1
|
Cedeno FRP, Olubiyo OJ, Ferreira S. From microbial proteins to cultivated meat for alternative meat-like products: a review on sustainable fermentation approaches. J Biol Eng 2025; 19:44. [PMID: 40369620 PMCID: PMC12077041 DOI: 10.1186/s13036-025-00509-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2025] [Accepted: 04/15/2025] [Indexed: 05/16/2025] Open
Abstract
The global demand for protein is rapidly increasing due to population growth and changing dietary preferences, highlighting the need for sustainable alternatives to traditional animal-based proteins. This review explores cultivated meat and microbial alternative proteins, focusing on their potential to meet nutritional needs while mitigating environmental impacts. It also examines the production of cultivated meat as well as various sources of microbial proteins, including mycoproteins, bacterial proteins, and microalgae, highlighting their nutritional profiles, production methods, and commercial applications. This includes an evaluation of the state of commercialization of mycoproteins and the innovative use of agricultural and industrial by-products as substrates for microbial fermentation. The integration of microbial protein production with the bioenergy sector is evaluated as a relevant alternative to attain a synergetic effect between energy and food production systems. Ultimately, this work aims to underscore the importance of microbial proteins in advancing towards a more sustainable protein production system, offering insights into current challenges and future opportunities in the field of fermentation to produce alternative proteins.
Collapse
Affiliation(s)
- Fernando Roberto Paz Cedeno
- Department of Food Science, The University of ArkansasSystem - Division of Agriculture (UADA), , Fayetteville, AR, 72704, USA
| | - Olumide Joseph Olubiyo
- Department of Food Science, The University of ArkansasSystem - Division of Agriculture (UADA), , Fayetteville, AR, 72704, USA
| | - Sungil Ferreira
- Department of Food Science, The University of ArkansasSystem - Division of Agriculture (UADA), , Fayetteville, AR, 72704, USA.
| |
Collapse
|
2
|
Hu Z, Li J, Qian J, Liu J, Zhou W. Efficacy and mechanisms of rotating algal biofilm system in remediation of soy sauce wastewater. BIORESOURCE TECHNOLOGY 2024; 406:131047. [PMID: 38942212 DOI: 10.1016/j.biortech.2024.131047] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Revised: 06/19/2024] [Accepted: 06/25/2024] [Indexed: 06/30/2024]
Abstract
This study investigated the efficacy of the rotating algal biofilm (RAB) for treating soy sauce wastewater (SW) and its related treatment mechanisms. The RAB system demonstrated superior nutrient removal (chemical oxygen demand, ammonium nitrogen, total nitrogen, and phosphorus for 92 %, 94 %, 91 %, and 82 %, respectively) and biofilm productivity (14 g m-2 d-1) at optimized 5-day harvest time and 2-day hydraulic retention time. This was mainly attributed to the synergistic interactions within the algae-fungi (Apiotrichum)-bacteria (Acinetobacter and Rhizobia) consortium, which effectively assimilated certain extracellular polymeric substances into biomass to enhance algal biofilm growth. Increased algal productivity notably improved protein and essential amino acid contents in the biomass, suggesting a potential for animal feed applications. This study not only demonstrates a sustainable approach for managing SW but also provides insight into the nutrient removal and biomass conversion, offering a viable strategy for large-scale applications in nutrient recovery and wastewater treatment.
Collapse
Affiliation(s)
- Zimin Hu
- Key Laboratory of Poyang Lake Environment and Resource Utilization, Ministry of Education, School of Resources & Environment, Nanchang University, Nanchang 330031, China
| | - Jingjing Li
- Key Laboratory of Poyang Lake Environment and Resource Utilization, Ministry of Education, School of Resources & Environment, Nanchang University, Nanchang 330031, China; Center for Algae Innovation & Engineering Research, Nanchang University, Nanchang 330031, China; School of Infrastructure Engineering, Nanchang University, Nanchang 330031, China
| | - Jun Qian
- Key Laboratory of Poyang Lake Environment and Resource Utilization, Ministry of Education, School of Resources & Environment, Nanchang University, Nanchang 330031, China; Center for Algae Innovation & Engineering Research, Nanchang University, Nanchang 330031, China.
| | - Jin Liu
- Key Laboratory of Poyang Lake Environment and Resource Utilization, Ministry of Education, School of Resources & Environment, Nanchang University, Nanchang 330031, China; Center for Algae Innovation & Engineering Research, Nanchang University, Nanchang 330031, China
| | - Wenguang Zhou
- Key Laboratory of Poyang Lake Environment and Resource Utilization, Ministry of Education, School of Resources & Environment, Nanchang University, Nanchang 330031, China; Center for Algae Innovation & Engineering Research, Nanchang University, Nanchang 330031, China.
| |
Collapse
|
3
|
Su M, Bastiaens L, Verspreet J, Hayes M. Applications of Microalgae in Foods, Pharma and Feeds and Their Use as Fertilizers and Biostimulants: Legislation and Regulatory Aspects for Consideration. Foods 2023; 12:3878. [PMID: 37893770 PMCID: PMC10606004 DOI: 10.3390/foods12203878] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2023] [Revised: 09/24/2023] [Accepted: 10/13/2023] [Indexed: 10/29/2023] Open
Abstract
Microalgae are a rich resource of lipids, proteins, carbohydrates and pigments with nutritional and health benefits. They increasingly find use as ingredients in functional foods and feeds as well as in cosmetics and agricultural products including biostimulants. One of their distinct advantages is their ability to grow on wastewaters and other waste streams, and they are considered an environmentally friendly and cheap method to recover nutrients and remove pollutants from the environment. However, there are limits concerning their applications if grown on certain waste streams. Within, we collate an overview of existing algal applications and current market scenarios for microalgal products as foods and feeds along with relevant legislative requirements concerning their use in Europe and the United States. Microalgal compounds of interest and their extraction and processing methodologies are summarized, and the benefits and caveats of microalgae cultivated in various waste streams and their applications are discussed.
