1
|
Akaarir M, Nicolau MC, Cañellas F, Rubiño JA, Barceló P, Gamundí A, Martin-Reina A, Rial RV. The Disputable Costs of Sleeping. BIOLOGY 2025; 14:352. [PMID: 40282216 PMCID: PMC12024767 DOI: 10.3390/biology14040352] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/26/2024] [Revised: 12/04/2024] [Accepted: 12/12/2024] [Indexed: 04/29/2025]
Abstract
It is currently affirmed that sleep detracts from time for foraging, reproductive, and anti-predatory activities. In contrast, we show that the sleep-related reductions in food intake and reproductive activities may, in fact, be benefits. Furthermore, the present report shows that the optimal prey are the immature, weak, sick, and senescent animals and rarely the sleeping fit adults. Indeed, the reduced sleeping time observed in prey animals occurs, not because of an evolutionary antipredation pressure but because of the time-expensive foraging-related activities and the digestion of the high-cellulose content in the herbivores' diet, an activity that leaves reduced amounts of daily time for sleeping. We conclude that the need for sleep ranks lower than those of foraging, reproduction, and antipredation activities.
Collapse
Affiliation(s)
- Mourad Akaarir
- Balearic Islands Health Research Institute (IUNICS), Universitat de les Illes Balears, 07122 Palma, Spain; (M.A.); (M.C.N.); (P.B.); (A.G.); (A.M.-R.)
| | - M. Cristina Nicolau
- Balearic Islands Health Research Institute (IUNICS), Universitat de les Illes Balears, 07122 Palma, Spain; (M.A.); (M.C.N.); (P.B.); (A.G.); (A.M.-R.)
| | - Francesca Cañellas
- Balearic Islands Health Research Institute (IUNICS), Hospital Universitario Son Espases, Universitat de les Illes Balears, 07122 Palma, Spain; (F.C.)
| | - Jose A. Rubiño
- Balearic Islands Health Research Institute (IUNICS), Universitat de les Illes Balears, 07122 Palma, Spain; (M.A.); (M.C.N.); (P.B.); (A.G.); (A.M.-R.)
| | - Pere Barceló
- Balearic Islands Health Research Institute (IUNICS), Universitat de les Illes Balears, 07122 Palma, Spain; (M.A.); (M.C.N.); (P.B.); (A.G.); (A.M.-R.)
| | - Antonio Gamundí
- Balearic Islands Health Research Institute (IUNICS), Universitat de les Illes Balears, 07122 Palma, Spain; (M.A.); (M.C.N.); (P.B.); (A.G.); (A.M.-R.)
| | - Aida Martin-Reina
- Balearic Islands Health Research Institute (IUNICS), Universitat de les Illes Balears, 07122 Palma, Spain; (M.A.); (M.C.N.); (P.B.); (A.G.); (A.M.-R.)
| | - Rubén V. Rial
- Balearic Islands Health Research Institute (IUNICS), Universitat de les Illes Balears, 07122 Palma, Spain; (M.A.); (M.C.N.); (P.B.); (A.G.); (A.M.-R.)
| |
Collapse
|
2
|
Norman H, Munson A, Cortese D, Koeck B, Killen SS. The interplay between sleep and ecophysiology, behaviour and responses to environmental change in fish. J Exp Biol 2024; 227:jeb247138. [PMID: 38860399 PMCID: PMC11213526 DOI: 10.1242/jeb.247138] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/12/2024]
Abstract
Evidence of behavioural sleep has been observed in every animal species studied to date, but current knowledge of the behaviour, neurophysiology and ecophysiology associated with sleep is concentrated on mammals and birds. Fish are a hugely diverse group that can offer novel insights into a variety of sleep-related behaviours across environments, but the ecophysiological relevance of sleep in fish has been largely overlooked. Here, we systematically reviewed the literature to assess the current breadth of knowledge on fish sleep, and surveyed the diverse physiological effects and behaviours associated with sleep. We also discuss possible ways in which unstudied external factors may alter sleep behaviours. For example, predation risk may alter sleep patterns, as has been shown in mammalian, avian and reptilian species. Other environmental factors - such as water temperature and oxygen availability - have the potential to alter sleep patterns in fish differently than for terrestrial endotherms. Understanding the ecological influences on sleep in fish is vital, as sleep deprivation has the potential to affect waking behaviour and fitness owing to cognitive and physiological impairments, possibly affecting ecological phenomena and sensitivity to environmental stressors in ways that have not been considered.
