seongdong-Gu, Seoul, Republic of Korea.
| |
Collapse
|
3
|
Willoughby D, Bognar E, Stanbery L, Nagel C, Wallraven G, Pruthi A, Bild N, Stamper E, Rao D, Walter A, Nemunaitis J. Exome sequencing shows same pattern of clonal tumor mutational burden, intratumor heterogenicity and clonal neoantigen between autologous tumor and Vigil product. Sci Rep 2025; 15:8637. [PMID: 40082566 PMCID: PMC11906592 DOI: 10.1038/s41598-025-90136-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2024] [Accepted: 02/11/2025] [Indexed: 03/16/2025] Open
Abstract
Retrospective data support overall survival (OS) advantage to high clonal tumor mutation burden (cTMB), high clonal neoantigen load (cNEO) and low intratumor heterogeneity (ITH) in cancer patients who receive immunotherapy. In order to explore this relationship prospectively with Vigil, a triple function targeted immunotherapy involving ovarian cancer patients in long term follow up of the Phase 2b VITAL trial, we developed an exome sequencing procedure and associated bioinformatics pipeline to determine clonal signal patterns. DNA libraries containing exome sequences tagged with unique molecular identifiers (UMI) were prepared from paired samples and sequenced on Illumina sequencers to high coverage depths of ~ 930X (tumor) and ~ 130X (normal). Raw sequence reads were processed into optimized binary alignment map (BAM) files, using the UMI information. The BAM files were inputted into modules for calling MHC-I alleles, annotating single nucleotide variants (SNVs) and small insertions/deletions (InDels), and for determination of allelic copy number. The outputs were used to predict the sequence of peptide neoantigens and to perform clonality analysis in order to assign each SNV and InDel in a patient tumor sample to a primary clone or subclone. The Clonal Neoantigen pipeline was further assessed using whole exome Illumina sequencing data from three previously published studies. Evaluation of the pipeline using synthetic sequencing data from a sub-clonal deconvolution tool benchmarking study, showed positive predictive value (PPV) and positive percent agreement (PPA) of > 97.5% and > 96.5%, respectively, for SNV and InDel detection with minimum requirements for variant density and allele fraction. Haplotype calls from the Clonal Neoantigen pipeline MHC-I/ MHC-II typing module matched a published benchmark for 91.5% of the calls in a sample of 99 patients. Analysis of exome sequencing data from 14 patients with advanced melanoma revealed a strong correlation between cTMB values determined by the Clonal Neoantigen pipeline as compared to those calculated from the published data (R2 = 0.99). Following validation, the wet lab process and Clonal Neoantigen pipeline was applied to a set of matched normal, tumor, and Vigil product samples from 9 (n = 27 samples) ovarian cancer subjects entered into the VITAL (CL-PTL-119) trial. Results demonstrated marked correlation (R2 = 0.98) of cTMB between tumor used to construct Vigil and Vigil product. Correlation between tumor and Vigil for the cNEO and ITH metrics, showed R2 values of 0.95 and 0.87, respectively. The consistency of the Clonal Neoantigen pipeline results with previously published data as well as the agreement between results for tumor and Vigil for the entire system provide a strong basis of support for utilization of this pipeline for prospective determination of cTMB, cNEO, and ITH values in clinical tumor tissue in order to explore possible correlative relationships with clinical response parameters.
Collapse
Affiliation(s)
| | - Ernest Bognar
- Gradalis, Inc, 2545 Golden Bear Dr., Suite 110, Carrollton, Dallas, TX, 75006, USA
| | - Laura Stanbery
- Gradalis, Inc, 2545 Golden Bear Dr., Suite 110, Carrollton, Dallas, TX, 75006, USA
| | - Casey Nagel
- Frontage Laboratories, Inc, Deerfield Beach, FL, USA
| | - Gladice Wallraven
- Gradalis, Inc, 2545 Golden Bear Dr., Suite 110, Carrollton, Dallas, TX, 75006, USA
| | - Aman Pruthi
- Frontage Laboratories, Inc, Deerfield Beach, FL, USA
| | - Nicholas Bild
- Frontage Laboratories, Inc, Deerfield Beach, FL, USA
| | | | - Donald Rao
- Gradalis, Inc, 2545 Golden Bear Dr., Suite 110, Carrollton, Dallas, TX, 75006, USA
| | - Adam Walter
- Gradalis, Inc, 2545 Golden Bear Dr., Suite 110, Carrollton, Dallas, TX, 75006, USA
| | - John Nemunaitis
- Gradalis, Inc, 2545 Golden Bear Dr., Suite 110, Carrollton, Dallas, TX, 75006, USA.
| |
Collapse
|
4
|
Williamson J, Fadlullah MZH, Kovacsovics-Bankowski M, Gibson B, Swami U, Erickson-Wayman A, Jamison D, Sageser D, Jeter J, Bowles TL, Cannon DM, Haaland B, Schroeder JD, Nix DA, Atkinson A, Hyngstrom J, McPherson J, Tan AC, Hu-Lieskovan S. Dramatic Responses to High-Dose Ipilimumab Plus Temozolomide After Progression on Standard- or Low-Dose Ipilimumab in Advanced Melanoma. Curr Oncol 2025; 32:144. [PMID: 40136348 PMCID: PMC11941404 DOI: 10.3390/curroncol32030144] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2024] [Revised: 02/10/2025] [Accepted: 02/25/2025] [Indexed: 03/27/2025] Open
Abstract
Patients with advanced melanoma who progress on standard-dose ipilimumab (Ipi) + nivolumab continue to have poor prognosis. Studies support a dose-response activity of Ipi, and one promising combination is Ipi 10 mg/kg (Ipi10) + temozolomide (TMZ). We performed a retrospective cohort analysis of patients with advanced melanoma treated with Ipi10 + TMZ in the immunotherapy refractory/resistant setting (n = 6, all progressed after prior Ipi + nivolumab), using similar patients treated with Ipi3 + TMZ (n = 6) as comparison. Molecular profiling by whole-exome sequencing (WES) and RNA-sequencing (RNA-seq) of tumors harvested through one responder's treatment was performed. With a median follow up of 119 days, patients treated with Ipi10 + TMZ had a statistically significant longer median progression-free survival of 144.5 days (range 27-219) vs. 44 (26-75) in Ipi 3 mg/kg (Ipi3) + TMZ, p = 0.04, and a trend of longer median overall survival of 154.5 days (27-537) vs. 89.5 (26-548). Two patients in the Ipi10 + TMZ cohort had a partial response, and both responders had BRAF V600E mutant melanoma. RNA-seq showed enrichment of inflammatory signatures, including interferon responses in metastases after Ipi10 + TMZ compared to the primary tumor, and downregulated negative immune regulators. Ipi10 + TMZ demonstrated efficacy, including dramatic responses in patients refractory to prior Ipi + anti-PD1. Molecular data suggest a potential threshold of Ipi dose for activation of sufficient anti-tumor immune response, and higher doses are required for some patients.
Collapse
Affiliation(s)
- Julie Williamson
- Department of Internal Medicine, School of Medicine, University of Utah, Salt Lake City, UT 84112, USA; (J.W.)
- Huntsman Cancer Institute, Salt Lake City, UT 84112, USA (B.G.); (D.S.); (D.M.C.); (A.A.); (J.H.)
| | | | | | - Berit Gibson
- Huntsman Cancer Institute, Salt Lake City, UT 84112, USA (B.G.); (D.S.); (D.M.C.); (A.A.); (J.H.)
| | - Umang Swami
- Department of Internal Medicine, School of Medicine, University of Utah, Salt Lake City, UT 84112, USA; (J.W.)
- Huntsman Cancer Institute, Salt Lake City, UT 84112, USA (B.G.); (D.S.); (D.M.C.); (A.A.); (J.H.)
| | - Alyssa Erickson-Wayman
- Huntsman Cancer Institute, Salt Lake City, UT 84112, USA (B.G.); (D.S.); (D.M.C.); (A.A.); (J.H.)
| | - Debra Jamison
- Huntsman Cancer Institute, Salt Lake City, UT 84112, USA (B.G.); (D.S.); (D.M.C.); (A.A.); (J.H.)
| | - Dan Sageser
- Huntsman Cancer Institute, Salt Lake City, UT 84112, USA (B.G.); (D.S.); (D.M.C.); (A.A.); (J.H.)
| | - Joanne Jeter
- Department of Internal Medicine, School of Medicine, University of Utah, Salt Lake City, UT 84112, USA; (J.W.)
- Huntsman Cancer Institute, Salt Lake City, UT 84112, USA (B.G.); (D.S.); (D.M.C.); (A.A.); (J.H.)
| | | | - Donald M. Cannon
- Huntsman Cancer Institute, Salt Lake City, UT 84112, USA (B.G.); (D.S.); (D.M.C.); (A.A.); (J.H.)
| | - Ben Haaland
- Huntsman Cancer Institute, Salt Lake City, UT 84112, USA (B.G.); (D.S.); (D.M.C.); (A.A.); (J.H.)
| | - Joyce D. Schroeder
- Huntsman Cancer Institute, Salt Lake City, UT 84112, USA (B.G.); (D.S.); (D.M.C.); (A.A.); (J.H.)
| | - David A. Nix
- Huntsman Cancer Institute, Salt Lake City, UT 84112, USA (B.G.); (D.S.); (D.M.C.); (A.A.); (J.H.)
| | - Aaron Atkinson
- Huntsman Cancer Institute, Salt Lake City, UT 84112, USA (B.G.); (D.S.); (D.M.C.); (A.A.); (J.H.)
| | - John Hyngstrom
- Huntsman Cancer Institute, Salt Lake City, UT 84112, USA (B.G.); (D.S.); (D.M.C.); (A.A.); (J.H.)
| | - Jordan McPherson
- Huntsman Cancer Institute, Salt Lake City, UT 84112, USA (B.G.); (D.S.); (D.M.C.); (A.A.); (J.H.)
| | - Aik-Choon Tan
- Huntsman Cancer Institute, Salt Lake City, UT 84112, USA (B.G.); (D.S.); (D.M.C.); (A.A.); (J.H.)
| | - Siwen Hu-Lieskovan
- Department of Internal Medicine, School of Medicine, University of Utah, Salt Lake City, UT 84112, USA; (J.W.)