Collapse
Affiliation(s)
- Min Su
- The Food BioSciences Department Ashtown, Teagasc Food Research Centre, 15D05 Dublin, Ireland;
| | - Leen Bastiaens
- Flemish Institute for Technological Research (VITO), 2400 Mol, Belgium
| | - Joran Verspreet
- Flemish Institute for Technological Research (VITO), 2400 Mol, Belgium
| | - Maria Hayes
- The Food BioSciences Department Ashtown, Teagasc Food Research Centre, 15D05 Dublin, Ireland;
| |
Collapse
|
4
|
Bhandari M, Kumar P, Bhatt P, Simsek H, Kumar R, Chaudhary A, Malik A, Prajapati SK. An integration of algae-mediated wastewater treatment and resource recovery through anaerobic digestion. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2023; 342:118159. [PMID: 37207460 DOI: 10.1016/j.jenvman.2023.118159] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Revised: 04/24/2023] [Accepted: 05/10/2023] [Indexed: 05/21/2023]
Abstract
Eutrophication is one of the major emerging challenges in aquatic environment. Industrial facilities, including food, textile, leather, and paper, generate a significant amount of wastewater during their manufacturing process. Discharge of nutrient-rich industrial effluent into aquatic systems causes eutrophication, eventually disturbs the aquatic system. On the other hand, algae provide a sustainable approach to treat wastewater, while the resultant biomass may be used to produce biofuel and other valuable products such as biofertilizers. This review aims to provide new insight into the application of algal bloom biomass for biogas and biofertilizer production. The literature review suggests that algae can treat all types of wastewater (high strength, low strength, and industrial). However, algal growth and remediation potential mainly depend on growth media composition and operation conditions such as light intensity, wavelength, light/dark cycle, temperature, pH, and mixing. Further, the open pond raceways are cost-effective compared to closed photobioreactors, thus commercially applied for biomass generation. Additionally, converting wastewater-grown algal biomass into methane-rich biogas through anaerobic digestion seems appealing. Environmental factors such as substrate, inoculum-to-substrate ratio, pH, temperature, organic loading rate, hydraulic retention time, and carbon/nitrogen ratio significantly impact the anaerobic digestion process and biogas production. Overall, further pilot-scale studies are required to warrant the real-world applicability of the closed-loop phycoremediation coupled biofuel production technology.
Collapse
Affiliation(s)
- Mamta Bhandari
- Environment and Biofuel Research Lab (EBRL), Department of Hydro and Renewable Energy, Indian Institute of Technology (IIT) Roorkee, Roorkee, Uttarakhand, 247667, India
| | - Pushpendar Kumar
- Applied Microbiology Lab (AML), Centre for Rural Development and Technology, Indian Institute of Technology, Delhi, Hauz Khas, New Delhi, 110016, India.
| | - Pankaj Bhatt
- Department of Agricultural & Biological Engineering, Purdue University, W. Lafayette, IN, USA
| | - Halis Simsek
- Department of Agricultural & Biological Engineering, Purdue University, W. Lafayette, IN, USA
| | - Ravindra Kumar
- Department of Physics, Janta Vedic Mahavidyalaya, Baraut (Baghpat), UP, 250611, India
| | - Aman Chaudhary
- Environment and Biofuel Research Lab (EBRL), Department of Hydro and Renewable Energy, Indian Institute of Technology (IIT) Roorkee, Roorkee, Uttarakhand, 247667, India
| | - Anushree Malik
- Applied Microbiology Lab (AML), Centre for Rural Development and Technology, Indian Institute of Technology, Delhi, Hauz Khas, New Delhi, 110016, India
| | - Sanjeev Kumar Prajapati
- Environment and Biofuel Research Lab (EBRL), Department of Hydro and Renewable Energy, Indian Institute of Technology (IIT) Roorkee, Roorkee, Uttarakhand, 247667, India.
| |
Collapse
|
5
|
Parmar P, Kumar R, Neha Y, Srivatsan V. Microalgae as next generation plant growth additives: Functions, applications, challenges and circular bioeconomy based solutions. FRONTIERS IN PLANT SCIENCE 2023; 14:1073546. [PMID: 37063190 PMCID: PMC10101342 DOI: 10.3389/fpls.2023.1073546] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/18/2022] [Accepted: 01/05/2023] [Indexed: 06/19/2023]
Abstract
Sustainable agriculture practices involve the application of environment-friendly plant growth promoters and additives that do not negatively impact the health of the ecosystem. Stringent regulatory frameworks restricting the use of synthetic agrochemicals and the increase in demand for organically grown crops have paved the way for the development of novel bio-based plant growth promoters. In this context, microalgae biomass and derived agrochemicals offer novel sources of plant growth promotors that enhance crop productivity and impart disease resistance. These beneficial effects could be attributed to the presence of wide range of biomolecules such as soluble amino acid (AA), micronutrients, polysaccharides, phytohormones and other signaling molecules in microalgae biomass. In addition, their phototrophic nature, high photosynthetic efficiency, and wide environmental adaptability make them an attractive source of biostimulants, biofertilizers and biopesticides. The present review aims to describe the various plant growth promoting metabolites produced by microalgae and their effects on plant growth and productivity. Further, the effects elicited by microalgae biostimulants with respect to different modes of applications such as seed treatments, foliar spray and soil/root drenching is reviewed in detail. In addition, the ability of microalgae metabolites to impart tolerance against various abiotic and biotic stressors along with the mechanism of action is discussed in this paper. Although the use of microalgae based biofertilizers and biostimulants is gaining popularity, the high nutrient and water requirements and energy intensive downstream processes makes microalgae based technology commercially unsustainable. Addressing this challenge, we propose a circular economy model of microalgae mediated bioremediation coupled with biorefinery approaches of generating high value metabolites along with biofertilizer applications. We discuss and review new trends in enhancing the sustainability of microalgae biomass production by co-cultivation of algae with hydroponics and utilization of agriculture effluents.