Collapse
Affiliation(s)
- Helena Norman
- School of Biodiversity, One Health, and Comparative Medicine, University of Glasgow, Glasgow G12 8QQ, UK
| | - Amelia Munson
- School of Biodiversity, One Health, and Comparative Medicine, University of Glasgow, Glasgow G12 8QQ, UK
| | - Daphne Cortese
- School of Biodiversity, One Health, and Comparative Medicine, University of Glasgow, Glasgow G12 8QQ, UK
| | - Barbara Koeck
- School of Biodiversity, One Health, and Comparative Medicine, University of Glasgow, Glasgow G12 8QQ, UK
| | - Shaun S. Killen
- School of Biodiversity, One Health, and Comparative Medicine, University of Glasgow, Glasgow G12 8QQ, UK
| |
Collapse
|
3
|
Michel A, Johnson JR, Szeligowski R, Ritchie EG, Sih A. Integrating sensory ecology and predator-prey theory to understand animal responses to fire. Ecol Lett 2023; 26:1050-1070. [PMID: 37349260 DOI: 10.1111/ele.14231] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2022] [Revised: 01/11/2023] [Accepted: 02/10/2023] [Indexed: 06/24/2023]
Abstract
Fire regimes are changing dramatically worldwide due to climate change, habitat conversion, and the suppression of Indigenous landscape management. Although there has been extensive work on plant responses to fire, including their adaptations to withstand fire and long-term effects of fire on plant communities, less is known about animal responses to fire. Ecologists lack a conceptual framework for understanding behavioural responses to fire, which can hinder wildlife conservation and management. Here, we integrate cue-response sensory ecology and predator-prey theory to predict and explain variation in if, when and how animals react to approaching fire. Inspired by the literature on prey responses to predation risk, this framework considers both fire-naïve and fire-adapted animals and follows three key steps: vigilance, cue detection and response. We draw from theory on vigilance tradeoffs, signal detection, speed-accuracy tradeoffs, fear generalization, neophobia and adaptive dispersal. We discuss how evolutionary history with fire, but also other selective pressures, such as predation risk, should influence animal behavioural responses to fire. We conclude by providing guidance for empiricists and outlining potential conservation applications.
Collapse
Affiliation(s)
- Alice Michel
- Animal Behavior Graduate Group, University of California, Davis, California, USA
| | - Jacob R Johnson
- Animal Behavior Graduate Group, University of California, Davis, California, USA
| | - Richard Szeligowski
- Department of Environmental Science & Policy, University of California, Davis, California, USA
| | - Euan G Ritchie
- School of Life and Environmental Sciences, Centre for Integrative Ecology, Deakin University, Burwood, Victoria, Australia
| | - Andrew Sih
- Department of Environmental Science & Policy, University of California, Davis, California, USA
| |
Collapse
|
4
|
Rattenborg NC, Ungurean G. The evolution and diversification of sleep. Trends Ecol Evol 2023; 38:156-170. [PMID: 36411158 DOI: 10.1016/j.tree.2022.10.004] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2022] [Revised: 10/17/2022] [Accepted: 10/24/2022] [Indexed: 11/19/2022]
Abstract
The evolutionary origins of sleep and its sub-states, rapid eye movement (REM) and non-REM (NREM) sleep, found in mammals and birds, remain a mystery. Although the discovery of a single type of sleep in jellyfish suggests that sleep evolved much earlier than previously thought, it is unclear when and why sleep diversified into multiple types of sleep. Intriguingly, multiple types of sleep have recently been found in animals ranging from non-avian reptiles to arthropods to cephalopods. Although there are similarities between these states and those found in mammals and birds, notable differences also exist. The diversity in the way sleep is expressed confounds attempts to trace the evolution of sleep states, but also serves as a rich resource for exploring the functions of sleep.
Collapse
Affiliation(s)
- Niels C Rattenborg
- Max Planck Institute for Biological Intelligence (in foundation), Seewiesen, Germany.
| | - Gianina Ungurean
- Max Planck Institute for Biological Intelligence (in foundation), Seewiesen, Germany
| |
Collapse
|
5
|
Mohanty NP, Wagener C, Herrel A, Thaker M. The ecology of sleep in non-avian reptiles. Biol Rev Camb Philos Soc 2021; 97:505-526. [PMID: 34708504 DOI: 10.1111/brv.12808] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2021] [Revised: 10/10/2021] [Accepted: 10/18/2021] [Indexed: 01/10/2023]
Abstract
Sleep is ubiquitous in the animal kingdom and yet displays considerable variation in its extent and form in the wild. Ecological factors, such as predation, competition, and microclimate, therefore are likely to play a strong role in shaping characteristics of sleep. Despite the potential for ecological factors to influence various aspects of sleep, the ecological context of sleep in non-avian reptiles remains understudied and without systematic direction. In this review, we examine multiple aspects of reptilian sleep, including (i) habitat selection (sleep sites and their spatio-temporal distribution), (ii) individual-level traits, such as behaviour (sleep postures), morphology (limb morphometrics and body colour), and physiology (sleep architecture), as well as (iii) inter-individual interactions (intra- and inter-specific). Throughout, we discuss the evidence of predation, competition, and thermoregulation in influencing sleep traits and the possible evolutionary consequences of these sleep traits for reptile sociality, morphological specialisation, and habitat partitioning. We also review the ways in which sleep ecology interacts with urbanisation, biological invasions, and climate change. Overall, we not only provide a systematic evaluation of the conceptual and taxonomic biases in the existing literature on reptilian sleep, but also use this opportunity to organise the various ecological hypotheses for sleep characteristics. By highlighting the gaps and providing a prospectus of research directions, our review sets the stage for understanding sleep ecology in the natural world.