- Huntsman Cancer Institute, Salt Lake City, UT 84112, USA (B.G.); (D.S.); (D.M.C.); (A.A.); (J.H.)
| |
Collapse
|
5
|
Jamrasi P, Tazi M, Zulkifli NA, Bae JH, Song W. The potential role of exercise in mitigating fertility toxicity associated with immune checkpoint inhibitors (ICIs) in cancer patients. J Physiol Sci 2024; 74:57. [PMID: 39616333 PMCID: PMC11607910 DOI: 10.1186/s12576-024-00950-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2024] [Accepted: 11/14/2024] [Indexed: 12/18/2024]
Abstract
Over the last decade, therapeutic advances in cancer immunotherapy have rapidly progressed, leading to an expansion of clinical trials and the development of novel immune checkpoint inhibitors (ICIs) and combination treatments. While ICIs offer substantial clinical benefits, they are also associated with various side effects, notably concerning endocrine function and potential gonadal damage following the initiation of immunotherapy. Exercise has demonstrated promise in enhancing treatment efficacy, including symptom reduction in cancer patients. Research has also established the benefits of exercise in managing fertility and reproductive health. However, there is limited data on the effectiveness of exercise in mitigating fertility-related side effects specifically in patients undergoing ICIs therapy. Given that a significant number of cancer patients are of reproductive age, it is crucial to address potential sexual side effects and offer fertility preservation options. Ensuring that patients are well-informed and supported in their reproductive health decisions is vital. This review reports the prevalence of immune-related adverse effects linked to fertility in cancer patients undergoing ICIs, explores the potential mechanisms by which ICIs may impact reproductive health, and emphasizes the role of exercise in mitigating these adverse effects.
Collapse
Affiliation(s)
- Parivash Jamrasi
- Department of Physical Education, Seoul National University, Seoul, Republic of Korea
| | - Mia Tazi
- Faculty of Life Sciences and Medicine, King's College London, London, UK
| | - Nur Afiqah Zulkifli
- Department of Physical Education, Seoul National University, Seoul, Republic of Korea
| | - Jun Hyun Bae
- Institute of Sport Science, Seoul National University, Seoul, Republic of Korea
- Institute On Aging, Seoul National University, Seoul, Republic of Korea
| | - Wook Song
- Department of Physical Education, Seoul National University, Seoul, Republic of Korea.
- Institute of Sport Science, Seoul National University, Seoul, Republic of Korea.
- Institute On Aging, Seoul National University, Seoul, Republic of Korea.
| |
Collapse
|
6
|
Li J, Ding F, Zhang S, Jia Y, Zhang T, Wang S, Liu Q, Guo Z. Continuation of same programmed death-1 inhibitor regime beyond progression is a novel option for advanced gastric cancer. BMC Cancer 2024; 24:1292. [PMID: 39425079 PMCID: PMC11490043 DOI: 10.1186/s12885-024-13063-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2024] [Accepted: 10/15/2024] [Indexed: 10/21/2024] Open
Abstract
BACKGROUND Gastric cancer is a significant global malignancy with poor prognosis. Although the emergence of immune checkpoint inhibitors (ICIs) prolonged the duration of survival, resistance and progression are inevitable. We aim to evaluate the effectiveness of programmed death-1 (PD-1) inhibitors in immunotherapy beyond progression (IBP). METHOD We divided the advanced gastric cancer patients who received two lines immunotherapy into same regimen group (with same PD-1 inhibitor regime after IBP) and different regimen group (with different PD-1 inhibitor regime after IBP). Statistical analysis conducted to compare patient characteristics and evaluate survival differences between groups. RESULT The clinical outcome analysis showed that the same PD-1 inhibitor regime seemed to exhibit a higher disease control rate (DCR) (51.8% vs. 29.2%, P = 0.062), significantly prolonged progression-free survival 2 (PFS2) (162 vs. 75 days, P = 0.001) and overall survival (OS) (312 vs. 166 days, P = 0.022) when compared with those of cross line. In the multivariate analysis, when using different regimen group as reference, the same regimen group was found to be independently associated with improved PFS2 [hazard ratio (HR) = 0.467, 95% confidence interval (CI): 0.267-0.816, P = 0.008] and OS (HR = 0.508, 95%CI: 0.278-0.927, P = 0.027). CONCLUSION Continuation of the same type of PD-1 inhibitor regime in IBP shows clinical benefits and represents a promising therapeutic approach.
Collapse
Affiliation(s)
- Jiasong Li
- Department of Rheumatology and Immunology, The Fourth Hospital of Hebei Medical University, 12 Jiankang Road, Shijiazhuang, 050011, P.R. China
- Department of Gastroenterology and Hepatology, The Fourth Hospital of Hebei Medical University, Shijiazhuang, P.R. China
| | - Fang Ding
- Department of Clinical Medicine, Hebei Medical University, Zhongshan Campus, Shijiazhuang, P.R. China
| | - Shasha Zhang
- Department of Rheumatology and Immunology, The Fourth Hospital of Hebei Medical University, 12 Jiankang Road, Shijiazhuang, 050011, P.R. China
| | - Yuanyuan Jia
- Department of Rheumatology and Immunology, The Fourth Hospital of Hebei Medical University, 12 Jiankang Road, Shijiazhuang, 050011, P.R. China
| | - Tianhang Zhang
- Department of Rheumatology and Immunology, The Fourth Hospital of Hebei Medical University, 12 Jiankang Road, Shijiazhuang, 050011, P.R. China
- Department of Gastroenterology and Hepatology, The Fourth Hospital of Hebei Medical University, Shijiazhuang, P.R. China
| | - Siqi Wang
- Department of Rheumatology and Immunology, The Fourth Hospital of Hebei Medical University, 12 Jiankang Road, Shijiazhuang, 050011, P.R. China
- Department of Gastroenterology and Hepatology, The Fourth Hospital of Hebei Medical University, Shijiazhuang, P.R. China
| | - Qingyi Liu
- Department of Thoracic Surgery, The Fourth Hospital of Hebei Medical University, 12 Jiankang Road, Shijiazhuang, 050011, P.R. China.
| | - Zhanjun Guo
- Department of Rheumatology and Immunology, The Fourth Hospital of Hebei Medical University, 12 Jiankang Road, Shijiazhuang, 050011, P.R. China.
| |
Collapse
|
7
|
Cheever A, Kang CC, O’Neill KL, Weber KS. Application of novel CAR technologies to improve treatment of autoimmune disease. Front Immunol 2024; 15:1465191. [PMID: 39445021 PMCID: PMC11496059 DOI: 10.3389/fimmu.2024.1465191] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2024] [Accepted: 09/23/2024] [Indexed: 10/25/2024] Open
Abstract
Chimeric antigen receptor (CAR) T cell therapy has become an important treatment for hematological cancers, and its success has spurred research into CAR T cell therapies for other diseases, including solid tumor cancers and autoimmune diseases. Notably, the development of CAR-based treatments for autoimmune diseases has shown great progress recently. Clinical trials for anti-CD19 and anti-BCMA CAR T cells in treating severe B cell-mediated autoimmune diseases, like systemic lupus erythematosus (SLE), have shown lasting remission thus far. CAR T cells targeting autoreactive T cells are beginning clinical trials for treating T cell mediated autoimmune diseases. Chimeric autoantigen receptor (CAAR) T cells specifically target and eliminate only autoreactive B cells, and they have shown promise in treating mucosal pemphigus vulgaris and MuSK myasthenia gravis. Regulatory CAR T cells have also been developed, which show potential in altering autoimmune affected areas by creating a protective barrier as well as helping decrease inflammation. These new treatments are only the beginning of potential CAR T cell applications in treating autoimmune disease. Novel CAR technologies have been developed that increase the safety, potency, specificity, and efficacy of CAR T cell therapy. Applying these novel modifications to autoimmune CARs has the potential to enhance the efficacy and applicability of CAR therapies to autoimmune disease. This review will detail several recently developed CAR technologies and discuss how their application to autoimmune disease will improve this emerging field. These include logic-gated CARs, soluble protein-secreting CARs, and modular CARs that enable CAR T cell therapies to be more specific, reach a wider span of target cells, be safer for patients, and give a more potent cytotoxic response. Applying these novel CAR technologies to the treatment of autoimmune diseases has the potential to revolutionize this growing application of CAR T cell therapies.