Collapse
Affiliation(s)
- Priyanka Parmar
- Applied Phycology and Food Technology Laboratory, Council of Scientific and Industrial Research (CSIR)- Institute of Himalayan Bioresource Technology, Palampur, Himachal Pradesh, India
- Academy of Scientific and Innovative Research (AcSIR), Council of Scientific and Industrial Research -Human Resource Development Centre (CSIR-HRDC), Ghaziabad, Uttar Pradesh, India
| | - Raman Kumar
- Applied Phycology and Food Technology Laboratory, Council of Scientific and Industrial Research (CSIR)- Institute of Himalayan Bioresource Technology, Palampur, Himachal Pradesh, India
- Academy of Scientific and Innovative Research (AcSIR), Council of Scientific and Industrial Research -Human Resource Development Centre (CSIR-HRDC), Ghaziabad, Uttar Pradesh, India
| | - Yograj Neha
- Applied Phycology and Food Technology Laboratory, Council of Scientific and Industrial Research (CSIR)- Institute of Himalayan Bioresource Technology, Palampur, Himachal Pradesh, India
| | - Vidyashankar Srivatsan
- Applied Phycology and Food Technology Laboratory, Council of Scientific and Industrial Research (CSIR)- Institute of Himalayan Bioresource Technology, Palampur, Himachal Pradesh, India
- Academy of Scientific and Innovative Research (AcSIR), Council of Scientific and Industrial Research -Human Resource Development Centre (CSIR-HRDC), Ghaziabad, Uttar Pradesh, India
| |
Collapse
|
6
|
Tzima S, Georgiopoulou I, Louli V, Magoulas K. Recent Advances in Supercritical CO 2 Extraction of Pigments, Lipids and Bioactive Compounds from Microalgae. Molecules 2023; 28:molecules28031410. [PMID: 36771076 PMCID: PMC9920624 DOI: 10.3390/molecules28031410] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2022] [Revised: 01/19/2023] [Accepted: 01/26/2023] [Indexed: 02/05/2023] Open
Abstract
Supercritical CO2 extraction is a green method that combines economic and environmental benefits. Microalgae, on the other hand, is a biomass in abundance, capable of providing a vast variety of valuable compounds, finding applications in the food industry, cosmetics, pharmaceuticals and biofuels. An extensive study on the existing literature concerning supercritical fluid extraction (SFE) of microalgae has been carried out focusing on carotenoids, chlorophylls, lipids and fatty acids recovery, as well as the bioactivity of the extracts. Moreover, kinetic models used to describe SFE process and experimental design are included. Finally, biomass pretreatment processes applied prior to SFE are mentioned, and other extraction methods used as benchmarks are also presented.
Collapse
|
7
|
Santiago-Díaz P, Rico M, Rivero A, Santana-Casiano M. Bioactive metabolites of microalgae from Canary Islands for functional food and feed uses. Chem Biodivers 2022; 19:e202200230. [PMID: 35970767 DOI: 10.1002/cbdv.202200230] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2022] [Accepted: 08/15/2022] [Indexed: 11/08/2022]
Abstract
Three freshwater microalgae ( Spirogyra sp ., Cosmarium sp . , and Cosmarium blytii ) collected from several locations in Gran Canaria have been studied to explore their potential as a novel source of bioactive compounds for biotechnological applications. Soluble carbohydrates were quantified after extraction with 3M HCl at 100ºC, ranging from 35.8 to 43.3%, and with water at room temperature, ranging from 19 to 22.8%. Amino acids glutamic acid, proline and aspartic acid were quantified by RP-HPLC. Glutamic acid was the most abundant, ranging from 12.2 to 3.63 mg g -1 of dry biomass. Cosmarium blytii was the richest sample in amino acids (24.02 mg g -1 of dry weight). In addition, Cosmarium blytii and Spyrogira sp. exhibited higher radical scavenging activity (RSA) against 1,1-diphenyl-2-picrylhydrazyl (DPPH) than that of the synthetic antioxidant butylhydroxytoluene (BHT), commonly used as food additive. These results show a great potential of these microalgae for exploitation in the food, feed and pharmaceutical industries.
Collapse
Affiliation(s)
- Paula Santiago-Díaz
- Universidad de las Palmas de Gran Canaria, chemistry, carretera de Tafira s/n, 35001, Las Palmas De Gran Canaria, SPAIN
| | - Milagros Rico
- University of Las Palmas de Gran Canaria: Universidad de las Palmas de Gran Canaria, Chemistry, carretera de Tafira s/n, 35017, Las Palmas de Gran Canaria, SPAIN
| | - Argimiro Rivero
- Universidad de las Palmas de Gran Canaria, chemistry, carretera de Tafira s/n, 35001, Las Palmas de Gran Canaria, SPAIN
| | - Magdalena Santana-Casiano
- Universidad de las Palmas de Gran Canaria, chemistry, carretera de Tafina s/n, 35017, las palmas de gran canaria, SPAIN
| |
Collapse
|
8
|
Abstract
Whole-cell microalgae biomass and their specific metabolites are excellent sources of renewable and alternative feedstock for various products. In most cases, the content and quality of whole-cell biomass or specific microalgal metabolites could be produced by both fresh and marine microalgae strains. However, a large water footprint for freshwater microalgae strain is a big concern, especially if the biomass is intended for non-food applications. Therefore, if any marine microalgae could produce biomass of desired quality, it would have a competitive edge over freshwater microalgae. Apart from biofuels, recently, microalgal biomass has gained considerable attention as food ingredients for both humans and animals and feedstock for different bulk chemicals. In this regard, several technologies are being developed to utilize marine microalgae in the production of food, feed, and biofuels. Nevertheless, the production of suitable and cheap biomass feedstock using marine microalgae has faced several challenges associated with cultivation and downstream processing. This review will explore the potential pathways, associated challenges, and future directions of developing marine microalgae biomass-based food, feed, and fuels (3F).
