1
|
Connolly KR, Sweeney T, Ryan MT, Vigors S, O’Doherty JV. Effects of Butyric Acid Supplementation on the Gut Microbiome and Growth Performance of Weanling Pigs Fed a Low-Crude Protein, Propionic Acid-Preserved Grain Diet. Microorganisms 2025; 13:689. [PMID: 40142581 PMCID: PMC11946337 DOI: 10.3390/microorganisms13030689] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2025] [Revised: 03/04/2025] [Accepted: 03/17/2025] [Indexed: 03/28/2025] Open
Abstract
Reducing crude protein (CP) in weaner pig diets lowers post-weaning diarrhoea risk but may impair growth performance. This study aimed to identify the beneficial effects of organic acid (OA)-preserved grain and butyric acid supplementation on gut health and growth in low-CP diets. At harvest, grain was divided into two batches: one dried at 65 °C, the other treated with a propionic acid. Ninety-six piglets (28 days old) were assigned to four treatments: (1) dried grain, (2) OA-preserved grain, (3) dried grain + 3% butyric acid, and (4) OA-preserved grain + 3% butyric acid. On day 8, microbial composition, inflammatory markers, volatile fatty acids, and intestinal morphology were assessed. The OA-preserved grain improved feed conversion ratio (p < 0.05) increased beneficial gut bacteria (p < 0.01), elevated caecal butyrate (p < 0.05), reduced jejunal CXCL8 expression (p < 0.05), and enhanced nutrient digestibility (p < 0.01). Butyric acid reduced feed intake (p < 0.05), improved nutrient digestibility (p < 0.01), decreased colonic Proteobacteria (p < 0.05), and increased colonic propionate and butyrate (p < 0.01). Combining OA-preserved grain with butyric acid elevated ileal Proteobacteria and Pasteurellaceae (p < 0.05). In conclusion, while OA-preserved grain improves feed efficiency, nutrient digestibility, and gut microbiota, supplementing butyric acid enhances nutrient digestibility but reduces feed intake, and their combination may disrupt the microbial balance.
Collapse
Affiliation(s)
- Kathryn Ruth Connolly
- School of Agriculture and Food Science, University College Dublin, Belfield, D04 W6F6 Dublin, Ireland; (K.R.C.); (S.V.)
| | - Torres Sweeney
- School of Veterinary Medicine, University College Dublin, Belfield, D04 W6F6 Dublin, Ireland; (T.S.); (M.T.R.)
| | - Marion T. Ryan
- School of Veterinary Medicine, University College Dublin, Belfield, D04 W6F6 Dublin, Ireland; (T.S.); (M.T.R.)
| | - Stafford Vigors
- School of Agriculture and Food Science, University College Dublin, Belfield, D04 W6F6 Dublin, Ireland; (K.R.C.); (S.V.)
| | - John V. O’Doherty
- School of Agriculture and Food Science, University College Dublin, Belfield, D04 W6F6 Dublin, Ireland; (K.R.C.); (S.V.)
| |
Collapse
|
2
|
Connolly KR, Sweeney T, Ryan MT, Vigors S, O’Doherty JV. Impact of Reduced Dietary Crude Protein and Propionic Acid Preservation on Intestinal Health and Growth Performance in Post-Weaned Pigs. Animals (Basel) 2025; 15:702. [PMID: 40075985 PMCID: PMC11899430 DOI: 10.3390/ani15050702] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2024] [Revised: 01/10/2025] [Accepted: 02/19/2025] [Indexed: 03/14/2025] Open
Abstract
This study investigated whether organic acid (OA)-preserved grain could mitigate the negative effects of low crude protein (CP) diets on growth performance, intestinal health, and the coefficient of total tract digestibility (CATTD) of nutrients in weaned piglets. The grain was either conventionally dried or preserved post-harvest with 4 kg of OA per tonne. Ninety-six piglets (28 days old) were assigned to one of four diets in a 2 × 2 factorial design: (1) dried standard CP diet, (2) OA-preserved standard CP diet, (3) dried low CP diet, and (4) OA-preserved low CP diet. Standard and low CP diets contained 20% and 19% CP during the first 15 days, reduced to 19% and 17% CP from days 15-35 post-weaning. Faecal scores (FS) were assessed twice a day while microbial composition, inflammatory markers, colonic volatile fatty acid concentrations, and intestinal morphology were measured on the 8th day post-weaning. Performance metrics were measured over the 35-day experimental period. Low CP diets consistently reduced FS (p < 0.05) and increased colonic molar butyrate proportions (p < 0.01) but increased duodenal IL1B expression compared to standard CP diets (p < 0.05). The OA-preserved grain enhanced beneficial microbial populations (Lactobacillus, Roseburia) while lowering pro-inflammatory cytokines (IL1A, IL17) (p < 0.05). While dried grain with low CP diets reduced average daily gain (ADG), colonic short-chain fatty acids (SCFA) concentrations, and nitrogen digestibility, OA-preserved grain with low CP maintained these parameters and improved final body weight (p < 0.05). Overall, OA-preserved grain mitigated the performance decline associated with low CP diets by enhancing gut health and nutrient digestibility and reducing inflammation, thus presenting a promising alternative nutritional strategy for post-weaned piglets.