Collapse
Affiliation(s)
- Nitya P Mohanty
- Centre for Ecological Sciences, Indian Institute of Science, Bangalore, 560 012, India
| | - Carla Wagener
- Centre for Invasion Biology, Department of Botany and Zoology, Stellenbosch University, Stellenbosch, Western Cape, 7600, South Africa
| | - Anthony Herrel
- Département Adaptations du Vivant, MECADEV UMR7179 CNRS/MNHN, Paris, France
| | - Maria Thaker
- Centre for Ecological Sciences, Indian Institute of Science, Bangalore, 560 012, India
| |
Collapse
|
6
|
Brynychová K, Šálek ME, Vozabulová E, Sládeček M. Daily Rhythms of Female Self-maintenance Correlate with Predation Risk and Male Nest Attendance in a Biparental Wader. J Biol Rhythms 2020; 35:489-500. [PMID: 32677476 DOI: 10.1177/0748730420940465] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Parents make tradeoffs between care for offspring and themselves. Such a tradeoff should be reduced in biparental species, when both parents provide parental care. However, in some biparental species, the contribution of one sex varies greatly over time or between pairs. How this variation in parental care influences self-maintenance rhythms is often unclear. In this study, we used continuous video recording to investigate the daily rhythms of sleep and feather preening in incubating females of the Northern Lapwing (Vanellus vanellus), a wader with a highly variable male contribution to incubation. We found that the female's sleep frequency peaked after sunrise and before sunset but was low in the middle of the day and especially during the night. In contrast, preening frequency followed a 24-h rhythm and peaked in the middle of the day. Taken together, incubating females rarely slept or preened during the night, when the predation pressure was highest. Moreover, the sleeping and preening rhythms were modulated by the male contribution to incubation. Females that were paired with more contributing males showed a stronger sleep rhythm but also a weaker preening rhythm. If more incubating males also invest more in nest guarding and deterring daylight predators, their females may afford more sleep on the nest during the day and preen more when they are off the nest. Whether the lack of sleep in females paired with less caregiving males has fitness consequences awaits future investigation.
Collapse
Affiliation(s)
- Kateřina Brynychová
- Faculty of Environmental Sciences, Czech University of Life Sciences Prague, Praha, Suchdol, Czech Republic
| | - Miroslav E Šálek
- Faculty of Environmental Sciences, Czech University of Life Sciences Prague, Praha, Suchdol, Czech Republic
| | - Eva Vozabulová
- Faculty of Environmental Sciences, Czech University of Life Sciences Prague, Praha, Suchdol, Czech Republic
| | - Martin Sládeček
- Faculty of Environmental Sciences, Czech University of Life Sciences Prague, Praha, Suchdol, Czech Republic
| |
Collapse
|
7
|
Samson DR, Louden LA, Gerstner K, Wylie S, Lake B, White BJ, Nunn CL, Hunt KD. Chimpanzee (Pan troglodytes schweinfurthii) Group Sleep and Pathogen-Vector Avoidance: Experimental Support for the Encounter-Dilution Effect. INT J PRIMATOL 2019. [DOI: 10.1007/s10764-019-00111-z] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
|
8
|
Rattenborg NC, van der Meij J, Beckers GJL, Lesku JA. Local Aspects of Avian Non-REM and REM Sleep. Front Neurosci 2019; 13:567. [PMID: 31231182 PMCID: PMC6560081 DOI: 10.3389/fnins.2019.00567] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2019] [Accepted: 05/17/2019] [Indexed: 12/12/2022] Open
Abstract
Birds exhibit two types of sleep that are in many respects similar to mammalian rapid eye movement (REM) and non-REM (NREM) sleep. As in mammals, several aspects of avian sleep can occur in a local manner within the brain. Electrophysiological evidence of NREM sleep occurring more deeply in one hemisphere, or only in one hemisphere - the latter being a phenomenon most pronounced in dolphins - was actually first described in birds. Such asymmetric or unihemispheric NREM sleep occurs with one eye open, enabling birds to visually monitor their environment for predators. Frigatebirds primarily engage in this form of sleep in flight, perhaps to avoid collisions with other birds. In addition to interhemispheric differences in NREM sleep intensity, the intensity of NREM sleep is homeostatically regulated in a local, use-depended manner within each hemisphere. Furthermore, the intensity and temporo-spatial distribution of NREM sleep-related slow waves varies across layers of the avian hyperpallium - a primary visual area - with the slow waves occurring first in, and propagating through and outward from, thalamic input layers. Slow waves also have the greatest amplitude in these layers. Although most research has focused on NREM sleep, there are also local aspects to avian REM sleep. REM sleep-related reductions in skeletal muscle tone appear largely restricted to muscles involved in maintaining head posture. Other local aspects of sleep manifest as a mixture of features of NREM and REM sleep occurring simultaneously in different parts of the neuroaxis. Like monotreme mammals, ostriches often exhibit brainstem-mediated features of REM sleep (muscle atonia and REMs) while the hyperpallium shows EEG slow waves typical of NREM sleep. Finally, although mice show slow waves in thalamic input layers of primary sensory cortices during REM sleep, this is not the case in the hyperpallium of pigeons, suggesting that this phenomenon is not a universal feature of REM sleep. Collectively, the local aspects of sleep described in birds and mammals reveal that wakefulness, NREM sleep, and REM sleep are not always discrete states.