Collapse
|
9
|
Kumar R, Hegde AS, Sharma K, Parmar P, Srivatsan V. Microalgae as a sustainable source of edible proteins and bioactive peptides – Current trends and future prospects. Food Res Int 2022; 157:111338. [DOI: 10.1016/j.foodres.2022.111338] [Citation(s) in RCA: 47] [Impact Index Per Article: 15.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2022] [Revised: 04/29/2022] [Accepted: 04/30/2022] [Indexed: 12/23/2022]
|
10
|
Ahmad A, W Hassan S, Banat F. An overview of microalgae biomass as a sustainable aquaculture feed ingredient: food security and circular economy. Bioengineered 2022; 13:9521-9547. [PMID: 35387561 PMCID: PMC9161971 DOI: 10.1080/21655979.2022.2061148] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Sustainable management of natural resources is critical to food security. The shrimp feed and fishery sector is expanding rapidly, necessitating the development of alternative sustainable components. Several factors necessitate the exploration of a new source of environmentally friendly and nutrient-rich fish feed ingredients. Microalgal biomass has the potential to support the growth of fish and shrimp aquaculture for global food security in the bio-economy. Algal biorefineries must valorize the whole crop to develop a viable microalgae-based economy. Microalgae have the potential to replace fish meal and fish oil in aquaculture and ensure sustainability standards. Microalgae biomasses provide essential amino acids, valuable triglycerides such as lipids, vitamins, and pigments, making them suitable as nutritional supplements in livestock feed formulations. Fish and microalgae have similar nutritional profiles, and digestibility is a critical aspect of the aquafeed formulation. A highly digestible feed reduces production costs, feed waste, and the risk of eutrophication. Due to low input costs, low carbon footprint, wastewater treatment benefits, and carbon credits from industrial CO2 conversion, microalgae-based fish and shrimp feeds have the potential to provide significant economic benefits. However, several challenges must be addressed before microalgal biomass and bioproducts may be used as fish feeds, including heavy metal bioaccumulation, poor algal biomass digestion, and antinutrient effects. Knowledge of biochemical composition is limited and diverse, and information on nutritional value is scattered or contradictory. This review article presents alternative approaches that could be used in aquaculture to make microalgal biomass a viable alternative to fish meal.
Collapse
Affiliation(s)
- Ashfaq Ahmad
- Department of Chemical Engineering, Khalifa University of Science and Technology, Abu Dhabi, United Arab Emirates
| | - Shadi W Hassan
- Department of Chemical Engineering, Khalifa University of Science and Technology, Abu Dhabi, United Arab Emirates
| | - Fawzi Banat
- Department of Chemical Engineering, Khalifa University of Science and Technology, Abu Dhabi, United Arab Emirates
| |
Collapse
|
11
|
Microalgae as Feed Ingredients and a Potential Source of Competitive Advantage in Livestock Production: A review. Livest Sci 2022. [DOI: 10.1016/j.livsci.2022.104907] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
12
|
Singh S, Verma DK, Thakur M, Tripathy S, Patel AR, Shah N, Utama GL, Srivastav PP, Benavente-Valdés JR, Chávez-González ML, Aguilar CN. Supercritical fluid extraction (SCFE) as green extraction technology for high-value metabolites of algae, its potential trends in food and human health. Food Res Int 2021; 150:110746. [PMID: 34865764 DOI: 10.1016/j.foodres.2021.110746] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2021] [Revised: 10/01/2021] [Accepted: 10/06/2021] [Indexed: 02/07/2023]
Abstract
Application of high-value algal metabolites (HVAMs) in cosmetics, additives, pigments, foods and medicines are very important. These HVAMs can be obtained from the cultivation of micro- and macro-algae. These metabolites can benefit human and animal health in a physiological and nutritional manner. However, because of conventional extraction methods and their energy and the use of pollutant solvents, the availability of HVAMs from algae remains insufficient. Receiving their sustainability and environmental benefits have recently made green extraction technologies for HVAM extractions more desirable. But very little information is available about the technology of green extraction of algae from these HVAM. This review, therefore, highlights the supercritical fluid extraction (SCFE) as principal green extraction technologyand theirideal parameters for extracting HVAMs. In first, general information is provided concerning the HVAMs and their components of macro and micro origin. The review also includes a description of SCFE technology's properties, instrumentation operation, solvents used, and the merits and demerits. Moreover, there are several HVAMs associated with their numerous high-level biological activities which include high-level antioxidant, anti-inflammatory, anticancer and antimicrobial activity and have potential health-beneficial effects in humans since they are all HVAMs, such as foods and nutraceuticals. Finally, it provides future insights, obstacles, and suggestions for selecting the right technologies for extraction.
Collapse
Affiliation(s)
- Smita Singh
- Department of Nutrition and Dietetics, University Institute of Applied Health Sciences, Chandigarh University, Chandigarh 140413, Punjab, India.
| | - Deepak Kumar Verma
- Agricultural and Food Engineering Department, Indian Institute of Technology Kharagpur, Kharagpur 721302, West Bengal, India.
| | - Mamta Thakur
- Department of Food Technology, School of Sciences, ITM University, Gwalior 474001, Madhya Pradesh, India.
| | - Soubhagya Tripathy
- Agricultural and Food Engineering Department, Indian Institute of Technology Kharagpur, Kharagpur 721302, West Bengal, India
| | - Ami R Patel
- Division of Dairy Microbiology, Mansinhbhai Institute of Dairy and Food Technology-MIDFT, Dudhsagar Dairy Campus, Mehsana 384 002, Gujarat, India
| | - Nihir Shah
- Division of Dairy Microbiology, Mansinhbhai Institute of Dairy and Food Technology-MIDFT, Dudhsagar Dairy Campus, Mehsana 384 002, Gujarat, India
| | - Gemilang Lara Utama
- Faculty of Agro-Industrial Technology, Universitas Padjadjaran, Sumedang 45363, Indonesia; Center for Environment and Sustainability Science, Universitas Padjadjaran, Bandung 40132, Indonesia
| | - Prem Prakash Srivastav
- Agricultural and Food Engineering Department, Indian Institute of Technology Kharagpur, Kharagpur 721302, West Bengal, India
| | - Juan Roberto Benavente-Valdés
- Bioprocesses and Bioproducts Research Group, Food Research Department, School of Chemistry, Autonomous University of Coahuila, Saltillo Campus, 25280 Coahuila, Mexico
| | - Mónica L Chávez-González
- Bioprocesses and Bioproducts Research Group, Food Research Department, School of Chemistry, Autonomous University of Coahuila, Saltillo Campus, 25280 Coahuila, Mexico
| | - Cristobal Noe Aguilar
- Bioprocesses and Bioproducts Research Group, Food Research Department, School of Chemistry, Autonomous University of Coahuila, Saltillo Campus, 25280 Coahuila, Mexico.
