1
|
Salatta BM, Muniz MMM, Fonseca LFS, Mota LFM, Teixeira CDS, Frezarim GB, Serna-García M, Arikawa LM, Schmidt PI, Nasner SLC, Silva DBDS, Pereira ASC, Baldi F, Albuquerque LGD. Differentially expressed messenger RNA isoforms in beef cattle skeletal muscle with different fatty acid profiles. Meat Sci 2025; 222:109751. [PMID: 39798396 DOI: 10.1016/j.meatsci.2025.109751] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2024] [Revised: 12/26/2024] [Accepted: 01/04/2025] [Indexed: 01/15/2025]
Abstract
This study aimed to identify mRNA isoforms that were expressed differently in the muscle tissue of Nellore cattle based on their intramuscular fatty acid profile. Forty-eight young bulls were used to quantify beef fatty acids (FA) and perform RNA sequencing analysis. The young bulls were divided into three different groups based on quantifying FA using k-means analysis. The Grp1 clustered animals with significantly elevated levels of PUFA, ω6, ω3, linoleic acid, α-linolenic acid, and PUFA/SFA ratios, indicating a more favorable fatty acid profile. Animals in Group 3 demonstrated significantly higher levels of palmitic acid, stearic acid, myristic acid, and SFA, which are less favorable fatty acid profiles. Grp2 included bulls with intermediate levels of fatty acids, positioned between the profiles of Grp1 and Grp3. Differential expression (DE) analyses were performed to compare these three distinct groups through the contrasts: Grp1 vs. Grp2, Grp1 vs. Grp3, and Grp2 vs. Grp3. The DE analyses identified a total of 62, 26, and 30 transcripts for the contrasts Grp1 vs. Grp2, Grp1 vs. Grp3, and Grp2 vs. Grp3, respectively. In the comparison between the Grp1 and Grp2 groups, we identified three mRNA isoforms, C7-203, ADD1-204, and OXT-201, which are involved in glycogen and lipid metabolism. These mRNA isoforms regulate the key genes responsible for fatty acid synthesis, leading to a higher PUFA content profile. On the other hand, in the comparison between the Grp1 and Grp3 groups, the mRNA isoforms RBM3-202 and TRAG1-202 were identified and play a crucial role in muscle development, adipogenesis, and concentration of PUFA and MUFA, respectively. The downregulation of THRSP-201 and FABP4-201, isoforms identified in both, Grp1 vs. Grp2 and Grp2 vs. Grp3, contrasts may contribute to lower levels of MUFA and SFA and higher levels of PUFA. In addition, these mRNA isoforms were associated with lipogenesis, fatty acid transport, and inhibition of lipolysis. Our findings suggest that the identified mRNA isoforms could serve as promising candidates to help develop strategies to select animals of higher nutritional meat quality.
Collapse
Affiliation(s)
- Bruna Maria Salatta
- São Paulo State University (UNESP), School of Agricultural and Veterinarian Sciences, Department of Animal Science, Via de Acesso Prof. Paulo Donato Castelane, Jaboticabal, SP 14884-900, Brazil.
| | - Maria Malane Magalhães Muniz
- São Paulo State University (UNESP), School of Agricultural and Veterinarian Sciences, Department of Animal Science, Via de Acesso Prof. Paulo Donato Castelane, Jaboticabal, SP 14884-900, Brazil; University of Guelph, Department of Animal Biosciences, Centre for Genetic Improvement of Livestock, Guelph, ON, Canada
| | - Larissa Fernanda Simielli Fonseca
- São Paulo State University (UNESP), School of Agricultural and Veterinarian Sciences, Department of Animal Science, Via de Acesso Prof. Paulo Donato Castelane, Jaboticabal, SP 14884-900, Brazil
| | - Lucio Flavio Macedo Mota
- São Paulo State University (UNESP), School of Agricultural and Veterinarian Sciences, Department of Animal Science, Via de Acesso Prof. Paulo Donato Castelane, Jaboticabal, SP 14884-900, Brazil
| | - Caio de Souza Teixeira
- São Paulo State University (UNESP), School of Agricultural and Veterinarian Sciences, Department of Animal Science, Via de Acesso Prof. Paulo Donato Castelane, Jaboticabal, SP 14884-900, Brazil
| | - Gabriela Bonfá Frezarim
- São Paulo State University (UNESP), School of Agricultural and Veterinarian Sciences, Department of Animal Science, Via de Acesso Prof. Paulo Donato Castelane, Jaboticabal, SP 14884-900, Brazil
| | - Marta Serna-García
- São Paulo State University (UNESP), School of Agricultural and Veterinarian Sciences, Department of Animal Science, Via de Acesso Prof. Paulo Donato Castelane, Jaboticabal, SP 14884-900, Brazil
| | - Leonardo Machestropa Arikawa
- São Paulo State University (UNESP), School of Agricultural and Veterinarian Sciences, Department of Animal Science, Via de Acesso Prof. Paulo Donato Castelane, Jaboticabal, SP 14884-900, Brazil
| | - Patrícia Iana Schmidt
- São Paulo State University (UNESP), School of Agricultural and Veterinarian Sciences, Department of Animal Science, Via de Acesso Prof. Paulo Donato Castelane, Jaboticabal, SP 14884-900, Brazil
| | - Sindy Liliana Caivio Nasner
- São Paulo State University (UNESP), School of Agricultural and Veterinarian Sciences, Department of Animal Science, Via de Acesso Prof. Paulo Donato Castelane, Jaboticabal, SP 14884-900, Brazil
| | - Danielly Beraldo Dos Santos Silva
- São Paulo State University (UNESP), School of Agricultural and Veterinarian Sciences, Department of Animal Science, Via de Acesso Prof. Paulo Donato Castelane, Jaboticabal, SP 14884-900, Brazil
| | - Angélica Simone Cravo Pereira
- São Paulo University, College of Veterinary and Animal Science, Department of Nutrition and Animal Breeding, Avenida Duque de Caxias Norte, 225, Pirassununga, SP 13635-900, Brazil
| | - Fernando Baldi
- São Paulo State University (UNESP), School of Agricultural and Veterinarian Sciences, Department of Animal Science, Via de Acesso Prof. Paulo Donato Castelane, Jaboticabal, SP 14884-900, Brazil; National Council for Science and Technological Development, Brasilia, DF 71605-001, Brazil
| | - Lucia Galvão de Albuquerque
- São Paulo State University (UNESP), School of Agricultural and Veterinarian Sciences, Department of Animal Science, Via de Acesso Prof. Paulo Donato Castelane, Jaboticabal, SP 14884-900, Brazil; National Council for Science and Technological Development, Brasilia, DF 71605-001, Brazil.
| |
Collapse
|
2
|
Contreras‐Solís I, Porcu C, Sotgiu FD, Pasciu V, Todorova N, Mara L, Chessa F, Addis M, Fiori M, Molle G, Dattena M, Gonzalez‐Bulnes A, Abecia JA, Berlinguer F. Microencapsulated Linseed Oil Supplementation Modifies Lipid Profile and Improves Luteal Function in Dairy Sheep. Food Sci Nutr 2025; 13:e70097. [PMID: 40291926 PMCID: PMC12031888 DOI: 10.1002/fsn3.70097] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2024] [Revised: 01/20/2025] [Accepted: 03/06/2025] [Indexed: 04/30/2025] Open
Abstract
Polyunsaturated fatty acids omega 3 (PUFA-ω3) have been shown to modulate reproductive events such as ovarian follicular and luteal development, steroid and prostaglandin synthesis, and oocyte/embryo quality in different species. These effects could be exploited to support pregnancy and avoid early embryo losses that could occur in dairy sheep breeding. This study aimed to evaluate the effectiveness of dietary supplementation of microencapsulated/by-passed linseed oil (LO) on ovarian function, embryo implantation rates, and lipid profiles of Sarda ewes during their early pregnancy. Our results demonstrated that the intake of microencapsulated LO at a level of 4.0% of fresh matter increased the plasmatic concentrations of PUFASω3 (p < 0.01) and progesterone (p < 0.05), as well as cholesterol (p < 0.01), triglyceride (p < 0.001), high-density lipoprotein (p < 0.001), and non-esterified fatty acids (p < 0.05). The percentage of ewes in estrus, ovulation rate per mated ewe, number of embryos per ewe, and pregnancy rates were similar between treated and control groups. In conclusion, dietary supplementation of by-pass LO during the preimplantation period increased PUFAS-ω3 distribution at systemic and local levels. Also, this supplementation modified the ewe's lipid profile and improved luteal function with a possible positive effect on embryo-maternal crosstalk and embryo implantation rate during and after the maternal recognition of pregnancy.
Collapse
Affiliation(s)
| | - Cristian Porcu
- Veterinary Medicine DepartmentSassari UniversitySassariItaly
| | | | - Valeria Pasciu
- Veterinary Medicine DepartmentSassari UniversitySassariItaly
| | - Neda Todorova
- Veterinary Medicine DepartmentSassari UniversitySassariItaly
| | | | | | | | | | | | | | | | | | | |
Collapse
|
3
|
Coppa M, Pomiès D, Martin B, Bouchon M, Renaud JP, Aoun M, Deroche B, Baumont R. Dietary inclusion of hay of greater digestibility and water-soluble carbohydrate content increases performance of dairy cows, irrespective of concentrate type and breed. Animal 2025; 19:101464. [PMID: 40088525 DOI: 10.1016/j.animal.2025.101464] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2024] [Revised: 02/08/2025] [Accepted: 02/10/2025] [Indexed: 03/17/2025] Open
Abstract
Water-soluble carbohydrate (WSC)-rich pasture or alfalfa hay, with high organic matter digestibility (OMd), are known to increase the voluntary dry matter intake (DMI) of dairy cows and diet digestibility, often resulting in higher dairy performance. However, little is known about the effect of highly digestible hays from botanically diversified natural grasslands, rich in WSC and their interactions with concentrate type on dairy performance. The present trial tested the effect on dairy cow performance of dietary inclusion of hay of greater digestibility and WSC content (high OMd, WSC-rich or low OMd, WSC-poor) from botanically diversified natural grasslands and its possible interactions with concentrate type with low or high starch degradation rate in cow breeds with different production potential. Twenty-eight Holstein and 28 Montbéliarde cows after the lactation peak were randomly allocated to four equivalent groups of 14 cows each. Cows were fed for 6 weeks with 5 kg DM/day of concentrate, 3 kg DM/day of the same 2nd cut hay and two different types of 1st cut hay (ad libitum). Two groups received the 1st cut hay characterised by a high (A) WSC content and high OMd and the two other groups received the 1st cut hay (B) with low WSC content and low OMd. One group per hay type received a wheat-based concentrate, with a high starch degradation rate and the other group received a maize-based concentrate, with a low starch degradation rate. Cows fed A hay diet ingested more WSC (+551 g/day) and had a higher WSC/CP ratio (+0.24) than B hay diet-fed cows. The resulting higher OM total tract apparent digestibility (+2.1%) of ingested diet improved milk yield (+1.4 kg/day), milk fat yield (+58 g/day) and feed conversion efficiency (+0.05 g milk /kg DMI) of cows fed A hay compared to B hay diets. The A hay diet also induced a lower milk urea (-91 mg/kg) and higher milk protein content (+1.1 g/kg) and yield (+59 g/day). The A hay diet milk was richer in de-novo synthesised fatty acids (FA) and poorer in FA derived from ruminal biohydrogenation of dietary polyunsaturated FA. The effect of concentrate type on dairy performance was not significant for either the A hay or B hay diets. Regardless of cow breed and concentrate type, including botanically diversified natural grasslands highly digestible and WSC-rich hay in cow diet improved milk yield, milk fat, and protein synthesis, and feed conversion efficiency.
Collapse
Affiliation(s)
- M Coppa
- Department of Agricultural, Forest and Food Sciences, University of Turin, Largo P. Braccini 2, 10095 Grugliasco, TO, Italy
| | - D Pomiès
- Université Clermont Auvergne, INRAE, VetAgro Sup, UMR Herbivores, 63122 Saint-Genès-Champanelle, France
| | - B Martin
- Université Clermont Auvergne, INRAE, VetAgro Sup, UMR Herbivores, 63122 Saint-Genès-Champanelle, France
| | - M Bouchon
- INRAE, Herbipôle, 63122 Saint-Genès-Champanelle, France
| | - J P Renaud
- PHILICOT, 1 Chemin du Moulin de la Ville, 71150 Chagny, France
| | - M Aoun
- IDENA, 21 rue du Moulin, 44880 Sautron, France
| | - B Deroche
- Université Clermont Auvergne, INRAE, VetAgro Sup, UMR Herbivores, 63122 Saint-Genès-Champanelle, France; IDENA, 21 rue du Moulin, 44880 Sautron, France
| | - R Baumont
- Université Clermont Auvergne, INRAE, VetAgro Sup, UMR Herbivores, 63122 Saint-Genès-Champanelle, France.
| |
Collapse
|
4
|
Valenti B, Scicutella F, Viti C, Daghio M, Mannelli F, Gigante D, Buccioni A, Bolletta V, Morbidini L, Turini L, Natalello A, Servili M, Selvaggini R, Pauselli M. Olive tree leaves in dairy sheep diet: effects on rumen metabolism, microbiota composition and milk quality. Animal 2025; 19:101435. [PMID: 39970862 DOI: 10.1016/j.animal.2025.101435] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2024] [Revised: 01/15/2025] [Accepted: 01/16/2025] [Indexed: 02/21/2025] Open
Abstract
Feeding ruminants with agro-industrial by-products represents an effective strategy to implement circular economy principles in animal husbandry. Olive tree leaves discarded during olive oil production are a natural source of compounds that may influence ruminant metabolism and product quality. In this study, an in vivo feeding trial evaluated the effect of dietary olive tree leaves on the rumen microbial community, animal performance and milk quality in dairy sheep. Two groups of 10 grazing Comisana ewes were supplemented with 800 g/head/d of a control pelleted concentrate (CTRL) or a concentrate containing 28% of dried olive leaves (LEAVES) for 30 days. After the adaptation period, individual milk was collected weekly and analysed for gross composition, fatty acids and renneting properties. Individual rumen liquor collected on the last day of the trial was analysed for microbial and fatty acid profiles. Moreover, the effect of olive tree leaves inclusion on dietary nutrient degradability of the LEAVES concentrate was tested in vitro. In vitro data indicated that olive leaves did not affect the rumen degradability of NDF and protein compared to CTRL. Regarding the in vivo trial, milk yield was comparable between groups, but LEAVES milk showed a greater protein percentage. Dietary olive leaves marginally affected the rumen microbiota: the Catenisphera genus was more abundant in the rumen of the LEAVES group, and Mogibacterium was found only in rumen of LEAVES ewes. The rumen liquor of LEAVES ewes showed a greater content of c9 18:1 and t6-8 18:1. Fatty acids mainly involved in biohydrogenation were found at a comparable content in the rumen of CTRL and LEAVES groups. Despite this, both dietary polyunsaturated fatty acids (c9c12 18:2 and c9c12c15 18:3) and fatty acids mainly originated from rumen biohydrogenation (trans 18:1 and 18:2 isomers) were found at a greater percentage in the LEAVES milk. Dietary olive leaves increased total monounsaturated fatty acids, polyunsaturated fatty acids, polyunsaturated fatty acids n-3 and polyunsaturated fatty acids n-6 and reduced saturated fatty acids in comparison with the CTRL diet. Among the health-promoting fatty acids, c9 18:1, c9t11 18:2, 22:5 n-6 and 22:6 n-3 were greater in the LEAVES milk. Consequently, LEAVES milk showed a lower atherogenic and thrombogenic index and a smaller hypercholesterolemic potential. Our results confirm the viability of the use of agro-industrial by-products rich in bioactive compounds in animal diets as a strategy to improve the circularity of animal production and product quality without modification to animal performance.
Collapse
Affiliation(s)
- B Valenti
- Dipartimento di Scienze Agrarie, Alimentari ed Ambientali, Università di Perugia, Borgo XX Giugno 74 06121 Perugia, Italy
| | - F Scicutella
- Dipartimento di Scienze e Tecnologie Agrarie Alimentari Ambientali e Forestali, Università di Firenze, Piazzale delle Cascine 18 50144 Firenze, Italy
| | - C Viti
- Dipartimento di Scienze e Tecnologie Agrarie Alimentari Ambientali e Forestali, Università di Firenze, Piazzale delle Cascine 18 50144 Firenze, Italy
| | - M Daghio
- Dipartimento di Scienze e Tecnologie Agrarie Alimentari Ambientali e Forestali, Università di Firenze, Piazzale delle Cascine 18 50144 Firenze, Italy
| | - F Mannelli
- Dipartimento di Scienze e Tecnologie Agrarie Alimentari Ambientali e Forestali, Università di Firenze, Piazzale delle Cascine 18 50144 Firenze, Italy
| | - D Gigante
- Dipartimento di Scienze Agrarie, Alimentari ed Ambientali, Università di Perugia, Borgo XX Giugno 74 06121 Perugia, Italy
| | - A Buccioni
- Dipartimento di Scienze e Tecnologie Agrarie Alimentari Ambientali e Forestali, Università di Firenze, Piazzale delle Cascine 18 50144 Firenze, Italy.
| | - V Bolletta
- Dipartimento di Scienze Agrarie, Alimentari ed Ambientali, Università di Perugia, Borgo XX Giugno 74 06121 Perugia, Italy
| | - L Morbidini
- Dipartimento di Scienze Agrarie, Alimentari ed Ambientali, Università di Perugia, Borgo XX Giugno 74 06121 Perugia, Italy
| | - L Turini
- Diparimento di Scienze Agrarie, Alimentari ed Agro-Ambientali, Università di Pisa, Via del Borghetto 56124 Pisa, Italy
| | - A Natalello
- Dipartimento di Agricoltura, Alimentazione e Ambiente, Università di Catania, via Valdisavoia 5 95123 Catania, Italy
| | - M Servili
- Dipartimento di Scienze Agrarie, Alimentari ed Ambientali, Università di Perugia, Borgo XX Giugno 74 06121 Perugia, Italy
| | - R Selvaggini
- Dipartimento di Scienze Agrarie, Alimentari ed Ambientali, Università di Perugia, Borgo XX Giugno 74 06121 Perugia, Italy
| | - M Pauselli
- Dipartimento di Scienze Agrarie, Alimentari ed Ambientali, Università di Perugia, Borgo XX Giugno 74 06121 Perugia, Italy
| |
Collapse
|
5
|
Türk Z, Leiber F, Schlittenlacher T, Hamburger M, Walkenhorst M. Multiple benefits of herbs: Polygonaceae species in veterinary pharmacology and livestock nutrition. Vet Anim Sci 2025; 27:100416. [PMID: 39720831 PMCID: PMC11667078 DOI: 10.1016/j.vas.2024.100416] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2024] Open
Abstract
Herbs rich in secondary metabolites may possess beneficial properties in livestock nutrition and health. 49 Polygonaceae species of European mountain regions were included in a qualitative systematic review based on the methodological framework of the PRISMA statement. 174 relevant publications were identified. They comprised 231 in vitro and 163 in vivo experiments with cattle, sheep, goats, poultry, pigs, and rodents. For 16 Polygonaceae species no reports were found. Fagopyrum esculentum and Fagopyrum tataricum showed potential as anti-inflammatory, antioxidative and metabolic modifying herbs and feeds improving intake and nitrogen conversion in broiler as well as milk quality and ruminal biotransformation in dairy cows. Polygonum aviculare was promising as an antimicrobial and anti-inflammatory drug or feed, improving performance and affecting ruminal biotransformation in sheep, and Polygonum bistorta as an anti-inflammatory drug or feed, improving performance in broiler and mitigating methane emissions in ruminants. Rumex obtusifolius showed potential as an antibacterial drug or feed improving ruminal biotransformation and preventing bloating in cows, while Rumex acetosa and Rumex acetosella had antimicrobial and anti-inflammatory properties. Furthermore, Polygonum minus, Polygonum persicaria, Rumex crispus and Rumex patientia possess interesting anti-inflammatory and antimicrobial activities. In conclusion, some Polygonaceae species show relevant properties that might be useful to prevent and treat livestock diseases, combined with nutritional benefits in performance, product quality, lowering ruminal methane and ammonia formation and transferring omega-3 fatty-acids from feed to tissue. The potential of such multifunctional plants for a holistic integration of veterinary, nutritional and ecological perspectives under a one-health approach of livestock management is discussed.