Collapse
Affiliation(s)
| | | | - Gabriël J. L. Beckers
- Cognitive Neurobiology and Helmholtz Institute, Utrecht University, Utrecht, Netherlands
| | - John A. Lesku
- School of Life Sciences, La Trobe University, Melbourne, VIC, Australia
| |
Collapse
|
9
|
Tisdale RK, Lesku JA, Beckers GJL, Vyssotski AL, Rattenborg NC. The low-down on sleeping down low: pigeons shift to lighter forms of sleep when sleeping near the ground. J Exp Biol 2018; 221:221/19/jeb182634. [DOI: 10.1242/jeb.182634] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2018] [Accepted: 07/30/2018] [Indexed: 12/21/2022]
Abstract
ABSTRACT
Sleep in birds is composed of two distinct sub-states, remarkably similar to mammalian slow-wave sleep (SWS) and rapid eye movement (REM) sleep. However, it is unclear whether all aspects of mammalian sleep are present in birds. We examined whether birds suppress REM sleep in response to changes in sleeping conditions that presumably evoke an increase in perceived predation risk, as observed previously in rodents. Although pigeons sometimes sleep on the ground, they prefer to sleep on elevated perches at night, probably to avoid nocturnal mammalian ground predators. Few studies to date have investigated how roosting sites affect sleep architecture. We compared sleep in captive pigeons on days with and without access to high perches. On the first (baseline) day, low and high perches were available; on the second day, the high perches were removed; and on the third (recovery) day, the high perches were returned. The total time spent sleeping did not vary significantly between conditions; however, the time spent in REM sleep declined on the low-perch night and increased above baseline when the pigeons slept on the high perch during the recovery night. Although the amount of SWS did not vary significantly between conditions, SWS intensity was lower on the low-perch night, particularly early in the night. The similarity of these responses between birds and mammals suggests that REM sleep is influenced by at least some ecological factors in a similar manner in both groups of animals.
Collapse
Affiliation(s)
- Ryan K. Tisdale
- Avian Sleep Group, Max Planck Institute for Ornithology, Seewiesen 82319, Germany
| | - John A. Lesku
- School of Life Sciences, La Trobe University, Melbourne 3086, Australia
| | - Gabriel J. L. Beckers
- Cognitive Neurobiology and Helmholtz Institute, Utrecht University, Utrecht 3584 CM, The Netherlands
| | - Alexei L. Vyssotski
- Institute of Neuroinformatics, University of Zürich/ETH Zürich, Zürich 8057, Switzerland
| | - Niels C. Rattenborg
- Avian Sleep Group, Max Planck Institute for Ornithology, Seewiesen 82319, Germany
| |
Collapse
|
10
|
Melrose A, Nelson XJ, Dolev Y, Helton WS. Vigilance all the way down: Vigilance decrement in jumping spiders resembles that of humans. Q J Exp Psychol (Hove) 2018; 72:1530-1538. [PMID: 30131001 DOI: 10.1177/1747021818798743] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
The inability to maintain signal detection performance with time on task, or vigilance decrement, is widely studied in people. Despite suggestions that limitations in sustained attention may be a fundamental characteristic of animal cognition, there has been limited research on the vigilance decrement in other animals. We conducted two experiments to explore vigilance in jumping spiders. Our first experiment established that the vigilance decrement, decline in signal detections with time on task, occurs in these spiders in laboratory settings. Our second experiment tested whether this phenomenon was simply the result of habituation of sensory receptors by employing two dishabituation manipulations. Neither dishabituation manipulation appeared to have an effect. Thus, the vigilance decrement in spiders appears to be due to something more than simply peripheral sensory habituation. We suggest that limitations in sustained attention may be a widespread phenomenon among animals that needs addressing when theorising about the vigilance decrement.
Collapse
Affiliation(s)
- Amber Melrose
- 1 School of Biological Sciences, University of Canterbury, Christchurch, New Zealand
| | - Ximena J Nelson
- 1 School of Biological Sciences, University of Canterbury, Christchurch, New Zealand
| | - Yinnon Dolev
- 1 School of Biological Sciences, University of Canterbury, Christchurch, New Zealand
| | - William S Helton
- 2 Department of Psychology, University of Canterbury, Christchurch, New Zealand.,3 Department of Psychology, George Mason University, Fairfax, VA, USA
| |
Collapse
|
11
|
Field JM, Bonsall MB. The evolution of sleep is inevitable in a periodic world. PLoS One 2018; 13:e0201615. [PMID: 30080877 PMCID: PMC6078299 DOI: 10.1371/journal.pone.0201615] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2018] [Accepted: 07/18/2018] [Indexed: 11/19/2022] Open
Abstract
There are two contrasting explanations of sleep: as a proximate, essential physiological function or as a behavioral, adaptive state of inactivity and these hypotheses remain widely debated. To investigate the adaptive significance of sleep, we develop an evolutionary argument formulated as a tractable partial differential equation model. We allow demographic parameters such as birth and mortality rates to vary through time in both safe and vulnerable sleeping environments. From this model we analytically calculate population growth rate (fitness) for sleeping and non-sleeping strategies. We find that, in a temporally heterogeneous environment, sleep behavior always achieves a higher fitness than non-sleeping behavior. As organisms do not exist in constant environments, we conclude that the evolution of sleep is inevitable. Further, we suggest that the two contrasting theories need not be mutually exclusive.