| |
Collapse
|
13
|
Rosmahadi NA, Leong WH, Rawindran H, Ho YC, Mohamad M, Ghani NA, Bashir MJK, Usman A, Lam MK, Lim JW. Assuaging Microalgal Harvesting Woes via Attached Growth: A Critical Review to Produce Sustainable Microalgal Feedstock. SUSTAINABILITY 2021; 13:11159. [DOI: 10.3390/su132011159] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
Third-generation biofuels that are derived from microalgal biomass have gained momentum as a way forward in the sustainable production of biodiesel. Such efforts are propelled by the intention to reduce our dependence on fossil fuels as the primary source of energy. Accordingly, growing microalgal biomass in the form of suspended cultivation has been a conventional technique for the past few decades. To overcome the inevitable harvesting shortcomings arising from the excessive energy and time needed to separate the planktonic microalgal cells from water medium, researchers have started to explore attached microalgal cultivation systems. This cultivation mode permits the ease of harvesting mature microalgal biomass, circumventing the need to employ complex harvesting techniques to single out the cells, and is economically attractive. However, the main bottleneck associated with attached microalgal growth is low biomass production due to the difficulties the microalgal cells have in forming attachment and populating thereafter. In this regard, the current review encompasses the novel techniques adopted to promote attached microalgal growth. The physicochemical effects such as the pH of the culture medium, hydrophobicity, as well as the substratum surface properties and abiotic factors that can determine the fate of exponential growth of attached microalgal cells, are critically reviewed. This review aims to unveil the benefits of an attached microalgal cultivation system as a promising harvesting technique to produce sustainable biodiesel for lasting applications.
Collapse
Affiliation(s)
- Nurulfarah Adilah Rosmahadi
- HICoE-Centre for Biofuel and Biochemical Research, Department of Fundamental and Applied Sciences, Institute of Self-Sustainable Building, Universiti Teknologi PETRONAS, Seri Iskandar 32610, Perak Darul Ridzuan, Malaysia
| | - Wai-Hong Leong
- HICoE-Centre for Biofuel and Biochemical Research, Department of Fundamental and Applied Sciences, Institute of Self-Sustainable Building, Universiti Teknologi PETRONAS, Seri Iskandar 32610, Perak Darul Ridzuan, Malaysia
| | - Hemamalini Rawindran
- HICoE-Centre for Biofuel and Biochemical Research, Department of Fundamental and Applied Sciences, Institute of Self-Sustainable Building, Universiti Teknologi PETRONAS, Seri Iskandar 32610, Perak Darul Ridzuan, Malaysia
| | - Yeek-Chia Ho
- Centre for Urban Resource Sustainability, Civil and Environmental Engineering Department, Institute of Self-Sustainable Building, Universiti Teknologi PETRONAS, Seri Iskandar 32610, Perak Darul Ridzuan, Malaysia
| | - Mardawani Mohamad
- Faculty of Bioengineering and Technology, Universiti Malaysia Kelantan, Jeli Campus, Jeli 17600, Kelantan, Malaysia
| | - Noraini A. Ghani
- Centre of Research in Ionic Liquids, Department of Fundamental and Applied Sciences, Universiti Teknologi PETRONAS, Seri Iskandar 32610, Perak Darul Ridzuan, Malaysia
| | - Mohammed J. K. Bashir
- Department of Environmental Engineering, Faculty of Engineering and Green Technology, Universiti Tunku Abdul Rahman, Jalan Universiti, Bandar Barat, Kampar 31900, Perak Darul Ridzuan, Malaysia
| | - Anwar Usman
- Department of Chemistry, Faculty of Science, Universiti Brunei Darussalam, Jalan Tungku Link, Gadong BE1410, Brunei
| | - Man-Kee Lam
- HICoE-Centre for Biofuel and Biochemical Research, Department of Chemical Engineering, Institute of Self-Sustainable Building, Universiti Teknologi PETRONAS, Seri Iskandar 32610, Perak Darul Ridzuan, Malaysia
| | - Jun-Wei Lim
- HICoE-Centre for Biofuel and Biochemical Research, Department of Fundamental and Applied Sciences, Institute of Self-Sustainable Building, Universiti Teknologi PETRONAS, Seri Iskandar 32610, Perak Darul Ridzuan, Malaysia
| |
Collapse
|
14
|
Olsen MFL, Pedersen JS, Thomsen ST, Martens HJ, Petersen A, Jensen PE. Outdoor cultivation of a novel isolate of the microalgae Scenedesmus sp. and the evaluation of its potential as a novel protein crop. PHYSIOLOGIA PLANTARUM 2021; 173:483-494. [PMID: 34427928 DOI: 10.1111/ppl.13532] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/09/2021] [Accepted: 08/10/2021] [Indexed: 06/13/2023]
Abstract
A Danish strain of the green microalgae Scenedesmus sp. was isolated, identified and characterized with respect to productivity under outdoor cultivation conditions at northern latitudes. The algae were cultivated outdoors in Denmark in closed tubular photobioreactors using only sunlight, simple inorganic nutrients and under ambient temperatures. The biomass composition was evaluated in terms of protein content and quality. The average volumetric and areal biomass productivity obtained for the Scenedesmus sp. isolate during outdoor cultivation was 0.083 g dry matter L-1 and 6.40 g dm m-2 day-1 , respectively. Thus, productivities are comparable to data reported in the literature under similar conditions. A strain-specific nitrogen to protein conversion factor of 5.5 was determined for the Scenedesmus sp. strain enabling more accurate protein estimations from simple nitrogen determination methods like Kjeldahl analysis in the future. The protein content was determined to be 52.4% of dried biomass for this Scenedesmus strain. The sum of essential amino acids was 42% which is high compared to other microalgae. The results are compared and discussed in comparison to other microalgae and soybean as a common plant protein source.
