1
|
Eberhard WG. Genital courtship and female-active roles in mating: sexual selection by mate choice in Caenorhabditis elegans. J Evol Biol 2024; 37:1137-1147. [PMID: 39275891 DOI: 10.1093/jeb/voae106] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2024] [Revised: 07/25/2024] [Accepted: 09/03/2024] [Indexed: 09/16/2024]
Abstract
A new bridge between studies of sexual selection and the massive literature on Caenorhabditis elegans behaviourand nervous system properties promise to provide important new insights into both fields. This paper shows that mate choice likely occurs in hermaphrodite C. elegans on the basis of stimulation from the male genital spicules, making it possible to apply the toolkit of extensive background knowledge of C. elegans and powerful modern techniques to test in unprecedented detail the leading hypotheses regarding one of the most sweeping trends in all of animal evolution, the especially rapid divergence of genital morphology. The recognition that sexual selection by mate choice may also occur in other contexts in C. elegans suggests additional payoffs from exploring previously unrecognized possibilities that female-active hermaphrodite reproductive behaviours are triggered by male stimulation. These facultative behaviours include attracting males, fleeing from or otherwise resisting males, opening the vulva to allow intromission, guiding sperm migration, avoiding rapid oviposition following copulation that results in sperm loss, expelling recently received sperm, and increasing feeding rates following copulation.
Collapse
Affiliation(s)
- William G Eberhard
- Smithsonian Tropical Research Institute, Ancon, Panama
- Biología, Universidad de Costa Rica, Ciudad Universitaria, Costa Rica
- Louisiana State University, Museum of Natural Sciences, Baton Rouge, LA 70808, USA
| |
Collapse
|
2
|
Portman DS. Behavioral evolution: No sex please, we're hermaphrodites. Curr Biol 2024; 34:R501-R504. [PMID: 38772338 DOI: 10.1016/j.cub.2024.04.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/23/2024]
Abstract
Many 'hard-wired', innate animal behaviors are related to reproduction. So what happens when reproductive systems evolve? New research in nematodes has identified principles underlying the co-evolution of reproductive strategy and sexual behavior, revealing some surprises and raising intriguing new questions.
Collapse
Affiliation(s)
- Douglas S Portman
- Department of Biomedical Genetics and Ernest J. Del Monte Institute for Neuroscience, University of Rochester, Rochester, NY 14642, USA.
| |
Collapse
|
3
|
Luo J, Bainbridge C, Miller RM, Barrios A, Portman DS. C. elegans males optimize mate-preference decisions via sex-specific responses to multimodal sensory cues. Curr Biol 2024; 34:1309-1323.e4. [PMID: 38471505 PMCID: PMC10965367 DOI: 10.1016/j.cub.2024.02.036] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2023] [Revised: 12/07/2023] [Accepted: 02/15/2024] [Indexed: 03/14/2024]
Abstract
For sexually reproducing animals, selecting optimal mates is important for maximizing reproductive fitness. In the nematode C. elegans, populations reproduce largely by hermaphrodite self-fertilization, but the cross-fertilization of hermaphrodites by males also occurs. Males' ability to recognize hermaphrodites involves several sensory cues, but an integrated view of the ways males use these cues in their native context to assess characteristics of potential mates has been elusive. Here, we examine the mate-preference behavior of C. elegans males evoked by natively produced cues. We find that males use a combination of volatile sex pheromones (VSPs), ascaroside sex pheromones, surface-associated cues, and other signals to assess multiple features of potential mates. Specific aspects of mate preference are communicated by distinct signals: developmental stage and sex are signaled by ascaroside pheromones and surface cues, whereas the presence of a self-sperm-depleted hermaphrodite is likely signaled by VSPs. Furthermore, males prefer to interact with virgin over mated, and well-fed over food-deprived, hermaphrodites; these preferences are likely adaptive and are also mediated by ascarosides and other cues. Sex-typical mate-preference behavior depends on the sexual state of the nervous system, such that pan-neuronal genetic masculinization in hermaphrodites generates male-typical social behavior. We also identify an unexpected role for the sex-shared ASH sensory neurons in male attraction to ascaroside sex pheromones. Our findings lead to an integrated view in which the distinct physical properties of various mate-preference cues guide a flexible, stepwise behavioral program by which males assess multiple features of potential mates to optimize mate preference.
Collapse
Affiliation(s)
- Jintao Luo
- School of Life Sciences, Xiamen University, Xiamen 361102, Fujian, China; Department of Biomedical Genetics and Del Monte Institute for Neuroscience, University of Rochester, Rochester, NY 14642, USA
| | - Chance Bainbridge
- Department of Biomedical Genetics and Del Monte Institute for Neuroscience, University of Rochester, Rochester, NY 14642, USA
| | - Renee M Miller
- Department of Brain and Cognitive Sciences, University of Rochester, Rochester, NY 14620, USA
| | - Arantza Barrios
- Department of Cell and Developmental Biology, University College London, London WC1E 6DE, UK
| | - Douglas S Portman
- Department of Biomedical Genetics and Del Monte Institute for Neuroscience, University of Rochester, Rochester, NY 14642, USA.
| |
Collapse
|
4
|
Ebert MS, Bargmann CI. Evolution remodels olfactory and mating-receptive behaviors in the transition from female to hermaphrodite reproduction. Curr Biol 2024; 34:969-979.e4. [PMID: 38340714 DOI: 10.1016/j.cub.2024.01.050] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Revised: 12/20/2023] [Accepted: 01/19/2024] [Indexed: 02/12/2024]
Abstract
Male/hermaphrodite species have arisen multiple times from a male/female ancestral state in nematodes, providing a model to study behavioral adaptations to different reproductive strategies. Here, we examined the mating behaviors of male/female (gonochoristic) Caenorhabditis species in comparison with male/hermaphrodite (androdiecious) close relatives. We find that females from two species in the Elegans group chemotax to volatile odor from males, but hermaphrodites do not. Females, but not hermaphrodites, also display known mating-receptive behaviors such as sedation when male reproductive structures contact the vulva. Focusing on the male/female species C. nigoni, we show that female chemotaxis to males is limited to adult females approaching adult or near-adult males and relies upon the AWA neuron-specific transcription factor ODR-7, as does male chemotaxis to female odor as previously shown in C. elegans. However, female receptivity during mating contact is odr-7 independent. All C. nigoni female behaviors are suppressed by mating and all are absent in young hermaphrodites from the sister species C. briggsae. However, latent receptivity during mating contact can be uncovered in mutant or aged C. briggsae hermaphrodites that lack self-sperm. These results reveal two mechanistically distinct components of the shift from female to hermaphrodite behavior: the loss of female-specific odr-7-dependent chemotaxis and a sperm-dependent state of reduced receptivity to mating contact. Hermaphrodites from a second androdioecious species, C. tropicalis, recover all female behaviors upon aging, including chemotaxis to males. Regaining mating receptivity after sperm depletion could maximize hermaphrodite fitness across their lifespan.
Collapse
Affiliation(s)
- Margaret S Ebert
- The Rockefeller University, 1230 York Avenue, New York, NY 10065, USA
| | | |
Collapse
|
5
|
Palka JK, Dyba A, Brzozowska J, Antoł W, Sychta K, Prokop ZM. Evolution of fertilization ability in obligatorily outcrossing populations of Caenorhabditis elegans. PeerJ 2023; 11:e15825. [PMID: 37701823 PMCID: PMC10494835 DOI: 10.7717/peerj.15825] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2023] [Accepted: 07/10/2023] [Indexed: 09/14/2023] Open
Abstract
In species reproducing by selfing, the traits connected with outcrossing typically undergo degeneration, a phenomenon called selfing syndrome. In Caenorhabditis elegans nematodes, selfing syndrome affects many traits involved in mating, rendering cross-fertilization highly inefficient. In this study, we investigated the evolution of cross-fertilization efficiency in populations genetically modified to reproduce by obligatory outcrossing. Following the genetic modification, replicate obligatorily outcrossing were maintained for over 100 generations, at either optimal (20 °C) or elevated (24 °C) temperatures, as a part of a broader experimental evolution program. Subsequently, fertilization rates were assayed in the evolving populations, as well as their ancestors who had the obligatory outcrossing introduced but did not go through experimental evolution. Fertilization effectivity was measured by tracking the fractions of fertilized females in age-synchronized populations, through 8 h since reaching adulthood. In order to check the robustness of our measurements, each evolving population was assayed in two or three independent replicate blocks. Indeed, we found high levels of among-block variability in the fertilization trajectories, and in the estimates of divergence between evolving populations and their ancestors. We also identified five populations which appear to have evolved increased fertilization efficiency, relative to their ancestors. However, due to the abovementioned high variability, this set of populations should be treated as candidate, with further replications needed to either confirm or disprove their divergence from ancestors. Furthermore, we also discuss additional observations we have made concerning fertilization trajectories.
Collapse
Affiliation(s)
- Joanna K. Palka
- Institute of Environmental Sciences, Faculty of Biology, Jagiellonian University in Cracow, Cracow, Poland
| | - Alicja Dyba
- Institute of Environmental Sciences, Faculty of Biology, Jagiellonian University in Cracow, Cracow, Poland
| | - Julia Brzozowska
- Institute of Environmental Sciences, Faculty of Biology, Jagiellonian University in Cracow, Cracow, Poland
| | - Weronika Antoł
- Institute of Environmental Sciences, Faculty of Biology, Jagiellonian University in Cracow, Cracow, Poland
| | - Karolina Sychta
- Institute of Environmental Sciences, Faculty of Biology, Jagiellonian University in Cracow, Cracow, Poland
| | - Zofia M. Prokop
- Institute of Environmental Sciences, Faculty of Biology, Jagiellonian University in Cracow, Cracow, Poland
| |
Collapse
|
6
|
Luo J, Barrios A, Portman DS. C. elegans males optimize mate-choice decisions via sex-specific responses to multimodal sensory cues. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.04.08.536021. [PMID: 37066192 PMCID: PMC10104232 DOI: 10.1101/2023.04.08.536021] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/18/2023]
Abstract
For sexually reproducing animals, selecting optimal mates is essential for maximizing reproductive fitness. Because the nematode C. elegans reproduces mostly by self-fertilization, little is known about its mate-choice behaviors. While several sensory cues have been implicated in males' ability to recognize hermaphrodites, achieving an integrated understanding of the ways males use these cues to assess relevant characteristics of potential mates has proven challenging. Here, we use a choice-based social-interaction assay to explore the ability of C. elegans males to make and optimize mate choices. We find that males use a combination of volatile sex pheromones (VSPs), ascaroside pheromones, surface-bound chemical cues, and other signals to robustly assess a variety of features of potential mates. Specific aspects of mate choice are communicated by distinct signals: the presence of a sperm-depleted, receptive hermaphrodite is likely signaled by VSPs, while developmental stage and sex are redundantly specified by ascaroside pheromones and surface-associated cues. Ascarosides also signal nutritional information, allowing males to choose well-fed over starved mates, while both ascarosides and surface-associated cues cause males to prefer virgin over previously mated hermaphrodites. The male-specificity of these behavioral responses is determined by both male-specific neurons and the male state of sex-shared circuits, and we reveal an unexpected role for the sex-shared ASH sensory neurons in male attraction to endogenously produced hermaphrodite ascarosides. Together, our findings lead to an integrated view of the signaling and behavioral mechanisms by which males use diverse sensory cues to assess multiple features of potential mates and optimize mate choice.