Collapse
|
8
|
Tang B, Chen Y, Jiang Y, Fang M, Gao Q, Ren X, Yao L, Huang G, Chen J, Zhang X, Li R, Zhao S, Gao M, Luo R, Qi M, Li F, Zheng F, Lee M, Tao X, Duan R, Guo J, Chi Z, Cui C. Toripalimab in combination with HBM4003, an anti-CTLA-4 heavy chain-only antibody, in advanced melanoma and other solid tumors: an open-label phase I trial. J Immunother Cancer 2024; 12:e009662. [PMID: 39366752 PMCID: PMC11459314 DOI: 10.1136/jitc-2024-009662] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/08/2024] [Indexed: 10/06/2024] Open
Abstract
BACKGROUND HBM4003 is a novel anti-CTLA-4 heavy chain-only antibody, designed to enhance Treg ablation and antibody-dependent cell-mediated cytotoxicity while ensuring a manageable safety profile. This phase I trial investigated the safety, pharmacokinetics, immunogenicity and preliminary efficacy of HBM4003 plus with anti-PD-1 antibody toripalimab in patients with advanced solid tumors, especially focusing on melanoma. METHODS The multicenter, open-label phase I trial was divided into two parts: dose-escalation phase (part 1) and dose-expansion phase (part 2). In part 1, HBM4003 was administered at doses of 0.03, 0.1, 0.3 mg/kg in combination with toripalimab with fixed dosage of 240 mg every 3 weeks. The recommended phase II dose (RP2D) was used in the expansion phase. Primary endpoints were safety and RP2D in part 1 and objective response rate (ORR) in part 2. Biomarkers based on cytokines and multiplex immunofluorescence staining were explored. RESULTS A total of 40 patients received study treatment, including 36 patients treated with RP2D of HBM4003 0.3 mg/kg plus toripalimab 240 mg every 3 week. 36 participants (90.0%) experienced at least one treatment-related adverse event (TRAE), of which 10 (25.0%) patients experienced grade ≥3 TRAEs and 5 (12.5%) experienced immune-mediated adverse events (irAEs) with maximum severity of grade 3. No grade 4 or 5 irAEs occurred. Efficacy analysis set included 32 melanoma patients treated with RP2D and with available post-baseline imaging data. The ORRs of anti-PD-1/PD-L1 treatment-naïve subgroup and anti-PD-1/PD-L1 treatment-failed subgroup were 33.3% and 5.9%, respectively. In mucosal melanoma, the ORR of the two subgroups were 40.0% and 10.0%, respectively. Baseline high Treg/CD4+ratio in the tumor serves as an independent predictive factor for the efficacy of immunotherapy. CONCLUSIONS HBM4003 0.3 mg/kg plus toripalimab 240 mg every 3 week demonstrated manageable safety in solid tumors and no new safety signal. Limited data demonstrated promising antitumor activity, especially in PD-1 treatment-naïve mucosal melanoma. TRIAL REGISTRATION NUMBER NCT04727164.
Collapse
Affiliation(s)
- Bixia Tang
- Peking University Cancer Hospital & Institute, Beijing, China
| | - Yu Chen
- Department of Medical Oncology, Fujian Medical University Cancer Hospital, Fuzhou, Fujian, China
| | - Yu Jiang
- Department of Head and Neck Oncology, West China Hospital of Sichuan University, Chengdu, Sichuan Province, China
| | - Meiyu Fang
- Zhejiang Cancer Hospital, Hangzhou, Zhejiang, China
| | - Quanli Gao
- Immunotherapy Department, Henan Cancer Hospital, Zhengzhou, Henan, China
| | - Xiubao Ren
- Tianjin Medical University Cancer Institute and Hospital, Tianjin, China
| | - Li Yao
- The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, China
| | - Gang Huang
- Central South University (Hunan Cancer Hospital), Changsha, Hunan, China
| | - Jing Chen
- Union Hospital Tongji Medical College Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Xiaoshi Zhang
- Sun Yat-sen University Cancer Center, Guangzhou, Guangdong, China
| | - Rongqing Li
- Tumor Radiotherapy Department, First Affiliated Hospital of Kunming Medical University, Kunming, Yunnan, China
| | | | | | | | - Meng Qi
- Harbour BioMed, Shanghai, China
| | - Feng Li
- Harbour BioMed, Shanghai, China
| | | | | | | | - Rong Duan
- Peking University Cancer Hospital & Institute, Beijing, China
| | - Jun Guo
- Peking University Cancer Hospital & Institute, Beijing, China
| | - Zhihong Chi
- Peking University Cancer Hospital & Institute, Beijing, China
| | - Chuanliang Cui
- Peking University Cancer Hospital & Institute, Beijing, China
| |
Collapse
|
9
|
Wells K, Liu T, Zhu L, Yang L. Immunomodulatory nanoparticles activate cytotoxic T cells for enhancement of the effect of cancer immunotherapy. NANOSCALE 2024; 16:17699-17722. [PMID: 39257225 DOI: 10.1039/d4nr01780c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/12/2024]
Abstract
Cancer immunotherapy represents a promising targeted treatment by leveraging the patient's immune system or adoptive transfer of active immune cells to selectively eliminate cancer cells. Despite notable clinical successes, conventional immunotherapies face significant challenges stemming from the poor infiltration of endogenous or adoptively transferred cytotoxic T cells in tumors, immunosuppressive tumor microenvironment and the immune evasion capability of cancer cells, leading to limited efficacy in many types of solid tumors. Overcoming these hurdles is essential to broaden the applicability of immunotherapies. Recent advances in nanotherapeutics have emerged as an innovative tool to overcome these challenges and enhance the therapeutic potential of tumor immunotherapy. The unique biochemical and biophysical properties of nanomaterials offer advantages in activation of immune cells in vitro for cell therapy, targeted delivery, and controlled release of immunomodulatory agents in vivo. Nanoparticles are excellent carriers for tumor associated antigens or neoantigen peptides for tumor vaccine, empowering activation of tumor specific T cell responses. By precisely delivering immunomodulatory agents to the tumor site, immunoactivating nanoparticles can promote tumor infiltration of endogenous T cells or adoptively transferred T cells into tumors, to overcoming delivery and biological barriers in the tumor microenvironment, augmenting the immune system's ability to recognize and eliminate cancer cells. This review provides an overview of the current advances in immunotherapeutic approaches utilizing nanotechnology. With a focus on discussions concerning strategies to enhance activity and efficacy of cytotoxic T cells and explore the intersection of engineering nanoparticles and immunomodulation aimed at bolstering T cell-mediated immune responses, we introduce various nanoparticle formulations designed to deliver therapeutic payloads, tumor antigens and immunomodulatory agents for T cell activation. Diverse mechanisms through which nanoparticle-based approaches influence T cell responses by improving antigen presentation, promoting immune cell trafficking, and reprogramming immunosuppressive tumor microenvironments to potentiate anti-tumor immunity are examined. Additionally, the synergistic potential of combining nanotherapeutics with existing immunotherapies, such as immune checkpoint inhibitors and adoptive T cell therapies is explored. In conclusion, this review highlights emerging research advances on activation of cytotoxic T cells using nanoparticle agents to support the promises and potential applications of nanoparticle-based immunomodulatory agents for cancer immunotherapy.
Collapse
Affiliation(s)
- Kory Wells
- Department of Surgery, Emory University School of Medicine, Winship Cancer Institute, Clinic C, Room 4088, 1365 C Clifton Road, NE, Atlanta, GA 30322, USA.
- Winship Cancer Institute, Emory University School of Medicine, Atlanta, GA 30322, USA
| | - Tongrui Liu
- Department of Surgery, Emory University School of Medicine, Winship Cancer Institute, Clinic C, Room 4088, 1365 C Clifton Road, NE, Atlanta, GA 30322, USA.
| | - Lei Zhu
- Department of Surgery, Emory University School of Medicine, Winship Cancer Institute, Clinic C, Room 4088, 1365 C Clifton Road, NE, Atlanta, GA 30322, USA.
| | - Lily Yang
- Department of Surgery, Emory University School of Medicine, Winship Cancer Institute, Clinic C, Room 4088, 1365 C Clifton Road, NE, Atlanta, GA 30322, USA.
- Winship Cancer Institute, Emory University School of Medicine, Atlanta, GA 30322, USA
| |
Collapse
|
10
|
Naing A, Papadopoulos KP, Pishvaian MJ, Rahma O, Hanna GJ, Garralda E, Saavedra O, Gogov S, Kallender H, Cheng L, Smith M, Chen X, Kuriakose E, Bauer T. First-in-human phase 1 study of the arginase inhibitor INCB001158 alone or combined with pembrolizumab in patients with advanced or metastatic solid tumours. BMJ ONCOLOGY 2024; 3:e000249. [PMID: 39886141 PMCID: PMC11235002 DOI: 10.1136/bmjonc-2023-000249] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/07/2023] [Accepted: 04/03/2024] [Indexed: 02/01/2025]
Abstract
Objective The arginase inhibitor INCB001158 was evaluated for safety (primary endpoint) in locally advanced or metastatic solid tumours; pharmacokinetics, pharmacodynamics and efficacy were also assessed. Methods and analysis In this non-randomised, open-label, three-part phase 1 study, INCB001158 was orally administered two times per day as monotherapy or in combination with intravenous pembrolizumab 200 mg every 3 weeks. Dose expansion was conducted in tumour-type cohorts (with or without prior anti-PD-1/PD-L1 (programmed death protein 1/programmed death ligand 1) therapy). Results A total of 107 patients received INCB001158 50-150 mg two times per day as monotherapy, and 153 patients, including 6 with moderate renal impairment, received INCB001158 50-100 mg two times per day combined with pembrolizumab. INCB001158 exposure was similar between groups (median, 56 days (monotherapy); 84 days (combination)). 49 patients (45.8%) on monotherapy and 76 (51.7%) on combination therapy experienced grade ≥3 treatment-emergent adverse events (AEs). The most common INCB001158-related AEs were fatigue (n=10/107 (9.3%)) and nausea (n=10/107 (9.3%)) with monotherapy and diarrhoea (n=24/147 (16.3%)) and fatigue (n=22/147 (15.0%)) with combination therapy. The highest response rate was seen in the anti-PD-1/PD-L1-naive combination therapy group with head/neck squamous cell carcinoma (overall response rate, 19.2%; 4/26 partial responses, 1/26 complete response). Consistent with arginase inhibition activity, plasma arginine dose-dependently increased. Arginase 1 expression in the tumour microenvironment did not correlate with response. Conclusions INCB001158 was generally well tolerated. Response rates did not exceed background for given tumour types despite demonstrable pharmacodynamic activity. Overall, the limited antitumour activity of arginase inhibition observed suggests that the role of arginine depletion in cancer is multifaceted. Trial registration number NCT02903914.