Collapse
Affiliation(s)
- Jared M. Field
- Wolfson Centre for Mathematical Biology, Mathematical Institute, University of Oxford, Oxford, United Kingdom
- Mathematical Ecology Research Group, Department of Zoology, University of Oxford, Oxford, United Kingdom
| | - Michael B. Bonsall
- Mathematical Ecology Research Group, Department of Zoology, University of Oxford, Oxford, United Kingdom
- * E-mail:
| |
Collapse
|
12
|
Field JM, Bonsall MB. Ignorance can be evolutionarily beneficial. Ecol Evol 2018; 8:71-77. [PMID: 29321852 PMCID: PMC5756876 DOI: 10.1002/ece3.3627] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2017] [Accepted: 10/11/2017] [Indexed: 11/07/2022] Open
Abstract
Information is increasingly being viewed as a resource used by organisms to increase their fitness. Indeed, it has been formally shown that there is a sensible way to assign a reproductive value to information and it is non‐negative. However, all of this work assumed that information collection is cost‐free. Here, we account for such a cost and provide conditions for when the reproductive value of information will be negative. In these instances, counterintuitively, it is in the interest of the organism to remain ignorant. We link our results to empirical studies where Bayesian behavior appears to break down in complex environments and provide an alternative explanation of lowered arousal thresholds in the evolution of sleep.
Collapse
Affiliation(s)
- Jared M. Field
- Wolfson Centre for Mathematical BiologyMathematical InstituteUniversity of OxfordOxfordUK
- Mathematical Ecology Research GroupDepartment of ZoologyUniversity of OxfordOxfordUK
| | - Michael B. Bonsall
- Mathematical Ecology Research GroupDepartment of ZoologyUniversity of OxfordOxfordUK
| |
Collapse
|
13
|
The evolution of human sleep: Technological and cultural innovation associated with sleep-wake regulation among Hadza hunter-gatherers. J Hum Evol 2017; 113:91-102. [PMID: 29054171 DOI: 10.1016/j.jhevol.2017.08.005] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2016] [Revised: 08/03/2017] [Accepted: 08/03/2017] [Indexed: 01/10/2023]
Abstract
Sleep is necessary for the survival of all mammalian life. In humans, recent investigations have generated critical data on the relationship between sleep and ecology in small-scale societies. Here, we report the technological and social strategies used to alter sleep environments and influence sleep duration and quality among a population of hunter-gatherers, the Hadza of Tanzania. Specifically, we investigated the effects that grass huts, sound levels, and fire had on sleep. We quantitatively compared thermal stress in outdoor environments to that found inside grass hut domiciles to test whether the huts function as thermoregulated microhabitats during the rainy season. Using physiological equivalent temperature (PET), we found that the grass huts provide sleep sites with less overall variation in thermal stress relative to outside baseline environments. We also investigated ambient acoustic measures of nighttime environments and found that sound significantly covaried with sleep-wake activity, with greater sound levels associating with less sleep. Finally, after controlling for ecological variables previously shown to influence sleep in this population, fire was shown to neither facilitate nor discourage sleep expression. Insofar as data among contemporary sub-tropical foragers can inform our understanding of past lifeways, we interpret our findings as suggesting that after the transition to full time terrestriality, it is likely that early Homo would have had novel opportunities to manipulate its environments in ways that could have significantly improved sleep quality. We further conclude that control over sleep environment would have been essential for migration to higher latitudes away from equatorial Africa.
Collapse
|
14
|
Nunn CL, Samson DR, Krystal AD. Shining evolutionary light on human sleep and sleep disorders. EVOLUTION MEDICINE AND PUBLIC HEALTH 2016; 2016:227-43. [PMID: 27470330 PMCID: PMC4972941 DOI: 10.1093/emph/eow018] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/25/2016] [Accepted: 06/15/2016] [Indexed: 12/22/2022]
Abstract
Sleep is essential to cognitive function and health in humans, yet the ultimate reasons for sleep—i.e. ‘why’ sleep evolved—remain mysterious. We integrate findings from human sleep studies, the ethnographic record, and the ecology and evolution of mammalian sleep to better understand sleep along the human lineage and in the modern world. Compared to other primates, sleep in great apes has undergone substantial evolutionary change, with all great apes building a sleeping platform or ‘nest’. Further evolutionary change characterizes human sleep, with humans having the shortest sleep duration, yet the highest proportion of rapid eye movement sleep among primates. These changes likely reflect that our ancestors experienced fitness benefits from being active for a greater portion of the 24-h cycle than other primates, potentially related to advantages arising from learning, socializing and defending against predators and hostile conspecifics. Perspectives from evolutionary medicine have implications for understanding sleep disorders; we consider these perspectives in the context of insomnia, narcolepsy, seasonal affective disorder, circadian rhythm disorders and sleep apnea. We also identify how human sleep today differs from sleep through most of human evolution, and the implications of these changes for global health and health disparities. More generally, our review highlights the importance of phylogenetic comparisons in understanding human health, including well-known links between sleep, cognitive performance and health in humans.