Collapse
Affiliation(s)
| | | | - Sune Tjalfe Thomsen
- Department of Geosciences and Natural Resource Management, University of Copenhagen, Frederiksberg, Denmark
| | - Helle Jakobe Martens
- Department of Geosciences and Natural Resource Management, University of Copenhagen, Frederiksberg, Denmark
| | | | - Poul Erik Jensen
- Department of Food Science, University of Copenhagen, Frederiksberg, Denmark
| |
Collapse
|
15
|
Ma R, Zhang Z, Tang Z, Ho SH, Shi X, Liu L, Xie Y, Chen J. Enhancement of co-production of lutein and protein in Chlorella sorokiniana FZU60 using different bioprocess operation strategies. BIORESOUR BIOPROCESS 2021; 8:82. [PMID: 38650235 PMCID: PMC10992755 DOI: 10.1186/s40643-021-00436-9] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2021] [Accepted: 08/23/2021] [Indexed: 12/15/2022] Open
Abstract
Co-production of multiple compounds is an efficient approach to enhance the economic feasibility of microalgae-based metabolites production. In this study, Chlorella sorokiniana FZU60 was cultivated under different bioprocess strategies to enhance the co-production of lutein and protein. Results showed that both lutein and protein content (7.72 and 538.06 mg/g, respectively) were highest at the onset of nitrogen deficiency under batch cultivation. Semi-batch III strategy, with 75% microalgal culture replacement by fresh medium, obtained similar content, productivity, and yield of lutein and protein as batch cultivation, demonstrating that it can be used for stable and continuous production. Fed-batch II strategy, feeding with 1/3 modified BG11 medium, achieved super-high lutein and protein yield (28.81 and 1592.77 mg/L, respectively), thus can be used for high-output production. Besides, two-stage strategy, combining light intensity shift and semi-batch cultivation, gained extremely high lutein and protein productivity (15.31 and 1080.41 mg/L/day, respectively), thereby is a good option for high-efficiency production. Moreover, the fed-batch II and two-stage strategy achieved high-quality lutein and protein, thus are promising for the co-production of lutein and protein in C. sorokiniana FZU60 for commercial application.
Collapse
Affiliation(s)
- Ruijuan Ma
- Technical Innovation Service Platform for High Value and High Quality Utilization of Marine Organism, Fuzhou University, Fuzhou, 350108, China
- Fujian Engineering and Technology Research Center for Comprehensive Utilization of Marine Products Waste, Fuzhou University, Fuzhou, 350108, China
- Fuzhou Industrial Technology Innovation Center for High Value Utilization of Marine Products, Fuzhou University, Fuzhou, 350108, China
| | - Zhen Zhang
- Technical Innovation Service Platform for High Value and High Quality Utilization of Marine Organism, Fuzhou University, Fuzhou, 350108, China
- Fujian Engineering and Technology Research Center for Comprehensive Utilization of Marine Products Waste, Fuzhou University, Fuzhou, 350108, China
- Fuzhou Industrial Technology Innovation Center for High Value Utilization of Marine Products, Fuzhou University, Fuzhou, 350108, China
| | - Zhuzhen Tang
- Technical Innovation Service Platform for High Value and High Quality Utilization of Marine Organism, Fuzhou University, Fuzhou, 350108, China
- Fujian Engineering and Technology Research Center for Comprehensive Utilization of Marine Products Waste, Fuzhou University, Fuzhou, 350108, China
- Fuzhou Industrial Technology Innovation Center for High Value Utilization of Marine Products, Fuzhou University, Fuzhou, 350108, China
| | - Shih-Hsin Ho
- Fujian Engineering and Technology Research Center for Comprehensive Utilization of Marine Products Waste, Fuzhou University, Fuzhou, 350108, China
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin, 150090, China
| | - Xinguo Shi
- Technical Innovation Service Platform for High Value and High Quality Utilization of Marine Organism, Fuzhou University, Fuzhou, 350108, China
- Fujian Engineering and Technology Research Center for Comprehensive Utilization of Marine Products Waste, Fuzhou University, Fuzhou, 350108, China
- Fuzhou Industrial Technology Innovation Center for High Value Utilization of Marine Products, Fuzhou University, Fuzhou, 350108, China
| | - Lemian Liu
- Technical Innovation Service Platform for High Value and High Quality Utilization of Marine Organism, Fuzhou University, Fuzhou, 350108, China
- Fujian Engineering and Technology Research Center for Comprehensive Utilization of Marine Products Waste, Fuzhou University, Fuzhou, 350108, China
- Fuzhou Industrial Technology Innovation Center for High Value Utilization of Marine Products, Fuzhou University, Fuzhou, 350108, China
| | - Youping Xie
- Technical Innovation Service Platform for High Value and High Quality Utilization of Marine Organism, Fuzhou University, Fuzhou, 350108, China.
- Fujian Engineering and Technology Research Center for Comprehensive Utilization of Marine Products Waste, Fuzhou University, Fuzhou, 350108, China.