Collapse
Affiliation(s)
- Jintao Luo
- School of Life Sciences, Xiamen University, 361102, Xiamen, Fujian, China
- Department of Biomedical Genetics and Del Monte Institute for Neuroscience, University of Rochester, Rochester, NY 14642
| | - Arantza Barrios
- Department of Cell and Developmental Biology, University College London, London WC1E 6DE, UK
| | - Douglas S. Portman
- Department of Biomedical Genetics and Del Monte Institute for Neuroscience, University of Rochester, Rochester, NY 14642
| |
Collapse
|
7
|
Huang Y, Lo YH, Hsu JC, Le TS, Yang FJ, Chang T, Braendle C, Wang J. Widespread sex ratio polymorphism in Caenorhabditis nematodes. ROYAL SOCIETY OPEN SCIENCE 2023; 10:221636. [PMID: 36938539 PMCID: PMC10014251 DOI: 10.1098/rsos.221636] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/05/2023] [Accepted: 02/21/2023] [Indexed: 06/18/2023]
Abstract
Although equal sex ratio is ubiquitous and represents an equilibrium in evolutionary theory, biased sex ratios are predicted for certain local conditions. Cases of sex ratio bias have been mostly reported for single species, but little is known about its evolution above the species level. Here, we surveyed progeny sex ratios in 23 species of the nematode genus Caenorhabditis, including 19 for which we tested multiple strains. For the species with multiple strains, five species had female-biased and two had non-biased sex ratios in all strains, respectively. The other 12 species showed polymorphic sex ratios across strains. Female-biased sex ratios could be due to sperm competition whereby X-bearing sperm outcompete nullo-X sperm during fertilization. In this model, when sperm are limited allowing all sperm to be used, sex ratios are expected to be equal. However, in assays limiting mating to a few hours, most strains showed similarly biased sex ratios compared with unlimited mating experiments, except that one C. becei strain showed significantly reduced female bias compared with unlimited mating. Our study shows frequent polymorphism in sex ratios within Caenorhabditis species and that sperm competition alone cannot explain the sex ratio bias.
Collapse
Affiliation(s)
- Yun Huang
- Biodiversity Research Center, Academia Sinica, Taipei 115, Taiwan
| | - Yun-Hua Lo
- Biodiversity Research Center, Academia Sinica, Taipei 115, Taiwan
| | - Jung-Chen Hsu
- Biodiversity Research Center, Academia Sinica, Taipei 115, Taiwan
| | - Tho Son Le
- Department of Molecular Genetics and Gene Technology, College of Forestry Biotechnology, Vietnam National University of Forestry, Hanoi, Vietnam
| | - Fang-Jung Yang
- Biodiversity Research Center, Academia Sinica, Taipei 115, Taiwan
| | - Tiffany Chang
- Biodiversity Research Center, Academia Sinica, Taipei 115, Taiwan
| | | | - John Wang
- Biodiversity Research Center, Academia Sinica, Taipei 115, Taiwan
| |
Collapse
|
8
|
Antoł W, Palka JK, Błażejowska A, Sychta K, Kosztyła P, Labocha MK, Prokop ZM. Evolution of Reproductive Efficiency in Caenorhabditis elegans Under Obligatory Outcrossing. Evol Biol 2022. [DOI: 10.1007/s11692-022-09572-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
AbstractRadical shifts in reproductive systems result in radical changes in selective pressures acting on reproductive traits. Nematode Caenorhabditis elegans constitutes one of rare model systems where such shifts can be experimentally induced, providing an opportunity for studying the evolution of reproductive phenotypes in real time. Evolutionary history of predominantly selfing reproduction in has led to degeneration of traits involved outcrossing, making it inefficient. Here, we introduced obligatory outcrossing into isogenic lines of C. elegans and allowed replicate populations to evolve under the new reproductive system. We predicted that they should evolve higher outcrossing efficiency, leading to increased fitness relative to unevolved ancestors. To test this prediction, we assayed fitness of both ancestral and evolved outcrossing populations. To control for the potentially confounding effect of adaptation to laboratory conditions, we also assayed populations with wild-type (selfing) reproductive system. In five experimental blocks, we measured competitive fitness of 12 evolved populations (6 outcrossing, 6 selfing) after ca. 95 generations of evolution, along with their respective ancestors. On average, we found that fitness increased by 0.72 SD (± 0.3 CI) in outcrossing and by 0.52 (± 0.35 CI) in selfing populations, suggesting further adaptation to laboratory conditions in both types. Contrary to predictions, fitness increase was not significantly higher in outcrossing populations, suggesting no detectable adaptation to the changed reproductive system. Importantly, the results for individual populations varied strongly between experimental blocks, in some cases even differing in effect direction. This emphasises the importance of experimental replication in avoiding reporting false findings.
Collapse
|
9
|
Toker IA, Lev I, Mor Y, Gurevich Y, Fisher D, Houri-Zeevi L, Antonova O, Doron H, Anava S, Gingold H, Hadany L, Shaham S, Rechavi O. Transgenerational inheritance of sexual attractiveness via small RNAs enhances evolvability in C. elegans. Dev Cell 2022; 57:298-309.e9. [PMID: 35134343 PMCID: PMC8826646 DOI: 10.1016/j.devcel.2022.01.005] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2021] [Revised: 09/12/2021] [Accepted: 01/05/2022] [Indexed: 11/16/2022]
Abstract
It is unknown whether transient transgenerational epigenetic responses to environmental challenges affect the process of evolution, which typically unfolds over many generations. Here, we show that in C. elegans, inherited small RNAs control genetic variation by regulating the crucial decision of whether to self-fertilize or outcross. We found that under stressful temperatures, younger hermaphrodites secrete a male-attracting pheromone. Attractiveness transmits transgenerationally to unstressed progeny via heritable small RNAs and the Argonaute Heritable RNAi Deficient-1 (HRDE-1). We identified an endogenous small interfering RNA pathway, enriched in endo-siRNAs that target sperm genes, that transgenerationally regulates sexual attraction, male prevalence, and outcrossing rates. Multigenerational mating competition experiments and mathematical simulations revealed that over generations, animals that inherit attractiveness mate more and their alleles spread in the population. We propose that the sperm serves as a "stress-sensor" that, via small RNA inheritance, promotes outcrossing in challenging environments when increasing genetic variation is advantageous.
Collapse
Affiliation(s)
- Itai Antoine Toker
- Department of Neurobiology, Faculty of Life Sciences & Sagol School of Neuroscience, Tel Aviv University, Tel Aviv, Israel.
| | - Itamar Lev
- Department of Neurobiology, Faculty of Life Sciences & Sagol School of Neuroscience, Tel Aviv University, Tel Aviv, Israel.
| | - Yael Mor
- Department of Neurobiology, Faculty of Life Sciences & Sagol School of Neuroscience, Tel Aviv University, Tel Aviv, Israel.
| | - Yael Gurevich
- School of Plant Sciences and Food Security, Faculty of Life Sciences, Tel Aviv University, Tel Aviv, Israel
| | - Doron Fisher
- Department of Neurobiology, Faculty of Life Sciences & Sagol School of Neuroscience, Tel Aviv University, Tel Aviv, Israel
| | - Leah Houri-Zeevi
- Department of Neurobiology, Faculty of Life Sciences & Sagol School of Neuroscience, Tel Aviv University, Tel Aviv, Israel
| | - Olga Antonova
- Department of Neurobiology, Faculty of Life Sciences & Sagol School of Neuroscience, Tel Aviv University, Tel Aviv, Israel
| | - Hila Doron
- Department of Neurobiology, Faculty of Life Sciences & Sagol School of Neuroscience, Tel Aviv University, Tel Aviv, Israel
| | - Sarit Anava
- Department of Neurobiology, Faculty of Life Sciences & Sagol School of Neuroscience, Tel Aviv University, Tel Aviv, Israel
| | - Hila Gingold
- Department of Neurobiology, Faculty of Life Sciences & Sagol School of Neuroscience, Tel Aviv University, Tel Aviv, Israel
| | - Lilach Hadany
- School of Plant Sciences and Food Security, Faculty of Life Sciences, Tel Aviv University, Tel Aviv, Israel
| | - Shai Shaham
- Laboratory of Developmental Genetics, The Rockefeller University, New York, NY, USA
| | - Oded Rechavi
- Department of Neurobiology, Faculty of Life Sciences & Sagol School of Neuroscience, Tel Aviv University, Tel Aviv, Israel.
| |
Collapse
|
10
|
Calabrese A, Weeks SC. Testing a behavioral model for the maintenance of androdioecy as a result of sexual conflict in the clam shrimp
Eulimnadia dahli. Ethology 2022. [DOI: 10.1111/eth.13266] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
11
|
van Sluijs L, Liu J, Schrama M, van Hamond S, Vromans SPJM, Scholten MH, Žibrat N, Riksen JAG, Pijlman GP, Sterken MG, Kammenga JE. Virus infection modulates male sexual behaviour in Caenorhabditis elegans. Mol Ecol 2021; 30:6776-6790. [PMID: 34534386 PMCID: PMC9291463 DOI: 10.1111/mec.16179] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2020] [Revised: 08/23/2021] [Accepted: 09/07/2021] [Indexed: 12/28/2022]
Abstract
Mating dynamics follow from natural selection on mate choice and individuals maximizing their reproductive success. Mate discrimination reveals itself by a plethora of behaviours and morphological characteristics, each of which can be affected by pathogens. A key question is how pathogens affect mate choice and outcrossing behaviour. Here we investigated the effect of Orsay virus on the mating dynamics of the androdiecious (male and hermaphrodite) nematode Caenorhabditis elegans. We tested genetically distinct strains and found that viral susceptibility differed between sexes in a genotype-dependent manner with males of reference strain N2 being more resistant than hermaphrodites. Males displayed a constitutively higher expression of intracellular pathogen response (IPR) genes, whereas the antiviral RNAi response did not have increased activity in males. Subsequent monitoring of sex ratios over 10 generations revealed that viral presence can change mating dynamics in isogenic populations. Sexual attraction assays showed that males preferred mating with uninfected rather than infected hermaphrodites. Together our results illustrate for the first time that viral infection can significantly affect male mating choice and suggest altered mating dynamics as a novel cause benefitting outcrossing under pathogenic stress conditions in C. elegans.