Collapse
Affiliation(s)
- Charles L Nunn
- Department of Evolutionary Anthropology, Duke University, Durham, North Carolina 27708, USA Duke Global Health Institute, Durham, North Carolina 27710, USA Triangle Center for Evolutionary Medicine, Durham, NC 27708, USA
| | - David R Samson
- Department of Evolutionary Anthropology, Duke University, Durham, North Carolina 27708, USA
| | - Andrew D Krystal
- Department of Psychiatry and Behavioral Sciences, Duke University School of Medicine, Durham, NC 27710
| |
Collapse
|
15
|
Gibbs SA, Proserpio P, Terzaghi M, Pigorini A, Sarasso S, Lo Russo G, Tassi L, Nobili L. Sleep-related epileptic behaviors and non-REM-related parasomnias: Insights from stereo-EEG. Sleep Med Rev 2016; 25:4-20. [DOI: 10.1016/j.smrv.2015.05.002] [Citation(s) in RCA: 82] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2015] [Revised: 04/13/2015] [Accepted: 05/07/2015] [Indexed: 10/23/2022]
|
16
|
Rattenborg NC, Martinez-Gonzalez D. Avian Versus Mammalian Sleep: the Fruits of Comparing Apples and Oranges. CURRENT SLEEP MEDICINE REPORTS 2014. [DOI: 10.1007/s40675-014-0001-9] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
17
|
Voirin B, Scriba MF, Martinez-Gonzalez D, Vyssotski AL, Wikelski M, Rattenborg NC. Ecology and neurophysiology of sleep in two wild sloth species. Sleep 2014; 37:753-61. [PMID: 24899764 DOI: 10.5665/sleep.3584] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022] Open
Abstract
STUDY OBJECTIVES Interspecific variation in sleep measured in captivity correlates with various physiological and environmental factors, including estimates of predation risk in the wild. However, it remains unclear whether prior comparative studies have been confounded by the captive recording environment. Herein we examine the effect of predation pressure on sleep in sloths living in the wild. DESIGN Comparison of two closely related sloth species, one exposed to predation and one free from predation. SETTING Panamanian mainland rainforest (predators present) and island mangrove (predators absent). PARTICIPANTS Mainland (Bradypus variegatus, five males and four females) and island (Bradypus pygmaeus, six males) sloths. INTERVENTIONS None. MEASUREMENTS AND RESULTS Electroencephalographic (EEG) and electromyographic (EMG) activity was recorded using a miniature data logger. Although both species spent between 9 and 10 h per day sleeping, the mainland sloths showed a preference for sleeping at night, whereas island sloths showed no preference for sleeping during the day or night. Standardized EEG activity during nonrapid eye movement (NREM) sleep showed lower low-frequency power, and increased spindle and higher frequency power in island sloths when compared to mainland sloths. CONCLUSIONS In sloths sleeping in the wild, predation pressure influenced the timing of sleep, but not the amount of time spent asleep. The preference for sleeping at night in mainland sloths may be a strategy to avoid detection by nocturnal cats. The pronounced differences in the NREM sleep EEG spectrum remain unexplained, but might be related to genetic or environmental factors.