Collapse
Affiliation(s)
- Aung Naing
- MD Anderson Cancer Center, Houston, Texas, USA
| | | | - Michael J Pishvaian
- MD Anderson Cancer Center, Houston, Texas, USA
- Johns Hopkins Kimmel Cancer Center, Baltimore, Maryland, USA
| | - Osama Rahma
- Dana-Farber Cancer Institute, Boston, Massachusetts, USA
| | - Glenn J Hanna
- Dana-Farber Cancer Institute, Boston, Massachusetts, USA
| | | | - Omar Saavedra
- Vall d'Hebron Institute of Oncology, Barcelona, Spain
| | - Sven Gogov
- Incyte Corporation, Wilmington, Delaware, USA
| | | | - LuLu Cheng
- Incyte Corporation, Wilmington, Delaware, USA
| | | | - Xuejun Chen
- Incyte Corporation, Wilmington, Delaware, USA
| | - Emil Kuriakose
- Calithera Biosciences, South San Francisco, California, USA
| | - Todd Bauer
- Sarah Cannon Cancer Institute, Nashville, Tennessee, USA
| |
Collapse
|
11
|
Sheikhlary S, Lopez DH, Moghimi S, Sun B. Recent Findings on Therapeutic Cancer Vaccines: An Updated Review. Biomolecules 2024; 14:503. [PMID: 38672519 PMCID: PMC11048403 DOI: 10.3390/biom14040503] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2024] [Revised: 04/06/2024] [Accepted: 04/16/2024] [Indexed: 04/28/2024] Open
Abstract
Cancer remains one of the global leading causes of death and various vaccines have been developed over the years against it, including cell-based, nucleic acid-based, and viral-based cancer vaccines. Although many vaccines have been effective in in vivo and clinical studies and some have been FDA-approved, there are major limitations to overcome: (1) developing one universal vaccine for a specific cancer is difficult, as tumors with different antigens are different for different individuals, (2) the tumor antigens may be similar to the body's own antigens, and (3) there is the possibility of cancer recurrence. Therefore, developing personalized cancer vaccines with the ability to distinguish between the tumor and the body's antigens is indispensable. This paper provides a comprehensive review of different types of cancer vaccines and highlights important factors necessary for developing efficient cancer vaccines. Moreover, the application of other technologies in cancer therapy is discussed. Finally, several insights and conclusions are presented, such as the possibility of using cold plasma and cancer stem cells in developing future cancer vaccines, to tackle the major limitations in the cancer vaccine developmental process.
Collapse
Affiliation(s)
- Sara Sheikhlary
- Department of Biomedical Engineering, College of Engineering, The University of Arizona, Tucson, AZ 85721, USA
| | - David Humberto Lopez
- Department of Pharmacology and Toxicology, College of Pharmacy, The University of Arizona, Tucson, AZ 85721, USA; (D.H.L.); (S.M.)
| | - Sophia Moghimi
- Department of Pharmacology and Toxicology, College of Pharmacy, The University of Arizona, Tucson, AZ 85721, USA; (D.H.L.); (S.M.)
| | - Bo Sun
- Department of Pharmacology and Toxicology, College of Pharmacy, The University of Arizona, Tucson, AZ 85721, USA; (D.H.L.); (S.M.)
| |
Collapse
|
12
|
Hu J, Ascierto P, Cesano A, Herrmann V, Marincola FM. Shifting the paradigm: engaging multicellular networks for cancer therapy. J Transl Med 2024; 22:270. [PMID: 38475820 PMCID: PMC10936124 DOI: 10.1186/s12967-024-05043-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2023] [Accepted: 11/01/2023] [Indexed: 03/14/2024] Open
Abstract
Most anti-cancer modalities are designed to directly kill cancer cells deploying mechanisms of action (MOAs) centered on the presence of a precise target on cancer cells. The efficacy of these approaches is limited because the rapidly evolving genetics of neoplasia swiftly circumvents the MOA generating therapy-resistant cancer cell clones. Other modalities engage endogenous anti-cancer mechanisms by activating the multi-cellular network (MCN) surrounding neoplastic cells in the tumor microenvironment (TME). These modalities hold a better chance of success because they activate numerous types of immune effector cells that deploy distinct cytotoxic MOAs. This in turn decreases the chance of developing treatment-resistance. Engagement of the MCN can be attained through activation of immune effector cells that in turn kill cancer cells or when direct cancer killing is complemented by the production of proinflammatory factors that secondarily recruit and activate immune effector cells. For instance, adoptive cell therapy (ACT) supplements cancer cell killing with the release of homeostatic and pro-inflammatory cytokines by the immune cells and damage associated molecular patterns (DAMPs) by dying cancer cells. The latter phenomenon, referred to as immunogenic cell death (ICD), results in an exponential escalation of anti-cancer MOAs at the tumor site. Other approaches can also induce exponential cancer killing by engaging the MCN of the TME through the release of DAMPs and additional pro-inflammatory factors by dying cancer cells. In this commentary, we will review the basic principles that support emerging paradigms likely to significantly improve the efficacy of anti-cancer therapy.
Collapse
Affiliation(s)
- Joyce Hu
- Sonata Therapeutics, Watertown, MA, 02472, USA.
| | - Paolo Ascierto
- Cancer Immunotherapy and Innovative Therapy, National Tumor Institute, Fondazione G. Pascale, 80131, Naples, Italy
| | | | | | | |
Collapse
|
13
|
Ebrahimi S, Habibzadeh A, Khojasteh-Kaffash S, Valizadeh P, Samieefar N, Rezaei N. Immune checkpoint inhibitors therapy as the game-changing approach for pediatric lymphoma: A brief landscape. Crit Rev Oncol Hematol 2024; 193:104225. [PMID: 38049077 DOI: 10.1016/j.critrevonc.2023.104225] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Revised: 11/29/2023] [Accepted: 11/30/2023] [Indexed: 12/06/2023] Open
Abstract
Lymphoma is known as the third most common malignancy in children, and its prevalence and mortality are increasing. Common treatments, including chemotherapy, radiotherapy, and also surgery, despite their efficacy, have many side effects and, have a high chance of disease relapse. Immune Checkpoint Inhibitors (ICIs) offer a promising alternative with potentially fewer risks of relapse and toxicity. This review article aims to investigate the efficacy and safety of ICIs, either as monotherapy or in combination, for pediatric lymphoma patients. ICIs have revolutionized cancer treatment in recent years and have shown remarkable results in several adult cancers. However, their efficacy in treating pediatrics requires further investigation. Nevertheless, some ICIs, including nivolumab, pembrolizumab, and ipilimumab, have demonstrated encouraging outcomes. ICIs therapy is not without risks and can cause side effects, including rash, itching, vitiligo, abdominal pain, diarrhea, dysphagia, epigastric pain, nausea, vomiting, thyroid, and pituitary dysfunction. Overall, this review article highlights the potential benefits and risks of ICIs in treating pediatric lymphoma.
Collapse
Affiliation(s)
- Sara Ebrahimi
- School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran; Network of Interdisciplinarity in Neonates and Infants (NINI), Universal Scientific Education and Research Network (USERN), Tehran, Iran
| | - Adrina Habibzadeh
- Network of Interdisciplinarity in Neonates and Infants (NINI), Universal Scientific Education and Research Network (USERN), Tehran, Iran; Student Research Committee, Fasa University of Medical Sciences, Fasa, Iran
| | - Soroush Khojasteh-Kaffash
- Network of Interdisciplinarity in Neonates and Infants (NINI), Universal Scientific Education and Research Network (USERN), Tehran, Iran; Student Research Committee, School of Medicine, Birjand University of Medical Sciences, Birjand, Iran
| | - Parya Valizadeh
- Network of Interdisciplinarity in Neonates and Infants (NINI), Universal Scientific Education and Research Network (USERN), Tehran, Iran; School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Noosha Samieefar
- Network of Interdisciplinarity in Neonates and Infants (NINI), Universal Scientific Education and Research Network (USERN), Tehran, Iran; USERN Office, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Nima Rezaei
- Network of Interdisciplinarity in Neonates and Infants (NINI), Universal Scientific Education and Research Network (USERN), Tehran, Iran; Research Center for Immunodeficiencies, Pediatrics Center of Excellence, Children's Medical Center Hospital, Tehran University of Medical Sciences, Tehran, Iran; Department of Immunology, School of Medicine, Tehran University of Medical Science, Tehran, Iran.
| |
Collapse
|
14
|
Schengrund CL. The Ying and Yang of Ganglioside Function in Cancer. Cancers (Basel) 2023; 15:5362. [PMID: 38001622 PMCID: PMC10670608 DOI: 10.3390/cancers15225362] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2023] [Revised: 10/23/2023] [Accepted: 10/28/2023] [Indexed: 11/26/2023] Open
Abstract
The plethora of information about the expression of cancer cell-associated gangliosides, their role(s) in signal transduction, and their potential usefulness in the development of cancer treatments makes this an appropriate time to review these enigmatic glycosphingolipids. Evidence, reflecting the work of many, indicates that (1) expression of specific gangliosides, not generally found in high concentrations in most normal human cells, can be linked to certain types of cancer. (2) Gangliosides can affect the ability of cells to interact either directly or indirectly with growth factor receptors, thereby changing such things as a cell's mobility, rate of proliferation, and metastatic ability. (3) Anti-ganglioside antibodies have been tested, with some success, as potential treatments for certain cancers. (4) Cancer-associated gangliosides shed into the circulation can (a) affect immune cell responsiveness either positively or negatively, (b) be considered as diagnostic markers, and (c) be used to look for recurrence. (5) Cancer registries enable investigators to evaluate data from sufficient numbers of patients to obtain information about potential therapies. Despite advances that have been made, a discussion of possible approaches to identifying additional treatment strategies to inhibit metastasis, responsible for the majority of deaths of cancer patients, as well as for treating therapy-resistant tumors, is included.