Collapse
Affiliation(s)
- Lisa van Sluijs
- Laboratory of NematologyWageningen University and ResearchWageningenthe Netherlands
- Laboratory of VirologyWageningen University and ResearchWageningenthe Netherlands
| | - Jie Liu
- Laboratory of NematologyWageningen University and ResearchWageningenthe Netherlands
| | - Mels Schrama
- Laboratory of NematologyWageningen University and ResearchWageningenthe Netherlands
| | - Sanne van Hamond
- Laboratory of NematologyWageningen University and ResearchWageningenthe Netherlands
| | | | - Marèl H. Scholten
- Laboratory of NematologyWageningen University and ResearchWageningenthe Netherlands
| | - Nika Žibrat
- Laboratory of NematologyWageningen University and ResearchWageningenthe Netherlands
| | - Joost A. G. Riksen
- Laboratory of NematologyWageningen University and ResearchWageningenthe Netherlands
| | - Gorben P. Pijlman
- Laboratory of VirologyWageningen University and ResearchWageningenthe Netherlands
| | - Mark G. Sterken
- Laboratory of NematologyWageningen University and ResearchWageningenthe Netherlands
| | - Jan E. Kammenga
- Laboratory of NematologyWageningen University and ResearchWageningenthe Netherlands
| |
Collapse
|
12
|
Molina-García L, Lloret-Fernández C, Cook SJ, Kim B, Bonnington RC, Sammut M, O'Shea JM, Gilbert SPR, Elliott DJ, Hall DH, Emmons SW, Barrios A, Poole RJ. Direct glia-to-neuron transdifferentiation gives rise to a pair of male-specific neurons that ensure nimble male mating. eLife 2020; 9:e48361. [PMID: 33138916 PMCID: PMC7609048 DOI: 10.7554/elife.48361] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2019] [Accepted: 10/02/2020] [Indexed: 12/20/2022] Open
Abstract
Sexually dimorphic behaviours require underlying differences in the nervous system between males and females. The extent to which nervous systems are sexually dimorphic and the cellular and molecular mechanisms that regulate these differences are only beginning to be understood. We reveal here a novel mechanism by which male-specific neurons are generated in Caenorhabditis elegans through the direct transdifferentiation of sex-shared glial cells. This glia-to-neuron cell fate switch occurs during male sexual maturation under the cell-autonomous control of the sex-determination pathway. We show that the neurons generated are cholinergic, peptidergic, and ciliated putative proprioceptors which integrate into male-specific circuits for copulation. These neurons ensure coordinated backward movement along the mate's body during mating. One step of the mating sequence regulated by these neurons is an alternative readjustment movement performed when intromission becomes difficult to achieve. Our findings reveal programmed transdifferentiation as a developmental mechanism underlying flexibility in innate behaviour.
Collapse
Affiliation(s)
- Laura Molina-García
- Department of Cell and Developmental Biology, University College LondonLondonUnited Kingdom
| | - Carla Lloret-Fernández
- Department of Cell and Developmental Biology, University College LondonLondonUnited Kingdom
| | - Steven J Cook
- Dominick P. Purpura Department of Neuroscience, Albert Einstein College of MedicineNew YorkUnited States
| | - Byunghyuk Kim
- Department of Genetics, Albert Einstein College of MedicineNew YorkUnited States
| | - Rachel C Bonnington
- Department of Cell and Developmental Biology, University College LondonLondonUnited Kingdom
| | - Michele Sammut
- Department of Cell and Developmental Biology, University College LondonLondonUnited Kingdom
| | - Jack M O'Shea
- Department of Cell and Developmental Biology, University College LondonLondonUnited Kingdom
| | - Sophie PR Gilbert
- Department of Cell and Developmental Biology, University College LondonLondonUnited Kingdom
| | - David J Elliott
- Department of Cell and Developmental Biology, University College LondonLondonUnited Kingdom
| | - David H Hall
- Department of Genetics, Albert Einstein College of MedicineNew YorkUnited States
| | - Scott W Emmons
- Dominick P. Purpura Department of Neuroscience, Albert Einstein College of MedicineNew YorkUnited States
- Department of Genetics, Albert Einstein College of MedicineNew YorkUnited States
| | - Arantza Barrios
- Department of Cell and Developmental Biology, University College LondonLondonUnited Kingdom
| | - Richard J Poole
- Department of Cell and Developmental Biology, University College LondonLondonUnited Kingdom
| |
Collapse
|
13
|
Abstract
Sexual interactions negatively impact health and longevity in many species across the animal kingdom. C. elegans has been established as a good model to study how mating and intense sexual interactions influence longevity of the individuals. In this chapter, we review the most recent discoveries in this field. We first describe the phenotypes caused by intense mating, including shrinking, fat loss, and glycogen loss. We then describe three major mechanisms underlying mating-induced killing: germline activation, seminal fluid transfer, and male pheromone-mediated toxicity. Next, we summarize the current knowledge of genetic pathways involved in regulating mating-induced death, including DAF-9/DAF-12 steroid signaling, Insulin/IGF-1 signaling (IIS), and TOR signaling. Finally, we discuss the possible fitness benefits of mating-induced death. Throughout this review, we compare and contrast mating-induced death between the sexes and among different species in an effort to discuss this phenomenon and underlying mechanisms from the evolutionary perspective. Further investigation using mated C. elegans will improve our understanding of sexual antagonism, as well as the coordination between reproduction and somatic longevity in response to various external signals. Due to the evolutionary conservation in many aspects of mating-induced death, what we learn from a short-lived mated worm could provide new strategies to improve our own fitness and longevity.
Collapse
Affiliation(s)
- Cheng Shi
- Lewis-Sigler Institute for Integrative Genomics and Department of Molecular Biology, Princeton University, Princeton, NJ, United States
| | - Coleen T Murphy
- Lewis-Sigler Institute for Integrative Genomics and Department of Molecular Biology, Princeton University, Princeton, NJ, United States.
| |
Collapse
|
14
|
Gasparini C, Devigili A, Pilastro A. Sexual selection and ageing: interplay between pre- and post-copulatory traits senescence in the guppy. Proc Biol Sci 2020; 286:20182873. [PMID: 30963845 DOI: 10.1098/rspb.2018.2873] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
Traits associated with mating and fertilization success are expected to senesce with age, but limited information is available on their relative rates of senescence. In polyandrous species, male reproductive fitness depends on both mating and fertilization success. Because successful mating is a prerequisite for post-copulatory sexual selection, ejaculate traits are expected to senesce faster than pre-copulatory traits, as pre-copulatory sexual selection is often deemed to be stronger than post-copulatory sexual selection. This pattern has generally been found in the few empirical studies conducted so far. We tested this prediction in the guppy ( Poecilia reticulata), a livebearing fish characterized by intense sperm competition, by comparing the expression of male sexual traits at two ages (four and nine months). Contrary to prediction, we found that post-copulatory traits senesced at a significantly slower rate than pre-copulatory traits. We also looked at whether early investment in those sexual traits affects longevity, and the interaction between sperm age (duration of sperm storage inside the male) and male age. Our results suggest that the relative senescence rate of pre- and post-copulatory sexual traits may vary among species with different mating systems and ecology.
Collapse
Affiliation(s)
- Clelia Gasparini
- 1 Centre for Evolutionary Biology, School of Biological Sciences, The University of Western Australia , Crawley, Western Australia 6009 , Australia.,2 Department of Biology, University of Padova , 35131 Padova , Italy
| | - Alessandro Devigili
- 2 Department of Biology, University of Padova , 35131 Padova , Italy.,3 Department of Zoology, Stockholm University , Stockholm 106 91 , Sweden
| | - Andrea Pilastro
- 2 Department of Biology, University of Padova , 35131 Padova , Italy
| |
Collapse
|
15
|
Willink B, Duryea MC, Svensson EI. Macroevolutionary Origin and Adaptive Function of a Polymorphic Female Signal Involved in Sexual Conflict. Am Nat 2019; 194:707-724. [DOI: 10.1086/705294] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|
16
|
Cutter AD, Morran LT, Phillips PC. Males, Outcrossing, and Sexual Selection in Caenorhabditis Nematodes. Genetics 2019; 213:27-57. [PMID: 31488593 PMCID: PMC6727802 DOI: 10.1534/genetics.119.300244] [Citation(s) in RCA: 43] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2019] [Accepted: 06/06/2019] [Indexed: 12/15/2022] Open
Abstract
Males of Caenorhabditis elegans provide a crucial practical tool in the laboratory, but, as the rarer and more finicky sex, have not enjoyed the same depth of research attention as hermaphrodites. Males, however, have attracted the attention of evolutionary biologists who are exploiting the C. elegans system to test longstanding hypotheses about sexual selection, sexual conflict, transitions in reproductive mode, and genome evolution, as well as to make new discoveries about Caenorhabditis organismal biology. Here, we review the evolutionary concepts and data informed by study of males of C. elegans and other Caenorhabditis We give special attention to the important role of sperm cells as a mediator of inter-male competition and male-female conflict that has led to drastic trait divergence across species, despite exceptional phenotypic conservation in many other morphological features. We discuss the evolutionary forces important in the origins of reproductive mode transitions from males being common (gonochorism: females and males) to rare (androdioecy: hermaphrodites and males) and the factors that modulate male frequency in extant androdioecious populations, including the potential influence of selective interference, host-pathogen coevolution, and mutation accumulation. Further, we summarize the consequences of males being common vs rare for adaptation and for trait divergence, trait degradation, and trait dimorphism between the sexes, as well as for molecular evolution of the genome, at both micro-evolutionary and macro-evolutionary timescales. We conclude that C. elegans male biology remains underexploited and that future studies leveraging its extensive experimental resources are poised to discover novel biology and to inform profound questions about animal function and evolution.