Collapse
Affiliation(s)
- Bryson Voirin
- Avian Sleep Group, Max Planck Institute for Ornithology - Seewiesen, Seewiesen, Germany ; Department of Migration and Immuno-Ecology, Max Planck Institute for Ornithology - Radolfzell, Radolfzell, Germany ; Smithsonian Tropical Research Institute - Panama, Balboa, Ancón, Panama
| | - Madeleine F Scriba
- Avian Sleep Group, Max Planck Institute for Ornithology - Seewiesen, Seewiesen, Germany ; Department of Ecology and Evolution, University of Lausanne, Lausanne, Switzerland
| | | | - Alexei L Vyssotski
- Institute of Neuroinformatics, University of Zurich and Swiss Federal Institute of Technology (ETH), Zurich, Switzerland
| | - Martin Wikelski
- Department of Migration and Immuno-Ecology, Max Planck Institute for Ornithology - Radolfzell, Radolfzell, Germany ; Department of Biology, University of Konstanz, Konstanz, Germany
| | - Niels C Rattenborg
- Avian Sleep Group, Max Planck Institute for Ornithology - Seewiesen, Seewiesen, Germany
| |
Collapse
|
18
|
Stewart FA, Pruetz JD. Do chimpanzee nests serve an anti-predatory function? Am J Primatol 2013; 75:593-604. [PMID: 23471670 DOI: 10.1002/ajp.22138] [Citation(s) in RCA: 50] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2012] [Revised: 12/16/2012] [Accepted: 01/11/2013] [Indexed: 11/12/2022]
Abstract
Sleep is a vulnerable state for animals as it compromises the ability to detect predators. The evolution of shelter construction in the great apes may have been a solution to the trade-off between restorative sleep and predation-risk, which allowed a large bodied ape to sleep recumbent in a safe, comfortable spot. In this article we review the evidence of predator pressure on great apes and specifically investigate the potential influence of predation-risk on chimpanzee nesting behavior by comparing nests between chimpanzees living in a habitat of several potential predators (Issa, Ugalla, Tanzania) and a habitat relatively devoid of predators (Fongoli, Senegal). Chimpanzees in Issa did not nest more frequently in forest vegetation than chimpanzees in Fongoli although forest vegetation is expected to provide greater opportunity for escape from terrestrial predators. Nor do chimpanzees in Issa nest in larger groups or aggregate together more than Fongoli chimpanzees, as would be expected if larger groups provide protection from or greater detection of predators. Nests in Issa also did not appear to provide greater opportunities for escape than nests in Fongoli. Chimpanzees in Issa nested more frequently within the same tree as other community members, which may indicate that these chimpanzees nest in greater proximity than chimpanzees in Fongoli. Finally, Issa chimpanzees built their nests proportionately higher and more peripherally within trees. The selection of high and peripheral nesting locations within trees may make Issa chimpanzees inaccessible to potential predators. Many factors influence nest site selection in chimpanzees, of which danger from terrestrial predators is likely to be one.
Collapse
Affiliation(s)
- Fiona A Stewart
- Division of Biological Anthropology, Department of Archaeology and Anthropology, University of Cambridge, Cambridge, United Kingdom.
| | | |
Collapse
|
19
|
Abstract
In most animals, sleep is considered a global brain and behavioral state. However, recent intracortical recordings have shown that aspects of non-rapid eye movement (NREM) sleep and wakefulness can occur simultaneously in different parts of the cortex in mammals, including humans. Paradoxically, however, NREM sleep still manifests as a global behavioral shutdown. In this review, the authors examine this paradox from an evolutionary perspective. On the basis of strategic modeling, they suggest that in animals with brains composed of heavily interconnected and functionally interdependent units, a global regulator of sleep maintains the behavioral shutdown that defines sleep and thereby ensures that local use-dependent functions are performed in a safe and efficient manner. This novel perspective has implications for understanding deficits in human cognitive performance resulting from sleep deprivation, sleep disorders such as sleepwalking, changes in consciousness that occur during sleep, and the function of sleep itself.
Collapse
|
20
|
Stewart F. Brief communication: Why sleep in a nest? empirical testing of the function of simple shelters made by wild chimpanzees. AMERICAN JOURNAL OF PHYSICAL ANTHROPOLOGY 2011; 146:313-8. [DOI: 10.1002/ajpa.21580] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/05/2010] [Accepted: 05/20/2011] [Indexed: 12/30/2022]
|
21
|
Zimmer C, Boos M, Bertrand F, Robin JP, Petit O. Behavioural adjustment in response to increased predation risk: a study in three duck species. PLoS One 2011; 6:e18977. [PMID: 21533055 PMCID: PMC3080407 DOI: 10.1371/journal.pone.0018977] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2011] [Accepted: 03/21/2011] [Indexed: 11/19/2022] Open
Abstract
Predation directly triggers behavioural decisions designed to increase immediate survival. However, these behavioural modifications can have long term costs. There is therefore a trade-off between antipredator behaviours and other activities. This trade-off is generally considered between vigilance and only one other behaviour, thus neglecting potential compensations. In this study, we considered the effect of an increase in predation risk on the diurnal time-budget of three captive duck species during the wintering period. We artificially increased predation risk by disturbing two groups of 14 mallard and teals at different frequencies, and one group of 14 tufted ducks with a radio-controlled stressor. We recorded foraging, vigilance, preening and sleeping durations the week before, during and after disturbance sessions. Disturbed groups were compared to an undisturbed control group. We showed that in all three species, the increase in predation risk resulted in a decrease in foraging and preening and led to an increase in sleeping. It is worth noting that contrary to common observations, vigilance did not increase. However, ducks are known to be vigilant while sleeping. This complex behavioural adjustment therefore seems to be optimal as it may allow ducks to reduce their predation risk. Our results highlight the fact that it is necessary to encompass the whole individual time-budget when studying behavioural modifications under predation risk. Finally, we propose that studies of behavioural time-budget changes under predation risk should be included in the more general framework of the starvation-predation risk trade-off.