Collapse
Affiliation(s)
- Cara-Lynne Schengrund
- Department of Biochemistry and Molecular Biology, The Pennsylvania State University College of Medicine, Hershey, PA 17033, USA
| |
Collapse
|
15
|
Kraehenbuehl L, Schneider S, Pawlik L, Mangana J, Cheng P, Dummer R, Meier-Schiesser B. Cutaneous Adverse Events of Systemic Melanoma Treatments: A Retrospective Single-Center Analysis. Pharmaceuticals (Basel) 2023; 16:935. [PMID: 37513847 PMCID: PMC10383648 DOI: 10.3390/ph16070935] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2023] [Revised: 05/28/2023] [Accepted: 06/22/2023] [Indexed: 07/30/2023] Open
Abstract
Recent progress in the treatment of advanced melanoma has led to the improved survival of affected patients. However, novel treatments also lead to considerable and distinct skin toxicity. To further characterize cutaneous adverse events (AE) of systemic treatments, we conducted a single-center retrospective study of biopsy-proven cutaneous adverse events of melanoma treatment over a period of 10 years at the University Hospital of Zurich, Switzerland. In 102 identified patients, 135 individual skin AEs developed. Immune checkpoint blockade (ICB) was causal for 81 skin AEs, and 54 were related to targeted therapies (TT). Recorded types of skin AEs included lichenoid, maculopapular, acneiform, urticarial, panniculitis, folliculitis, psoriasiform, granulomatous, eczematous, and others. The incidence of skin AEs was higher with TT (18.54%) than with ICB (9.64%, p = 0.0029). Most AEs were low-grade, although 19.21% of AEs were common terminology criteria for adverse events (CTCAE) Grades 3 or 4. A large spectrum of skin AEs was documented during treatment of advanced melanoma, and distinct phenotypes were observed, depending on treatment classes. AEs occurred earlier during treatment with TT than with ICB, and distinct types of skin AEs were associated with respective treatment classes. This study comprehensively describes skin AEs occurring during systemic treatment for melanoma at a single center.
Collapse
Affiliation(s)
- Lukas Kraehenbuehl
- Department of Dermatology, University Hospital Zurich (USZ), University of Zurich (UZH), 8091 Zurich, Switzerland
| | - Stephanie Schneider
- Department of Dermatology, University Hospital Zurich (USZ), University of Zurich (UZH), 8091 Zurich, Switzerland
| | - Laura Pawlik
- Department of Dermatology, University Hospital Zurich (USZ), University of Zurich (UZH), 8091 Zurich, Switzerland
| | - Joanna Mangana
- Department of Dermatology, University Hospital Zurich (USZ), University of Zurich (UZH), 8091 Zurich, Switzerland
| | - Phil Cheng
- Department of Dermatology, University Hospital Zurich (USZ), University of Zurich (UZH), 8091 Zurich, Switzerland
| | - Reinhard Dummer
- Department of Dermatology, University Hospital Zurich (USZ), University of Zurich (UZH), 8091 Zurich, Switzerland
| | - Barbara Meier-Schiesser
- Department of Dermatology, University Hospital Zurich (USZ), University of Zurich (UZH), 8091 Zurich, Switzerland
| |
Collapse
|
16
|
Ma KSK, Tsai PF, Hsieh TYJ, Chodosh J. Ocular surface complications following biological therapy for cancer. FRONTIERS IN TOXICOLOGY 2023; 5:1137637. [PMID: 37424746 PMCID: PMC10324604 DOI: 10.3389/ftox.2023.1137637] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2023] [Accepted: 06/12/2023] [Indexed: 07/11/2023] Open
Abstract
Novel and highly effective biological agents developed to treat cancer over the past two decades have also been linked to multiple adverse outcomes, including unanticipated consequences for the cornea. This review provides an overview of adverse corneal complications of biological agents currently in use for the treatment of cancer. Epidermal growth factor receptor inhibitors and immune checkpoint inhibitors are the two classes of biological agents most frequently associated with corneal adverse events. Dry eye, Stevens-Johnson syndrome, and corneal transplant rejection have all been reported following the use of immune checkpoint inhibitors. The management of these adverse events requires close collaboration between ophthalmologists, dermatologists, and oncologists. This review focuses in depth on the epidemiology, pathophysiology, and management of ocular surface complications of biological therapies against cancer.
Collapse
Affiliation(s)
- Kevin Sheng-Kai Ma
- Department of Epidemiology, Harvard T.H. Chan School of Public Health, Boston, MA, United States
- Center for Global Health, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, United States
- Division of Pharmacoepidemiology and Pharmacoeconomics, Department of Medicine, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA, United States
| | - Ping-Feng Tsai
- Department of Ophthalmology, Tri-Service General Hospital, Taipei, Taiwan
| | - Tina Yi-Jin Hsieh
- Department of Environmental Health, Harvard T.H. Chan School of Public Health, Boston, MA, United States
- Department of Obstetrics and Gynecology, Beth Israel Deaconess Medical Center, Boston, MA, United States
| | - James Chodosh
- Department of Ophthalmology and Visual Sciences, University of New Mexico School of Medicine, Albuquerque, NM, United States
| |
Collapse
|
17
|
Leowattana W, Leowattana T, Leowattana P. Paradigm shift of chemotherapy and systemic treatment for biliary tract cancer. World J Gastrointest Oncol 2023; 15:959-972. [PMID: 37389105 PMCID: PMC10302992 DOI: 10.4251/wjgo.v15.i6.959] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/26/2023] [Revised: 04/14/2023] [Accepted: 05/05/2023] [Indexed: 06/14/2023] Open
Abstract
Biliary tract cancers (BTC) are frequently identified at late stages and have a poor prognosis due to limited systemic treatment regimens. For more than a decade, the combination of gemcitabine and cis-platin has served as the first-line standard treatment. There are few choices for second-line chemo-therapy. Targeted treatment with fibroblast growth factor receptor 2 inhibitors, neurotrophic tyrosine receptor kinase inhibitors, and isocitrate dehydrogenase 1 inhibitors has had important results. Immune checkpoint inhibitors (ICI) such as pembrolizumab are only used in first-line treatment for microsatellite instability high patients. The TOPAZ-1 trial's outcome is encouraging, and there are several trials underway that might soon put targeted treatment and ICI combos into first-line options. Newer targets and agents for existing goals are being studied, which may represent a paradigm shift in BTC management. Due to a scarcity of targetable mutations and the higher toxicity profile of the current medications, the new category of drugs may occupy a significant role in BTC therapies.
Collapse
Affiliation(s)
- Wattana Leowattana
- Department of Clinical Tropical Medicine, Faculty of Tropical Medicine, Mahidol University, Rachatawee 10400, Bangkok, Thailand
| | - Tawithep Leowattana
- Department of Medicine, Faculty of Medicine, Srinakharinwirot University, Wattana 10110, Bangkok, Thailand
| | - Pathomthep Leowattana
- Department of Clinical Tropical Medicine, Faculty of Tropical Medicine, Mahidol University, Rachatawee 10400, Bangkok, Thailand
| |
Collapse
|
18
|
Evaluation and management of acute high-grade immunotherapy-related neurotoxicity. Heliyon 2023; 9:e13725. [PMID: 36851967 PMCID: PMC9958505 DOI: 10.1016/j.heliyon.2023.e13725] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Revised: 02/08/2023] [Accepted: 02/09/2023] [Indexed: 02/16/2023] Open
Abstract
Immune checkpoint inhibitor monoclonal antibodies allow the host's immune system to attack tumors, which has revolutionized cancer care over the last decade. As the use of immune checkpoint inhibitors has expanded, so have autoimmune-like complications known as immune-related adverse events. These include the infrequent but increasingly more common, potentially deadly neurological immune related adverse events. When feeling acutely ill, patients will often seek care not from their oncologist but from their family physician, clinics, emergency, and urgent care sites, or other available providers. Thus, while assessing acutely ill cancer patients who are experiencing neurological symptoms, non-oncologists should be prepared to recognize, diagnose, and treat neurological immune related adverse events in addition to more familiar conditions. This narrative review is designed to update acute care clinicians on current knowledge and to present a symptom-based framework for evaluating and treating neurological immune related adverse events based on the leading immunotoxicity organizations' latest recommendations.