Collapse
Affiliation(s)
- Asher D Cutter
- Department of Ecology and Evolutionary Biology, University of Toronto, Ontario M5S3B2, Canada
| | - Levi T Morran
- Department of Biology, Emory University, Atlanta, Georgia 30322, and
| | - Patrick C Phillips
- Institute of Ecology and Evolution, University of Oregon, Eugene, Oregon 97403
| |
Collapse
|
17
|
Abstract
Several species of Caenorhabditis nematodes, including Caenorhabditis elegans, have recently evolved self-fertile hermaphrodites from female/male ancestors. These hermaphrodites can either self-fertilize or mate with males, and the extent of outcrossing determines subsequent male frequency. Using experimental evolution, the authors show that a gene family with a historical role in sperm competition plays a large role in regulating male frequency after self-fertility evolves. By reducing, but not completely eliminating outcrossing, loss of the mss genes contributes to adaptive tuning of the sex ratio in a newly self-fertile species. The maintenance of males at intermediate frequencies is an important evolutionary problem. Several species of Caenorhabditis nematodes have evolved a mating system in which selfing hermaphrodites and males coexist. While selfing produces XX hermaphrodites, cross-fertilization produces 50% XO male progeny. Thus, male mating success dictates the sex ratio. Here, we focus on the contribution of the male secreted short (mss) gene family to male mating success, sex ratio, and population growth. The mss family is essential for sperm competitiveness in gonochoristic species, but has been lost in parallel in androdioecious species. Using a transgene to restore mss function to the androdioecious Caenorhabditis briggsae, we examined how mating system and population subdivision influence the fitness of the mss+ genotype. Consistent with theoretical expectations, when mss+ and mss-null (i.e., wild type) genotypes compete, mss+ is positively selected in both mixed-mating and strictly outcrossing situations, though more strongly in the latter. Thus, while sexual mode alone affects the fitness of mss+, it is insufficient to explain its parallel loss. However, in genetically homogenous androdioecious populations, mss+ both increases male frequency and depresses population growth. We propose that the lack of inbreeding depression and the strong subdivision that characterize natural Caenorhabditis populations impose selection on sex ratio that makes loss of mss adaptive after self-fertility evolves.
Collapse
|
18
|
Abstract
The recently determined connectome of the Caenorhabditis elegans adult male, together with the known connectome of the hermaphrodite, opens up the possibility for a comprehensive description of sexual dimorphism in this species and the identification and study of the neural circuits underlying sexual behaviors. The C. elegans nervous system consists of 294 neurons shared by both sexes plus neurons unique to each sex, 8 in the hermaphrodite and 91 in the male. The sex-specific neurons are well integrated within the remainder of the nervous system; in the male, 16% of the input to the shared component comes from male-specific neurons. Although sex-specific neurons are involved primarily, but not exclusively, in controlling sex-unique behavior—egg-laying in the hermaphrodite and copulation in the male—these neurons act together with shared neurons to make navigational choices that optimize reproductive success. Sex differences in general behaviors are underlain by considerable dimorphism within the shared component of the nervous system itself, including dimorphism in synaptic connectivity.
Collapse
Affiliation(s)
- Scott W. Emmons
- Department of Genetics and Dominick Purpura Department of Neuroscience, Albert Einstein College of Medicine, Bronx, New York 10461, USA
| |
Collapse
|
19
|
Ford RE, Weeks SC. Intersexual conflict in androdioecious clam shrimp: Do androdioecious hermaphrodites evolve to avoid mating with males? Ethology 2018. [DOI: 10.1111/eth.12738] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Affiliation(s)
- Rebecah E. Ford
- Program In Integrated Biosciences; Department of Biology; The University of Akron; Akron OH USA
| | - Stephen C. Weeks
- Program In Integrated Biosciences; Department of Biology; The University of Akron; Akron OH USA
| |
Collapse
|
20
|
Barr MM, García LR, Portman DS. Sexual Dimorphism and Sex Differences in Caenorhabditis elegans Neuronal Development and Behavior. Genetics 2018; 208:909-935. [PMID: 29487147 PMCID: PMC5844341 DOI: 10.1534/genetics.117.300294] [Citation(s) in RCA: 53] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2017] [Accepted: 01/05/2018] [Indexed: 01/05/2023] Open
Abstract
As fundamental features of nearly all animal species, sexual dimorphisms and sex differences have particular relevance for the development and function of the nervous system. The unique advantages of the nematode Caenorhabditis elegans have allowed the neurobiology of sex to be studied at unprecedented scale, linking ultrastructure, molecular genetics, cell biology, development, neural circuit function, and behavior. Sex differences in the C. elegans nervous system encompass prominent anatomical dimorphisms as well as differences in physiology and connectivity. The influence of sex on behavior is just as diverse, with biological sex programming innate sex-specific behaviors and modifying many other aspects of neural circuit function. The study of these differences has provided important insights into mechanisms of neurogenesis, cell fate specification, and differentiation; synaptogenesis and connectivity; principles of circuit function, plasticity, and behavior; social communication; and many other areas of modern neurobiology.
Collapse
Affiliation(s)
- Maureen M Barr
- Department of Genetics, Rutgers University, Piscataway, New Jersey 08854-8082
| | - L Rene García
- Department of Biology, Texas A&M University, College Station, Texas 77843-3258
| | - Douglas S Portman
- Department of Biomedical Genetics, University of Rochester, New York 14642
- Department of Neuroscience, University of Rochester, New York 14642
- Department of Biology, University of Rochester, New York 14642
| |
Collapse
|
21
|
Shi C, Runnels AM, Murphy CT. Mating and male pheromone kill Caenorhabditis males through distinct mechanisms. eLife 2017; 6. [PMID: 28290982 PMCID: PMC5378475 DOI: 10.7554/elife.23493] [Citation(s) in RCA: 50] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2016] [Accepted: 03/04/2017] [Indexed: 11/25/2022] Open
Abstract
Differences in longevity between sexes is a mysterious yet general phenomenon across great evolutionary distances. To test the roles of responses to environmental cues and sexual behaviors in longevity regulation, we examined Caenorhabditis male lifespan under solitary, grouped, and mated conditions. We find that neurons and the germline are required for male pheromone-dependent male death. Hermaphrodites with a masculinized nervous system secrete male pheromone and are susceptible to male pheromone killing. Male pheromone-mediated killing is unique to androdioecious Caenorhabditis, and may reduce the number of males in hermaphroditic populations; neither males nor females of gonochoristic species are susceptible to male pheromone killing. By contrast, mating-induced death, which is characterized by germline-dependent shrinking, glycogen loss, and ectopic vitellogenin expression, utilizes distinct molecular pathways and is shared between the sexes and across species. The study of sex- and species-specific regulation of aging reveals deeply conserved mechanisms of longevity and population structure regulation. DOI:http://dx.doi.org/10.7554/eLife.23493.001 In many animals, different sexes have different life expectancies. This holds true for a roundworm species called Caenorhabditis elegans that has commonly been used to study aging and lifespan. Unlike some related Caenorhabditis roundworm species (which consist of male and female worms), C. elegans worms are predominantly hermaphrodites and reproduce by self-fertilization. C. elegans males are normally rare. However, under stressful conditions the number of males increases to reduce inbreeding and so help the worm population to adapt to the environment. Investigations into the factors that affect the lifespan of C. elegans have mostly studied hermaphrodites. For example, one recent study showed that mating shortens the lifespan of hermaphrodites. Another study showed that pheromones – hormones that change the behavior of other worms – also shorten hermaphrodite lifespan. The male pheromone is produced by males and sensed by both males and hermaphrodites. But does mating and male pheromone affect the lifespan of male roundworms? Shi et al. have now studied Caenorhabditis worms of different species and sexes to investigate how sexual behaviors and male pheromone regulate the lifespan of male roundworms. The results of the experiments revealed two distinct mechanisms of male death. Firstly, mating caused the males of many different Caenorhabditis species to shrink and die, and also killed females and hermaphrodites. Secondly, the males of hermaphroditic species – and only these males – could also be killed by male pheromone. The results suggest that death from mating may be an unavoidable cost of reproducing that is seen across all sexes and species of roundworm. In contrast, death by male pheromone may be a way of culling the male population in hermaphroditic species, for example, after stressful conditions have caused a sudden increase in the number of male worms. Further work is now needed to investigate the finer details of the mechanisms by which mating and male pheromone cause death. Ultimately, this work in Caenorhabditis could be extended to help us to understand how other animals regulate their lifespan and maintain an optimum ratio of the sexes. DOI:http://dx.doi.org/10.7554/eLife.23493.002
Collapse
Affiliation(s)
- Cheng Shi
- Department of Molecular Biology and LSI Genomics, Princeton University, Princeton, United States
| | - Alexi M Runnels
- Department of Molecular Biology and LSI Genomics, Princeton University, Princeton, United States
| | - Coleen T Murphy
- Department of Molecular Biology and LSI Genomics, Princeton University, Princeton, United States
| |
Collapse
|
22
|
Leighton DH, Sternberg PW. Mating pheromones of Nematoda: olfactory signaling with physiological consequences. Curr Opin Neurobiol 2016; 38:119-24. [PMID: 27213246 DOI: 10.1016/j.conb.2016.04.008] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2016] [Revised: 04/11/2016] [Accepted: 04/12/2016] [Indexed: 01/17/2023]
Abstract
Secreted pheromones have long been known to influence mating in the phylum Nematoda. The study of nematode sexual behavior has greatly benefited in the last decade from the genetic and neurobiological tools available for the model nematode Caenorhabditis elegans, as well as from the chemical identification of many pheromones secreted by this species. The discovery that nematodes can influence one another's physiological development and stress responsiveness through the sharing of pheromones, in addition to simply triggering sexual attraction, is particularly striking. Here we review recent research on nematode mating pheromones, which has been conducted predominantly on C. elegans, but there are beginning to be parallel studies in other species.