Collapse
Affiliation(s)
- Zafide Türk
- Research Institute of Organic Agriculture (FiBL), Ackerstrasse 113, 5070, Frick, Switzerland
- University of Basel, Department of Pharmaceutical Sciences, Klingelbergstrasse 50, 4056, Basel, Switzerland
| | - Florian Leiber
- Research Institute of Organic Agriculture (FiBL), Ackerstrasse 113, 5070, Frick, Switzerland
| | - Theresa Schlittenlacher
- Research Institute of Organic Agriculture (FiBL), Ackerstrasse 113, 5070, Frick, Switzerland
| | - Matthias Hamburger
- University of Basel, Department of Pharmaceutical Sciences, Klingelbergstrasse 50, 4056, Basel, Switzerland
| | - Michael Walkenhorst
- Research Institute of Organic Agriculture (FiBL), Ackerstrasse 113, 5070, Frick, Switzerland
| |
Collapse
|
6
|
Hristov AN, Bannink A, Battelli M, Belanche A, Cajarville Sanz MC, Fernandez-Turren G, Garcia F, Jonker A, Kenny DA, Lind V, Meale SJ, Meo Zilio D, Muñoz C, Pacheco D, Peiren N, Ramin M, Rapetti L, Schwarm A, Stergiadis S, Theodoridou K, Ungerfeld EM, van Gastelen S, Yáñez-Ruiz DR, Waters SM, Lund P. Feed additives for methane mitigation: Recommendations for testing enteric methane-mitigating feed additives in ruminant studies. J Dairy Sci 2025; 108:322-355. [PMID: 39725501 DOI: 10.3168/jds.2024-25050] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2024] [Accepted: 08/27/2024] [Indexed: 12/28/2024]
Abstract
There is a need for rigorous and scientifically-based testing standards for existing and new enteric methane mitigation technologies, including antimethanogenic feed additives (AMFA). The current review provides guidelines for conducting and analyzing data from experiments with ruminants intended to test the antimethanogenic and production effects of feed additives. Recommendations include study design and statistical analysis of the data, dietary effects, associative effect of AMFA with other mitigation strategies, appropriate methods for measuring methane emissions, production and physiological responses to AMFA, and their effects on animal health and product quality. Animal experiments should be planned based on clear hypotheses, and experimental designs must be chosen to best answer the scientific questions asked, with pre-experimental power analysis and robust post-experimental statistical analyses being important requisites. Long-term studies for evaluating AMFA are currently lacking and are highly needed. Experimental conditions should be representative of the production system of interest, so results and conclusions are applicable and practical. Methane-mitigating effects of AMFA may be combined with other mitigation strategies to explore additivity and synergism, as well as trade-offs, including relevant manure emissions, and these need to be studied in appropriately designed experiments. Methane emissions can be successfully measured, and efficacy of AMFA determined, using respiration chambers, the sulfur hexafluoride method, and the GreenFeed system. Other techniques, such as hood and face masks, can also be used in short-term studies, ensuring they do not significantly affect feed intake, feeding behavior, and animal production. For the success of an AMFA, it is critically important that representative animal production data are collected, analyzed, and reported. In addition, evaluating the effects of AMFA on nutrient digestibility, animal physiology, animal health and reproduction, product quality, and how AMFA interact with nutrient composition of the diet is necessary and should be conducted at various stages of the evaluation process. The authors emphasize that enteric methane mitigation claims should not be made until the efficacy of AMFA is confirmed in animal studies designed and conducted considering the guidelines provided herein.
Collapse
Affiliation(s)
- Alexander N Hristov
- Department of Animal Science, The Pennsylvania State University, University Park, PA 16802.
| | - André Bannink
- Wageningen Livestock Research, Wageningen University & Research, 6700 AH Wageningen, the Netherlands
| | - Marco Battelli
- Department of Agricultural and Environmental Sciences - Production, Landscape, Agroenergy, University of Milan, 20133 Milan, Italy
| | - Alejandro Belanche
- Departamento de Producción Animal y Ciencia de los Alimentos, Universidad de Zaragoza, 50013 Zaragoza, Spain
| | | | - Gonzalo Fernandez-Turren
- IPAV, Facultad de Veterinaria, Universidad de la Republica, 80100 San José, Uruguay; Instituto Nacional de Investigación Agropecuaria (INIA), Sistema Ganadero Extensivo, Estación Experimental INIA Treinta y Tres, 33000 Treinta y Tres, Uruguay
| | - Florencia Garcia
- Universidad Nacional de Córdoba, Facultad de Ciencias Agropecuarias, 5000 Córdoba, Argentina
| | - Arjan Jonker
- AgResearch Limited, Grasslands Research Centre, Palmerston North 4442, New Zealand
| | - David A Kenny
- Teagasc Animal and Grassland Research and Innovation Centre, Grange, Dunsany, Co. Meath C15PW93, Ireland
| | - Vibeke Lind
- Norwegian Institute of Bioeconomy Research, NIBIO, NO-1431 Aas, Norway
| | - Sarah J Meale
- University of Queensland, Gatton, QLD 4343, Australia
| | - David Meo Zilio
- CREA-Research Center for Animal Production and Aquaculture, 00015 Monterotondo (RM), Italy
| | - Camila Muñoz
- Centro Regional de Investigación Remehue, Instituto de Investigaciones Agropecuarias, 5290000 Osorno, Los Lagos, Chile
| | - David Pacheco
- AgResearch Limited, Grasslands Research Centre, Palmerston North 4442, New Zealand
| | - Nico Peiren
- Flanders Research Institute for Agriculture, Fisheries and Food, 9090 Melle, Belgium
| | - Mohammad Ramin
- Department of Applied Animal Science and Welfare, Swedish University of Agricultural Sciences Umeå 90183, Sweden
| | - Luca Rapetti
- Department of Agricultural and Environmental Sciences - Production, Landscape, Agroenergy, University of Milan, 20133 Milan, Italy
| | | | - Sokratis Stergiadis
- Department of Animal Sciences, School of Agriculture, Policy and Development, University of Reading, Reading, Berkshire RG6 6EU, United Kingdom
| | - Katerina Theodoridou
- Institute for Global Food Security, Queen's University Belfast, Belfast BT9 5DL, United Kingdom
| | - Emilio M Ungerfeld
- Centro Regional de Investigación Carillanca, Instituto de Investigaciones Agropecuarias, 4880000 Vilcún, La Araucanía, Chile
| | - Sanne van Gastelen
- Wageningen Livestock Research, Wageningen University & Research, 6700 AH Wageningen, the Netherlands
| | | | - Sinead M Waters
- School of Biological and Chemical Sciences, University of Galway, H91 TK33 Galway, Ireland
| | - Peter Lund
- Department of Animal and Veterinary Sciences, Aarhus University, AU Viborg - Research Centre Foulum, 8830 Tjele, Denmark.
| |
Collapse
|
7
|
Su T, Fu Y, Tan J, Gagaoua M, Bak KH, Soladoye OP, Zhao Z, Zhao Y, Wu W. Effects of intramuscular fat on the flavor of fresh sheep and goat meat: Recent insights into pre-mortem and post-mortem factors. Food Chem X 2025; 25:102159. [PMID: 39867221 PMCID: PMC11762145 DOI: 10.1016/j.fochx.2025.102159] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2024] [Revised: 12/19/2024] [Accepted: 01/02/2025] [Indexed: 01/28/2025] Open
Abstract
Sheep and goat meat products are becoming increasingly popular among consumers due to their unique flavor derived from intramuscular fat (IMF), which contributes to formation of the distinctive odor. However, there is currently a dearth of reviews on the impact of IMF on the flavor of sheep and goat meat. The present review aims to discuss the relationships between IMF and flavor through lipid composition and fatty acid (FA) distribution, provide an overview of characteristic flavor compounds affecting the flavor of sheep and goat meat, and shed light on the impacts of pre-mortem and post-mortem factors on meat flavor attributed to changes in FAs and flavor compounds. Controlling pre-mortem practices and adjusting post-mortem harvesting methods are key factors in shaping and/or driving the flavor of sheep and goat meat products. This review enhances the comprehensive understanding of the impact of IMF on the flavor of sheep and goat meat.
Collapse
Affiliation(s)
- Tianyu Su
- College of Animal Science and Technology, Southwest University; Chongqing Key Laboratory of Herbivore Science, Chongqing 400715, China
| | - Yu Fu
- College of Food Science, Southwest University, Chongqing 400715, China
| | - Jingjie Tan
- College of Animal Science and Technology, Southwest University; Chongqing Key Laboratory of Herbivore Science, Chongqing 400715, China
| | | | - Kathrine H. Bak
- FFoQSI - Austrian Competence Centre for Feed and Food Quality, Safety and Innovation, FH OÖ Campus Wels, Stelzhamerstraße 23, A-4600 Wels, Austria
| | - Olugbenga P. Soladoye
- Agriculture and Agri-Food Canada, Government of Canada, Lacombe Research and Development Centre, 6000 C&E Trail, Lacombe, Alberta T4L 1W1, Canada
| | - Zhongquan Zhao
- College of Animal Science and Technology, Southwest University; Chongqing Key Laboratory of Herbivore Science, Chongqing 400715, China
| | - Yongju Zhao
- College of Animal Science and Technology, Southwest University; Chongqing Key Laboratory of Herbivore Science, Chongqing 400715, China
| | - Wei Wu
- College of Animal Science and Technology, Southwest University; Chongqing Key Laboratory of Herbivore Science, Chongqing 400715, China
| |
Collapse
|
8
|
Toral PG, Hervás G, Frutos P. Invited review: Research on ruminal biohydrogenation-Achievements, gaps in knowledge, and future approaches from the perspective of dairy science. J Dairy Sci 2024; 107:10115-10140. [PMID: 39154717 DOI: 10.3168/jds.2023-24591] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Accepted: 07/18/2024] [Indexed: 08/20/2024]
Abstract
Scientific knowledge about ruminal biohydrogenation (BH) has improved greatly since this metabolic process was empirically confirmed in 1951. For years, BH had mostly been perceived as a process to be avoided to increase the postruminal flow of UFA from the diet. Two milestones changed this perception and stimulated great interest in BH intermediates themselves: In 1987, the in vitro anticarcinogenic properties of CLA were described, and in 2000, the inhibition of milk fat synthesis by trans-10,cis-12 CLA was confirmed. Since then, numerous BH metabolites have been described in small and large ruminants, and the major deviation from the common BH pathway (i.e., the trans-10 shift) has been reasonably well established. However, there are some less well-characterized alterations, and the comprehensive description of new BH intermediates (e.g., using isotopic tracers) has not been coupled with research on their biological effects. In this regard, the low quality of some published fatty acid profiles may also be limiting the advance of knowledge in BH. Furthermore, although BH seems to no longer be considered a metabolic niche inhabited by a few bacterial species with a highly specific metabolic capability, researchers have failed to elucidate which specific microbial groups are involved in the process and the basis for alterations in BH pathways (i.e., changes in microbial populations or their activity). Unraveling both issues may be beneficial for the description of new microbial enzymes involved in ruminal lipid metabolism that have industrial interest. From the perspective of dairy science, other knowledge gaps that require additional research in the coming years are evaluation of the relationship between BH and feed efficiency and enteric methane emissions, as well as improving our understanding of how alterations in BH are involved in milk fat depression. Addressing these issues will have relevant practical implications in dairy science.
Collapse
Affiliation(s)
- P G Toral
- Instituto de Ganadería de Montaña (CSIC-University of León), Finca Marzanas s/n, 24346 Grulleros, León, Spain.
| | - G Hervás
- Instituto de Ganadería de Montaña (CSIC-University of León), Finca Marzanas s/n, 24346 Grulleros, León, Spain
| | - P Frutos
- Instituto de Ganadería de Montaña (CSIC-University of León), Finca Marzanas s/n, 24346 Grulleros, León, Spain
| |
Collapse
|
9
|
Golbotteh MM, Malecky M, Aliarabi H, Zamani P. Impact of oil type and savory plant on nutrient digestibility and rumen fermentation, milk yield, and milk fatty acid profile in dairy cows. Sci Rep 2024; 14:22427. [PMID: 39341950 PMCID: PMC11438970 DOI: 10.1038/s41598-024-73138-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2023] [Accepted: 09/13/2024] [Indexed: 10/01/2024] Open
Abstract
Fat supplements are well known for their multiple beneficial effects on ruminant health, reproduction and productivity, and as a source for certain bioactive compounds in ruminant products. On the other hand, numerous phytochemicals have demonstrated the potential to improve rumen fermentation through modifying the volatile fatty acid (VFA) pattern to favour those with greater energy efficiency, boosting microbial protein synthesis, and decreasing methane emission and ruminal ammonia concentration. Savory is an aromatic plant rich in various phytochemicals (mainly carvacrol and flavonoids) that can alter ruminal metabolism of dietary fatty acids, potentially increasing the production of some bioactive compounds such as conjugated linoleic acids (CLAs). This study aimed to investigate combined effects of oil type (fish oil (FO) versus soybean oil (SO)) and the inclusion of savory (Satureja khuzistanica) plant (SP) in the diet on total tract digestibility of nutrients, rumen fermentation, milk yield and milk fatty acid profile in dairy cattle. Eight multiparous lactating Holstein cows were used in a replicated 4 × 4 Latin square design experiment with four diets and four 21-d periods. During each experimental period consisted of 14 days of adaptation and a 7-day sampling period, cows were randomly assigned to one of the four dietary treatments: the diet supplemented with 2% (DM basis) fish oil (FOD) or soybean oil (SOD), the FOD or SOD plus 370 g DM/d/head SP (FODs, SODs, respectively). The experimental diets were arranged in a 2 × 2 factorial design, with the fat sources as the first and SP as the second factor. The FO-supplemented diets had lower dry matter intake (DMI) and higher total tract digestibility than SO-supplemented diets (P < 0.05), and including SP in the diet improved total tract digestibility of dry matter (DM), organic matter (OM), ether extract (EE), and non-fibrous carbohydrates (NFC) (P < 0.05) without negatively affecting DMI. Rumen pH was lower with SO than with FO diets (P < 0.01) and increased with SP inclusion in the diet (P < 0.05). Total protozoa count and ruminal ammonia concentration decreased, and the branched-chain VFA (BCVFA) proportion increased with SP inclusion in the diet (P < 0.05). Milk production, as well as the concentration and yield of milk components (except lactose concentration) were higher with SO than with FO diets (P < 0.05), but these variables remained unaffected by SP. The milk concentrations of both non-esterified fatty acids (NEFA) and beta-hydroxybutyrate (BHB) were lower with SO compared to FO diets, and these variables were reduced by SP (P < 0.01). The proportions of both mono- and polyunsaturated FA (MUFA and PUFA, respectively) in milk were higher with FO than with SO diets (P < 0.01), and their proportions increased by SP at the expense of saturated FA (SFA) (P < 0.01). Including SP in the diet increased the proportions of all the milk n-3 FA (C18:3c, C20:5, and C22:6) by 21%, 40%, and 97%, respectively, and those of conjugated linoleic acids (C18:2 (c9,t11-CLA) and C18:2 (t10,c12-CLA)) by 23% and 62%, respectively. There was no interaction between oil type and SP for the assessed variables. Fish oil, despite reducing milk production and milk components, was more effective than soybean oil in enriching milk with healthy FA. These findings also show promise for SP as a feed additive with the potential to improve total tract digestibility, rumen fermentation and milk FA composition.