Collapse
|
19
|
Effect of Antacid Use on Immune Checkpoint Inhibitors in Advanced Solid Cancer Patients: A Systematic Review and Meta-analysis. J Immunother 2023; 46:43-55. [PMID: 36301729 DOI: 10.1097/cji.0000000000000442] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2022] [Accepted: 09/08/2022] [Indexed: 11/07/2022]
Abstract
The influence of antacids use on immune checkpoint inhibitor (ICI) efficacy remains unclear. A systematic review and meta-analysis was performed to evaluate the effect of proton pump inhibitors (PPIs) and histamine-2-receptor antagonists (H2RAs) on ICI efficacy in advanced solid cancer patients. A systematic literature search in PubMed, EMBASE, and Web of Science was performed to retrieve studies investigating the effect of antacid use on ICI efficacy. Overall survival (OS), progression-free survival (PFS), objective response rate (ORR), and immune-related adverse events were measured using hazard ratios (HRs) or odds ratios (ORs). Thirty studies enrolling 16,147 advanced cancer patients receiving ICI treatment were included. The pooled analysis indicated that PPI use was associated with shorter OS (HR=1.40, 95% CI, 1.25-1.57) and PFS (HR=1.34, 95% CI, 1.19-1.52) in advanced cancer patients treated with ICIs. PPI use did not show effect on ORR or immune-related adverse event of advanced cancer patients receiving ICI treatment. OS, PFS, and ORR did not differ between H2RA users and non-H2RA users. In subgroup analyses, PPI use was associated with shorter OS and PFS in NSCLC and urothelial carcinoma patients and in patients treated with anti-programmed cell death 1 or anti-programmed cell death ligand 1 monotherapy. In addition, ICI efficacy was different in the antacid exposure time frame subgroups. In conclusion, PPI use has a negative effect on OS and PFS among advanced cancer patients receiving ICI treatment. PPIs should be cautiously administered among advanced cancer patients treated with ICI. The safety of H2RAs and the influence of H2RAs on ICI efficacy need further investigation.
Collapse
|
20
|
Zhou J, Du Z, Fu J, Yi X. Blood cell counts can predict adverse events of immune checkpoint inhibitors: A systematic review and meta-analysis. Front Immunol 2023; 14:1117447. [PMID: 36960068 PMCID: PMC10029759 DOI: 10.3389/fimmu.2023.1117447] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2022] [Accepted: 02/21/2023] [Indexed: 03/09/2023] Open
Abstract
Background Cancer is concerning owing to its high mortality rate. Consequently, methods of prolonging the life of patients with cancer have become the primary focus of attention research. In recent years, immune checkpoint inhibitors (ICIs) have achieved good clinical efficacy as antitumor drugs; however, their severe adverse effects have made their use challenging. In order to clarify the predictors of adverse effects, scientists have conducted a series of studies. Blood counts can potentially monitor risk factors associated with the occurrence of immune-related adverse events (irAEs). Herein, a meta-analysis was performed to clarify further the guiding significance of blood counts in the clinical setting. Methods Studies that satisfied the inclusion criteria were obtained by searching the database. Included studies were those in which irAEs had been observed, and evidence of an association between blood counts and irAEs was reported. The included ones were evaluated for quality. In addition to sensitivity analysis and subgroup analysis, a meta-analysis was performed using the odds ratio (OR) and 95% confidence interval (CI) for each study. Results A total of 18 articles were included in our study. The analyses were performed separately according to different blood cell count indicators. The blood cell count metrics associated with irAEs were: absolute eosinophil count, neutrophil: lymphocyte ratio, and platelet: lymphocyte ratio. Conclusion Our review and meta-analysis of studies suggest that absolute eosinophil count, neutrophil: lymphocyte ratio, and platelet: lymphocyte ratio may serve as predictors of the emergence of irAEs. Given the small number of studies focusing on the relationship between patient blood cell counts and the risk of irAEs, future studies need to further explore the mechanisms of occurrence and potential associations.
Collapse
Affiliation(s)
- Juyue Zhou
- Graduate Institute, Shandong University of Traditional Chinese Medicine, Jinan, Shandong, China
| | - Zhonghai Du
- Department of Oncology, Weifang Hospital of Traditional Chinese Medicine, Weifang, Shandong, China
- *Correspondence: Zhonghai Du,
| | - Jie Fu
- Department of Oncology, Weifang Hospital of Traditional Chinese Medicine, Weifang, Shandong, China
| | - Xiuxiu Yi
- Department of Oncology, Weifang Hospital of Traditional Chinese Medicine, Weifang, Shandong, China
| |
Collapse
|
21
|
Luangnara A, Kiratikanon S, Ketpueak T, Suksombooncharoen T, Charoentum C, Chewaskulyong B, Tovanabutra N, Chiewchanvit S, Nochaiwong S, Chuamanochan M. Incidence and factors associated with cutaneous immune-related adverse events to immune check point inhibitors: An ambispective cohort study. Front Immunol 2022; 13:965550. [PMID: 36341419 PMCID: PMC9630333 DOI: 10.3389/fimmu.2022.965550] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2022] [Accepted: 10/05/2022] [Indexed: 11/22/2022] Open
Abstract
Background Although immune checkpoint inhibitors (ICIs) have become the frontline treatment option for patients with various advanced cancers due to improved survival, they can be associated with a spectrum of cutaneous immune-related adverse events (cirAEs). However, little is known regarding the occurrence and patterns of cirAE-related ICI therapy in patients of different races other than white populations. Therefore, we investigated the incidence and associated factors of cirAEs among cancer patients in northern Thailand. Methods A referral-center-based ambispective cohort study was conducted from January 1, 2017, to March 31, 2021. Based on a linked database and merged patient-level data, adult patients with pathologically confirmed cancer who were diagnosed and received ICI therapy regardless of cancer type and followed up through August 31, 2021, were included. All cirAE-related ICI therapy was based on clinical evaluation and ascertainment by a board-certified dermatologist. The incidence of cirAE-related ICI therapy with confidence intervals (CIs) across cancer- and ICI therapy-specific groups was estimated. Factors associated with cirAEs were evaluated using multivariable modified Poisson regression to estimate risk ratios (RRs) and 95% CIs. Results The study included 112 patients (67 men [59.8%]; mean age, 65.0 [range, 31.0-88.0] years), who were mainly diagnosed with lung cancer (56.3%), followed by liver cancer (19.6%). The overall incidence of cirAE-related ICI therapy was 32.1% (95% CI, 24.1-41.4); however, there was no substantial difference in sex, cancer type, or individual ICI therapy. The two identified prognostic risk factors of cirAE-related ICI therapy were age >75 years (adjusted RR, 2.13; 95% CI, 1.09-4.15; P=0.027) and pre-existing chronic kidney disease stages 3-4 (adjusted RR, 3.52; 95% CI, 2.33-5.31; P<0.001). Conclusions The incidence of cirAE-related ICI therapy among Thai cancer patients was comparable to that in white populations. Early identification, particularly in elderly patients and those with CKD, should be implemented in clinical practice to help optimize therapeutic decision-making and patient health outcomes.
Collapse
Affiliation(s)
| | - Salin Kiratikanon
- Division of Dermatology, Department of Internal Medicine, Chiang Mai University, Chiang Mai, Thailand
| | - Thanika Ketpueak
- Division of Oncology, Department of Internal Medicine, Chiang Mai University, Chiang Mai, Thailand
| | | | - Chaiyut Charoentum
- Division of Oncology, Department of Internal Medicine, Chiang Mai University, Chiang Mai, Thailand
| | - Busyamas Chewaskulyong
- Division of Oncology, Department of Internal Medicine, Chiang Mai University, Chiang Mai, Thailand
| | - Napatra Tovanabutra
- Division of Dermatology, Department of Internal Medicine, Chiang Mai University, Chiang Mai, Thailand
| | - Siri Chiewchanvit
- Division of Dermatology, Department of Internal Medicine, Chiang Mai University, Chiang Mai, Thailand
- Pharmacoepidemiology and Statistics Research Center, Faculty of Pharmacy, Chiang Mai University, Chiang Mai, Thailand
| | - Surapon Nochaiwong
- Division of Dermatology, Department of Internal Medicine, Chiang Mai University, Chiang Mai, Thailand
- Pharmacoepidemiology and Statistics Research Center, Faculty of Pharmacy, Chiang Mai University, Chiang Mai, Thailand
- Department of Pharmaceutical Care, Faculty of Pharmacy, Chiang Mai University, Chiang Mai, Thailand
- *Correspondence: Mati Chuamanochan, ; Surapon Nochaiwong,
| | - Mati Chuamanochan
- Division of Dermatology, Department of Internal Medicine, Chiang Mai University, Chiang Mai, Thailand
- Pharmacoepidemiology and Statistics Research Center, Faculty of Pharmacy, Chiang Mai University, Chiang Mai, Thailand
- *Correspondence: Mati Chuamanochan, ; Surapon Nochaiwong,
| |
Collapse
|
22
|
Ge S, Jia T, Li J, Zhang B, Sang S, Deng S. Molecular imaging of immune checkpoints in oncology: Current and future applications. Cancer Lett 2022; 548:215896. [PMID: 36041658 DOI: 10.1016/j.canlet.2022.215896] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2022] [Accepted: 08/19/2022] [Indexed: 11/02/2022]
Abstract
Immune checkpoint (IC) blockade therapy has become the first-line treatment for various cancers. However, the low response rate and acquired drug resistance severely restrict the clinical application of immune checkpoint inhibitors (ICIs). Nuclide molecular imaging of ICs can provide non-invasive and whole-body visualization of in vivo IC dynamic biodistribution. Therefore, molecular imaging of ICs can predict and monitor responses to ICIs as a complementary tool to existing immunohistochemical techniques. Herein, we outlined the current status and recent advances in molecular imaging of the "first-generation" and "next-generation" ICs in preclinical and clinical studies.