Collapse
Affiliation(s)
- Daniel Hw Leighton
- HHMI and Division of Biology and Biological Engineering, Caltech, Pasadena 91125, USA
| | - Paul W Sternberg
- HHMI and Division of Biology and Biological Engineering, Caltech, Pasadena 91125, USA.
| |
Collapse
|
23
|
Cinquin A, Chiang M, Paz A, Hallman S, Yuan O, Vysniauskaite I, Fowlkes CC, Cinquin O. Intermittent Stem Cell Cycling Balances Self-Renewal and Senescence of the C. elegans Germ Line. PLoS Genet 2016; 12:e1005985. [PMID: 27077385 PMCID: PMC4831802 DOI: 10.1371/journal.pgen.1005985] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2015] [Accepted: 03/18/2016] [Indexed: 11/22/2022] Open
Abstract
Self-renewing organs often experience a decline in function in the course of aging. It is unclear whether chronological age or external factors control this decline, or whether it is driven by stem cell self-renewal—for example, because cycling cells exhaust their replicative capacity and become senescent. Here we assay the relationship between stem cell cycling and senescence in the Caenorhabditis elegans reproductive system, defining this senescence as the progressive decline in “reproductive capacity,” i.e. in the number of progeny that can be produced until cessation of reproduction. We show that stem cell cycling diminishes remaining reproductive capacity, at least in part through the DNA damage response. Paradoxically, gonads kept under conditions that preclude reproduction keep cycling and producing cells that undergo apoptosis or are laid as unfertilized gametes, thus squandering reproductive capacity. We show that continued activity is in fact beneficial inasmuch as gonads that are active when reproduction is initiated have more sustained early progeny production. Intriguingly, continued cycling is intermittent—gonads switch between active and dormant states—and in all likelihood stochastic. Other organs face tradeoffs whereby stem cell cycling has the beneficial effect of providing freshly-differentiated cells and the detrimental effect of increasing the likelihood of cancer or senescence; stochastic stem cell cycling may allow for a subset of cells to preserve proliferative potential in old age, which may implement a strategy to deal with uncertainty as to the total amount of proliferation to be undergone over an organism’s lifespan. Stem cell cycling is expected to be beneficial because it helps delay aging, by ensuring organ self-renewal. Yet stem cell cycling is best used sparingly: cycling likely causes mutation accumulation—increasing the likelihood of cancer—and may eventually cause stem cells to senesce and thus stop contributing to organ self renewal. It is unknown how self-renewing organs make tradeoffs between benefits and drawbacks of stem cell cycling. Here we use the C. elegans reproductive system as a model organ. We characterize benefits and drawbacks of stem cell cycling—which are keeping worms primed for reproduction, and reducing the number of future progeny worms may bear, respectively. We show that, under specific conditions of reproductive inactivity, stem cells switch back and forth between active and dormant states; the timing of these switches, whose genetic control we start delineating, appears random. This randomness may help explain why populations of aging, reproductively-inactive worms experience an increase in the variability of their reproductive capacity. Stochastic stem cell cycling may underlie tradeoffs between self-renewal and senescence in other organs.
Collapse
Affiliation(s)
- Amanda Cinquin
- Department of Developmental & Cell Biology, University of California, Irvine, Irvine, California, United States of America
- Center for Complex Biological Systems, University of California, Irvine, Irvine, California, United States of America
| | - Michael Chiang
- Department of Developmental & Cell Biology, University of California, Irvine, Irvine, California, United States of America
- Center for Complex Biological Systems, University of California, Irvine, Irvine, California, United States of America
| | - Adrian Paz
- Department of Developmental & Cell Biology, University of California, Irvine, Irvine, California, United States of America
- Center for Complex Biological Systems, University of California, Irvine, Irvine, California, United States of America
| | - Sam Hallman
- Center for Complex Biological Systems, University of California, Irvine, Irvine, California, United States of America
- Department of Computer Science, University of California, Irvine, Irvine, California, United States of America
| | - Oliver Yuan
- Department of Developmental & Cell Biology, University of California, Irvine, Irvine, California, United States of America
- Center for Complex Biological Systems, University of California, Irvine, Irvine, California, United States of America
| | - Indre Vysniauskaite
- Department of Developmental & Cell Biology, University of California, Irvine, Irvine, California, United States of America
- Center for Complex Biological Systems, University of California, Irvine, Irvine, California, United States of America
| | - Charless C. Fowlkes
- Center for Complex Biological Systems, University of California, Irvine, Irvine, California, United States of America
- Department of Computer Science, University of California, Irvine, Irvine, California, United States of America
| | - Olivier Cinquin
- Department of Developmental & Cell Biology, University of California, Irvine, Irvine, California, United States of America
- Center for Complex Biological Systems, University of California, Irvine, Irvine, California, United States of America
- * E-mail:
| |
Collapse
|
24
|
Noble LM, Chang AS, McNelis D, Kramer M, Yen M, Nicodemus JP, Riccardi DD, Ammerman P, Phillips M, Islam T, Rockman MV. Natural Variation in plep-1 Causes Male-Male Copulatory Behavior in C. elegans. Curr Biol 2015; 25:2730-7. [PMID: 26455306 DOI: 10.1016/j.cub.2015.09.019] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2015] [Revised: 09/07/2015] [Accepted: 09/08/2015] [Indexed: 10/23/2022]
Abstract
In sexual species, gametes have to find and recognize one another. Signaling is thus central to sexual reproduction and involves a rapidly evolving interplay of shared and divergent interests [1-4]. Among Caenorhabditis nematodes, three species have evolved self-fertilization, changing the balance of intersexual relations [5]. Males in these androdioecious species are rare, and the evolutionary interests of hermaphrodites dominate. Signaling has shifted accordingly, with females losing behavioral responses to males [6, 7] and males losing competitive abilities [8, 9]. Males in these species also show variable same-sex and autocopulatory mating behaviors [6, 10]. These behaviors could have evolved by relaxed selection on male function, accumulation of sexually antagonistic alleles that benefit hermaphrodites and harm males [5, 11], or neither of these, because androdioecy also reduces the ability of populations to respond to selection [12-14]. We have identified the genetic cause of a male-male mating behavior exhibited by geographically dispersed C. elegans isolates, wherein males mate with and deposit copulatory plugs on one another's excretory pores. We find a single locus of major effect that is explained by segregation of a loss-of-function mutation in an uncharacterized gene, plep-1, expressed in the excretory cell in both sexes. Males homozygous for the plep-1 mutation have excretory pores that are attractive or receptive to copulatory behavior of other males. Excretory pore plugs are injurious and hermaphrodite activity is compromised in plep-1 mutants, so the allele might be unconditionally deleterious, persisting in the population because the species' androdioecious mating system limits the reach of selection.
Collapse
Affiliation(s)
- Luke M Noble
- Department of Biology and Center for Genomics & Systems Biology, New York University, 12 Waverly Place, New York, NY 10003, USA
| | - Audrey S Chang
- Department of Biology and Center for Genomics & Systems Biology, New York University, 12 Waverly Place, New York, NY 10003, USA
| | - Daniel McNelis
- Department of Biology and Center for Genomics & Systems Biology, New York University, 12 Waverly Place, New York, NY 10003, USA
| | - Max Kramer
- Department of Biology and Center for Genomics & Systems Biology, New York University, 12 Waverly Place, New York, NY 10003, USA
| | - Mimi Yen
- Department of Biology and Center for Genomics & Systems Biology, New York University, 12 Waverly Place, New York, NY 10003, USA
| | - Jasmine P Nicodemus
- Department of Biology and Center for Genomics & Systems Biology, New York University, 12 Waverly Place, New York, NY 10003, USA
| | - David D Riccardi
- Department of Biology and Center for Genomics & Systems Biology, New York University, 12 Waverly Place, New York, NY 10003, USA
| | - Patrick Ammerman
- Department of Biology and Center for Genomics & Systems Biology, New York University, 12 Waverly Place, New York, NY 10003, USA
| | - Matthew Phillips
- Department of Biology and Center for Genomics & Systems Biology, New York University, 12 Waverly Place, New York, NY 10003, USA
| | - Tangirul Islam
- Department of Biology and Center for Genomics & Systems Biology, New York University, 12 Waverly Place, New York, NY 10003, USA
| | - Matthew V Rockman
- Department of Biology and Center for Genomics & Systems Biology, New York University, 12 Waverly Place, New York, NY 10003, USA.
| |
Collapse
|
25
|
Abstract
Recent research has filled many gaps about Caenorhabditis natural history, simultaneously exposing how much remains to be discovered. This awareness now provides means of connecting ecological and evolutionary theory with diverse biological patterns within and among species in terms of adaptation, sexual selection, breeding systems, speciation, and other phenomena. Moreover, the heralded laboratory tractability of C. elegans, and Caenorhabditis species generally, provides a powerful case study for experimental hypothesis testing about evolutionary and ecological processes to levels of detail unparalleled by most study systems. Here, I synthesize pertinent theory with what we know and suspect about Caenorhabditis natural history for salient features of biodiversity, phenotypes, population dynamics, and interactions within and between species. I identify topics of pressing concern to advance Caenorhabditis biology and to study general evolutionary processes, including the key opportunities to tackle problems in dispersal dynamics, competition, and the dimensionality of niche space.
Collapse
Affiliation(s)
- Asher D Cutter
- Department of Ecology and Evolutionary Biology, University of Toronto, Toronto, ON, Canada
| |
Collapse
|
26
|
Communication between oocytes and somatic cells regulates volatile pheromone production in Caenorhabditis elegans. Proc Natl Acad Sci U S A 2014; 111:17905-10. [PMID: 25453110 DOI: 10.1073/pnas.1420439111] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Males of the androdioecious species Caenorhabditis elegans are more likely to attempt to mate with and successfully inseminate C. elegans hermaphrodites that do not concurrently harbor sperm. Although a small number of genes have been implicated in this effect, the mechanism by which it arises remains unknown. In the context of the battle of the sexes, it is also unknown whether this effect is to the benefit of the male, the hermaphrodite, or both. We report that successful contact between mature sperm and oocyte in the C. elegans gonad at the start of fertilization causes the oocyte to release a signal that is transmitted to somatic cells in its mother, with the ultimate effect of reducing her attractiveness to males. Changes in hermaphrodite attractiveness are tied to the production of a volatile pheromone, the first such pheromone described in C. elegans.