Collapse
Affiliation(s)
- M Mehdipour Golbotteh
- Department of Animal Science, Faculty of Agriculture, Bu-Ali Sina University, Hamedan, Iran
| | - M Malecky
- Department of Animal Science, Faculty of Agriculture, Bu-Ali Sina University, Hamedan, Iran.
| | - H Aliarabi
- Department of Animal Science, Faculty of Agriculture, Bu-Ali Sina University, Hamedan, Iran
| | - P Zamani
- Department of Animal Science, Faculty of Agriculture, Bu-Ali Sina University, Hamedan, Iran
| |
Collapse
|
10
|
Cremonesi P, Biscarini F, Conte G, Piccioli-Cappelli F, Morandi S, Silvetti T, Tringali S, Trevisi E, Castiglioni B, Brasca M. Aloe arborescens supplementation in drying-off dairy cows: influence on rumen, rectum and milk microbiomes. Anim Microbiome 2024; 6:49. [PMID: 39217403 PMCID: PMC11366166 DOI: 10.1186/s42523-024-00336-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2024] [Accepted: 08/24/2024] [Indexed: 09/04/2024] Open
Abstract
BACKGROUND In the context of the RABOLA project, which aimed to identify operational practices that lead to the reduction of antibiotic use in dairy cattle farming, lyophilised Aloe arborescens was administered orally to cows during the dry-off and peripartum periods. In this specific paper we wanted to examine whether oral administration of Aloe arborescens, in combination with the topical application of a teat sealant could exert an effect on the microbial populations of three cow microbiomes (rumen, milk, rectum), between dry-off and peripartum. Dry-off and peripartum are critical physiological phases of the cow's life, where both the mammary gland and the gastrointestinal tract undergo dramatic modifications, hence the relevance of evaluating the effects of dietary treatments. METHODS Thirty multiparous dairy cows were randomly allocated to three groups: Control (antibiotic treatment and internal teat sealant), Sealant (only internal teat sealant) and Aloe (internal teat sealant and Aloe arborescens homogenate administered orally). For 16S rRNA gene sequencing, rumen, rectum and milk samples were collected, not synchronously, at the most critical timepoints around dry-off and calving, considering the physiological activity of each biological site. RESULTS The rumen microbiome was predominantly characterized by Bacteroidetes and Firmicutes followed by Proteobacteria, while the rectum exhibited a prevalence of Firmicutes and Bacteroidetes. The milk microbiome mainly comprised Firmicutes, Proteobacteria, Actinobacteria and Bacteroidetes. Alistipes spp., Ruminococcaceae UCG-10 group, Prevotellaceae UCG-001 group, and Bacteroides spp., involved in cellulose and hemicellulose degradation, enhancement of energy metabolism, and peptide breakdown, showed increment in the rectum microbiome with Aloe supplementation. The rectum microbiome in the Aloe group exhibited a significant increase in the Firmicutes to Bacteroidetes ratio and alpha-diversity at seven days after dry-off period. Beta-diversity showed a significant separation between treatments for the rectum and milk microbiomes. Aloe supplementation seemed to enrich milk microbial composition, whereas the Sealant group showed greater diversity compared to the Control group, albeit this included an increase in microorganisms frequently associated with mastitis. CONCLUSIONS Aloe arborescens administration during the dry-off period did not demonstrate any observable impact on the microbial composition of the rumen, a finding further supported by volatilome analysis. Instead, the oral Aloe supplementation at dry-off appears to significantly influence the composition of the dairy cow rectum and milk microbiomes in the following lactation.
Collapse
Affiliation(s)
- Paola Cremonesi
- Institute of Agricultural Biology and Biotechnology, Italian National Research Council, Lodi, Italy
| | - Filippo Biscarini
- Institute of Agricultural Biology and Biotechnology, Italian National Research Council, Lodi, Italy
| | - Giuseppe Conte
- Dipartimento di Scienze Agrarie, Alimentari e Agro-ambientali, University of Pisa, Pisa, Italy
| | - Fiorenzo Piccioli-Cappelli
- Department of Animal Science, Food and Nutrition (DIANA), Faculty of Agricultural, Food and Environmental Sciences, Università Cattolica del Sacro Cuore, Piacenza, Italy
| | - Stefano Morandi
- Institute of Sciences of Food Production, Italian National Research Council of Italy, Milano, Italy
| | - Tiziana Silvetti
- Institute of Sciences of Food Production, Italian National Research Council of Italy, Milano, Italy
| | - Simona Tringali
- Institute of Sciences of Food Production, Italian National Research Council of Italy, Milano, Italy
| | - Erminio Trevisi
- Department of Animal Science, Food and Nutrition (DIANA), Faculty of Agricultural, Food and Environmental Sciences, Università Cattolica del Sacro Cuore, Piacenza, Italy
| | - Bianca Castiglioni
- Institute of Agricultural Biology and Biotechnology, Italian National Research Council, Lodi, Italy.
| | - Milena Brasca
- Institute of Sciences of Food Production, Italian National Research Council of Italy, Milano, Italy
| |
Collapse
|
11
|
Ayala L, Gómez-Cortés P, Hernández F, Madrid J, Martínez-Miró S, de la Fuente MA. Comparison of the Fatty Acid Profiles of Sow and Goat Colostrum. Vet Sci 2024; 11:341. [PMID: 39195795 PMCID: PMC11359291 DOI: 10.3390/vetsci11080341] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2024] [Revised: 07/12/2024] [Accepted: 07/16/2024] [Indexed: 08/29/2024] Open
Abstract
Currently, the utilization of hyperprolific sows has stimulated the search for supplements aimed at enhancing piglet survival, as these sows yield more offspring than they can adequately feed with their colostrum production. In contrast, intensive goat farming often yields surplus colostrum, thus necessitating its removal, since kids are exclusively fed colostrum through lactation solely within the initial day of birth. The objective of this study was to examine and compare the fatty acid (FA) profiles of colostrum from sows and goats, together with possible influencing factors such as sow parity and the postpartum day of the goat, for possible use as an energy supplement for neonatal piglets. Swine colostrum was collected from sows with a 0-5 parity. In addition, samples of goat colostrum were collected on their first (D1) and second (D2) days of postpartum milking. The FA profiles of the colostrum were analyzed via gas chromatography. The parity value of the sows did not affect (p > 0.05) the FA colostrum composition. High proportions of palmitic, oleic, and linoleic acids were found in both types of colostrum. Levels of palmitic, oleic, and linoleic acids were significantly higher in D1 goat colostrum, whereas saturated FAs of less than 14 carbons (4:0, 6:0, 8:0, 10:0, and 12:0) were found in higher proportions in D2. These FAs play an important role in colostrum as they are a readily available source of energy and have also been attributed strong antibacterial activity. Therefore, goat colostrum, especially D2, could be used as an alternative energy supplement for newborn piglets, in particular for the weakest and smallest of the litter, which are the most in need.
Collapse
Affiliation(s)
- Lucía Ayala
- Department of Animal Production, Faculty of Veterinary, International Excellence Campus for Higher Education and Research “Campus Mare Nostrum”, University of Murcia, 30100 Murcia, Spain; (L.A.); (F.H.); (J.M.); (S.M.-M.)
| | - Pilar Gómez-Cortés
- Department of Bioactivity and Food Analysis, Institute of Food Science Research (CIAL, CSIC-UAM, CEI UAM+CSIC), 28049 Madrid, Spain;
| | - Fuensanta Hernández
- Department of Animal Production, Faculty of Veterinary, International Excellence Campus for Higher Education and Research “Campus Mare Nostrum”, University of Murcia, 30100 Murcia, Spain; (L.A.); (F.H.); (J.M.); (S.M.-M.)
| | - Josefa Madrid
- Department of Animal Production, Faculty of Veterinary, International Excellence Campus for Higher Education and Research “Campus Mare Nostrum”, University of Murcia, 30100 Murcia, Spain; (L.A.); (F.H.); (J.M.); (S.M.-M.)
| | - Silvia Martínez-Miró
- Department of Animal Production, Faculty of Veterinary, International Excellence Campus for Higher Education and Research “Campus Mare Nostrum”, University of Murcia, 30100 Murcia, Spain; (L.A.); (F.H.); (J.M.); (S.M.-M.)
| | - Miguel Angel de la Fuente
- Department of Bioactivity and Food Analysis, Institute of Food Science Research (CIAL, CSIC-UAM, CEI UAM+CSIC), 28049 Madrid, Spain;
| |
Collapse
|
12
|
Otto JR, Mwangi FW, Pewan SB, Adegboye OA, Malau-Aduli AEO. Muscle biopsy long-chain omega-3 polyunsaturated fatty acid compositions, IMF and FMP in Australian pasture-based Bowen Genetics Forest Pastoral Angus, Hereford, and Wagyu Beef Cattle. BMC Vet Res 2024; 20:95. [PMID: 38461255 PMCID: PMC10924329 DOI: 10.1186/s12917-024-03906-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2023] [Accepted: 02/02/2024] [Indexed: 03/11/2024] Open
Abstract
BACKGROUND We investigated breed and gender variations in the compositions of long-chain (≥ C20) omega-3 polyunsaturated fatty acids (LC omega-3 PUFA), fat melting point (FMP) and intramuscular fat (IMF) contents in biopsy samples of the M. longissimus dorsi muscle of grazing beef cattle. The hypothesis that biopsy compositions of health-beneficial LC omega-3 PUFA, FMP and IMF in a pasture-based production system will vary with breed, was tested. Muscle biopsies were taken from 127 yearling pasture-based Angus, Hereford, and Wagyu heifers and young bulls exclusive to the Australian Bowen Genetics Forest Pastoral breeding stud averaging 12 ± 2.43 months of age and under the same management routine. RESULTS Breed had a significant influence on IMF, FMP, and the compositions of oleic acid, α-linolenic acid (ALA), eicosapentaenoic (EPA), docosahexaenoic (DHA), docosapentaenoic (DPA), and total EPA + DHA + DPA in the M. longissimus dorsi muscle biopsies (P ≤ 0.03). The Wagyu breed had the highest (11.1%) and Hereford the lowest (5.9%) IMF (P = 0.03). The reverse trend was observed in FMP values where the Hereford breed had the highest (55 °C), Angus intermediate (46.5 °C), and Wagyu the lowest (33 °C) FMP. The Wagyu and Angus breeds had similar oleic fatty acid (18:1n-9) content, while the Hereford breed had the lowest (P < 0.01). The highest ALA, DPA, total EPA + DHA, total EPA + DHA + DPA and total ALA + EPA + DHA + DPA contents were detected in the Wagyu breed (P ≤ 0.03). The Hereford had similar EPA and DPA contents to the Angus (P ≥ 0.46). Total EPA + DHA + DPA contents in Wagyu, Angus, and Hereford were 28.8, 21.5, and 22.1 mg/100g tissue (P = 0.01), respectively. Sex was an important source of variation that influenced LC omega-3 PUFA composition, FMP and IMF, where yearling heifers had higher IMF (11.9% vs 5.3%), lower FMP (33°C vs 37°C), and higher LC omega-3 PUFA than bulls. CONCLUSION All the results taken together indicate that the Wagyu breed at 28.8 mg/100g tissue, was the closest to meeting the Australia and New Zealand recommended source level threshold of 30 mg/100g tissue of health-beneficial ≥ C20 omega-3 FA content. Since gender was a significant determinant of LC omega-3 PUFA composition, IMF content and FMP, it should be factored into enhancement strategies of healthy meat eating quality traits in grazing cattle. These findings also suggest that the Bowen Genetics Forest Pastoral beef cattle studs are important sources of LC omega-3 PUFA that can be used to cover the deficit in these health claimable fatty acids in Western diets.
Collapse
Affiliation(s)
- John Roger Otto
- School of Environmental and Life Sciences, College of Engineering, Science and Environment, The University of Newcastle, Callaghan, NSW, 2308, Australia.
| | - Felista Waithira Mwangi
- School of Environmental and Life Sciences, College of Engineering, Science and Environment, The University of Newcastle, Callaghan, NSW, 2308, Australia
- School of Medicine and Public Health, College of Health, Medicine and Wellbeing, The University of Newcastle, Callaghan, NSW, 2308, Australia
| | - Shedrach Benjamin Pewan
- School of Environmental and Life Sciences, College of Engineering, Science and Environment, The University of Newcastle, Callaghan, NSW, 2308, Australia
- National Veterinary Research Institute, Private Mail Bag 01 Vom, Jos, Plateau State, Nigeria
| | | | - Aduli Enoch Othniel Malau-Aduli
- School of Environmental and Life Sciences, College of Engineering, Science and Environment, The University of Newcastle, Callaghan, NSW, 2308, Australia
| |
Collapse
|
13
|
Pang K, Wang J, Chai S, Yang Y, Wang X, Liu S, Ding C, Wang S. Ruminal microbiota and muscle metabolome characteristics of Tibetan plateau yaks fed different dietary protein levels. Front Microbiol 2024; 15:1275865. [PMID: 38419639 PMCID: PMC10899706 DOI: 10.3389/fmicb.2024.1275865] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2023] [Accepted: 01/15/2024] [Indexed: 03/02/2024] Open
Abstract
Introduction The dietary protein level plays a crucial role in maintaining the equilibrium of rumen microbiota in yaks. To explore the association between dietary protein levels, rumen microbiota, and muscle metabolites, we examined the rumen microbiome and muscle metabolome characteristics in yaks subjected to varying dietary protein levels. Methods In this study, 36 yaks were randomly assigned to three groups (n = 12 per group): low dietary protein group (LP, 12% protein concentration), medium dietary protein group (MP, 14% protein concentration), and high dietary protein group (HP, 16% protein concentration). Results 16S rDNA sequencing revealed that the HP group exhibited the highest Chao1 and Observed_species indices, while the LP group demonstrated the lowest. Shannon and Simpson indices were significantly elevated in the MP group relative to the LP group (P < 0.05). At the genus level, the relative abundance of Christensenellaceae_R-7_group in the HP group was notably greater than that in the LP and MP groups (P < 0.05). Conversely, the relative abundance of Rikenellaceae_RC9_gut_group displayed an increasing tendency with escalating feed protein levels. Muscle metabolism analysis revealed that the content of the metabolite Uric acid was significantly higher in the LP group compared to the MP group (P < 0.05). The content of the metabolite L-(+)-Arabinose was significantly increased in the MP group compared to the HP group (P < 0.05), while the content of D-(-)-Glutamine and L-arginine was significantly reduced in the LP group (P < 0.05). The levels of metabolites 13-HPODE, Decanoylcarnitine, Lauric acid, L-(+)-Arabinose, and Uric acid were significantly elevated in the LP group relative to the HP group (P < 0.05). Furthermore, our observations disclosed correlations between rumen microbes and muscle metabolites. The relative abundance of NK4A214_group was negatively correlated with Orlistat concentration; the relative abundance of Christensenellaceae_R-7_group was positively correlated with D-(-)-Glutamine and L-arginine concentrations. Discussion Our findings offer a foundation for comprehending the rumen microbiome of yaks subjected to different dietary protein levels and the intimately associated metabolic pathways of the yak muscle metabolome. Elucidating the rumen microbiome and muscle metabolome of yaks may facilitate the determination of dietary protein levels.
Collapse
Affiliation(s)
- Kaiyue Pang
- Qinghai Academy of Animal Husbandry and Veterinary Sciences in Qinghai University, Xining, Qinghai, China
- Key Laboratory of Plateau Grazing Animal Nutrition and Feed Science of Qinghai Province, Xining, Qinghai, China
- Yak Engineering Technology Research Center of Qinghai Province, Xining, Qinghai, China
| | - Jianmei Wang
- College of Veterinary Medicine, China Agricultural University, Beijing, China
| | - Shatuo Chai
- Qinghai Academy of Animal Husbandry and Veterinary Sciences in Qinghai University, Xining, Qinghai, China
- Key Laboratory of Plateau Grazing Animal Nutrition and Feed Science of Qinghai Province, Xining, Qinghai, China
- Yak Engineering Technology Research Center of Qinghai Province, Xining, Qinghai, China
| | - Yingkui Yang
- Qinghai Academy of Animal Husbandry and Veterinary Sciences in Qinghai University, Xining, Qinghai, China
- Key Laboratory of Plateau Grazing Animal Nutrition and Feed Science of Qinghai Province, Xining, Qinghai, China
- Yak Engineering Technology Research Center of Qinghai Province, Xining, Qinghai, China
| | - Xun Wang
- Qinghai Academy of Animal Husbandry and Veterinary Sciences in Qinghai University, Xining, Qinghai, China
- Key Laboratory of Plateau Grazing Animal Nutrition and Feed Science of Qinghai Province, Xining, Qinghai, China
- Yak Engineering Technology Research Center of Qinghai Province, Xining, Qinghai, China
| | - Shujie Liu
- Qinghai Academy of Animal Husbandry and Veterinary Sciences in Qinghai University, Xining, Qinghai, China
- Key Laboratory of Plateau Grazing Animal Nutrition and Feed Science of Qinghai Province, Xining, Qinghai, China
- Yak Engineering Technology Research Center of Qinghai Province, Xining, Qinghai, China
| | - Cheng Ding
- Department of Agriculture and Rural Affairs, Zachen County, Shannan, Tibet Autonomous Region, Xizang, China
| | - ShuXiang Wang
- Qinghai Academy of Animal Husbandry and Veterinary Sciences in Qinghai University, Xining, Qinghai, China
- Key Laboratory of Plateau Grazing Animal Nutrition and Feed Science of Qinghai Province, Xining, Qinghai, China
- Yak Engineering Technology Research Center of Qinghai Province, Xining, Qinghai, China
| |
Collapse
|
14
|
Lepionka T, Białek M, Czauderna M, Wojtak W, Maculewicz E, Białek A. Exploring the Influence of the Selected Conjugated Fatty Acids Isomers and Cancerous Process on the Fatty Acids Profile of Spleen. Cancers (Basel) 2024; 16:479. [PMID: 38339233 PMCID: PMC10854539 DOI: 10.3390/cancers16030479] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Revised: 01/14/2024] [Accepted: 01/20/2024] [Indexed: 02/12/2024] Open
Abstract
The spleen, traditionally associated with blood filtration and immune surveillance, has recently been recognized for its role in systemic lipid metabolism and potential influence on cancer development and progression. This study investigates effects of dietary supplements, specifically conjugated linolenic acids from pomegranate seed oil and bitter melon extract, on the fatty acid (FA) composition of the spleen in the context of cancerous processes. Advanced methods, including gas chromatography-mass spectrometry and silver ion-impregnated high-performance liquid chromatography, were employed to analyze the spleen's FA profile. Our research uncovered that dietary supplementation leads to alterations in the spleen's FA profile, especially under the carcinogenic influence of 7,12-dimethylbenz[a]anthracene. These changes did not align with a simple protective or anti-carcinogenic pattern, as previously suggested in in vitro studies. We observed shifts in conjugated FA isomer concentrations and variations in desaturase activities, suggesting disrupted lipid metabolism in cancerous conditions. The findings underscore the spleen's vital role in lipid metabolism within the body's systemic health framework, highlighting the complexity of dietary supplements' impact on FA profiles in the spleen and their potential implications in cancer progression and treatment. This study adds valuable insight into the complex interplay between diet, disease, and metabolic regulation, particularly in cancerous environments.
Collapse
Affiliation(s)
- Tomasz Lepionka
- The Biological Threats Identification and Countermeasure Center of the General Karol Kaczkowski Military Institute of Hygiene and Epidemiology, Lubelska 4 St, 24-100 Puławy, Poland;
| | - Małgorzata Białek
- The Kielanowski Institute of Animal Physiology and Nutrition, Polish Academy of Sciences, Instytucka 3, 05-110 Jabłonna, Poland; (M.B.); (M.C.); (W.W.)
| | - Marian Czauderna
- The Kielanowski Institute of Animal Physiology and Nutrition, Polish Academy of Sciences, Instytucka 3, 05-110 Jabłonna, Poland; (M.B.); (M.C.); (W.W.)
| | - Wiktoria Wojtak
- The Kielanowski Institute of Animal Physiology and Nutrition, Polish Academy of Sciences, Instytucka 3, 05-110 Jabłonna, Poland; (M.B.); (M.C.); (W.W.)
| | - Ewelina Maculewicz
- Faculty of Physical Education, Jozef Pilsudski University of Physical Education in Warsaw, Marymoncka 34, 00-968 Warsaw, Poland;
| | - Agnieszka Białek
- The Kielanowski Institute of Animal Physiology and Nutrition, Polish Academy of Sciences, Instytucka 3, 05-110 Jabłonna, Poland; (M.B.); (M.C.); (W.W.)