Collapse
Affiliation(s)
- Cédric Zimmer
- Département Ecologie, Physiologie et Ethologie, Institut Pluridisciplinaire Hubert Curien, Université de Strasbourg, CNRS, Strasbourg, France.
| | | | | | | | | |
Collapse
|
22
|
|
23
|
Javůrková V, Hořák D, Kreisinger J, Klvaňa P, Albrecht T. Factors Affecting Sleep/vigilance Behaviour in Incubating Mallards. Ethology 2011. [DOI: 10.1111/j.1439-0310.2011.01878.x] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
24
|
Steinmeyer C, Schielzeth H, Mueller JC, Kempenaers B. Variation in sleep behaviour in free-living blue tits, Cyanistes caeruleus: effects of sex, age and environment. Anim Behav 2010. [DOI: 10.1016/j.anbehav.2010.08.005] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
25
|
Is sleep in animals affected by prior waking experiences? Anim Welf 2010. [DOI: 10.1017/s0962728600001597] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
AbstractMethods to assess changes in the mental state of animals in response to their environment can be used to provide information to enhance animal welfare. One of the most profound changes of mental state observable in mammals is the change between wakefulness and sleep. Sleeping mammals have characteristics that are similar to one another and are measurable, such as specific behaviours, changes in responsiveness to external stimuli and changes in electrophysiology and neurochemistry. Although sleep is a ubiquitous behaviour in the life of mammals, there has been relatively little research on this topic in domesticated animals. All animals are motivated to sleep and this motivation increases after a prolonged period of wakefulness. In humans, sleep can be affected by what has occurred in the prior period of wakefulness and this has also been demonstrated in some non-human mammals. An important aspect of human sleep medicine is the association between stress and subsequent sleep disturbances. Studying changes in amount, bout length, distribution or type of sleep after exposure to potentially stressful events, could help us understand how animals respond to changes in their environment. It is possible that different types of stressors could affect sleep characteristics in different ways and that monitoring and identifying these changes could be useful in providing an additional way of identifying management procedures that have the potential to affect welfare. Sleep measurement is a potentially valuable tool in studies to assess animal welfare.
Collapse
|
26
|
Roth TC, Rattenborg NC, Pravosudov VV. The ecological relevance of sleep: the trade-off between sleep, memory and energy conservation. Philos Trans R Soc Lond B Biol Sci 2010; 365:945-59. [PMID: 20156818 PMCID: PMC2830243 DOI: 10.1098/rstb.2009.0209] [Citation(s) in RCA: 57] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
All animals in which sleep has been studied express signs of sleep-like behaviour, suggesting that sleep must have some fundamental functions that are sustained by natural selection. Those functions, however, are still not clear. Here, we examine the ecological relevance of sleep from the perspective of behavioural trade-offs that might affect fitness. Specifically, we highlight the advantage of using food-caching animals as a system in which a conflict might occur between engaging in sleep for memory/learning and hypothermia/torpor to conserve energy. We briefly review the evidence for the importance of sleep for memory, the importance of memory for food-caching animals and the conflicts that might occur between sleep and energy conservation in these animals. We suggest that the food-caching paradigm represents a naturalistic and experimentally practical system that provides the opportunity for a new direction in sleep research that will expand our understanding of sleep, especially within the context of ecological and evolutionary processes.
Collapse
Affiliation(s)
- Timothy C Roth
- Department of Biology, University of Nevada, Reno, NV 89557, USA.
| | | | | |
Collapse
|
27
|
Martinez-Gonzalez D, Lesku JA, Rattenborg NC. Increased EEG spectral power density during sleep following short-term sleep deprivation in pigeons (Columba livia): evidence for avian sleep homeostasis. J Sleep Res 2008; 17:140-53. [PMID: 18321247 DOI: 10.1111/j.1365-2869.2008.00636.x] [Citation(s) in RCA: 74] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Birds provide a unique opportunity to evaluate current theories for the function of sleep. Like mammalian sleep, avian sleep is composed of two states, slow-wave sleep (SWS) and rapid eye-movement (REM) sleep that apparently evolved independently in mammals and birds. Despite this resemblance, however, it has been unclear whether avian SWS shows a compensatory response to sleep loss (i.e., homeostatic regulation), a fundamental aspect of mammalian sleep potentially linked to the function of SWS. Here, we prevented pigeons (Columba livia) from taking their normal naps during the last 8 h of the day. Although time spent in SWS did not change significantly following short-term sleep deprivation, electroencephalogram (EEG) slow-wave activity (SWA; i.e., 0.78-2.34 Hz power density) during SWS increased significantly during the first 3 h of the recovery night when compared with the undisturbed night, and progressively declined thereafter in a manner comparable to that observed in similarly sleep-deprived mammals. SWA was also elevated during REM sleep on the recovery night, a response that might reflect increased SWS pressure and the concomitant 'spill-over' of SWS-related EEG activity into short episodes of REM sleep. As in rodents, power density during SWS also increased in higher frequencies (9-25 Hz) in response to short-term sleep deprivation. Finally, time spent in REM sleep increased following sleep deprivation. The mammalian-like increase in EEG spectral power density across both low and high frequencies, and the increase in time spent in REM sleep following sleep deprivation suggest that some aspects of avian and mammalian sleep are regulated in a similar manner.
Collapse
|