Collapse
|
27
|
Sherlekar AL, Lints R. Nematode Tango Milonguero – The C. elegans male's search for the hermaphrodite vulva. Semin Cell Dev Biol 2014; 33:34-41. [DOI: 10.1016/j.semcdb.2014.05.009] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2014] [Revised: 04/24/2014] [Accepted: 05/07/2014] [Indexed: 12/31/2022]
|
28
|
Ting JJ, Woodruff GC, Leung G, Shin NR, Cutter AD, Haag ES. Intense sperm-mediated sexual conflict promotes reproductive isolation in Caenorhabditis nematodes. PLoS Biol 2014; 12:e1001915. [PMID: 25072732 PMCID: PMC4114750 DOI: 10.1371/journal.pbio.1001915] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2013] [Accepted: 06/19/2014] [Indexed: 01/08/2023] Open
Abstract
Sperm from other species invade female tissues to cause sterility and death, helping to keep nematode species boundaries intact. Conflict between the sexes over reproductive interests can drive rapid evolution of reproductive traits and promote speciation. Here we show that inter-species mating between Caenorhabditis nematodes sterilizes maternal individuals. The principal effectors of male-induced harm are sperm cells, which induce sterility and shorten lifespan by displacing conspecific sperm, invading the ovary, and sometimes breaching the gonad to infiltrate other tissues. This sperm-mediated harm is pervasive across species, but idiosyncrasies in its magnitude implicate both independent histories of sexually antagonistic coevolution within species and differences in reproductive mode (self-fertilizing hermaphrodites versus females) in determining its severity. Consistent with this conclusion, in androdioecious species the hermaphrodites are more vulnerable, the males more benign, or both. Patterns of assortative mating and a low incidence of invasive sperm occurring with conspecific mating are indicative of ongoing intra-specific sexual conflict that results in inter-species reproductive incompatibility. The sexes have divergent reproductive interests, and conflict arising from this disparity can drive the rapid evolution of reproductive traits and promote speciation. Here we describe a unique reproductive barrier in Caenorhabditis nematodes that is induced by sperm. We found that mating between species can sterilize maternal worms and even cause premature death, and we were able to attribute this phenomenon directly to the sperm themselves. Sperm from other species can displace sperm from the same species and, in some cases, can invade inappropriate parts of the maternal reproductive system and even their non-reproductive tissues. We find that mating to males of another species harms females far more than does within-species mating. Overall, our observations are consistent with ongoing sexual conflict between the sexes within species, arising as a byproduct of sperm competition among the gametes of different males. Finally, patterns of assortative mating indicate that mating behaviours that reduce the likelihood of costly inter-species mating have evolved in this group of animals. These findings support an important role of sexual selection and gametic interactions contributing to reproductive boundaries between species, as predicted by evolutionary theory.
Collapse
Affiliation(s)
- Janice J. Ting
- Department of Ecology and Evolutionary Biology, University of Toronto, Toronto, Ontario, Canada
| | - Gavin C. Woodruff
- Department of Biology, University of Maryland, College Park, Maryland, United States of America
| | - Gemma Leung
- Department of Ecology and Evolutionary Biology, University of Toronto, Toronto, Ontario, Canada
| | - Na-Ra Shin
- Department of Ecology and Evolutionary Biology, University of Toronto, Toronto, Ontario, Canada
| | - Asher D. Cutter
- Department of Ecology and Evolutionary Biology, University of Toronto, Toronto, Ontario, Canada
- * E-mail: (ADC); (ESH)
| | - Eric S. Haag
- Department of Biology, University of Maryland, College Park, Maryland, United States of America
- * E-mail: (ADC); (ESH)
| |
Collapse
|
29
|
Emmons SW. The development of sexual dimorphism: studies of the Caenorhabditis elegans male. WILEY INTERDISCIPLINARY REVIEWS. DEVELOPMENTAL BIOLOGY 2014; 3:239-62. [PMID: 25262817 PMCID: PMC4181595 DOI: 10.1002/wdev.136] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/20/2014] [Accepted: 04/02/2014] [Indexed: 01/09/2023]
Abstract
Studies of the development of the Caenorhabditis elegans male have been carried out with the aim of understanding the basis of sexual dimorphism. Postembryonic development of the two C. elegans sexes differs extensively. Development along either the hermaphrodite or male pathway is specified initially by the X to autosome ratio. The regulatory events initiated by this ratio include a male-determining paracrine intercellular signal. Expression of this signal leads to different consequences in three regions of the body: the nongonadal soma, the somatic parts of the gonad, and the germ line. In the nongonadal soma, activity of the key Zn-finger transcription factor TRA-1 determines hermaphrodite development; in its absence, the male pathway is followed. Only a few genes directly regulated by TRA-1 are currently known, including members of the evolutionarily conserved, male-determining DM domain Zn-finger transcription factors. In the somatic parts of the gonad and germ line, absence of TRA-1 activity is not sufficient for full expression of the male pathway. Several additional transcription factors involved have been identified. In the germ line, regulatory genes for sperm development that act at the level of RNA in the cytoplasm play a prominent role.
Collapse
Affiliation(s)
- Scott W. Emmons
- Albert Einstein College of Medicine 1300 Morris Park Ave. Bronx, New York 10461
| |
Collapse
|
30
|
O'Hagan R, Wang J, Barr MM. Mating behavior, male sensory cilia, and polycystins in Caenorhabditis elegans. Semin Cell Dev Biol 2014; 33:25-33. [PMID: 24977333 DOI: 10.1016/j.semcdb.2014.06.001] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2014] [Accepted: 06/04/2014] [Indexed: 11/16/2022]
Abstract
The investigation of Caenorhabditis elegans males and the male-specific sensory neurons required for mating behaviors has provided insight into the molecular function of polycystins and mechanisms that are needed for polycystin ciliary localization. In humans, polycystin 1 and polycystin 2 are needed for kidney function; loss of polycystin function leads to autosomal dominant polycystic kidney disease (ADPKD). Polycystins localize to cilia in C. elegans and mammals, a finding that has guided research into ADPKD. The discovery that the polycystins form ciliary receptors in male-specific neurons needed for mating behaviors has also helped to unlock insights into two additional exciting new areas: the secretion of extracellular vesicles; and mechanisms of ciliary specialization. First, we will summarize the studies done in C. elegans regarding the expression, localization, and function of the polycystin 1 and 2 homologs, LOV-1 and PKD-2, and discuss insights gained from this basic research. Molecules that are co-expressed with the polycystins in the male-specific neurons may identify evolutionarily conserved molecular mechanisms for polycystin function and localization. We will discuss the finding that polycystins are secreted in extracellular vesicles that evoke behavioral change in males, suggesting that such vesicles provide a novel form of communication to conspecifics in the environment. In humans, polycystin-containing extracellular vesicles are secreted in urine and can be taken up by cilia, and quickly internalized. Therefore, communication by polycystin-containing extracellular vesicles may also use mechanisms that are evolutionarily conserved from nematode to human. Lastly, different cilia display structural and functional differences that specialize them for particular tasks, despite the fact that virtually all cilia are built by a conserved intraflagellar transport (IFT) mechanism and share some basic structural features. Comparative analysis of the male-specific cilia with the well-studied cilia of the amphid and phasmid neurons has allowed identification of molecules that specialize the male cilia. We will discuss the molecules that shape the male-specific cilia. The cell biology of cilia in male-specific neurons demonstrates that C. elegans can provide an excellent model of ciliary specialization.
Collapse
Affiliation(s)
- Robert O'Hagan
- Department of Genetics, Rutgers, The State University of New Jersey, 145 Bevier Rd., Piscataway, NJ 08854
| | - Juan Wang
- Department of Genetics, Rutgers, The State University of New Jersey, 145 Bevier Rd., Piscataway, NJ 08854
| | - Maureen M Barr
- Department of Genetics, Rutgers, The State University of New Jersey, 145 Bevier Rd., Piscataway, NJ 08854
| |
Collapse
|
31
|
Ellis RE, Stanfield GM. The regulation of spermatogenesis and sperm function in nematodes. Semin Cell Dev Biol 2014; 29:17-30. [PMID: 24718317 PMCID: PMC4082717 DOI: 10.1016/j.semcdb.2014.04.005] [Citation(s) in RCA: 67] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2014] [Accepted: 04/01/2014] [Indexed: 12/12/2022]
Abstract
In the nematode C. elegans, both males and self-fertile hermaphrodites produce sperm. As a result, researchers have been able to use a broad range of genetic and genomic techniques to dissect all aspects of sperm development and function. Their results show that the early stages of spermatogenesis are controlled by transcriptional and translational processes, but later stages are dominated by protein kinases and phosphatases. Once spermatids are produced, they participate in many interactions with other cells - signals from the somatic gonad determine when sperm activate and begin to crawl, signals from the female reproductive tissues guide the sperm, and signals from sperm stimulate oocytes to mature and be ovulated. The sperm also show strong competitive interactions with other sperm and oocytes. Some of the molecules that mediate these processes have conserved functions in animal sperm, others are conserved proteins that have been adapted for new roles in nematode sperm, and some are novel proteins that provide insights into evolutionary change. The advent of new techniques should keep this system on the cutting edge of research in cellular and reproductive biology.
Collapse
Affiliation(s)
- Ronald E Ellis
- Department of Molecular Biology, Rowan University SOM, B303 Science Center, 2 Medical Center Drive, Stratford, NJ 08084, United States.
| | - Gillian M Stanfield
- Department of Human Genetics, University of Utah, Salt Lake City, UT 84112, United States
| |
Collapse
|
32
|
When females produce sperm: genetics of C. elegans hermaphrodite reproductive choice. G3-GENES GENOMES GENETICS 2013; 3:1851-9. [PMID: 23979940 PMCID: PMC3789810 DOI: 10.1534/g3.113.007914] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
Reproductive behaviors have manifold consequences on evolutionary processes. Here, we explore mechanisms underlying female reproductive choice in the nematode Caenorhabditis elegans, a species in which females have evolved the ability to produce their own self-fertilizing sperm, thereby allowing these "hermaphrodites" the strategic choice to self-reproduce or outcross with males. We report that hermaphrodites of the wild-type laboratory reference strain N2 favor self-reproduction, whereas a wild isolate CB4856 (HW) favors outcrossing. To characterize underlying neural mechanisms, we show that N2 hermaphrodites deficient in mechanosensation or chemosensation (e.g., mec-3 and osm-6 mutants) exhibit high mating frequency, implicating hermaphrodite perception of males as a requirement for low mating frequency. Within chemosensory networks, we find opposing roles for different sets of neurons that express the cyclic GMP-gated nucleotide channel, suggesting both positive and negative sensory-mediated regulation of hermaphrodite mating frequency. We also show that the ability to self-reproduce negatively regulates hermaphrodite mating. To map genetic variation, we created recombinant inbred lines and identified two QTL that explain a large portion of N2 × HW variation in hermaphrodite mating frequency. Intriguingly, we further show that ∼40 wild isolates representing C. elegans global diversity exhibit extensive and continuous variation in hermaphrodite reproductive outcome. Together, our findings demonstrate that C. elegans hermaphrodites actively regulate the choice between selfing and crossing, highlight the existence of natural variation in hermaphrodite choice, and lay the groundwork for molecular dissection of this evolutionarily important trait.