- School of Health and Medical Sciences, University of Economics and Human Sciences in Warsaw, Okopowa 59, 01-043 Warsaw, Poland
| |
Collapse
|
15
|
Wang Z, Guo L, Ding X, Li F, Xu H, Li S, Wang X, Li K, Yue X. Supplementation of chestnut tannins in diets can improve meat quality and antioxidative capability in Hu lambs. Meat Sci 2023; 206:109342. [PMID: 37729859 DOI: 10.1016/j.meatsci.2023.109342] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2023] [Revised: 08/25/2023] [Accepted: 09/08/2023] [Indexed: 09/22/2023]
Abstract
Chestnut tannins (CNT), as a source of hydrolyzable tannins, positively affect the antioxidant status of livestock. In the current study, 90 male Hu lambs were used to investigate the effect of dietary CNT intake on growth performance, nutrient digestibility, meat quality and oxidative stability, rumen microbial, and the transcriptomes of muscle and liver. A completely randomized design with three CNT intake levels (0, 0.3%, and 0.6%) was used. Rumen microbial and nutrient digestibility were not significantly altered by CNT intake. Diets with 0.3% CNT intake significantly reduced the shear force, yellowness at 24 h, and C20:2 polyunsaturated fatty acids of lamb meat and malondialdehyde in serum and longissimus thoracis (LT) muscle. Meanwhile, the 0.3% CNT diet significantly increased average daily gain during the 1- 21 days and 64- 90 days, dry matter intake during the 1- 21 days, the slaughter weight, and liver index of lambs. The 0.3% CNT diet significantly increased C26:0 saturated fatty acids, total antioxidant capacity, glutathione peroxidase, superoxide dismutase, and catalase in LT muscle. The meat shelf life of 0.3% CNT and 0.6% CNT groups was prolonged by 8.7 h and 5.4 h, respectively. Transcriptomic analysis revealed that CNT supplementation can induce the expression of antioxidant enzyme gene (CAT, SOD1), and the differentially expressed genes were mainly involved in antioxidant activity, transferase activity, and adenosine triphosphate binding. These results suggest that 0.3% CNT intake can relieve the oxidative stress of lambs, and improve the stability of meat color and meat tenderness, due to the enhanced antioxidative capacity.
Collapse
Affiliation(s)
- Zhongyu Wang
- State Key Laboratory of Herbage Improvement and Grassland Agro-Ecosystems, Key Laboratory of Grassland Livestock Industry Innovation, Ministry of Agriculture and Rural Affairs, Engineering Research Center of Grassland Industry, Ministry of Education, College of Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou 730020, PR China.
| | - Long Guo
- State Key Laboratory of Herbage Improvement and Grassland Agro-Ecosystems, Key Laboratory of Grassland Livestock Industry Innovation, Ministry of Agriculture and Rural Affairs, Engineering Research Center of Grassland Industry, Ministry of Education, College of Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou 730020, PR China.
| | - Xing Ding
- State Key Laboratory of Herbage Improvement and Grassland Agro-Ecosystems, Key Laboratory of Grassland Livestock Industry Innovation, Ministry of Agriculture and Rural Affairs, Engineering Research Center of Grassland Industry, Ministry of Education, College of Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou 730020, PR China.
| | - Fadi Li
- State Key Laboratory of Herbage Improvement and Grassland Agro-Ecosystems, Key Laboratory of Grassland Livestock Industry Innovation, Ministry of Agriculture and Rural Affairs, Engineering Research Center of Grassland Industry, Ministry of Education, College of Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou 730020, PR China.
| | - Hui Xu
- Minqin Defu Agricultural Science and Technology Co., LTD, Minqin County, Gansu Province 733399, PR China.
| | - Shirong Li
- Animal Husbandry and Veterinary Extension Station of Minqin County, Minqin County, Gansu Province 733399, PR China.
| | - Xinji Wang
- Animal Husbandry and Veterinary Extension Station of Minqin County, Minqin County, Gansu Province 733399, PR China.
| | - Kaidong Li
- Animal Husbandry and Veterinary Extension Station in Chongxing Town of Minqin County, Minqin County, Gansu Province 733399, PR China.
| | - Xiangpeng Yue
- State Key Laboratory of Herbage Improvement and Grassland Agro-Ecosystems, Key Laboratory of Grassland Livestock Industry Innovation, Ministry of Agriculture and Rural Affairs, Engineering Research Center of Grassland Industry, Ministry of Education, College of Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou 730020, PR China.
| |
Collapse
|
16
|
Fabjanowska J, Kowalczuk-Vasilev E, Klebaniuk R, Milewski S, Gümüş H. N-3 Polyunsaturated Fatty Acids as a Nutritional Support of the Reproductive and Immune System of Cattle-A Review. Animals (Basel) 2023; 13:3589. [PMID: 38003206 PMCID: PMC10668692 DOI: 10.3390/ani13223589] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2023] [Revised: 11/09/2023] [Accepted: 11/15/2023] [Indexed: 11/26/2023] Open
Abstract
This paper focuses on the role of n-3 fatty acids as a nutrient crucial to the proper functioning of reproductive and immune systems in cattle. Emphasis was placed on the connection between maternal and offspring immunity. The summarized results confirm the importance and beneficial effect of n-3 family fatty acids on ruminant organisms. Meanwhile, dietary n-3 fatty acids supplementation, especially during the critical first week for dairy cows experiencing their peripartum period, in general, is expected to enhance reproductive performance, and the impact of its supplementation appears to be dependent on body condition scores of cows during the drying period, the severity of the negative energy balance, and the amount of fat in the basic feed ration. An unbalanced, insufficient, or excessive fatty acid supplementation of cows' diets in the early stages of pregnancy (during fetus development) may affect both the metabolic and nutritional programming of the offspring. The presence of the polyunsaturated fatty acids of the n-3 family in the calves' ration affects not only the performance of calves but also the immune response, antioxidant status, and overall metabolism of the future adult cow.
Collapse
Affiliation(s)
- Julia Fabjanowska
- Institute of Animal Nutrition and Bromatology, University of Life Sciences in Lublin, 20-950 Lublin, Poland; (J.F.); (R.K.); (S.M.)
| | - Edyta Kowalczuk-Vasilev
- Institute of Animal Nutrition and Bromatology, University of Life Sciences in Lublin, 20-950 Lublin, Poland; (J.F.); (R.K.); (S.M.)
| | - Renata Klebaniuk
- Institute of Animal Nutrition and Bromatology, University of Life Sciences in Lublin, 20-950 Lublin, Poland; (J.F.); (R.K.); (S.M.)
| | - Szymon Milewski
- Institute of Animal Nutrition and Bromatology, University of Life Sciences in Lublin, 20-950 Lublin, Poland; (J.F.); (R.K.); (S.M.)
| | - Hıdır Gümüş
- Department of Animal Nutrition and Nutritional Diseases, Faculty of Veterinary Medicine, University of Burdur Mehmet Akif Ersoy, 15030 Burdur, Türkiye;
| |
Collapse
|
17
|
Denis P, Schmidely P, Nozière P, Gervais R, Fievez V, Gerard C, Ferlay A. Predicted essential fatty acid intakes for a group of dairy cows also apply at individual animal level. Animal 2023; 17:101005. [PMID: 37897870 DOI: 10.1016/j.animal.2023.101005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2023] [Revised: 09/21/2023] [Accepted: 09/28/2023] [Indexed: 10/30/2023] Open
Abstract
The ruminant requirements for essential fatty acids (EFAs), particularly linoleic acid (LA) and alpha-linolenic acid (ALA), have not been fully determined, although evidence suggests that an adequate supply of polyunsaturated fatty acids (FAs) could improve immunity and reproduction in transition cows. In previous studies, we predicted EFA intake for a group of cows based on animal characteristics and milk EFA secretions. However, to support precision livestock feeding, we need to match the nutrient requirements and intakes of each cow as closely as possible. Our group-level predictions may not be accurate enough to estimate the EFA intake of an individual cow, due to inter-individual variations in EFA digestion and metabolism related to differences in feed intake, intake patterns, and the composition and functioning of the rumen microbiota. To address this issue, here we set out to establish specific equations that predict EFA intake for an individual cow based on the difference (i.e. the residuals) between observed EFA intake and the predicted EFA intake based on our group-level equations. We studied a database of individual dairy cows (26 experiments; 503 datapoints from three research teams) and we predicted the residuals from (1) dietary and animal-related factors (i.e. full predictions) and (2) animal-related factors only (i.e. field predictions), which are considered more field-amenable. The variance of predicted LA and log ALA intake was explained to 68% by observed LA intake and 66% by observed log ALA intake, respectively. The residuals of LA intake were predicted by dietary ALA content, total FA intake, BW, milk yield and fat content in full predictions, and by BW, feeding level, milk yield and fat content, and sum of milk C4:0 to C14:0 FA in field predictions. The log residuals of ALA intake were predicted by dietary NDF and total FA contents, NDF intake, BW, milk protein, LA and ALA contents, and fat yield in full predictions, and by BW, DM intake, milk LA and ALA contents, and fat yield in field predictions. The field predictions showed a moderate loss of accuracy compared to full predictions based on RMSE of prediction (from 38 to 54 g/d for LA and from 0.090 to 0.12 log (g/d) for ALA). This work is the first to predict the EFA intake of an individual cow based on previously established group-level predictions of EFA intake adjusted for dietary and animal-related factors.
Collapse
Affiliation(s)
- P Denis
- Université Clermont Auvergne, INRAE, VetAgro Sup, UMR Herbivores, 63122 Saint-Genès-Champanelle, France
| | - P Schmidely
- Université Paris-Saclay, INRAE, AgroParisTech, UMR Modélisation Systémique Appliquée aux Ruminants, 75005 Paris, France
| | - P Nozière
- Université Clermont Auvergne, INRAE, VetAgro Sup, UMR Herbivores, 63122 Saint-Genès-Champanelle, France
| | - R Gervais
- Département des Sciences Animales, Université Laval, 2425 rue de l'Agriculture, Québec G1V 0A6, Canada
| | - V Fievez
- Faculty of Bioscience Engineering, Laboratory for Animal Nutrition and Animal Product Quality, Ghent University, Ghent, Belgium
| | | | - A Ferlay
- Université Clermont Auvergne, INRAE, VetAgro Sup, UMR Herbivores, 63122 Saint-Genès-Champanelle, France.
| |
Collapse
|
18
|
Zhang D, Yuan C, Guo T, Liu J, Lu Z. Effects of Different Dietary Energy Levels on Development, Quality of Carcass and Meat, and Fatty Acid Profile in Male Lambs. Animals (Basel) 2023; 13:2870. [PMID: 37760270 PMCID: PMC10525359 DOI: 10.3390/ani13182870] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2023] [Revised: 07/25/2023] [Accepted: 08/25/2023] [Indexed: 09/29/2023] Open
Abstract
This experiment was conducted to study the effects of dietary energy level on the growth performance and meat quality of weaned Alpine Merino lambs. The study ran for a total of 104 days (20-day pretrial, 84-day trial). From three groups of test lambs, we randomly selected ten lambs per group to determine slaughter performance, meat quality characteristics, and organ indexes. The slaughter performances of the lambs improved as the dietary energy level increased. The live weight before the slaughter of the lambs was significantly higher in the high group than in the low and medium groups. The carcass weight was significantly higher in the high group than in the low group. Dietary energy level had little effect on the organ weight of lambs. Meat quality differed among the three dietary energy levels. The muscle yellowness and redness scores decreased significantly as the energy levels increased. The C18:0, C21:0, C20:1, C18:2n6c, and C20:2 contents in the muscle were significantly higher in the high group than in the medium and low groups. The C18:3n6 content in the muscle was significantly higher in the low group than in the medium group. The C20:5n3 content in the longissimus dorsi was significantly higher in the high group than in the medium and low groups. The monounsaturated and unsaturated fatty acid contents in the muscle were significantly higher in the high group than in the low group. A dietary energy level of 10.5 MJ/kg is suitable for fattening weaned male Alpine Merino lambs.
Collapse
Affiliation(s)
- Dan Zhang
- Key Laboratory of Animal Genetics and Breeding on the Tibetan Plateau, Ministry of Agriculture and Rural Affairs, Lanzhou Institute of Husbandry and Pharmaceutical Sciences, Chinese Academy of Agricultural Sciences, Lanzhou 730050, China
- Sheep Breeding Engineering Technology Research Center of Chinese Academy of Agricultural Sciences, Lanzhou 730050, China
| | - Chao Yuan
- Key Laboratory of Animal Genetics and Breeding on the Tibetan Plateau, Ministry of Agriculture and Rural Affairs, Lanzhou Institute of Husbandry and Pharmaceutical Sciences, Chinese Academy of Agricultural Sciences, Lanzhou 730050, China
- Sheep Breeding Engineering Technology Research Center of Chinese Academy of Agricultural Sciences, Lanzhou 730050, China
| | - Tingting Guo
- Key Laboratory of Animal Genetics and Breeding on the Tibetan Plateau, Ministry of Agriculture and Rural Affairs, Lanzhou Institute of Husbandry and Pharmaceutical Sciences, Chinese Academy of Agricultural Sciences, Lanzhou 730050, China
- Sheep Breeding Engineering Technology Research Center of Chinese Academy of Agricultural Sciences, Lanzhou 730050, China
| | - Jianbin Liu
- Key Laboratory of Animal Genetics and Breeding on the Tibetan Plateau, Ministry of Agriculture and Rural Affairs, Lanzhou Institute of Husbandry and Pharmaceutical Sciences, Chinese Academy of Agricultural Sciences, Lanzhou 730050, China
- Sheep Breeding Engineering Technology Research Center of Chinese Academy of Agricultural Sciences, Lanzhou 730050, China
| | - Zengkui Lu
- Key Laboratory of Animal Genetics and Breeding on the Tibetan Plateau, Ministry of Agriculture and Rural Affairs, Lanzhou Institute of Husbandry and Pharmaceutical Sciences, Chinese Academy of Agricultural Sciences, Lanzhou 730050, China
- Sheep Breeding Engineering Technology Research Center of Chinese Academy of Agricultural Sciences, Lanzhou 730050, China
| |
Collapse
|
19
|
Matar AM, Aljummah RS. Postpartum Body Condition Score (BCS) and Lactation Stage (30 and 60 Days) Affecting Essential Fatty Acids (EFA) and Milk Quality of Najdi Sheep. Vet Sci 2023; 10:552. [PMID: 37756073 PMCID: PMC10535975 DOI: 10.3390/vetsci10090552] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Revised: 08/16/2023] [Accepted: 08/29/2023] [Indexed: 09/28/2023] Open
Abstract
Body condition scoring (BCS) can be used to assess the energy reserves of sheep during feeding, production, and weaning. The aim of this study was to evaluate the influence of BCS after parturition in stages of lactation (30 and 60 days) on the milk quality of Najdi ewes. The ewes were milked in the morning after their lambs had been isolated. Milk composition and fatty acid profiles (FA) were analyzed at 30 and 60 days of lactation after assessment of the sheep's body condition. The sheep were classified into the following body conditions: 2.5, 3.0, 3.5, and 4.0. Sheep milk contained significant (p < 0.05) levels of protein at a BCS of 3.5 and on day 60 of lactation. The ewes with a BCS of 2.5 had a high milk content (p < 0.05) of unsaturated fatty acids (USFA), monounsaturated fatty acid (MUFA), oleic acid (OA), vaccenic acid (VA), and LA at day 60 of lactation. This result shows that the ewes with a BCS of 2.5 were able to produce high-quality milk, and 60 days of lactation was the preferred time for producing good milk and tasty and healthy dairy products.
Collapse
Affiliation(s)
- Abdulkareem M. Matar
- Department of Animal Production, College of Food and Agriculture Sciences, King Saud University, P.O. Box 2460, Riyadh 11451, Saudi Arabia;
| | | |
Collapse
|
20
|
Berriozabalgoitia A, Ruiz de Gordoa JC, Amores G, Santamarina-Garcia G, Hernández I, Virto M. Normal-Fat vs. High-Fat Diets and Olive Oil vs. CLA-Rich Dairy Fat: A Comparative Study of Their Effects on Atherosclerosis in Male Golden Syrian Hamsters. Metabolites 2023; 13:827. [PMID: 37512534 PMCID: PMC10383941 DOI: 10.3390/metabo13070827] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2023] [Revised: 06/28/2023] [Accepted: 07/03/2023] [Indexed: 07/30/2023] Open
Abstract
The relationship between milk fat intake (because of its high saturated fatty acid content) and the risk of suffering from cardiovascular diseases remains controversial. Thus, Golden Syrian hamsters were fed two types of fat-sheep milk fat that was rich in rumenic (cis9,trans11-18:2) and vaccenic (trans11-18:1) acids and olive oil-and two doses (a high- or normal-fat diet) for 14 weeks, and markers of lipid metabolism and atherosclerosis evolution were analyzed. The results revealed that the type and percentage of fat affected most plasma biochemical parameters related to lipid metabolism, while only the expression of five (CD36, SR-B1, ACAT, LDLR, and HMG-CoAR) of the studied lipid-metabolism-related genes was affected by these factors. According to aortic histology, when ingested in excess, both fats caused a similar increase in the thickness of fatty streaks, but the high-milk-fat-based diet caused a more atherogenic plasma profile. The compositions of the fats that were used, the results that were obtained, and the scientific literature indicated that the rumenic acid present in milk fat would regulate the expression of genes involved in ROS generation and, thus, protect against LDL oxidation, causing an effect similar to that of olive oil.