- Fuzhou Industrial Technology Innovation Center for High Value Utilization of Marine Products, Fuzhou University, Fuzhou, 350108, China.
| | - Jianfeng Chen
- Technical Innovation Service Platform for High Value and High Quality Utilization of Marine Organism, Fuzhou University, Fuzhou, 350108, China
- Fujian Engineering and Technology Research Center for Comprehensive Utilization of Marine Products Waste, Fuzhou University, Fuzhou, 350108, China
- Fuzhou Industrial Technology Innovation Center for High Value Utilization of Marine Products, Fuzhou University, Fuzhou, 350108, China
| |
Collapse
|
16
|
Ansari FA, Guldhe A, Gupta SK, Rawat I, Bux F. Improving the feasibility of aquaculture feed by using microalgae. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2021; 28:43234-43257. [PMID: 34173144 DOI: 10.1007/s11356-021-14989-x] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/18/2021] [Accepted: 06/15/2021] [Indexed: 06/13/2023]
Abstract
The aquaculture industry is an efficient edible protein producer and grows faster than any other food sector. Therefore, it requires enormous amounts of fish feed. Fish feed directly affects the quality of produced fish, potential health benefits, and cost. Fish meal (FM), fis oil (FO), and plant-based supplements, predominantly used in fish feed, face challenges of low availability, low nutritional value, and high cost. The cost associated with aquaculture feed represents 40-75% of aquaculture production cost and one of the key market drivers for the thriving aquaculture industry. Microalgae are a primary producer in aquatic food chains. Microalgae are expanding continuously in renewable energy, pharmaceutical pigment, wastewater treatment, food, and feed industries. Major components of microalgal biomass are proteins with essential amino acids, lipids with polyunsaturated fatty acids (PUFA), carbohydrates, pigments, and other bioactive compounds. Thus, microalgae can be used as an essential, viable, and alternative feed ingredient in aquaculture feed. In recent times, live algae culture, whole algae, and lipid-extracted algae (LEA) have been tested in fish feed for growth, physiological activity, and nutritional value. The present review discusses the potential application of microalgae in aquaculture feed, its mode of application, nutritional value, and possible replacement of conventional feed ingredients, and disadvantages of plant-based feed. The review also focuses on integrated processes such as algae cultivation in aquaculture wastewater, aquaponics systems, challenges, and future prospects of using microalgae in the aquafeed industry.
Collapse
Affiliation(s)
- Faiz Ahmad Ansari
- Institute for Water and Wastewater Technology, Durban University of Technology, P O Box1334, Durban, 4000, South Africa
| | - Abhishek Guldhe
- Amity Institute of Biotechnology, Amity University, Mumbai, India
| | - Sanjay Kumar Gupta
- Environmental Engineering, Department of Civil Engineering, Indian Institute of Technology, Delhi, India
| | - Ismail Rawat
- Institute for Water and Wastewater Technology, Durban University of Technology, P O Box1334, Durban, 4000, South Africa
| | - Faizal Bux
- Institute for Water and Wastewater Technology, Durban University of Technology, P O Box1334, Durban, 4000, South Africa.
| |
Collapse
|
17
|
A New waste-free integrated approach for sapropel processing using supercritical fluid extraction. J Supercrit Fluids 2020. [DOI: 10.1016/j.supflu.2020.104991] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
18
|
Microalgae of the genus Nannochloropsis: Chemical composition and functional implications for human nutrition. J Funct Foods 2020. [DOI: 10.1016/j.jff.2020.103919] [Citation(s) in RCA: 75] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
|
19
|
The potential productivity of the microalga, Nannochloropsis oceanica SCS-1981, in a solar powered outdoor open pond as an aquaculture feed. ALGAL RES 2020. [DOI: 10.1016/j.algal.2020.101793] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
|
20
|
Yong TLK, Pa’ee KF, Abd-Talib N, Mohamad N. Production of Platform Chemicals Using Supercritical Fluid Technology. NANOTECHNOLOGY IN THE LIFE SCIENCES 2020:53-73. [DOI: 10.1007/978-3-030-44984-1_4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/02/2023]
|
21
|
Sustainable Agriculture in the Arabian/Persian Gulf Region Utilizing Marginal Water Resources: Making the Best of a Bad Situation. SUSTAINABILITY 2018. [DOI: 10.3390/su10051364] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
22
|
Chua ET, Schenk PM. A biorefinery for Nannochloropsis: Induction, harvesting, and extraction of EPA-rich oil and high-value protein. BIORESOURCE TECHNOLOGY 2017. [PMID: 28624245 DOI: 10.1016/j.biortech.2017.05.124] [Citation(s) in RCA: 73] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/02/2023]
Abstract
Microalgae have been studied as biofactories for almost four decades. Yet, even until today, many aspects of microalgae farming and processing are still considered exploratory because of the uniqueness of each microalgal species. Thus, it is important to develop the entire process of microalgae farming: from culturing to harvesting, and down to extracting the desired high-value products. Based on its rapid growth and high oil productivities, Nannochloropsis sp. is of particular interest to many industries for the production of high-value oil containing omega-3 fatty acids, specifically eicosapentaenoic acid (EPA), but also several other products. This review compares the various techniques for induction, harvesting, and extraction of EPA-rich oil and high-value protein explored by academia and industry to develop a multi-product Nannochloropsis biorefinery. Knowledge gaps and opportunities are discussed for culturing and inducing fatty acid biosynthesis, biomass harvesting, and extracting EPA-rich oil and high-value protein from the biomass of Nannochloropsis sp.
Collapse
Affiliation(s)
- Elvis T Chua
- Algae Biotechnology Laboratory, School of Agriculture and Food Sciences, The University of Queensland, Brisbane, Australia
| | - Peer M Schenk
- Algae Biotechnology Laboratory, School of Agriculture and Food Sciences, The University of Queensland, Brisbane, Australia.