Collapse
|
33
|
Chasnov JR. The evolutionary role of males in C. elegans. WORM 2013; 2:e21146. [PMID: 24058855 PMCID: PMC3670456 DOI: 10.4161/worm.21146] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 05/29/2012] [Accepted: 06/12/2012] [Indexed: 11/19/2022]
Abstract
Although the nematode worm Caenorhabditis elegans reproduces primarily as a self-fertilizing hermaphrodite, males are maintained in natural populations at low frequency. In this commentary, I discuss the evolutionary forces that maintain males and the role males might play in this mating system.
Collapse
Affiliation(s)
- Jeffrey R Chasnov
- Department of Mathematics; Hong Kong University of Science and Technology; Kowloon, Hong Kong
| |
Collapse
|
34
|
Markert M, García LR. Virgin Caenorhabditis remanei females are attracted to a coital pheromone released by con-specific copulating males. WORM 2013; 2:e24448. [PMID: 24058874 PMCID: PMC3704448 DOI: 10.4161/worm.24448] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/31/2013] [Revised: 03/20/2013] [Accepted: 03/25/2013] [Indexed: 11/19/2022]
Abstract
The gonochoristic soil nematode Caenorhabditis remanei strictly requires copulation for species propagation. Males of this species are sexually promiscuous with females of other species; therefore, we asked in this study whether virgin C. remanei females display evidence of mate choice. We digitally recorded and measured the locomotor behaviors of one or more virgin females in the presence of a single male on a 5 mm diameter mating lawn. We observed that initially only the male modifies his locomotor trajectory to another animal on the mating lawn; the virgin females showed no locomotor bias toward the mate-searching male. However, once a male started to copulate, females in the vicinity altered their movement trajectories toward the copulating couple. Newly inseminated females are refractive to the coital signal, but partially regain their attraction to copulating males after 24 h. We found only copulating males with an intact gonad can attract females, and that the coital signal can be broadcasted at least 1.5 mm through the air. Unlike males, which are also attracted to hetero-specific females, virgin C. remanei females will only crawl toward a copulating con-specific male. We suggest that Caenorhabditis females use the coital signal as a pheromone to identify a vigorous male of their own species.
Collapse
Affiliation(s)
- Mathew Markert
- Department of Biology; Texas A&M University; College Station, TX USA
| | | |
Collapse
|
35
|
Sherlekar AL, Janssen A, Siehr MS, Koo PK, Caflisch L, Boggess M, Lints R. The C. elegans male exercises directional control during mating through cholinergic regulation of sex-shared command interneurons. PLoS One 2013; 8:e60597. [PMID: 23577128 PMCID: PMC3618225 DOI: 10.1371/journal.pone.0060597] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2012] [Accepted: 02/28/2013] [Indexed: 01/07/2023] Open
Abstract
BACKGROUND Mating behaviors in simple invertebrate model organisms represent tractable paradigms for understanding the neural bases of sex-specific behaviors, decision-making and sensorimotor integration. However, there are few examples where such neural circuits have been defined at high resolution or interrogated. METHODOLOGY/PRINCIPAL FINDINGS Here we exploit the simplicity of the nematode Caenorhabditis elegans to define the neural circuits underlying the male's decision to initiate mating in response to contact with a mate. Mate contact is sensed by male-specific sensilla of the tail, the rays, which subsequently induce and guide a contact-based search of the hermaphrodite's surface for the vulva (the vulva search). Atypically, search locomotion has a backward directional bias so its implementation requires overcoming an intrinsic bias for forward movement, set by activity of the sex-shared locomotory system. Using optogenetics, cell-specific ablation- and mutant behavioral analyses, we show that the male makes this shift by manipulating the activity of command cells within this sex-shared locomotory system. The rays control the command interneurons through the male-specific, decision-making interneuron PVY and its auxiliary cell PVX. Unlike many sex-shared pathways, PVY/PVX regulate the command cells via cholinergic, rather than glutamatergic transmission, a feature that likely contributes to response specificity and coordinates directional movement with other cholinergic-dependent motor behaviors of the mating sequence. PVY/PVX preferentially activate the backward, and not forward, command cells because of a bias in synaptic inputs and the distribution of key cholinergic receptors (encoded by the genes acr-18, acr-16 and unc-29) in favor of the backward command cells. CONCLUSION/SIGNIFICANCE Our interrogation of male neural circuits reveals that a sex-specific response to the opposite sex is conferred by a male-specific pathway that renders subordinate, sex-shared motor programs responsive to mate cues. Circuit modifications of these types may make prominent contributions to natural variations in behavior that ultimately bring about speciation.
Collapse
Affiliation(s)
- Amrita L. Sherlekar
- Department of Biology, Texas A & M University, College Station, Texas, United States of America
| | - Abbey Janssen
- Department of Biology, Texas A & M University, College Station, Texas, United States of America
| | - Meagan S. Siehr
- Department of Biology, Texas A & M University, College Station, Texas, United States of America
| | - Pamela K. Koo
- Department of Biology, Texas A & M University, College Station, Texas, United States of America
| | - Laura Caflisch
- Department of Biology, Texas A & M University, College Station, Texas, United States of America
| | - May Boggess
- School of Mathematical and Statistical Sciences,Arizona State University, Tempe, Arizona, United States of America
| | - Robyn Lints
- Department of Biology, Texas A & M University, College Station, Texas, United States of America
| |
Collapse
|
36
|
Jarrell TA, Wang Y, Bloniarz AE, Brittin CA, Xu M, Thomson JN, Albertson DG, Hall DH, Emmons SW. The Connectome of a Decision-Making Neural Network. Science 2012; 337:437-44. [PMID: 22837521 DOI: 10.1126/science.1221762] [Citation(s) in RCA: 310] [Impact Index Per Article: 23.8] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Affiliation(s)
- Travis A Jarrell
- Department of Genetics, Albert Einstein College of Medicine, 1300 Morris Park Avenue, Bronx, NY 10461, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
37
|
Thomas CG, Woodruff GC, Haag ES. Causes and consequences of the evolution of reproductive mode in Caenorhabditis nematodes. Trends Genet 2012; 28:213-20. [PMID: 22480920 DOI: 10.1016/j.tig.2012.02.007] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2011] [Revised: 02/24/2012] [Accepted: 02/27/2012] [Indexed: 12/12/2022]
Abstract
Reproduction is directly connected to the suite of developmental and physiological mechanisms that enable it, but how it occurs also has consequences for the genetics, ecology and longer term evolutionary potential of a lineage. In the nematode Caenorhabditis elegans, anatomically female XX worms can self-fertilize their eggs. This ability evolved recently and in multiple Caenorhabditis lineages from male-female ancestors, providing a model for examining both the developmental causes and longer term consequences of a novel, convergently evolved reproductive mode. Here, we review recent work that implicates translation control in the evolution of XX spermatogenesis, with different selfing lineages possessing both reproducible and idiosyncratic features. We also discuss the consequences of selfing, which leads to a rapid loss of variation and relaxation of natural and sexual selection on mating-related traits, and may ultimately put selfing lineages at a higher risk of extinction.
Collapse
Affiliation(s)
- Cristel G Thomas
- Department of Biology, University of Maryland, College Park, MD 20742, USA
| | | | | |
Collapse
|
38
|
Morsci NS, Haas LA, Barr MM. Sperm status regulates sexual attraction in Caenorhabditis elegans. Genetics 2011; 189:1341-6. [PMID: 21968192 PMCID: PMC3241412 DOI: 10.1534/genetics.111.133603] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2011] [Accepted: 09/28/2011] [Indexed: 12/23/2022] Open
Abstract
Mating behavior of animals is regulated by the sensory stimuli provided by the other sex. Sexually receptive females emit mating signals that can be inhibited by male ejaculate. The genetic mechanisms controlling the release of mating signals and encoding behavioral responses remain enigmatic. Here we present evidence of a Caenorhabditis elegans hermaphrodite-derived cue that stimulates male mating-response behavior and is dynamically regulated by her reproductive status. Wild-type males preferentially mated with older hermaphrodites. Increased sex appeal of older hermaphrodites was potent enough to stimulate robust response from mating-deficient pkd-2 and lov-1 polycystin mutant males. This enhanced response of pkd-2 males toward older hermaphrodites was independent of short-chain ascaroside pheromones, but was contingent on the absence of active sperm in the hermaphrodites. The improved pkd-2 male response toward spermless hermaphrodites was blocked by prior insemination or by genetic ablation of the ceh-18-dependent sperm-sensing pathway of the hermaphrodite somatic gonad. Our work suggests an interaction between sperm and the soma that has a negative but reversible effect on a hermaphrodite-derived mating cue that regulates male mating response, a phenomenon to date attributed to gonochoristic species only.