Collapse
Affiliation(s)
- Shushan Ge
- Department of Nuclear Medicine, The First Affiliated Hospital of Soochow University, Suzhou, 215000, China; NHC Key Laboratory of Nuclear Technology Medical Transformation, Mianyang Central Hospital, Mianyang, 621099, China
| | - Tongtong Jia
- Department of Nuclear Medicine, The First Affiliated Hospital of Soochow University, Suzhou, 215000, China
| | - Jihui Li
- Department of Nuclear Medicine, The First Affiliated Hospital of Soochow University, Suzhou, 215000, China
| | - Bing Zhang
- Department of Nuclear Medicine, The First Affiliated Hospital of Soochow University, Suzhou, 215000, China
| | - Shibiao Sang
- Department of Nuclear Medicine, The First Affiliated Hospital of Soochow University, Suzhou, 215000, China.
| | - Shengming Deng
- Department of Nuclear Medicine, The First Affiliated Hospital of Soochow University, Suzhou, 215000, China; NHC Key Laboratory of Nuclear Technology Medical Transformation, Mianyang Central Hospital, Mianyang, 621099, China.
| |
Collapse
|
23
|
Wu L, Xie W, Li Y, Ni Q, Timashev P, Lyu M, Xia L, Zhang Y, Liu L, Yuan Y, Liang X, Zhang Q. Biomimetic Nanocarriers Guide Extracellular ATP Homeostasis to Remodel Energy Metabolism for Activating Innate and Adaptive Immunity System. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2022; 9:e2105376. [PMID: 35396800 PMCID: PMC9189650 DOI: 10.1002/advs.202105376] [Citation(s) in RCA: 46] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/16/2021] [Revised: 02/28/2022] [Indexed: 05/14/2023]
Abstract
Metabolic interventions via targeting intratumoral dysregulated metabolism pathways have shown promise in reinvigorating antitumor immunity. However, approved small molecule immunomodulators often suffer from ineffective response rates and severe off-target toxicity. ATP occupies a crucial role in energy metabolism of components that form the tumor microenvironment (TME) and influences cancer immunosurveillance. Here, a nanocarrier-assisted immunometabolic therapy strategy that targets the ATP-adenosine axis for metabolic reprogramming of TME is reported. An ecto-enzyme (CD39) antagonist POM1 and AMP-activated protein kinase (AMPK) agonist metformin are both encapsulated into cancer cell-derived exosomes and used as nanocarriers for tumor targeting delivery. This method increases the level of pro-inflammatory extracellular ATP (eATP) while preventing the accumulation of immunosuppressive adenosine and alleviating hypoxia. Elevated eATP triggers the activation of P2X7-NLRP3-inflammasome to drive macrophage pyroptosis, potentiates the maturation and antigen capacity of dendritic cells (DCs) to enhance the cytotoxic function of T cells and natural killer (NK) cells. As a result, synergistic antitumor immune responses are initiated to suppress tumor progress, inhibit tumor distant metastases, provide long-term immune memory that offers protection against tumor recurrence and overcome anti-PD1 resistance. Overall, this study provides an innovative strategy to advance eATP-driven antitumor immunity in cancer therapy.
Collapse
Affiliation(s)
- Long Wu
- Institute of Biomedical Engineering & Department of Gastrointestinal SurgeryShenzhen People's Hospital (The Second Clinical Medical College, Jinan University, Jinan University; The First Affiliated Hospital, Southern University of Science and Technology)ShenzhenGuangdong518020P. R. China
- Department of Hepatobiliary & Pancreatic SurgeryZhongnan Hospital of Wuhan UniversityWuhanHubei430071P. R. China
| | - Wei Xie
- Department of Hepatobiliary & Pancreatic SurgeryZhongnan Hospital of Wuhan UniversityWuhanHubei430071P. R. China
| | - Yang Li
- Institute of Biomedical Engineering & Department of Gastrointestinal SurgeryShenzhen People's Hospital (The Second Clinical Medical College, Jinan University, Jinan University; The First Affiliated Hospital, Southern University of Science and Technology)ShenzhenGuangdong518020P. R. China
| | - Qiankun Ni
- Chinese Academy of Sciences (CAS) Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, CAS Center for Excellence in NanoscienceNational Center for Nanoscience and Technology of ChinaBeijing100190P. R. China
- University of Chinese Academy of SciencesBeijing100049P. R. China
| | - Peter Timashev
- Laboratory of Clinical Smart Nanotechnologies, Institute for Regenerative MedicineSechenov UniversityMoscow119991Russia
| | - Meng Lyu
- Institute of Biomedical Engineering & Department of Gastrointestinal SurgeryShenzhen People's Hospital (The Second Clinical Medical College, Jinan University, Jinan University; The First Affiliated Hospital, Southern University of Science and Technology)ShenzhenGuangdong518020P. R. China
| | - Ligang Xia
- Institute of Biomedical Engineering & Department of Gastrointestinal SurgeryShenzhen People's Hospital (The Second Clinical Medical College, Jinan University, Jinan University; The First Affiliated Hospital, Southern University of Science and Technology)ShenzhenGuangdong518020P. R. China
| | - Yuan Zhang
- Fujian GTR Biotech Co. Ltd.FuzhouFujian350108P. R. China
| | - Lingrong Liu
- Institute of Biomedical EngineeringChinese Academy of Medical Sciences & Peking Union Medical CollegeTianjin300192P. R. China
| | - Yufeng Yuan
- Department of Hepatobiliary & Pancreatic SurgeryZhongnan Hospital of Wuhan UniversityWuhanHubei430071P. R. China
| | - Xing‐Jie Liang
- Chinese Academy of Sciences (CAS) Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, CAS Center for Excellence in NanoscienceNational Center for Nanoscience and Technology of ChinaBeijing100190P. R. China
- University of Chinese Academy of SciencesBeijing100049P. R. China
| | - Qiqing Zhang
- Institute of Biomedical Engineering & Department of Gastrointestinal SurgeryShenzhen People's Hospital (The Second Clinical Medical College, Jinan University, Jinan University; The First Affiliated Hospital, Southern University of Science and Technology)ShenzhenGuangdong518020P. R. China
- Institute of Biomedical EngineeringChinese Academy of Medical Sciences & Peking Union Medical CollegeTianjin300192P. R. China
| |
Collapse
|
24
|
Nong C, Guan P, Li L, Zhang H, Hu H. Tumor immunotherapy: Mechanisms and clinical applications. MEDCOMM – ONCOLOGY 2022. [DOI: 10.1002/mog2.8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Affiliation(s)
- Cheng Nong
- Center for Immunology and Hematology, National Clinical Research Center for Geriatrics State Key Laboratory of Biotherapy, West China Hospital Sichuan University Chengdu China
| | - Pengbo Guan
- Center for Immunology and Hematology, National Clinical Research Center for Geriatrics State Key Laboratory of Biotherapy, West China Hospital Sichuan University Chengdu China
| | - Li Li
- Center for Immunology and Hematology, National Clinical Research Center for Geriatrics State Key Laboratory of Biotherapy, West China Hospital Sichuan University Chengdu China
| | - Huiyuan Zhang
- Center for Immunology and Hematology, National Clinical Research Center for Geriatrics State Key Laboratory of Biotherapy, West China Hospital Sichuan University Chengdu China
| | - Hongbo Hu
- Center for Immunology and Hematology, National Clinical Research Center for Geriatrics State Key Laboratory of Biotherapy, West China Hospital Sichuan University Chengdu China
- Chongqing International Institution for Immunology Chongqing China
| |
Collapse
|
25
|
A Contemporary Review of Molecular Therapeutic Targets for Adenoid Cystic Carcinoma. Cancers (Basel) 2022; 14:cancers14040992. [PMID: 35205740 PMCID: PMC8869877 DOI: 10.3390/cancers14040992] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2022] [Revised: 02/11/2022] [Accepted: 02/14/2022] [Indexed: 01/17/2023] Open
Abstract
Simple Summary Adenoid cystic carcinoma (ACC) is a salivary malignancy known for slow growth, a propensity for perineural spread, local recurrence following resection, and indolent distant metastases. Current treatments in recurrent/metastatic (R/M) ACC are generally of limited impact and often palliative in nature. Herein, we review the preclinical and clinical literature on molecular alterations in ACC with the potential for targeted therapeutics. We further review other molecular targets of ongoing investigation and active clinical trials for patients with ACC, offering a contemporary summary and insight into future therapeutic strategies. Abstract ACC is a rare malignant tumor of the salivary glands. In this contemporary review, we explore advances in identification of targetable alterations and clinical trials testing these druggable targets. A search of relevant articles and abstracts from national meetings and three databases, including PubMed, Medline, and Web of Science, was performed. Following keyword search analysis and double peer review of abstracts to ensure appropriate fit, a total of 55 manuscripts were included in this review detailing advances in molecular targets for ACC. The most researched pathway associated with ACC is the MYB–NFIB translocation, found to lead to dysregulation of critical cellular pathways and thought to be a fundamental driver in a subset of ACC disease pathogenesis. Other notable molecular targets that have been studied include the cKIT receptor, the EGFR pathway, and NOTCH1, all with limited efficacy in clinical trials. The ongoing investigation of molecular abnormalities underpinning ACC that may be responsible for carcinogenesis is critical to identifying and developing novel targeted therapies.