| |
Collapse
|
23
|
Dejsungkranont M, Chen HH, Sirisansaneeyakul S. Enhancement of antioxidant activity of C-phycocyanin of Spirulina powder treated with supercritical fluid carbon dioxide. ACTA ACUST UNITED AC 2017. [DOI: 10.1016/j.anres.2017.12.001] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
24
|
Shah AR, Ahmad A, Srivastava S, Jaffar Ali B. Reconstruction and analysis of a genome-scale metabolic model of Nannochloropsis gaditana. ALGAL RES 2017. [DOI: 10.1016/j.algal.2017.08.014] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
|
25
|
Matos ÂP, Cavanholi MG, Moecke EHS, Sant'Anna ES. Effects of different photoperiod and trophic conditions on biomass, protein and lipid production by the marine alga Nannochloropsis gaditana at optimal concentration of desalination concentrate. BIORESOURCE TECHNOLOGY 2017; 224:490-497. [PMID: 27839862 DOI: 10.1016/j.biortech.2016.11.004] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/09/2016] [Revised: 10/31/2016] [Accepted: 11/02/2016] [Indexed: 06/06/2023]
Abstract
This study investigated the cultivation of the marine alga Nannochloropsis gaditana in a medium based on desalination concentrate (DC) with an optimal concentration of 75% DC, under three trophic conditions and four photoperiod schedules. N. gaditana produced a peak biomass concentration (1.25gL-1) under mixotrophic culture condition and a photoperiod of 16L:08D. N. gaditana cells compensate to different light-dark regimes producing different amounts of protein (17.9-44.8%). The intracellular lipid content in N. gaditana cells increased both under autotrophic conditions with a 16L:08D cycle (16.7%), and under mixotrophic conditions with a 08L:16D cycle (15.7%). In heterotrophic culture, N. gaditana cells were rich in polyunsaturated fatty acids (46.0%). This study demonstrates an alternative approach to enhancing intracellular lipid content of the marine alga N. gaditana by modifying the photoperiod, trophic conditions and stress-salinity-conductivity with the use of a DC-based medium.
Collapse
Affiliation(s)
- Ângelo Paggi Matos
- Department of Food Science and Technology, Federal University of Santa Catarina, Av. Admar Gonzaga 1346, Itacorubi, 88034-001 Florianópolis, SC, Brazil.
| | - Monnik Gandin Cavanholi
- Department of Food Science and Technology, Federal University of Santa Catarina, Av. Admar Gonzaga 1346, Itacorubi, 88034-001 Florianópolis, SC, Brazil
| | - Elisa Helena Siegel Moecke
- Department of Food Science and Technology, Federal University of Santa Catarina, Av. Admar Gonzaga 1346, Itacorubi, 88034-001 Florianópolis, SC, Brazil; Laboratory of Environmental Engineering, Southern University of Santa Catarina, Av. Pedra Branca, Unidade Pedra Branca, 88137-270, Palhoça, SC, Brazil
| | - Ernani Sebastião Sant'Anna
- Department of Food Science and Technology, Federal University of Santa Catarina, Av. Admar Gonzaga 1346, Itacorubi, 88034-001 Florianópolis, SC, Brazil
| |
Collapse
|
26
|
Tibbetts SM, Yasumaru F, Lemos D. In vitro prediction of digestible protein content of marine microalgae (Nannochloropsis granulata) meals for Pacific white shrimp (Litopenaeus vannamei) and rainbow trout (Oncorhynchus mykiss). ALGAL RES 2017. [DOI: 10.1016/j.algal.2016.11.010] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
27
|
Tibbetts SM, MacPherson T, McGinn PJ, Fredeen AH. In vitro digestion of microalgal biomass from freshwater species isolated in Alberta, Canada for monogastric and ruminant animal feed applications. ALGAL RES 2016. [DOI: 10.1016/j.algal.2016.01.016] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
28
|
Anele U, Yang W, McGinn P, Tibbetts S, McAllister T. Ruminal in vitro gas production, dry matter digestibility, methane abatement potential, and fatty acid biohydrogenation of six species of microalgae. CANADIAN JOURNAL OF ANIMAL SCIENCE 2016. [DOI: 10.1139/cjas-2015-0141] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
This study evaluated the composition, digestibility [dry matter digestibility (DMD)], CH4 abatement potential, and fatty acid biohydrogenation of six species of microalgae. Lipid content ranged from 115 g kg−1 dry matter (DM) (Scenedesmus sp. AMDD) to 361 g kg−1 DM (Tetracystis sp.), while Scenedesmus sp. AMDD had the highest carbohydrate (364 g kg−1 DM) and fibre content (277 g kg−1 DM). Gas production was highest (P < 0.001) for Micractinium reisseri and Chlorella vulgaris. In vitro DMD ranged from 654 g kg−1 for Scenedesmus sp. AMDD to 797 g kg−1 for Nannochloris bacillaris. Total CH4 differed (P < 0.001) among microalgae, ranging from 1.76 mL g−1 DM for Tetracystis sp. to 4.07 mL g−1 DM for M. reisseri. Nannochloropsis granulata (marine) had higher myristic, palmitoleic, and eicosapentaenoic acid levels than freshwater microalgae. Levels of α-linolenic acid were higher in Scenedesmus sp. AMDD than all other microalgae. CH4 production negatively correlated (P < 0.05) with levels of total carbohydrate, oleic, and α-linolenic acid. Despite having a lower lipid content, CH4 reductions with Scenedesmus sp. AMDD were comparable to Tetracystis sp. and N. bacillaris. Reductions in CH4 with Tetracystis sp. and N. bacillaris occurred without a decline in DMD, suggesting that overall microbial activity was not inhibited.
Collapse
Affiliation(s)
- U.Y. Anele
- Agriculture and Agri-Food Canada, Lethbridge, AB T1J 4B1, Canada
| | - W.Z. Yang
- Agriculture and Agri-Food Canada, Lethbridge, AB T1J 4B1, Canada
| | - P.J. McGinn
- National Research Council of Canada, Aquatic and Crop Resource Development, 1411 Oxford Street, Halifax, NS B3H 3Z1, Canada
| | - S.M. Tibbetts
- National Research Council of Canada, Aquatic and Crop Resource Development, 1411 Oxford Street, Halifax, NS B3H 3Z1, Canada
| | - T.A. McAllister
- Agriculture and Agri-Food Canada, Lethbridge, AB T1J 4B1, Canada
| |
Collapse
|
29
|
Pan SY, Lin YJ, Snyder SW, Ma HW, Chiang PC. Development of Low-Carbon-Driven Bio-product Technology Using Lignocellulosic Substrates from Agriculture: Challenges and Perspectives. ACTA ACUST UNITED AC 2015. [DOI: 10.1007/s40518-015-0040-y] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
30
|
Biochemical characterization of microalgal biomass from freshwater species isolated in Alberta, Canada for animal feed applications. ALGAL RES 2015. [DOI: 10.1016/j.algal.2014.11.011] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|