Collapse
Affiliation(s)
- Alaitz Berriozabalgoitia
- Lactiker Research Group, Department of Biochemistry and Molecular Biology, University of the Basque Country UPV/EHU, Paseo de la Universidad 7, 01006 Vitoria-Gasteiz, Spain
| | - Juan Carlos Ruiz de Gordoa
- Lactiker Research Group, Department of Biochemistry and Molecular Biology, University of the Basque Country UPV/EHU, Paseo de la Universidad 7, 01006 Vitoria-Gasteiz, Spain
| | - Gustavo Amores
- Lactiker Research Group, Department of Biochemistry and Molecular Biology, University of the Basque Country UPV/EHU, Paseo de la Universidad 7, 01006 Vitoria-Gasteiz, Spain
- Bioaraba, Prevención, Promoción y Cuidados en Salud, 01009 Vitoria-Gasteiz, Spain
| | - Gorka Santamarina-Garcia
- Lactiker Research Group, Department of Biochemistry and Molecular Biology, University of the Basque Country UPV/EHU, Paseo de la Universidad 7, 01006 Vitoria-Gasteiz, Spain
- Bioaraba, Prevención, Promoción y Cuidados en Salud, 01009 Vitoria-Gasteiz, Spain
| | - Igor Hernández
- Lactiker Research Group, Department of Biochemistry and Molecular Biology, University of the Basque Country UPV/EHU, Paseo de la Universidad 7, 01006 Vitoria-Gasteiz, Spain
- Bioaraba, Prevención, Promoción y Cuidados en Salud, 01009 Vitoria-Gasteiz, Spain
| | - Mailo Virto
- Lactiker Research Group, Department of Biochemistry and Molecular Biology, University of the Basque Country UPV/EHU, Paseo de la Universidad 7, 01006 Vitoria-Gasteiz, Spain
- Bioaraba, Prevención, Promoción y Cuidados en Salud, 01009 Vitoria-Gasteiz, Spain
| |
Collapse
|
21
|
Zacometti C, Tata A, Massaro A, Riuzzi G, Bragolusi M, Cozzi G, Piro R, Khazzar S, Gerardi G, Gottardo F, Segato S. Seasonal Variation in Raw Milk VOC Profile within Intensive Feeding Systems. Foods 2023; 12:foods12091871. [PMID: 37174409 PMCID: PMC10178752 DOI: 10.3390/foods12091871] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2023] [Revised: 04/26/2023] [Accepted: 04/27/2023] [Indexed: 05/15/2023] Open
Abstract
The study aimed to assess the seasonal variation in raw milk volatile organic compounds (VOCs) from three indoor feeding systems based on maize silage (n = 31), silages/hay (n = 19) or hay (n = 16). After headspace solid-phase microextraction (HS-SPME), VOC profiles were determined by gas chromatography (GC). Chemical and VOC (log10 transformations of the peak areas) data were submitted to a two-way ANOVA to assess the feeding system (FS) and season (S) effects; an interactive principal component analysis (iPCA) was also performed. The interaction FS × S was never significant. The FS showed the highest (p < 0.05) protein and casein content for hay-milk samples, while it did not affect any VOCs. Winter milk had higher (p < 0.05) proportions of protein, casein, fat and some carboxylic acids, while summer milk was higher (p < 0.05) in urea and 2-pentanol and methyl aldehydes. The iPCA confirmed a seasonal spatial separation. Carboxylic acids might generate from incomplete esterification in the mammary gland and/or milk lipolytic activity, while aldehydes seemed to be correlated with endogenous lipid or amino acid oxidation and/or feed transfer. The outcomes suggested that VOCs could be an operative support to trace raw milk for further mild processing.
Collapse
Affiliation(s)
- Carmela Zacometti
- Experimental Chemistry Laboratory, Istituto Zooprofilattico Sperimentale delle Venezie, 36100 Vicenza, Italy
| | - Alessandra Tata
- Experimental Chemistry Laboratory, Istituto Zooprofilattico Sperimentale delle Venezie, 36100 Vicenza, Italy
| | - Andrea Massaro
- Experimental Chemistry Laboratory, Istituto Zooprofilattico Sperimentale delle Venezie, 36100 Vicenza, Italy
| | - Giorgia Riuzzi
- Department of Animal Medicine, Production and Health, University of Padova, 35020 Legnaro, Italy
| | - Marco Bragolusi
- Experimental Chemistry Laboratory, Istituto Zooprofilattico Sperimentale delle Venezie, 36100 Vicenza, Italy
| | - Giulio Cozzi
- Department of Animal Medicine, Production and Health, University of Padova, 35020 Legnaro, Italy
| | - Roberto Piro
- Experimental Chemistry Laboratory, Istituto Zooprofilattico Sperimentale delle Venezie, 36100 Vicenza, Italy
| | - Sara Khazzar
- Department of Animal Medicine, Production and Health, University of Padova, 35020 Legnaro, Italy
| | - Gabriele Gerardi
- Department of Animal Medicine, Production and Health, University of Padova, 35020 Legnaro, Italy
| | - Flaviana Gottardo
- Department of Animal Medicine, Production and Health, University of Padova, 35020 Legnaro, Italy
| | - Severino Segato
- Department of Animal Medicine, Production and Health, University of Padova, 35020 Legnaro, Italy
| |
Collapse
|
22
|
Uushona T, Chikwanha OC, Katiyatiya CLF, Strydom PE, Mapiye C. Fatty acid and oxidative shelf-life profiles of meat from lambs fed finisher diets containing Acacia mearnsii leaf-meal. Meat Sci 2023; 201:109190. [PMID: 37060878 DOI: 10.1016/j.meatsci.2023.109190] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2022] [Revised: 03/30/2023] [Accepted: 04/06/2023] [Indexed: 04/17/2023]
Abstract
Five diets containing Acacia mearnsii leaf-meal (AMLM; 0, 50, 100, 150 and 200 g/kg DM) substituted for Triticum aestivum bran were fed to lambs for 42 days. The effect of diet and retail display period on meat fatty acid (FA) composition (day 1); colour, antioxidant activity, myoglobin and lipid oxidation (day 1, 3, 5, 7 and 9); protein oxidation (1, 3 and 7 d) and instrumental tenderness (day 1, 5 and 10) were evaluated. Dietary AMLM linearly decreased (P ≤ 0.05) individual (14:0, 16:0, 18:0) and total saturated FA and increased (P ≤ 0.05) trans(t)-monounsaturated FA (MUFA) mainly t10/t11-18:1, individual and total conjugated linoleic acids, n-3 and n-6 polyunsaturated FA (PUFA) contents. The contents of cis(c)-MUFA, mainly c9-18:1, exhibited a quadratic response reaching a minimum at 50 g/kg AMLM (P ≤ 0.05). Meat antioxidant on day 9 was higher (P ≤ 0.05) for diets containing ≥100 g/kg DM AMLM compared to the other diet × retail display period interactions. Relative to the other interactions, meat redness values were lowest on day 7 and 9 for AMLM diets containing ≥150 g/kg DM (P ≤ 0.05). Dietary addition of AMLM increased (P ≤ 0.05) meat lightness and oxymyoglobin, and reduced (P ≤ 0.05) TBARS and instrumental tenderness values. However, oxymyoglobin values declined (P ≤ 0.05) over the retail display period, while lightness, metmyoglobin, TBARS and carbonyls increased (P ≤ 0.05). Results indicate that AMLM up to 200 g/kg DM in lamb finisher diets, improves meat fatty acid composition, tenderness, and lipid shelf-life.
Collapse
Affiliation(s)
- Tulimo Uushona
- Department of Animal Sciences, Faculty of AgriSciences, Stellenbosch University, Private Bag X1, Matieland 7602, South Africa; Department of Animal Production, Agribusiness and Economics, Faculty of Agriculture, Engineering and Natural Sciences, University of Namibia, Private Bag 13188, Windhoek, Namibia
| | - Obert C Chikwanha
- Department of Animal Sciences, Faculty of AgriSciences, Stellenbosch University, Private Bag X1, Matieland 7602, South Africa
| | - Chenaimoyo L F Katiyatiya
- Department of Animal Sciences, Faculty of AgriSciences, Stellenbosch University, Private Bag X1, Matieland 7602, South Africa
| | - Phillip E Strydom
- Department of Animal Sciences, Faculty of AgriSciences, Stellenbosch University, Private Bag X1, Matieland 7602, South Africa
| | - Cletos Mapiye
- Department of Animal Sciences, Faculty of AgriSciences, Stellenbosch University, Private Bag X1, Matieland 7602, South Africa.
| |
Collapse
|
23
|
Effect of Heat Processing of Rubber Seed Kernel on In Vitro Rumen Biohydrogenation of Fatty Acids and Fermentation. FERMENTATION 2023. [DOI: 10.3390/fermentation9020143] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
The aim of this study was to assess the effect of rubber seed kernel heat processing on in vitro rumen biohydrogenation of fatty acids and fermentation. The experiment was conducted with a completely randomized design (CRD). The inclusion of RSK at 0% (CON) and 20% with different processing methods as follows: Raw rubber seed kernel (RAWR), roasted rubber seed kernel (ROR), microwave irradiated rubber seed kernel (MIR), and rubber seed kernel were heated in a hot air oven (RHO) in total mixed ration (TMR) diets. The hydrogen cyanide (HCN) was reduced using RSK heat methods. The heat processing of RSK had no effect on cumulative gas production at 96 h, the gas production from the insoluble fraction (b), or degradability (p > 0.05), whereas it reduced the gas production from the immediately soluble fraction (a) and constant rate of gas production for the insoluble fraction (c) (p < 0.01). The RSK processing methods did not influence ruminal pH, total volatile fatty acid (VFA), or VFA proportions (p > 0.05). RSK heat processing reduced ammonia-nitrogen (NH3-N) (p < 0.04) while increasing the bacterial population (p < 0.02). Heat treatment had no effect on linoleic acid (C18:2 cis-9,12 + tran-9,12) (p > 0.05). The RHO increases oleic acid (C18:1 cis-9 + tran-9) and linolenic acid (C18:3 cis-9,12,15) concentrations (p < 0.01). In conclusion, RHO reduced rumen biohydrogenation of unsaturated fatty acids (UFA), especially C18:3 and C18:1.
Collapse
|
24
|
Wu ZL, Yang X, Zhang J, Wang W, Liu D, Hou B, Bai T, Zhang R, Zhang Y, Liu H, Hu H, Xia Y. Effects of forage type on the rumen microbiota, growth performance, carcass traits, and meat quality in fattening goats. Front Vet Sci 2023; 10:1147685. [PMID: 37180069 PMCID: PMC10172669 DOI: 10.3389/fvets.2023.1147685] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2023] [Accepted: 04/06/2023] [Indexed: 05/15/2023] Open
Abstract
Forages fed to goats influence ruminal microbiota, and further contribute to affect growth performance, meat quality and its nutritional composition. Our objective for current study was to investigate the effects of different forages on growth performance, carcass traits, meat nutritional composition, rumen microflora, and the relationships between key bacteria and amino acids and fatty acids in the longissimus dorsi and semimembranosus muscles of goats. Boer crossbred goats were separately fed commercial concentrate diet supplemented with Hemarthria altissima (HA), Pennisetum sinese (PS), or forage maize (FG), and then slaughtered 90 days after the beginning of the experiment. Growth performances did not vary but carcass traits of dressing percentage, semi-eviscerated slaughter percentage, and eviscerated slaughter percentage displayed significant difference with the treatment studied. Meats from goats fed forage maize, especially semimembranosus muscles are rich in essential amino acids, as well as an increase in the amount of beneficial fatty acids. Our 16S rRNA gene sequencing results showed that the Firmicutes, Bacteroidetes, and Proteobacteria were the most dominant phyla in all groups but different in relative abundance. Further, the taxonomic analysis and linear discriminant analysis effect size (LEfSe) identified the specific taxa that were differentially represented among three forage treatments. The spearman's correlation analysis showed that rumen microbiota was significantly associated with the goat meat nutritional composition, and more significant positive correlations were identified in semimembranosus muscles when compared with longissimus dorsi muscles. More specifically, the lipid metabolism-related bacteria Rikenellaceae_RC9_gut_group showed positively correlated with meat amino acid profile, while genera Oscillospiraceae_UCG-005 were positively correlated with fatty acid composition. These bacteria genera might have the potential to improve nutritional value and meat quality. Collectively, our results showed that different forages alter the carcass traits, meat nutritional composition, and rumen microflora in fattening goats, and forage maize induced an improvement in its nutritional value.
Collapse
Affiliation(s)
- Zhou-lin Wu
- Meat Processing Key Laboratory of Sichuan Province, College of Food and Biological Engineering, Chengdu University, Chengdu, China
| | - Xue Yang
- Chengdu Academy of Agricultural and Forestry Sciences, Chengdu, China
| | - Jiamin Zhang
- Meat Processing Key Laboratory of Sichuan Province, College of Food and Biological Engineering, Chengdu University, Chengdu, China
| | - Wei Wang
- Meat Processing Key Laboratory of Sichuan Province, College of Food and Biological Engineering, Chengdu University, Chengdu, China
| | - Dayu Liu
- Meat Processing Key Laboratory of Sichuan Province, College of Food and Biological Engineering, Chengdu University, Chengdu, China
| | - Bo Hou
- Meat Processing Key Laboratory of Sichuan Province, College of Food and Biological Engineering, Chengdu University, Chengdu, China
| | - Ting Bai
- Meat Processing Key Laboratory of Sichuan Province, College of Food and Biological Engineering, Chengdu University, Chengdu, China
| | - Rui Zhang
- Meat Processing Key Laboratory of Sichuan Province, College of Food and Biological Engineering, Chengdu University, Chengdu, China
| | - Yin Zhang
- Meat Processing Key Laboratory of Sichuan Province, College of Food and Biological Engineering, Chengdu University, Chengdu, China
| | - Hanyang Liu
- Chengdu Academy of Agricultural and Forestry Sciences, Chengdu, China
| | - Hongwen Hu
- Neijiang Academy of Agricultural Sciences, Neijiang, China
| | - Yunhong Xia
- Neijiang Academy of Agricultural Sciences, Neijiang, China
- *Correspondence: Yunhong Xia,
| |
Collapse
|
25
|
Zhang L, Shen H, Zhang J, Mao S. Variety of rumen microbial populations involved in biohydrogenation related to individual milk fat percentage of dairy cows. Front Vet Sci 2023; 10:1106834. [PMID: 36937014 PMCID: PMC10019597 DOI: 10.3389/fvets.2023.1106834] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2022] [Accepted: 02/13/2023] [Indexed: 03/06/2023] Open
Abstract
Our objective was to investigate the contribution of the rumen microbiome on the individual milk fat percentage (MFP) of Holstein dairy cows under the same nutritional and management conditions. From 92 early lactation dairy cows, the top 10 with the highest MFP (HF; n = 10) and the last 10 with the lowest MFP (LF; n = 10) were selected for the study. As a result, the milk trans-10, cis-12 C18:2 content was significant lower in the HF group than that in the LF group (P < 0.001). The rumen acetate to propionate ratio was significant higher in the HF group than that in the LF group (P = 0.035). According to the results of 16S rRNA gene sequencing, a minor but significant difference existed between the groups (P = 0.040). Three genera of the family Lachnospiraceae and four genera of the order Bacteroidales were identified to be the biomarkers for the LF group and HF group in the LEfSe analysis, respectively. Three microbial modules enriched by the family Lachnospiraceae were positively related to the milk trans-10, cis-12 C18:2 content (r s > 0.60, P < 0.05). According to the results of shotgun metagenome sequencing, three kinds of linoleic acid (LA) isomerase genes were present in the gene pools of the rumen microbiome. Among them, the relative abundance of Bifidobacterium LA isomerase (BBI) was higher in the HF group than that in the LF group (P = 0.007). Three metagenome-assembled genomes (MAGs) with LA isomerase genes were positively correlated to the milk trans-10, cis-12 C18:2 content (r s > 0.40, P < 0.05). Furthermore, all of these three MAGs were found to be able to produce lactate. Taken together, these results indicate that the increased relative abundance of microbial population with the trans-10 biohydrogenation pathway within the rumen microbiome contributes to the decrease of MFP via the increase of rumen trans-10, cis-12 C18:2 production. This study provides a new perspective for the development of measures for improving the milking performance of dairy cows.
Collapse
Affiliation(s)
- Lei Zhang
- Ruminant Nutrition and Feed Engineering Technology Research Center, College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, China
- Laboratory of Gastrointestinal Microbiology, Jiangsu Key Laboratory of Gastrointestinal Nutrition and Animal Health, National Center for International Research on Animal Gut Nutrition, College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, China
| | - Hong Shen
- Bioinformatics Center, Academy for Advanced Interdisciplinary Studies, Nanjing Agricultural University, Nanjing, China
| | - Jiyou Zhang
- Ruminant Nutrition and Feed Engineering Technology Research Center, College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, China
- Laboratory of Gastrointestinal Microbiology, Jiangsu Key Laboratory of Gastrointestinal Nutrition and Animal Health, National Center for International Research on Animal Gut Nutrition, College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, China
| | - Shengyong Mao
- Ruminant Nutrition and Feed Engineering Technology Research Center, College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, China
- Laboratory of Gastrointestinal Microbiology, Jiangsu Key Laboratory of Gastrointestinal Nutrition and Animal Health, National Center for International Research on Animal Gut Nutrition, College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, China
- *Correspondence: Shengyong Mao
| |
Collapse
|
26
|
Kibegwa FM, Bett RC, Gachuiri CK, Machuka E, Stomeo F, Mujibi FD. Diversity and functional analysis of rumen and fecal microbial communities associated with dietary changes in crossbreed dairy cattle. PLoS One 2023; 18:e0274371. [PMID: 36638091 PMCID: PMC9838872 DOI: 10.1371/journal.pone.0274371] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2022] [Accepted: 12/29/2022] [Indexed: 01/14/2023] Open
Abstract
The objective of this study was to investigate the effect of varying roughage and concentrate proportions, in diet of crossbreed dairy cattle, on the composition and associated functional genes of rumen and fecal microbiota. We also explored fecal samples as a proxy for rumen liquor samples. Six crossbred dairy cattle were reared on three diets with an increasing concentrate and reducing roughage amount in three consecutive 10-day periods. After each period, individual rumen liquor and fecal samples were collected and analyzed through shotgun metagenomic sequencing. Average relative abundance of identified Operational Taxonomic Units (OTU) and microbial functional roles from all animals were compared between diets and sample types (fecal and rumen liquor). Results indicated that dietary modifications significantly affected several rumen and fecal microbial OTUs. In the rumen, an increase in dietary concentrate resulted in an upsurge in the abundance of Proteobacteria, while reducing the proportions of Bacteroidetes and Firmicutes. Conversely, changes in microbial composition in fecal samples were not consistent with dietary modification patterns. Microbial functional pathway classification identified that carbohydrate metabolism and protein metabolism pathways dominated microbial roles. Assessment of dietary effects on the predicted functional roles of these microbiota revealed that a high amount of dietary concentrate resulted in an increase in central carbohydrate metabolism and a corresponding reduction in protein synthesis. Moreover, we identified several microbial stress-related responses linked to dietary changes. Bacteroides and Clostridium genera were the principal hosts of these microbial functions. Therefore, the roughage to concentrate proportion has more influence on the microbial composition and microbial functional genes in rumen samples than fecal samples. As such, we did not establish a significant relationship between the rumen and fecal metagenome profiles, and the rumen and fecal microbiota from one animal did not correlate more than those from different animals.