Collapse
|
26
|
Distinct Hypoxia-Related Gene Profiling Characterizes Clinicopathological Features and Immune Status of Mismatch Repair-Deficient Colon Cancer. JOURNAL OF ONCOLOGY 2021; 2021:2427427. [PMID: 34917146 PMCID: PMC8670907 DOI: 10.1155/2021/2427427] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/18/2021] [Revised: 11/07/2021] [Accepted: 11/13/2021] [Indexed: 12/09/2022]
Abstract
Despite dramatic responses to immune checkpoint inhibitors (ICIs) in patients with colon cancer (CC) harboring deficient mismatch repair (dMMR), more than half of these patients ultimately progress and experience primary or secondary drug resistance. There is no useful biomarker that is currently validated to accurately predict this resistance or stratify patients who may benefit from ICI-based immunotherapy. As hypoxic and acidic tumor microenvironment would greatly impair tumor-suppressing functions of tumor-infiltrating lymphocytes (TILs), we sought to explore distinct immunological phenotypes by analysis of the intratumoral hypoxia state using a well-established gene signature. Based on the Gene Expression Omnibus (GEO) (n = 88) and The Cancer Genome Atlas (TCGA) (n = 49) databases of patients with CC, we found that dMMR CC patients could be separated into normoxia subgroup (NS) and hypoxia subgroup (HS) with different levels of expression of hypoxia-related genes (lower in NS group and higher in HS group) using NMF package. Tumoral parenchyma in the HS group had a relatively lower level of immune cell infiltration, particularly CD8+ T cells and M1 macrophages than the NS group, and coincided with higher expression of immune checkpoint molecules and C-X-C motif chemokines, which might be associated with ICI resistance and prognosis. Furthermore, three genes, namely, MT1E, MT2A, and MAFF, were identified to be differentially expressed between NS and HS groups in both GEO and TCGA cohorts. Based on these genes, a prognostic model with stable and valuable predicting ability has been built for clinical application. In conclusion, the varying tumor-immune microenvironment (TIME) classified by hypoxia-related genes might be closely associated with different therapeutic responses of ICIs and prognosis of dMMR CC patients.
Collapse
|
27
|
Oxaliplatin facilitates tumor-infiltration of T cells and natural-killer cells for enhanced tumor immunotherapy in lung cancer model. Anticancer Drugs 2021; 33:117-123. [PMID: 34561996 PMCID: PMC8734624 DOI: 10.1097/cad.0000000000001248] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Platinum is reported to have adjuvant immune properties, whether oxaliplatin (OXA) could be utilized to synergize with anti-programmed cell death-1 (PD-1) antibody or anti-NKG2D (natural-killer group 2, member D) antibody is investigated. Subcutaneous A549 lung cancer and murine Lewis lung carcinoma (LLC) models were constructed, which were further intravenously injected with platinum-based drugs or concomitant administrated with anti-PD-1 antibody and or anti-NKG2D antibody. The tumor volume and the proportion of myeloid cells (CD45+CD11b+), CD3+T cells and NK (NK1.1+) cells were detected. The relative expression of chemokine (C-X-C motif) ligand 9 (CXCL9), CXCL10 and CXCL11 and C-X-C motif chemokine receptor 3 (CXCR3) was detected with the ELISA, western blot and flow cytometry. The three platinum drugs (cisplatin, DDP; carboplatin, CBP; OXA) showed similar effects to inhibit A549 tumor growth in immune-deficient mice. While OXA exhibited better antitumor efficacy in wild-type mice bearing LLC with downregulated myeloid cells proportion, upregulated concentration of CXCL9, CXCL10 and CXCL11, and upregulated proportion and CXCR3 expression on T cells and NK cells. OXA combined with anti-PD1 or anti-NKG2D synergistically improved tumor growth inhibition and survival. The combination of OXA to anti-PD1 and anti-NKG2D antibodies will provide the most appropriate treatment benefit. Oxaliplatin promotes T cells and NK cells infiltration through the CXCL9/10/11-CXCR3 axis to enhance anti-PD1 or anti-NKG2D immunotherapy in lung cancer.
Collapse
|
28
|
Glucocorticoid and PD-1 Cross-Talk: Does the Immune System Become Confused? Cells 2021; 10:cells10092333. [PMID: 34571982 PMCID: PMC8468592 DOI: 10.3390/cells10092333] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2021] [Revised: 08/31/2021] [Accepted: 09/03/2021] [Indexed: 12/11/2022] Open
Abstract
Programmed cell death protein 1 (PD-1) and its ligands, PD-L1/2, control T cell activation and tolerance. While PD-1 expression is induced upon T cell receptor (TCR) activation or cytokine signaling, PD-L1 is expressed on B cells, antigen presenting cells, and on non-immune tissues, including cancer cells. Importantly, PD-L1 binding inhibits T cell activation. Therefore, the modulation of PD-1/PD-L1 expression on immune cells, both circulating or in a tumor microenvironment and/or on the tumor cell surface, is one mechanism of cancer immune evasion. Therapies that target PD-1/PD-L1, blocking the T cell-cancer cell interaction, have been successful in patients with various types of cancer. Glucocorticoids (GCs) are often administered to manage the side effects of chemo- or immuno-therapy, exerting a wide range of immunosuppressive and anti-inflammatory effects. However, GCs may also have tumor-promoting effects, interfering with therapy. In this review, we examine GC signaling and how it intersects with PD-1/PD-L1 pathways, including a discussion on the potential for GC- and PD-1/PD-L1-targeted therapies to "confuse" the immune system, leading to a cancer cell advantage that counteracts anti-cancer immunotherapy. Therefore, combination therapies should be utilized with an awareness of the potential for opposing effects on the immune system.
Collapse
|
29
|
Leung DYM. Immune-related cutaneous adverse events: A new opportunity for allergists and clinical immunologists. Ann Allergy Asthma Immunol 2021; 126:607. [PMID: 34049668 DOI: 10.1016/j.anai.2020.12.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2020] [Accepted: 12/16/2020] [Indexed: 10/21/2022]
Affiliation(s)
- Donald Y M Leung
- Department of Pediatrics, National Jewish Health, Denver, Colorado.
| |
Collapse
|
30
|
Li P, Zhu K, Mo Y, Deng X, Jiang X, Shi L, Guo C, Zhang W, Zeng Z, Li G, Xiong W, Zhang S, Gong Z. Research Progress of circRNAs in Head and Neck Cancers. Front Oncol 2021; 11:616202. [PMID: 33996542 PMCID: PMC8117014 DOI: 10.3389/fonc.2021.616202] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2020] [Accepted: 04/07/2021] [Indexed: 12/13/2022] Open
Abstract
Circular RNAs (circRNAs) are a novel type of non-coding RNAs. Because of their characteristics of a closed loop structure, disease- and tissue-specificity, and high conservation and stability, circRNAs have the potential to be biomarkers for disease diagnosis. Head and neck cancers are one of the most common malignant tumors with high incidence rates globally. Affected patients are often diagnosed at the advanced stage with poor prognosis, owing to the concealment of anatomic sites. The characteristics, functions, and specific mechanisms of circRNAs in head and neck cancers are increasingly being discovered, and they have important clinical significance for the early diagnosis, treatment, and prognosis evaluation of patients with cancer. In this study, the generation, characteristics, and functions of circRNAs, along with their regulatory mechanisms in head and neck cancers have been summarized. We report that circRNAs interact with molecules such as transcription and growth factors to influence specific pathways involved in tumorigenesis. We conclude that circRNAs have an important role to play in the proliferation, invasion, metastasis, energy and substance metabolism, and treatment resistance in cancers.
Collapse
Affiliation(s)
- Panchun Li
- Department of Oral and Maxillofacial Surgery, The Second Xiangya Hospital, Central South University, Changsha, China
| | - Kunjie Zhu
- Department of Head and Neck Surgery, The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, China
| | - Yongzhen Mo
- NHC Key Laboratory of Carcinogenesis, Cancer Research Institute and School of Basic Medical Sciences, Central South University, Changsha, China
| | - Xiangying Deng
- NHC Key Laboratory of Carcinogenesis, Cancer Research Institute and School of Basic Medical Sciences, Central South University, Changsha, China
| | - Xianjie Jiang
- NHC Key Laboratory of Carcinogenesis, Cancer Research Institute and School of Basic Medical Sciences, Central South University, Changsha, China
| | - Lei Shi
- Department of Pathology, The Second Xiangya Hospital, Central South University, Changsha, China
| | - Can Guo
- NHC Key Laboratory of Carcinogenesis, Cancer Research Institute and School of Basic Medical Sciences, Central South University, Changsha, China
| | - Wenling Zhang
- NHC Key Laboratory of Carcinogenesis, Cancer Research Institute and School of Basic Medical Sciences, Central South University, Changsha, China
| | - Zhaoyang Zeng
- NHC Key Laboratory of Carcinogenesis, Cancer Research Institute and School of Basic Medical Sciences, Central South University, Changsha, China
| | - Guiyuan Li
- NHC Key Laboratory of Carcinogenesis, Cancer Research Institute and School of Basic Medical Sciences, Central South University, Changsha, China
| | - Wei Xiong
- NHC Key Laboratory of Carcinogenesis, Cancer Research Institute and School of Basic Medical Sciences, Central South University, Changsha, China
| | - Shanshan Zhang
- Department of Stomatology, The Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Xiangya Hospital, Central South University, Changsha, China
| | - Zhaojian Gong
- Department of Oral and Maxillofacial Surgery, The Second Xiangya Hospital, Central South University, Changsha, China
| |
Collapse
|