Collapse
Affiliation(s)
- Natalia S Morsci
- Department of Genetics, Rutgers University, Piscataway, New Jersey 08854, USA.
| | | | | |
Collapse
|
39
|
Murray RL, Kozlowska JL, Cutter AD. Heritable determinants of male fertilization success in the nematode Caenorhabditis elegans. BMC Evol Biol 2011; 11:99. [PMID: 21492473 PMCID: PMC3096603 DOI: 10.1186/1471-2148-11-99] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2010] [Accepted: 04/14/2011] [Indexed: 11/13/2022] Open
Abstract
BACKGROUND Sperm competition is a driving force in the evolution of male sperm characteristics in many species. In the nematode Caenorhabditis elegans, larger male sperm evolve under experimentally increased sperm competition and larger male sperm outcompete smaller hermaphrodite sperm for fertilization within the hermaphrodite reproductive tract. To further elucidate the relative importance of sperm-related traits that contribute to differential reproductive success among males, we quantified within- and among-strain variation in sperm traits (size, rate of production, number transferred, competitive ability) for seven male genetic backgrounds known previously to differ with respect to some sperm traits. We also quantified male mating ability in assays for rates of courtship and successful copulation, and then assessed the roles of these pre- and post-mating traits in first- and second-male fertilization success. RESULTS We document significant variation in courtship ability, mating ability, sperm size and sperm production rate. Sperm size and production rate were strong indicators of early fertilization success for males that mated second, but male genetic backgrounds conferring faster sperm production make smaller sperm, despite virgin males of all genetic backgrounds transferring indistinguishable numbers of sperm to mating partners. CONCLUSIONS We have demonstrated that sperm size and the rate of sperm production represent dominant factors in determining male fertilization success and that C. elegans harbors substantial heritable variation for traits contributing to male reproductive success. C. elegans provides a powerful, tractable system for studying sexual selection and for dissecting the genetic basis and evolution of reproduction-related traits.
Collapse
Affiliation(s)
- Rosalind L Murray
- Department of Ecology and Evolutionary Biology, University of Toronto, Toronto, M5S 3B2, Ontario, Canada
- School of Biological and Environmental Sciences, University of Stirling, Stirling, FK9 4LA, UK
| | - Joanna L Kozlowska
- Department of Ecology and Evolutionary Biology, University of Toronto, Toronto, M5S 3B2, Ontario, Canada
| | - Asher D Cutter
- Department of Ecology and Evolutionary Biology, University of Toronto, Toronto, M5S 3B2, Ontario, Canada
| |
Collapse
|
40
|
Liu Y, LeBeouf B, Guo X, Correa PA, Gualberto DG, Lints R, Garcia LR. A cholinergic-regulated circuit coordinates the maintenance and bi-stable states of a sensory-motor behavior during Caenorhabditis elegans male copulation. PLoS Genet 2011; 7:e1001326. [PMID: 21423722 PMCID: PMC3053324 DOI: 10.1371/journal.pgen.1001326] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2010] [Accepted: 02/04/2011] [Indexed: 11/18/2022] Open
Abstract
Penetration of a male copulatory organ into a suitable mate is a conserved and necessary behavioral step for most terrestrial matings; however, the detailed molecular and cellular mechanisms for this distinct social interaction have not been elucidated in any animal. During mating, the Caenorhabditis elegans male cloaca is maintained over the hermaphrodite's vulva as he attempts to insert his copulatory spicules. Rhythmic spicule thrusts cease when insertion is sensed. Circuit components consisting of sensory/motor neurons and sex muscles for these steps have been previously identified, but it was unclear how their outputs are integrated to generate a coordinated behavior pattern. Here, we show that cholinergic signaling between the cloacal sensory/motor neurons and the posterior sex muscles sustains genital contact between the sexes. Simultaneously, via gap junctions, signaling from these muscles is transmitted to the spicule muscles, thus coupling repeated spicule thrusts with vulval contact. To transit from rhythmic to sustained muscle contraction during penetration, the SPC sensory-motor neurons integrate the signal of spicule's position in the vulva with inputs from the hook and cloacal sensilla. The UNC-103 K(+) channel maintains a high excitability threshold in the circuit, so that sustained spicule muscle contraction is not stimulated by fewer inputs. We demonstrate that coordination of sensory inputs and motor outputs used to initiate, maintain, self-monitor, and complete an innate behavior is accomplished via the coupling of a few circuit components.
Collapse
Affiliation(s)
- Yishi Liu
- Department of Biology, Texas A&M University, College Station, Texas, United States of America
| | - Brigitte LeBeouf
- Department of Biology, Texas A&M University, College Station, Texas, United States of America
- Howard Hughes Medical Institute, Texas A&M University, College Station, Texas, United States of America
| | - Xiaoyan Guo
- Department of Biology, Texas A&M University, College Station, Texas, United States of America
| | - Paola A. Correa
- Department of Biology, Texas A&M University, College Station, Texas, United States of America
| | - Daisy G. Gualberto
- Department of Biology, Texas A&M University, College Station, Texas, United States of America
- Howard Hughes Medical Institute, Texas A&M University, College Station, Texas, United States of America
| | - Robyn Lints
- Department of Biology, Texas A&M University, College Station, Texas, United States of America
| | - L. Rene Garcia
- Department of Biology, Texas A&M University, College Station, Texas, United States of America
- Howard Hughes Medical Institute, Texas A&M University, College Station, Texas, United States of America
- * E-mail:
| |
Collapse
|
41
|
Anderson JL, Morran LT, Phillips PC. Outcrossing and the maintenance of males within C. elegans populations. J Hered 2010; 101 Suppl 1:S62-74. [PMID: 20212008 PMCID: PMC2859890 DOI: 10.1093/jhered/esq003] [Citation(s) in RCA: 89] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2009] [Revised: 12/21/2009] [Accepted: 01/11/2010] [Indexed: 01/13/2023] Open
Abstract
Caenorhabditis elegans is an androdioecious nematode with both hermaphrodites and males. Although males can potentially play an important role in avoiding inbreeding and facilitating adaptation, their existence is evolutionarily problematic because they do not directly generate offspring in the way that hermaphrodites do. This review explores how genetic, population genomic, and experimental evolution approaches are being used to address the role of males and outcrossing within C. elegans. Although theory suggests that inbreeding depression and male mating ability should be the primary determinants of male frequency, this has yet to be convincingly confirmed experimentally. Genomic analysis of natural populations finds that outcrossing occurs at low, but not negligible levels, and that observed patterns of linkage disequilibrium consistent with strong selfing may instead be generated by natural selection against outcrossed progeny. Recent experimental evolution studies suggest that males can be maintained at fairly high levels if populations are initiated with sufficient genetic variation and/or subjected to strong natural selection via a change in the environment. For example, as reported here, populations adapting to novel laboratory rearing and temperature regimes maintain males at frequencies from 5% to 40%. Laboratory and field results still await full reconciliation, which may be facilitated by identifying the loci underlying among-strain differences in mating system dynamics.
Collapse
Affiliation(s)
- Jennifer L Anderson
- Center for Ecology and Evolutionary Biology, University of Oregon, Eugene, OR 97403, USA
| | | | | |
Collapse
|
42
|
Chasnov JR. The evolution from females to hermaphrodites results in a sexual conflict over mating in androdioecious nematode worms and clam shrimp. J Evol Biol 2010; 23:539-56. [PMID: 20074309 DOI: 10.1111/j.1420-9101.2009.01919.x] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
The nematode worm Caenorhabditis elegans and the clam shrimp Eulimnadia texana are two well-studied androdioecious species consisting mostly of self-fertilizing hermaphrodites and few males. To understand how androdioecy can evolve, a simple two-step mathematical model of the evolutionary pathway from a male-female species to a selfing-hermaphrodite species is constructed. First, the frequency of mutant females capable of facultative self-fertilization increases if the benefits of reproductive assurance exceed the cost. Second, hermaphrodites become obligate self-fertilizers if the fitness of selfed offspring exceeds one-half the fitness of outcrossed offspring. Genetic considerations specific to C. elegans and E. texana show that males may endure as descendants of the ancestral male-female species. These models combined with an extensive literature review suggest a sexual conflict over mating in these androdioecious species: selection favours hermaphrodites that self and males that outcross. The strength of selection on hermaphrodites and males differs, however. Males that fail to outcross suffer a genetic death. Hermaphrodites may never encounter a rare male, and those that do and outcross only bear less fecund offspring. This asymmetric sexual conflict results in an evolutionary stand-off: rare, but persistent males occasionally fertilize common, but reluctant hermaphrodites. A consequence of this stand-off may be an increase in the longevity of the androdioecious mating system.
Collapse
Affiliation(s)
- J R Chasnov
- Department of Mathematics, Hong Kong University of Science and Technology, Kowloon, Hong Kong.
| |
Collapse
|
43
|
DIAZ SANAID, HAYDON DANIELT, LINDSTRÖM JAN. Sperm-limited fecundity and polyandry-induced mortality in female nematodes Caenorhabditis remanei. Biol J Linn Soc Lond 2009. [DOI: 10.1111/j.1095-8312.2009.01352.x] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
|
44
|
Abstract
In the nematode Caenorhabditis elegans, a single gene (plg-1) encodes the dominant protein found in mating plugs - a means of inhibiting multiple matings. Naturally occurring loss of plg-1 function results in males that fail to deposit mating plugs - a manifestation of relaxed sexual selection since the evolution of self-fertilization in this species.
Collapse
Affiliation(s)
- Asher D Cutter
- Department of Ecology and Evolutionary Biology, University of Toronto, Toronto, ON M5S 3B2, Canada.
| |
Collapse
|
45
|
Patterns of molecular evolution in Caenorhabditis preclude ancient origins of selfing. Genetics 2008; 178:2093-104. [PMID: 18430935 DOI: 10.1534/genetics.107.085787] [Citation(s) in RCA: 77] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The evolution of self-fertilization can mediate pronounced changes in genomes as a by-product of a drastic reduction in effective population size and the concomitant accumulation of slightly deleterious mutations by genetic drift. In the nematode genus Caenorhabditis, a highly selfing lifestyle has evolved twice independently, thus permitting an opportunity to test for the effects of mode of reproduction on patterns of molecular evolution on a genomic scale. Here we contrast rates of nucleotide substitution and codon usage bias among thousands of orthologous groups of genes in six species of Caenorhabditis, including the classic model organism Caenorhabditis elegans. Despite evidence that weak selection on synonymous codon usage is pervasive in the history of all species in this genus, we find little difference among species in the patterns of codon usage bias and in replacement-site substitution. Applying a model of relaxed selection on codon usage to the C. elegans and C. briggsae lineages suggests that self-fertilization is unlikely to have evolved more than approximately 4 million years ago, which is less than a quarter of the time since they shared a common ancestor with outcrossing species. We conclude that the profound changes in mating behavior, physiology, and developmental mechanisms that accompanied the transition from an obligately outcrossing to a primarily selfing mode of reproduction evolved in the not-too-distant past.
Collapse
|