Collapse
Affiliation(s)
- Felix M. Kibegwa
- Department of Animal Production, Faculty of Veterinary Medicine, University of Nairobi, Nairobi, Kenya
- * E-mail:
| | - Rawlynce C. Bett
- Department of Animal Production, Faculty of Veterinary Medicine, University of Nairobi, Nairobi, Kenya
| | - Charles K. Gachuiri
- Department of Animal Production, Faculty of Veterinary Medicine, University of Nairobi, Nairobi, Kenya
| | - Eunice Machuka
- Biosciences Eastern and Central Africa—International Livestock Research Institute (BecA-ILRI) Hub, Nairobi, Kenya
| | - Francesca Stomeo
- Biosciences Eastern and Central Africa—International Livestock Research Institute (BecA-ILRI) Hub, Nairobi, Kenya
| | | |
Collapse
|
27
|
Dias Junior PCG, dos Santos IJ, da Silva AL, de Assis RG, Vicente ACS, Carlis MS, Soares LC, Comelli JH, Biava JS, Araujo RC, Pires AV, Ferreira EM. Essential oil from Arnica montana on feedlot performance, ingestive behavior, carcass characteristics, rumen morphometrics characteristics and meat fatty acids profile of lambs. Small Rumin Res 2023. [DOI: 10.1016/j.smallrumres.2023.106920] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
|
28
|
Effects of essential oils supplementation, associated or not with amylase, on dry matter intake, productive performance, and nitrogen metabolism of dairy cows. Anim Feed Sci Technol 2023. [DOI: 10.1016/j.anifeedsci.2023.115575] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
|
29
|
Impact of Pasture-Based Diets on the Untargeted Metabolomics Profile of Sarda Sheep Milk. Foods 2022; 12:foods12010143. [PMID: 36613358 PMCID: PMC9818515 DOI: 10.3390/foods12010143] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2022] [Revised: 11/05/2022] [Accepted: 12/23/2022] [Indexed: 12/29/2022] Open
Abstract
In this work, untargeted metabolomics was used to shed light on the impact of different pasture-based diets on the chemical profile of Sarda sheep milk. The study considered 11 dairy sheep farms located in Sardinia, and milk samples were collected in 4 different periods, namely January, March, May, and July 2019, when all sheep had 58, 98, 138, and 178 days in milk, respectively. The animal diet composition was based on the intake of grazed herbage in natural pasture, hay, and concentrate. Overall, the combination of two comprehensive databases on food, namely the Milk Composition Database and Phenol-Explorer, allowed the putative identification of 406 metabolites, with a significant (p < 0.01) enrichment of several metabolite classes, namely amino acids and peptides, monosaccharides, fatty acids, phenylacetic acids, benzoic acids, cinnamic acids, and flavonoids. The multivariate statistical approach based on supervised orthogonal projections to latent structures (OPLS-DA) allowed us to predict the chemical profile of sheep milk samples as a function of the high vs no fresh herbage intake, while the prediction model was not significant when considering both hay and concentrate intake. Among the discriminant markers of the herbage intake, we found five phenolic metabolites (such as hippuric and coumaric acids), together with lutein and cresol (belonging to carotenoids and their metabolites). Additionally, a high discriminant power was outlined for lipid derivatives followed by sugars, amino acids, and peptides. Finally, a pathway analysis revealed that the herbage intake affected mainly five biochemical pathways in milk, namely galactose metabolism, phenylalanine metabolism, alpha-linolenic acid metabolism, linoleic acid metabolism, and aromatic amino acids involved in protein synthesis (namely tyrosine, phenylalanine, and tryptophan).
Collapse
|
30
|
Renna M, Coppa M, Lussiana C, Le Morvan A, Gasco L, Maxin G. Full-fat insect meals in ruminant nutrition: in vitro rumen fermentation characteristics and lipid biohydrogenation. J Anim Sci Biotechnol 2022; 13:138. [PMID: 36536465 PMCID: PMC9764709 DOI: 10.1186/s40104-022-00792-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2022] [Accepted: 10/06/2022] [Indexed: 12/24/2022] Open
Abstract
BACKGROUND The most used protein sources in ruminant nutrition are considered as having negative impacts in terms of environmental sustainability and competition with human nutrition. Therefore, the investigation of alternative and sustainable feedstuffs is becoming a priority in ruminant production systems. RESULTS This trial was designed to evaluate eight full-fat insect meals (Acheta domesticus - ACD; Alphitobius diaperinus - ALD; Blatta lateralis - BL; Gryllus bimaculatus - GB; Grylloides sygillatus - GS; Hermetia illucens - HI; Musca domestica - MD; and Tenebrio molitor - TM) as potential protein and lipid sources in ruminant nutrition. Fermentation parameters and fatty acids (FA) of rumen digesta after 24-h in vitro ruminal incubation of the tested insect meals were measured and compared with those of three plant-based meals (soybean meal, rapeseed meal and sunflower meal) and fishmeal (FM). Similarly to FM, the insect meals led to a significantly lower total gas production (on average, 1.75 vs. 4.64 mmol/g dry matter-DM), methane production (on average, 0.33 vs. 0.91 mmol/g DM), volatile FA production (on average, 4.12 vs. 7.53 mmol/g DM), and in vitro organic matter disappearance (on average, 0.32 vs. 0.59 g/g) than those observed for the plant meals. The insect meals also led to lower ammonia of rumen fluid, when expressed as a proportion of total N (on average, 0.74 vs. 0.52 for the plant and insect meals, respectively), which could be an advantage provided that intestinal digestibility is high. Differences in ruminal fermentation parameters between the insect meals could be partially explained by their chitin, crude protein and ether extract contents, as well as by their FA profile. In particular, high content of polyunsaturated FA, or C12:0 (in HI), seems to partially inhibit the ruminal fermentations. CONCLUSIONS The tested full-fat insect meals appear to be potentially an interesting protein and lipid source for ruminants, alternative to the less sustainable and commonly used ones of plant origin. The FA profile of the rumen digesta of ACD, ALD, GB, GS and TM, being rich in n-6 polyunsaturated FA, could be interesting to improve the quality of ruminant-derived food products.
Collapse
Affiliation(s)
- Manuela Renna
- grid.7605.40000 0001 2336 6580Department of Veterinary Sciences, University of Turin, Largo P. Braccini 2, 10095 Grugliasco, TO Italy
| | - Mauro Coppa
- grid.510767.2Independent Researcher, Université Clermont Auvergne, INRAE, VetAgro Sup, UMR 1213 Herbivores, Saint-Genès-Champanelle, France
| | - Carola Lussiana
- grid.7605.40000 0001 2336 6580Department of Agricultural, Forest and Food Sciences, University of Turin, Largo P. Braccini 2, 10095 Grugliasco, TO Italy
| | - Aline Le Morvan
- grid.510767.2Université Clermont Auvergne, INRAE, VetAgro Sup, UMR 1213 Herbivores, Saint-Genès-Champanelle, France
| | - Laura Gasco
- grid.7605.40000 0001 2336 6580Department of Agricultural, Forest and Food Sciences, University of Turin, Largo P. Braccini 2, 10095 Grugliasco, TO Italy
| | - Gaelle Maxin
- grid.510767.2Université Clermont Auvergne, INRAE, VetAgro Sup, UMR 1213 Herbivores, Saint-Genès-Champanelle, France
| |
Collapse
|
31
|
Herbage utilisation method affects rumen fluid and milk fatty acid profile in Holstein and Montbéliarde cows. Animal 2022; 16:100674. [PMID: 36434984 DOI: 10.1016/j.animal.2022.100674] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2021] [Revised: 10/18/2022] [Accepted: 10/20/2022] [Indexed: 12/24/2022] Open
Abstract
Compared with maize silage- and concentrate-based diets, herbage-based diets were repeatedly shown to favourably influence the milk fatty acid (FA) profile. However, it is unclear how the herbage feeding mode (grazing vs indoor green-feeding) and conservation (fresh herbage vs hay vs silage) modify the milk FA profile. Therefore, the aim of the present experiment was to investigate the effect of different herbage utilisation methods (including herbage feeding mode and herbage conservation method) on the ruminal biohydrogenation of dietary FA and the consequences on the milk FA composition in cows of two breeds (Holstein and Montbéliarde). Concomitant effects of botanical composition and phenological stage of the herbage on milk FA profile were controlled for by harvesting barn-dried hay and silage simultaneously as first cut from the same ryegrass-dominated grassland in a semi-mountainous region. Seven weeks later, the first regrowth of the same plot was used as fresh herbage, either grazed or fed indoor (indoor green-feeding). Twenty-four Montbéliarde and 24 Holstein cows were randomly allocated to four groups of 12 cows balanced by breed, parity, and milk yield. In a free-stall barn, three groups were given ad libitum access to hay, silage, or fresh herbage, respectively. The fourth group was strip-grazing. All cows were supplemented with 3 kg DM/day of the same energy-rich concentrate. After 2 weeks of adaptation to the forage, samples of forage, concentrate, milk, blood, and rumen fluid were collected. Fatty acid composition of forages, rumen fluid, and milk was analysed by gas chromatography. Haymaking reduced total FA content of the herbage, in particular that of linoleic acid (LA) and α-linolenic acid (ALA). Still, rumen fluid lipids of hay-fed cows had the highest proportion of rumenic acid, LA, ALA, and total polyunsaturated fatty acids (PUFAs). Milk fat from hay-fed cows had the highest proportion of LA, and the apparent transfer rates from feed to milk of LA and ALA were higher in hay-fed cows than in silage-fed cows. The proportion of PUFAs was highest in milk fat from grazing and indoor green-fed Montbéliarde cows and lowest in silage-fed cows of both breeds. In conclusion, the herbage utilisation method affects the ruminal biohydrogenation of LA and ALA, whereby herbage drying particularly increases their transfer from herbage to milk.
Collapse
|
32
|
Krusinski L, Maciel ICF, Sergin S, Jambunathan V, Garg E, Garmyn AJ, Singh S, Bitler CA, Rowntree JE, Fenton JI. Effects of Hay, Baleage, and Soybean Hulls Waste Used as Supplemental Feeds on the Nutritional Profile of Grass-Finished Beef. Foods 2022; 11:foods11233856. [PMID: 36496663 PMCID: PMC9741108 DOI: 10.3390/foods11233856] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2022] [Revised: 11/21/2022] [Accepted: 11/23/2022] [Indexed: 12/03/2022] Open
Abstract
Grass-finished beef (GFB) has demonstrated wide nutritional variations with some GFB having a considerably higher n-6:n-3 ratio compared to grain-finished beef. To better understand these variations, the current study investigated the effects of commonly used supplemental feeds on the nutritional profile of GFB. This two-year study involved 117 steers randomly allocated to one of four diets: (1) grass+hay (G-HAY), (2) grass+baleage (G-BLG), (3) grass+soybean hulls (G-SH), and (4) baleage+soybean hulls in feedlot (BLG-SH). Feed samples were analyzed for their nutritional value, and beef samples underwent analysis for fatty acids (FAs), vitamin E, minerals, lipid oxidation, and shear force. FAs were measured by GC-MS, vitamin E was analyzed chromatographically, minerals were analyzed by ICP-MS, and lipid oxidation was measured via a thiobarbituric acid reactive substances (TBARS) assay. G-SH beef had the highest n-6:n-3 ratio (p < 0.001), while BLG-SH beef contained less vitamin E (p < 0.001) and higher TBARS values (p < 0.001) compared to the other groups. G-HAY beef contained more long-chain n-3 polyunsaturated FAs compared to the other groups (p < 0.001). In conclusion, G-HAY beef had the most beneficial nutritional profile, while soybean hulls increased the n-6:n-3 ratio of beef.
Collapse
Affiliation(s)
- Lucas Krusinski
- Department of Food Science and Human Nutrition, Michigan State University, 469 Wilson Rd, East Lansing, MI 48824, USA
| | - Isabella C. F. Maciel
- Department of Animal Science, Michigan State University, 474 S Shaw Ln, East Lansing, MI 48824, USA
| | - Selin Sergin
- Department of Food Science and Human Nutrition, Michigan State University, 469 Wilson Rd, East Lansing, MI 48824, USA
| | - Vijayashree Jambunathan
- Department of Food Science and Human Nutrition, Michigan State University, 469 Wilson Rd, East Lansing, MI 48824, USA
| | - Esha Garg
- Department of Food Science and Human Nutrition, Michigan State University, 469 Wilson Rd, East Lansing, MI 48824, USA
| | - Andrea J. Garmyn
- Department of Food Science and Human Nutrition, Michigan State University, 469 Wilson Rd, East Lansing, MI 48824, USA
- Department of Animal Science, Michigan State University, 474 S Shaw Ln, East Lansing, MI 48824, USA
| | - Sukhdeep Singh
- Department of Plant, Soil, and Microbial Sciences, Michigan State University, 1066 Bogue St, East Lansing, MI 48824, USA
| | | | - Jason E. Rowntree
- Department of Animal Science, Michigan State University, 474 S Shaw Ln, East Lansing, MI 48824, USA
| | - Jenifer I. Fenton
- Department of Food Science and Human Nutrition, Michigan State University, 469 Wilson Rd, East Lansing, MI 48824, USA
- Correspondence: ; Tel.: +1-(517)-353-3342
| |
Collapse
|
33
|
Besharati M, Maggiolino A, Palangi V, Kaya A, Jabbar M, Eseceli H, De Palo P, Lorenzo JM. Tannin in Ruminant Nutrition: Review. Molecules 2022; 27:8273. [PMID: 36500366 PMCID: PMC9738529 DOI: 10.3390/molecules27238273] [Citation(s) in RCA: 38] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2022] [Revised: 11/22/2022] [Accepted: 11/23/2022] [Indexed: 11/29/2022] Open
Abstract
Tannins are polyphenols characterized by different molecular weights that plants are able to synthetize during their secondary metabolism. Macromolecules (proteins, structural carbohydrates and starch) can link tannins and their digestion can decrease. Tannins can be classified into two groups: hydrolysable tannins and condensed tannins. Tannins are polyphenols, which can directly or indirectly affect intake and digestion. Their ability to bind molecules and form complexes depends on the structure of polyphenols and on the macromolecule involved. Tannins have long been known to be an "anti-nutritional agent" in monogastric and poultry animals. Using good tannins' proper application protocols helped the researchers observe positive effects on the intestinal microbial ecosystem, gut health, and animal production. Plant tannins are used as an alternative to in-feed antibiotics, and many factors have been described by researchers which contribute to the variability in their efficiencies. The objective of this study was to review the literature about tannins, their effects and use in ruminant nutrition.
Collapse
Affiliation(s)
- Maghsoud Besharati
- Department of Animal Science, Ahar Faculty of Agriculture and Natural Resources, University of Tabriz, Ahar 5451785354, Iran
| | - Aristide Maggiolino
- Department of Veterinary Medicine, University of Bari A. Moro, 70010 Valenzano, Italy
| | - Valiollah Palangi
- Department of Animal Science, Agricultural Faculty, Ataturk University, Erzurum 25240, Turkey
| | - Adem Kaya
- Department of Animal Science, Agricultural Faculty, Ataturk University, Erzurum 25240, Turkey
| | - Muhammad Jabbar
- Department of Zoology, Faculty of Biosciences, Cholistan University of Veterinary and Animal Sciences, Bahawalpur 63100, Pakistan
| | - Hüseyin Eseceli
- Department of Nutrition Sciences, Faculty of Health Sciences, Bandirma Onyedi Eylul University, Balikesir 10200, Turkey
| | - Pasquale De Palo
- Department of Veterinary Medicine, University of Bari A. Moro, 70010 Valenzano, Italy
| | - Jose M. Lorenzo
- Centro Tecnológico de la Carne de Galicia, Avd. Galicia 4, Parque Tecnológico de Galicia, 32900 Ourense, Spain
- Área de Tecnología de los Alimentos, Facultad de Ciencias de Ourense, Universidade de Vigo, 32004 Ourense, Spain
| |
Collapse
|
34
|
Martínez-Álvaro M, Mattock J, Auffret M, Weng Z, Duthie CA, Dewhurst RJ, Cleveland MA, Watson M, Roehe R. Microbiome-driven breeding strategy potentially improves beef fatty acid profile benefiting human health and reduces methane emissions. MICROBIOME 2022; 10:166. [PMID: 36199148 PMCID: PMC9533493 DOI: 10.1186/s40168-022-01352-6] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/05/2022] [Accepted: 08/13/2022] [Indexed: 06/16/2023]
Abstract
BACKGROUND Healthier ruminant products can be achieved by adequate manipulation of the rumen microbiota to increase the flux of beneficial fatty acids reaching host tissues. Genomic selection to modify the microbiome function provides a permanent and accumulative solution, which may have also favourable consequences in other traits of interest (e.g. methane emissions). Possibly due to a lack of data, this strategy has never been explored. RESULTS This study provides a comprehensive identification of ruminal microbial mechanisms under host genomic influence that directly or indirectly affect the content of unsaturated fatty acids in beef associated with human dietary health benefits C18:3n-3, C20:5n-3, C22:5n-3, C22:6n-3 or cis-9, trans-11 C18:2 and trans-11 C18:1 in relation to hypercholesterolemic saturated fatty acids C12:0, C14:0 and C16:0, referred to as N3 and CLA indices. We first identified that ~27.6% (1002/3633) of the functional core additive log-ratio transformed microbial gene abundances (alr-MG) in the rumen were at least moderately host-genomically influenced (HGFC). Of these, 372 alr-MG were host-genomically correlated with the N3 index (n=290), CLA index (n=66) or with both (n=16), indicating that the HGFC influence on beef fatty acid composition is much more complex than the direct regulation of microbial lipolysis and biohydrogenation of dietary lipids and that N3 index variation is more strongly subjected to variations in the HGFC than CLA. Of these 372 alr-MG, 110 were correlated with the N3 and/or CLA index in the same direction, suggesting the opportunity for enhancement of both indices simultaneously through a microbiome-driven breeding strategy. These microbial genes were involved in microbial protein synthesis (aroF and serA), carbohydrate metabolism and transport (galT, msmX), lipopolysaccharide biosynthesis (kdsA, lpxD, lpxB), or flagellar synthesis (flgB, fliN) in certain genera within the Proteobacteria phyla (e.g. Serratia, Aeromonas). A microbiome-driven breeding strategy based on these microbial mechanisms as sole information criteria resulted in a positive selection response for both indices (1.36±0.24 and 0.79±0.21 sd of N3 and CLA indices, at 2.06 selection intensity). When evaluating the impact of our microbiome-driven breeding strategy to increase N3 and CLA indices on the environmental trait methane emissions (g/kg of dry matter intake), we obtained a correlated mitigation response of -0.41±0.12 sd. CONCLUSION This research provides insight on the possibility of using the ruminal functional microbiome as information for host genomic selection, which could simultaneously improve several microbiome-driven traits of interest, in this study exemplified with meat quality traits and methane emissions. Video Abstract.
Collapse
Affiliation(s)
| | - Jennifer Mattock
- The Roslin Institute and the Royal (Dick) School of Veterinary Studies, University of Edinburgh, Edinburgh, UK
| | | | | | | | | | | | - Mick Watson
- The Roslin Institute and the Royal (Dick) School of Veterinary Studies, University of Edinburgh, Edinburgh, UK
| | | |
Collapse
|
35
|
Cabiddu A, Carrillo S, Contini S, Spada S, Acciaro M, Giovanetti V, Decandia M, Lucini L, Bertuzzi T, Gallo A, Salis L. Dairy Sheep Grazing Management and Pasture Botanical Composition Affect Milk Macro and Micro Components: A Methodological Approach to Assess the Main Managerial Factors at Farm Level. Animals (Basel) 2022; 12:ani12192675. [PMID: 36230416 PMCID: PMC9559587 DOI: 10.3390/ani12192675] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2022] [Revised: 09/23/2022] [Accepted: 09/28/2022] [Indexed: 11/05/2022] Open
Abstract
Simple Summary Studies on the management factors that affect milk components at the farm level are important for understanding how to transfer the results from experimental study. Plant phenological stages and partially fresh herbage intakes affect the lactose and milk fatty acid profile. The botanical composition of the grassland partially affects the milk’s phenol content. A few small relationships between plant phenols and milk colour could be of interest to explain the changes in milk colour parameters. Abstract The fatty acid profile, vitamins A and E, cholesterol, antioxidant power colour and the phenols profile of Sarda sheep milk from 11 commercial sheep flocks managed under permanent grassland were investigated. In each farm, the structural and managerial data and milk samples were collected during four periods (sampling dates, SD): January, March, May, and July. Data from the milk composition (fat, protein, casein, lactose, and somatic cell count), 68 fatty acids, 7 phenols, 1 total gallocatechin equivalent, ferric reducing antioxidant power, vitamins A and E, cholesterol, degree of antioxidant protection, and the colour (b *, a * and L *) were analyzed by multivariate factorial analysis using a principal component analysis approach. A proc mixed model for repeated measurement to point out the studied factors affecting significant macro and micro milk composition was also used. Only the first five components were detailed in this paper, with approximately 70% of the explained variance detected. PC1 presented the highest positive loadings for milk lactose, de novo FA synthesis and the BH intermediate, whereas OBCFA had negative loadings values. The PC2, LCFA, UFA, MUFA, vitamins E, and DAP showed positive loadings values, while SFA had a negative value. The PC3 showed a high positive loading for total phenols and non-flavonoids. PC4 presented a high positive loading for the milk macro-composition and negative values for n-3 FAs. The PC5 is characterized by high positive loadings for the a * and L * colour parameters whereas negative loadings were detected for the milk flavonoids content. These preliminary results could help to establish future threshold values for the biomarkers in milk sourced from grazing dairy sheep in natural, permanent pasture-based diets.
Collapse
Affiliation(s)
- Andrea Cabiddu
- Agris Agricultural Research Agency of Sardinia, Loc. Bonassai, Olmedo, 07040 Sassari, Italy
- Correspondence:
| | - Sebastian Carrillo
- Facultad de Estudios Superiores Cuautitlán, National Autonomous University of Mexico, Mexico City 54714, Mexico
| | - Salvatore Contini
- Agris Agricultural Research Agency of Sardinia, Loc. Bonassai, Olmedo, 07040 Sassari, Italy
| | - Simona Spada
- Agris Agricultural Research Agency of Sardinia, Loc. Bonassai, Olmedo, 07040 Sassari, Italy
| | - Marco Acciaro
- Agris Agricultural Research Agency of Sardinia, Loc. Bonassai, Olmedo, 07040 Sassari, Italy
| | - Valeria Giovanetti
- Agris Agricultural Research Agency of Sardinia, Loc. Bonassai, Olmedo, 07040 Sassari, Italy
| | - Mauro Decandia
- Agris Agricultural Research Agency of Sardinia, Loc. Bonassai, Olmedo, 07040 Sassari, Italy
| | - Luigi Lucini
- Department for Sustainable Food Process, Catholic University of the Sacred Heart, Via Emilia Parmense, 84, 29122 Piacenza, Italy
| | - Terenzio Bertuzzi
- Department of Animal Science, Food and Nutrition (Diana), Catholic University of the Sacred Heart, Via Emilia Parmense, 84, 29122 Piacenza, Italy
| | - Antonio Gallo
- Department of Animal Science, Food and Nutrition (Diana), Catholic University of the Sacred Heart, Via Emilia Parmense, 84, 29122 Piacenza, Italy
| | - Lorenzo Salis
- Agris Agricultural Research Agency of Sardinia, Loc. Bonassai, Olmedo, 07040 Sassari, Italy
| |
Collapse
|
36
|
Otto JR, Mwangi FW, Pewan SB, Adegboye OA, Malau-Aduli AEO. Lipogenic Gene Single Nucleotide Polymorphic DNA Markers Associated with Intramuscular Fat, Fat Melting Point, and Health-Beneficial Omega-3 Long-Chain Polyunsaturated Fatty Acids in Australian Pasture-Based Bowen Genetics Forest Pastoral Angus, Hereford, and Wagyu Beef Cattle. Genes (Basel) 2022; 13:1411. [PMID: 36011322 PMCID: PMC9407580 DOI: 10.3390/genes13081411] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2022] [Revised: 08/04/2022] [Accepted: 08/05/2022] [Indexed: 12/03/2022] Open
Abstract
This study used targeted sequencing aimed at identifying single nucleotide polymorphisms (SNP) in lipogenic genes and their associations with health-beneficial omega-3 long-chain polyunsaturated fatty acids (n-3 LC-PUFA), intramuscular fat (IMF), and fat melting point (FMP) of the M. longissimus dorsi muscle in Australian pasture-based Bowen Genetics Forest Pastoral Angus, Hereford, and Wagyu cattle. It was hypothesized that SNP encoding for the fatty acid-binding protein 4 (FABP4), stearoyl-CoA desaturase (SCD), and fatty acid synthase (FASN) genes will be significantly associated with health-beneficial n-3 LC-PUFA and the meat eating quality traits of IMF and FMP in an Australian pasture-based beef production system. Two SNP mutations, g.21267406 T>C and g.21271264 C>A, in the SCD gene were significantly (p < 0.05) associated with IMF, FMP, oleic acid (18:1n-9), linoleic acid (LA) 18:2n-6, alpha-linolenic acid (ALA) 18:3n-3, eicosapentaenoic acid (EPA) 20:5n-3, docosahexaenoic acid (DHA) 22:6-n-3, and docosapentaenoic acid (DPA) 22:5n-3. Significant positive correlations (p < 0.05) between FASN SNP g. 50787138 A>G and FMP, 18:1n-9, ALA, EPA, DHA, DPA, and total n-3 LC-PUFA were also detected. An SNP (g.44678794 G>A) in the FABP4 gene was associated with FMP. These results provide significant insights into the contributions of lipogenic genes to intramuscular fat deposition and the biosynthesis of health-beneficial n-3 LC-PUFA. The findings also unravel the potential use of lipogenic gene polymorphisms in marker-assisted selection to improve the content of health-promoting n-3 LC-PUFA and meat eating quality traits in Australian pasture-based Bowen Genetics Forest Pastoral Angus, Hereford, and Wagyu beef cattle.
Collapse
Affiliation(s)
- John R. Otto
- Animal Genetics and Nutrition, Veterinary Sciences Discipline, College of Public Health, Medical and Veterinary Sciences, Division of Tropical Health and Medicine, James Cook University, Townsville, QLD 4811, Australia
| | - Felista W. Mwangi
- Animal Genetics and Nutrition, Veterinary Sciences Discipline, College of Public Health, Medical and Veterinary Sciences, Division of Tropical Health and Medicine, James Cook University, Townsville, QLD 4811, Australia
| | - Shedrach B. Pewan
- Animal Genetics and Nutrition, Veterinary Sciences Discipline, College of Public Health, Medical and Veterinary Sciences, Division of Tropical Health and Medicine, James Cook University, Townsville, QLD 4811, Australia
- National Veterinary Research Institute, PMB 01, Vom 930001, Plateau State, Nigeria
| | - Oyelola A. Adegboye
- Public Health and Tropical Medicine Discipline, College of Public Health, Medical and Veterinary Sciences, Division of Tropical Health and Medicine, James Cook University, Townsville, QLD 4811, Australia
| | - Aduli E. O. Malau-Aduli
- Animal Genetics and Nutrition, Veterinary Sciences Discipline, College of Public Health, Medical and Veterinary Sciences, Division of Tropical Health and Medicine, James Cook University, Townsville, QLD 4811, Australia
| |
Collapse
|
37
|
de Carvalho AF, de Araújo MJ, Vallecillo SJA, Neto JPC, de Souza AR, Edvan RL, Dias-Silva TP, Bezerra LR. Tissue composition and meat quality of lambs fed diets containing whole-plant sesame silage as a replacement for whole-plant corn silage. Small Rumin Res 2022. [DOI: 10.1016/j.smallrumres.2022.106799] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
38
|
Towards Sustainable Sources of Omega-3 Long-Chain Polyunsaturated Fatty Acids in Northern Australian Tropical Crossbred Beef Steers through Single Nucleotide Polymorphisms in Lipogenic Genes for Meat Eating Quality. SUSTAINABILITY 2022. [DOI: 10.3390/su14148409] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
This study aimed to identify single nucleotide polymorphisms (SNP) in lipogenic genes of northern Australian tropically adapted crossbred beef cattle and to evaluate associations with healthy lipid traits of the Longissimus dorsi (loin eye) muscle. The hypothesis tested was that there are significant associations between SNP loci encoding for the fatty acid binding protein 4 (FABP4), stearoyl-CoA desaturase (SCD) and fatty acid synthase (FASN) genes and human health beneficial omega-3 long-chain polyunsaturated fatty acids (ω3 LC-PUFA) within the loin eye muscle of northern Australian crossbred beef cattle. Brahman, Charbray, and Droughtmaster crossbred steers were fed on Rhodes grass hay augmented with desmanthus, lucerne, or both, for 140 days and the loin eye muscle sampled for intramuscular fat (IMF), fat melting point (FMP), and fatty acid composition. Polymorphisms in FABP4, SCD, and FASN genes with significant effects on lipid traits were identified with next-generation sequencing. The GG genotype at the FABP4 g.44677239C>G locus was associated with higher proportion of linoleic acid than the CC and CG genotypes (p < 0.05). Multiple comparisons of genotypes at the SCD g.21266629G>T locus indicated that the TT genotype had significantly higher eicosapentaenoic, docosapentaenoic, and docosahexaenoic acids than GG genotype (p < 0.05). Significant correlations (p < 0.05) between FASN SNP and IMF, saturated and monounsaturated fatty acids were observed. These results provide insights into the contribution of lipogenic genes to intramuscular fat deposition and SNP marker-assisted selection for improvement of meat-eating quality, with emphasis on alternate and sustainable sources of ω3 LC-PUFA, in northern Australian tropical crossbred beef cattle, hence an acceptance of the tested hypothesis.
Collapse
|
39
|
Acosta Balcazar IC, Granados Rivera LD, Salinas Chavira J, Estrada Drouaillet B, Albarrán MR, Bautista Martínez Y. Relationship between the Composition of Lipids in Forages and the Concentration of Conjugated Linoleic Acid in Cow's Milk: A Review. Animals (Basel) 2022; 12:1621. [PMID: 35804520 PMCID: PMC9264792 DOI: 10.3390/ani12131621] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2022] [Revised: 06/17/2022] [Accepted: 06/21/2022] [Indexed: 01/03/2023] Open
Abstract
Conjugated linoleic acid (CLA), has been shown to have protective effects against various diseases, such as obesity, arteriosclerosis, diabetes, chronic inflammatory diseases, and cancer. This fatty acid in ruminants results from two processes, biohydrogenation, which takes place in the rumen, and de novo synthesis, carried out in the mammary gland, and it has linoleic and α-linolenic acids as its precursors. The amounts of precursors in the diets of animals are related to the amounts of CLA in milk. In the literature review, it was found that the milk of cows fed fresh forage has a higher amount of CLA because they have a higher amount of linoleic acid and α-linolenic acid compared to other foods used in the diets of cows. The amount of CLA precursors in pastures can be increased through agronomic practices, such as nitrogen fertilization, and regrowth age. It is also a technique used to increase the amount of CLA in milk to obtain a greater benefit regarding its nutritional value.
Collapse
Affiliation(s)
- Isabel Cristina Acosta Balcazar
- Facultad de Medicina Veterinaria y Zootecnia, Universidad Autónoma de Tamaulipas, Ciudad Victoria 87000, Tamaulipas, Mexico; (I.C.A.B.); (J.S.C.); (M.R.A.)
| | | | - Jaime Salinas Chavira
- Facultad de Medicina Veterinaria y Zootecnia, Universidad Autónoma de Tamaulipas, Ciudad Victoria 87000, Tamaulipas, Mexico; (I.C.A.B.); (J.S.C.); (M.R.A.)
| | - Benigno Estrada Drouaillet
- Facultad de Ingeniería y Ciencias, Universidad Autónoma de Tamaulipas, Ciudad Victoria 87000, Tamaulipas, Mexico;
| | - Miguel Ruiz Albarrán
- Facultad de Medicina Veterinaria y Zootecnia, Universidad Autónoma de Tamaulipas, Ciudad Victoria 87000, Tamaulipas, Mexico; (I.C.A.B.); (J.S.C.); (M.R.A.)
| | - Yuridia Bautista Martínez
- Facultad de Medicina Veterinaria y Zootecnia, Universidad Autónoma de Tamaulipas, Ciudad Victoria 87000, Tamaulipas, Mexico; (I.C.A.B.); (J.S.C.); (M.R.A.)
| |
Collapse
|
40
|
Zhu X, Liu B, Xiao J, Guo M, Zhao S, Hu M, Cui Y, Li D, Wang C, Ma S, Shi Y. Effects of Different Roughage Diets on Fattening Performance, Meat Quality, Fatty Acid Composition, and Rumen Microbe in Steers. Front Nutr 2022; 9:885069. [PMID: 35799586 PMCID: PMC9253607 DOI: 10.3389/fnut.2022.885069] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2022] [Accepted: 05/23/2022] [Indexed: 11/13/2022] Open
Abstract
This study aimed to evaluate different roughages on fatting performance, muscle fatty acids, rumen fermentation and rumen microbes of steers. Seventy-five Simmental crossbred steers were randomly divided into wheat straw group (WG), peanut vine group (PG) and alfalfa hay group (AG), with 5 replicates of 5 steers each. The results showed a highest average daily gain and lowest feed/gain ratio in AG group (P = 0.001). Steers fed alfalfa hay had the highest muscle marbling score and n-3 polyunsaturated fatty acid (PUFA), and also the rumen NH3-N and microbial protein (MCP) concentration among the three groups (P < 0.05). Correlation analysis showed that ruminal NH3-N and MCP were negatively correlated with muscle saturated fatty acid (SFA), while ruminal MCP was positively correlated with muscle PUFA and n-3 PUFA (P < 0.05). 16S rRNA analysis indicated that fed alfalfa hay decreased the abundance of Ruminococcaceae_UCG-001(P = 0.005). More importantly, muscle SFA deposition were positively correlated to the abundance of Ruminococcaceae_UCG-001 (P < 0.05), while the muscle PUFA and n-3 PUFA deposition were negatively correlated to it (P < 0.01). Therefore, alfalfa hay provides a better fattening effect on steers. Alfalfa rich in n-3 PUFA would reduce the abundance of Ruminococcaceae_UCG-001 involved in hydrogenation, increase the rumen protective effect of C18:3 n-3, which is beneficial to the deposition of muscle n-3 PUFA and PUFA.
Collapse
Affiliation(s)
- Xiaoyan Zhu
- Department of Animal Nutrition and Feed Science, College of Animal Science and Technology, Henan Agricultural University, Zhengzhou, China
- Henan Key Laboratory of Grassland Resources Innovation and Utilization, Henan Agricultural University, Zhengzhou, China
- Henan Herbage Engineering Technology Research Center, Henan Agricultural University, Zhengzhou, China
| | - Boshuai Liu
- Department of Animal Nutrition and Feed Science, College of Animal Science and Technology, Henan Agricultural University, Zhengzhou, China
| | - Junnan Xiao
- Department of Animal Nutrition and Feed Science, College of Animal Science and Technology, Henan Agricultural University, Zhengzhou, China
| | - Ming Guo
- Department of Animal Nutrition and Feed Science, College of Animal Science and Technology, Henan Agricultural University, Zhengzhou, China
| | - Shumin Zhao
- Department of Animal Nutrition and Feed Science, College of Animal Science and Technology, Henan Agricultural University, Zhengzhou, China
| | - Menglin Hu
- Department of Animal Nutrition and Feed Science, College of Animal Science and Technology, Henan Agricultural University, Zhengzhou, China
| | - Yalei Cui
- Department of Animal Nutrition and Feed Science, College of Animal Science and Technology, Henan Agricultural University, Zhengzhou, China
- Henan Key Laboratory of Grassland Resources Innovation and Utilization, Henan Agricultural University, Zhengzhou, China
- Henan Herbage Engineering Technology Research Center, Henan Agricultural University, Zhengzhou, China
| | - Defeng Li
- Department of Animal Nutrition and Feed Science, College of Animal Science and Technology, Henan Agricultural University, Zhengzhou, China
- Henan Key Laboratory of Grassland Resources Innovation and Utilization, Henan Agricultural University, Zhengzhou, China
- Henan Herbage Engineering Technology Research Center, Henan Agricultural University, Zhengzhou, China
| | - Chengzhang Wang
- Department of Animal Nutrition and Feed Science, College of Animal Science and Technology, Henan Agricultural University, Zhengzhou, China
- Henan Key Laboratory of Grassland Resources Innovation and Utilization, Henan Agricultural University, Zhengzhou, China
- Henan Herbage Engineering Technology Research Center, Henan Agricultural University, Zhengzhou, China
| | - Sen Ma
- Department of Animal Nutrition and Feed Science, College of Animal Science and Technology, Henan Agricultural University, Zhengzhou, China
- Henan Key Laboratory of Grassland Resources Innovation and Utilization, Henan Agricultural University, Zhengzhou, China
- Henan Herbage Engineering Technology Research Center, Henan Agricultural University, Zhengzhou, China
| | - Yinghua Shi
- Department of Animal Nutrition and Feed Science, College of Animal Science and Technology, Henan Agricultural University, Zhengzhou, China
- Henan Key Laboratory of Grassland Resources Innovation and Utilization, Henan Agricultural University, Zhengzhou, China
- Henan Herbage Engineering Technology Research Center, Henan Agricultural University, Zhengzhou, China
| |
Collapse
|
41
|
Molle G, Cannas A, Gregorini P. A review on the effects of part-time grazing herbaceous pastures on feeding behaviour and intake of cattle, sheep and horses. Livest Sci 2022. [DOI: 10.1016/j.livsci.2022.104982] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
42
|
Buccioni A, Mannelli F, Daghio M, Rapaccini S, Scicutella F, Minieri S. Influence of milk quality and cheese-making procedure on functional fatty acid transfer in three Italian dairy products: Mozzarella, Raveggiolo and Ricotta. Lebensm Wiss Technol 2022. [DOI: 10.1016/j.lwt.2022.113476] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
43
|
Krusinski L, Sergin S, Jambunathan V, Rowntree JE, Fenton JI. Attention to the Details: How Variations in U.S. Grass-Fed Cattle-Feed Supplementation and Finishing Date Influence Human Health. FRONTIERS IN SUSTAINABLE FOOD SYSTEMS 2022. [DOI: 10.3389/fsufs.2022.851494] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
As the global population increases, so does meat consumption. This trend is accompanied by concerns regarding the meat industry, and consumers are demanding transparency on the environmental and health effects of the products they are purchasing. Many leading health organizations recommend reducing red meat consumption. Nevertheless, no differentiation is made among red meats and beef. The beef production system is generally ignored despite nutritional differences between grain- and grass-fed beef. Compared to grain-fed beef, grass-fed beef contains a healthier fatty acid profile, including more omega-3 polyunsaturated fatty acids and conjugated linoleic acid, and increased concentrations of phytochemicals desired by health-conscious customers. However, there is a lack of consistency among grass-fed beef in the United States regarding clear product labeling and cattle dietary components. Grass-fed beef labeling confusion has emerged, including misunderstandings between grass-fed and grass-finished beef. Along with this, previous studies observed significant nutritional variation among grass-finished beef from different producers across the country. Cattle diet has the strongest influence on the nutritional composition of beef. Therefore, understanding differences in feeding practices is key to understanding differing nutritional quality of grass-fed beef. Feeding cattle diverse pastures composed of multiple plant species including grasses and legumes managed in a rotational grazing fashion results in higher omega-3 polyunsaturated fatty acids and phytochemical levels in beef compared to feedlots and monocultures. Seasonal differences including changes in temperature, rainfall, grazing practices, and plant growth cycles affect the nutritional composition of feeds and ultimately meat. Additional feeds utilized in grass-fed beef production systems such as conserved forages may reduce or increase health-promoting nutrients in grass-fed beef, while supplements such as grape byproducts and flaxseed may improve its nutritional profile. Further research should measure the effects of individual feedstuff and the finishing period on the nutritional profile on grass-fed beef. A better understanding of these details will be a step toward the standardization of pasture-raised ruminant products, strengthening the relationship between grass-fed beef consumption and human health.
Collapse
|
44
|
Conte G, Dimauro C, Daghio M, Serra A, Mannelli F, McAmmond BM, Van Hamme JD, Buccioni A, Viti C, Mantino A, Mele M. Exploring the relationship between bacterial genera and lipid metabolism in bovine rumen. Animal 2022; 16:100520. [PMID: 35468508 DOI: 10.1016/j.animal.2022.100520] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2021] [Revised: 03/15/2022] [Accepted: 03/18/2022] [Indexed: 11/01/2022] Open
Abstract
The rumen is characterised by a complex microbial ecosystem, which is particularly active in lipid metabolism. Several studies demonstrated a role of diet and breed on bacterial community profile, with the effect on metabolic pathways. Despite the knowledge achieved on metabolism and the bacterial profile, little is known about the relationship between individual bacteria and metabolic pathways. Therefore, a multivariate approach was used to search for possible relationships between bacteria and products of several pathways. The correlation between rumen bacterial community composition and rumen lipid metabolism was assessed in 40 beef steers (20 Maremmana and 20 Aubrac) reared with the same system and fed the same diet. A canonical discriminant analysis combined with a canonical correlation analysis (CCA) was performed to explore this correlation. The variables showing a Pearson correlation higher than 0.6 as absolute value and significant were retained for CCA considering the relationship of bacterial composition with several metabolic pathways. The results indicated that some bacterial genera could have significant impacts on the presence of several fatty acids. However, the relationship between genera and fatty acid changes according to the breed, demonstrating that the metabolic pathways change according to the host genetic background, related to breed evolution, although there is also an intra-breed genetic background which should not be ignored. In Maremmana, Succiniclasticum and Rikenellaceae_RC9_gut_group showed a high positive correlation with dimethylacetals (DMAs) DMAC13:0, DMAC14:0, DMAC14:0iso, DMAC15:0, DMAC15:0iso, and DMAC18:0. Prevotellaceae_UCG-003 correlates with C18:3c9c12c15 and C18:1t11, while Fibrobacter and Succiniclasticum correlate with C18:2c9t11 and Lachnospiraceae_NK3A20_group correlates with C18:1c12. Prevotellaceae_UCG-003, Ruminococcaceae_UCG-010, and Oribacterium showed a positive correlation with C13:0iso, and C17:0. Conversely, in Aubrac, Treponema_2 and Rikenellaceae_RC9_gut_group correlated with DMAC14:0iso, DMAC16:0iso, DMAC17:0iso, while Ruminococcaceae_UCG-010, Christensenellaceae_R-7_group and Ruminococcaceae_NK4A214_group correlated with DMAC18:1t11, DMAC14:0, DMAC18:1c12. Acetitomaculum correlated with C18:2c9c12, C18:1c12, C18:1c13, C18:1t12 and Lachnospiraceae_NK3A20_group with C18:1t6-8 and C18:1t9. Saccharofermentas, Ruminococcaceae_UCG-010 and Rikenellaceae_RC9_gut_group correlated with C18:2c9t11 while, Prevotellaceae_UCG-001 and Ruminococcus_1 correlated with C14:0iso, C15:0, C15:0iso, C17:0. Saccharofermentans, Rikenellaceae_RC9_gut_group, Ruminococcaceae_NK4A214_group, and Ruminococcaceae_UCG-010 correlated with C13:1c12 and C16:0iso. These results lead to hypothesise a possible association between several metabolic pathways and one or a few bacterial genera. If these associations are confirmed by further investigations that verify the causality of a bacterial genus with a particular metabolic process, it will be possible to deepen the knowledge on the activity of the rumen population in lipid metabolism. This approach appears to be a promising tool for uncovering the correlation between bacterial genera and products of rumen lipid metabolism.
Collapse
Affiliation(s)
- G Conte
- Dipartimento di Scienze Agrarie, Alimentari e Agro-ambientali, University of Pisa, Via del Borghetto 80, 56124 Pisa, Italy
| | - C Dimauro
- Dipartimento di Scienze Agrarie, University of Sassari, Via de Nicola 9, 07100 Sassari, Italy
| | - M Daghio
- Dipartimento di Scienze e Tecnologie Agrarie, Alimentari, Ambientali e Forestali, University of Florence, Piazzale delle Cascine 18, 50144 Florence, Italy.
| | - A Serra
- Dipartimento di Scienze Agrarie, Alimentari e Agro-ambientali, University of Pisa, Via del Borghetto 80, 56124 Pisa, Italy
| | - F Mannelli
- Dipartimento di Scienze e Tecnologie Agrarie, Alimentari, Ambientali e Forestali, University of Florence, Piazzale delle Cascine 18, 50144 Florence, Italy
| | - B M McAmmond
- Department of Biological Sciences, Thompson Rivers University, Kamloops, BC V2C 0C8, Canada
| | - J D Van Hamme
- Department of Biological Sciences, Thompson Rivers University, Kamloops, BC V2C 0C8, Canada
| | - A Buccioni
- Dipartimento di Scienze e Tecnologie Agrarie, Alimentari, Ambientali e Forestali, University of Florence, Piazzale delle Cascine 18, 50144 Florence, Italy
| | - C Viti
- Dipartimento di Scienze e Tecnologie Agrarie, Alimentari, Ambientali e Forestali, University of Florence, Piazzale delle Cascine 18, 50144 Florence, Italy
| | - A Mantino
- Istituto di Scienze della Vita, Sant'Anna School of Advanced Studies, 56127 Pisa, Italy
| | - M Mele
- Dipartimento di Scienze Agrarie, Alimentari e Agro-ambientali, University of Pisa, Via del Borghetto 80, 56124 Pisa, Italy
| |
Collapse
|
45
|
Szterk A, Ofiara K, Strus B, Abdullaev I, Ferenc K, Sady M, Flis S, Gajewski Z. Content of Health-Promoting Fatty Acids in Commercial Sheep, Cow and Goat Cheeses. Foods 2022; 11:foods11081116. [PMID: 35454702 PMCID: PMC9028068 DOI: 10.3390/foods11081116] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2022] [Revised: 03/29/2022] [Accepted: 04/06/2022] [Indexed: 12/14/2022] Open
Abstract
The study aimed to examine samples of different market original sheep cow and goat cheeses, in respect of the content and profile of FA with special emphasis on health-promoting FA. The content of fatty acids in the examined cheeses was highly differentiated and depended on the sort and type of cheese. The content of fatty acid groups in milk fat varied within the limits: SFA, 55.2–67.2%; SCSFA, 10.9–23.4%; BCFA, 1.6–2.9%; MUFA, 15.2–23.4%; PUFA, 1.9–4.3%; trans-MUFA, 1.8–6.0%; and CLA, 1.0–3.1%. From among the examined cheeses, the seasonal sheep cheeses (Oscypek) and mountain cow cheeses were characterized by the highest content of health-promoting fatty acids. The content of health-promoting fatty acids in the fat fraction of these cheeses was CLA 2.1–3.1%, trans-MUFA 3.5–6%, BCFA 2.7–2.9%, and SCSFA 12–18%.
Collapse
Affiliation(s)
- Arkadiusz Szterk
- Transfer of Science Sp. z o.o., Strzygłowska 15, 04-872 Warsaw, Poland; (K.O.); (B.S.); (I.A.)
- Center for Translational Medicine, Warsaw University of Life Sciences, Nowoursynowska 100, 02-797 Warsaw, Poland; (K.F.); (M.S.); (S.F.); (Z.G.)
- Correspondence:
| | - Karol Ofiara
- Transfer of Science Sp. z o.o., Strzygłowska 15, 04-872 Warsaw, Poland; (K.O.); (B.S.); (I.A.)
| | - Bartosz Strus
- Transfer of Science Sp. z o.o., Strzygłowska 15, 04-872 Warsaw, Poland; (K.O.); (B.S.); (I.A.)
| | - Ilkhom Abdullaev
- Transfer of Science Sp. z o.o., Strzygłowska 15, 04-872 Warsaw, Poland; (K.O.); (B.S.); (I.A.)
| | - Karolina Ferenc
- Center for Translational Medicine, Warsaw University of Life Sciences, Nowoursynowska 100, 02-797 Warsaw, Poland; (K.F.); (M.S.); (S.F.); (Z.G.)
| | - Maria Sady
- Center for Translational Medicine, Warsaw University of Life Sciences, Nowoursynowska 100, 02-797 Warsaw, Poland; (K.F.); (M.S.); (S.F.); (Z.G.)
| | - Sylwia Flis
- Center for Translational Medicine, Warsaw University of Life Sciences, Nowoursynowska 100, 02-797 Warsaw, Poland; (K.F.); (M.S.); (S.F.); (Z.G.)
| | - Zdzisław Gajewski
- Center for Translational Medicine, Warsaw University of Life Sciences, Nowoursynowska 100, 02-797 Warsaw, Poland; (K.F.); (M.S.); (S.F.); (Z.G.)
| |
Collapse
|
46
|
Preliminary Investigation of Mixed Orchard Hays on the Meat Quality, Fatty Acid Profile, and Gastrointestinal Microbiota in Goat Kids. Animals (Basel) 2022; 12:ani12060780. [PMID: 35327177 PMCID: PMC8944599 DOI: 10.3390/ani12060780] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2022] [Revised: 03/15/2022] [Accepted: 03/16/2022] [Indexed: 02/07/2023] Open
Abstract
This preliminary investigation was designed to study the effects of different mixed orchard hays on meat quality, fatty acids, amino acids, rumen intestinal microflora, and the relationship between rumen bacteria and fatty acids in the longissimus dorsi muscle of Saanen dairy goats. In this preliminary investigation, goats were separately fed crop straws (corn and wheat straws) and alfalfa (Medicago sativa L.) (CK group), alfalfa + oats (Avena sativa L.) (group I), alfalfa + perennial ryegrass (Lolium perenne L.) (group II), and hairy vetch (Vicia villosa Roth.) + perennial ryegrass (group III). There were differences in shear force and cooking loss between treatments. The contents of saturated fatty acids (SFAs) C14:0, C16:0, and C18:0 in the CK group were significantly higher than those in other three groups (p < 0.001). The 16S rDNA sequencing results showed that the relative abundance of Proteobacteria in group II were higher than those in other three groups (p < 0.05). Association analysis showed that Prevotella_1 was negatively correlated with C18:0 and significantly positively correlated with C16:1, while Clostridium and Romboutsia showed a positive correlation with monounsaturated fatty acids (MUFAs) and polyunsaturated fatty acids (PUFAs). Therefore, feeding mixed hays can increase beneficial fatty acids and the percentages of associated bacteria in rumen and intestines.
Collapse
|
47
|
Effects of partial substitution of grain by agroindustrial byproducts and sunflower seed supplementation in beef haylage-based finisher diets on growth, in vitro methane production and carcass and meat quality. Meat Sci 2022; 188:108782. [DOI: 10.1016/j.meatsci.2022.108782] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2021] [Revised: 02/23/2022] [Accepted: 02/24/2022] [Indexed: 11/20/2022]
|
48
|
Hervás G, Boussalia Y, Labbouz Y, Della Badia A, Toral P, Frutos P. Insect oils and chitosan in sheep feeding: Effects on in vitro ruminal biohydrogenation and fermentation. Anim Feed Sci Technol 2022. [DOI: 10.1016/j.anifeedsci.2022.115222] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
|
49
|
Davis H, Magistrali A, Butler G, Stergiadis S. Nutritional Benefits from Fatty Acids in Organic and Grass-Fed Beef. Foods 2022; 11:foods11050646. [PMID: 35267281 PMCID: PMC8909876 DOI: 10.3390/foods11050646] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2022] [Revised: 02/18/2022] [Accepted: 02/21/2022] [Indexed: 12/12/2022] Open
Abstract
Livestock production is under increasing scrutiny as a component of the food supply chain with a large impact on greenhouse gas emissions. Amidst growing calls to reduce industrial ruminant production, there is room to consider differences in meat quality and nutritional benefits of organic and/or pasture-based management systems. Access to forage, whether fresh or conserved, is a key influencing factor for meat fatty acid profile, and there is increasing evidence that pasture access is particularly beneficial for meat’s nutritional quality. These composition differences ultimately impact nutrient supply to consumers of conventional, organic and grass-fed meat. For this review, predicted fatty acid supply from three consumption scenarios were modelled: i. average UK population National Diet and Nutrition Survey (NDNS) (<128 g/week) red meat consumption, ii. red meat consumption suggested by the UK National Health Service (NHS) (<490 g/week) and iii. red meat consumption suggested by the Eat Lancet Report (<98 g/week). The results indicate average consumers would receive more of the beneficial fatty acids for human health (especially the essential omega-3, alpha-linolenic acid) from pasture-fed beef, produced either organically or conventionally.
Collapse
Affiliation(s)
- Hannah Davis
- School of Natural and Environmental Science, Newcastle University, Newcastle-upon-Tyne NE1 7RU, UK; (A.M.); (G.B.)
- Correspondence: (H.D.); (S.S.)
| | - Amelia Magistrali
- School of Natural and Environmental Science, Newcastle University, Newcastle-upon-Tyne NE1 7RU, UK; (A.M.); (G.B.)
| | - Gillian Butler
- School of Natural and Environmental Science, Newcastle University, Newcastle-upon-Tyne NE1 7RU, UK; (A.M.); (G.B.)
| | - Sokratis Stergiadis
- Department of Animal Sciences, School of Agriculture, Policy and Development, University of Reading, Reading RG6 6EU, UK
- Correspondence: (H.D.); (S.S.)
| |
Collapse
|
50
|
Fatty Acid Profile of Intramuscular Fat in the Longissimus Lumborum and Semimembranosus Muscles of Bulls Fed Diets Based on Virginia Fanpetals, Grass and Maize Silages. ANNALS OF ANIMAL SCIENCE 2022. [DOI: 10.2478/aoas-2021-0023] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Abstract
The aim of this study was to determine the effect of Virginia fanpetals (Sida hermaphrodita) silage on the fatty acid profile and the content of selected nutrients and vitamins in the Longissimus lumborum (LL) and Semimembranosus (SM) muscles of young bulls. Forty Polish Holstein-Friesian bulls aged 16 months were assigned to four dietary treatments (n=10) and were fed different types of silage during a 7-month fattening period. The proportion (g/kg dry matter) of silage in the diets was as follows: (1) grass silage (GS) (600); (2) Virginia fanpetals silage (VFS) (600); (3) VFS (300) and GS (300); and (4) VFS (300) and maize silage (MS) (300). Silage was supplemented with concentrate at 400 g/kg DM in each diet. The animals were slaughtered at the end of the fattening period. The intramuscular fat (IMF) of bulls fed GS had the highest (P<0.05) concentrations of n-3 polyunsaturated fatty acids (PUFAs) and linolenic acid (LNA), whereas the IMF of bulls receiving GS and VFS was characterized by the highest proportion of MUFAs, mostly oleic acid (C18:1 cis 9). In comparison with the LL muscle, the SM muscle contained less IMF (by 40%) with a more nutritionally desirable profile. The SM muscle was characterized by a more desirable mineral composition and a higher concentration of α-tocopherol.
Collapse
|