Collapse
Affiliation(s)
- Kathryn Ruth Connolly
- School of Agriculture and Food Science, University College Dublin, D04 W6F6 Dublin, Ireland; (K.R.C.); (S.V.)
| | - Torres Sweeney
- School of Veterinary Medicine, University College Dublin, D04 W6F6 Dublin, Ireland; (T.S.); (M.T.R.)
| | - Marion T. Ryan
- School of Veterinary Medicine, University College Dublin, D04 W6F6 Dublin, Ireland; (T.S.); (M.T.R.)
| | - Stafford Vigors
- School of Agriculture and Food Science, University College Dublin, D04 W6F6 Dublin, Ireland; (K.R.C.); (S.V.)
| | - John V. O’Doherty
- School of Agriculture and Food Science, University College Dublin, D04 W6F6 Dublin, Ireland; (K.R.C.); (S.V.)
| |
Collapse
|
3
|
Sanz-Fernández S, Rodríguez-Hernández P, Díaz-Gaona C, Tusell L, Quintanilla R, Rodríguez-Estévez V. Evolution of Sow Productivity and Evaluation Parameters: Spanish Farms as a Benchmark. Vet Sci 2024; 11:626. [PMID: 39728966 DOI: 10.3390/vetsci11120626] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2024] [Revised: 11/29/2024] [Accepted: 12/02/2024] [Indexed: 12/28/2024] Open
Abstract
This study examines the global evolution of sow productivity, with a particular focus on Spain. The analysis is based on key performance metrics such as piglets weaned per sow per year (PWSY), prolificacy, and pre-weaning mortality, utilizing data from literature reviews, the InterPIG, and BDporc® databases. Globally, significant advancements in genetic selection and management practices have led to productivity increases across major pig-producing countries, with notable improvements in prolificacy. However, higher prolificacy has been accompanied by rising piglet mortality rates during lactation, posing sustainability challenges. In Spain, the average productivity of commercial sows increased from 23.78 PWSY in 2009 to 29.45 PWSY in 2023, while Iberian sows reached an average of 17.44 PWSY. Despite these gains, Spain's figures remain slightly below the European Union average. The study highlights the need for new benchmarks, such as non-productive days, piglet survival, and sow longevity, to more accurately assess farm efficiency. These indicators, combined with considerations for animal welfare and environmental sustainability, are crucial for addressing current challenges such as piglet mortality, sow culling, and the carbon footprint. The findings emphasize the importance of adopting comprehensive management strategies that balance productivity with growing social and environmental demands on the swine industry.
Collapse
Affiliation(s)
- Santos Sanz-Fernández
- Departamento de Producción Animal, UIC Zoonosis y Enfermedades Emergentes ENZOEM, Facultad de Veterinaria, Campus de Excelencia Internacional Agroalimentario (ceiA3), Universidad de Córdoba, Campus de Rabanales, 14071 Córdoba, Spain
| | - Pablo Rodríguez-Hernández
- Departamento de Producción Animal, UIC Zoonosis y Enfermedades Emergentes ENZOEM, Facultad de Veterinaria, Campus de Excelencia Internacional Agroalimentario (ceiA3), Universidad de Córdoba, Campus de Rabanales, 14071 Córdoba, Spain
| | - Cipriano Díaz-Gaona
- Departamento de Producción Animal, UIC Zoonosis y Enfermedades Emergentes ENZOEM, Facultad de Veterinaria, Campus de Excelencia Internacional Agroalimentario (ceiA3), Universidad de Córdoba, Campus de Rabanales, 14071 Córdoba, Spain
| | - Llibertat Tusell
- Animal Breeding and Genetics Program, IRTA, Torre Marimon, 08140 Barcelona, Spain
| | - Raquel Quintanilla
- Animal Breeding and Genetics Program, IRTA, Torre Marimon, 08140 Barcelona, Spain
| | - Vicente Rodríguez-Estévez
- Departamento de Producción Animal, UIC Zoonosis y Enfermedades Emergentes ENZOEM, Facultad de Veterinaria, Campus de Excelencia Internacional Agroalimentario (ceiA3), Universidad de Córdoba, Campus de Rabanales, 14071 Córdoba, Spain
| |
Collapse
|
4
|
Ribeiro DM, Costa MM, Trevisi P, Carvalho DFP, Correa F, Martins CF, Pinho M, Mourato M, de Almeida AM, Freire JPB, Mestre Prates JA. Piglets performance, nutrient digestibility and gut health in response to feeding Ulva lactuca seaweed supplemented with a recombinant ulvan lyase or a commercial carbohydrase mixture. J Anim Physiol Anim Nutr (Berl) 2024; 108:1624-1640. [PMID: 38890812 DOI: 10.1111/jpn.14005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2023] [Revised: 05/27/2024] [Accepted: 06/05/2024] [Indexed: 06/20/2024]
Abstract
Ulva lactuca, a green seaweed, may be an alternative source of nutrients and bioactive compounds for weaned piglets. However, it has a recalcitrant cell wall rich in a sulphated polysaccharide - ulvan - that is indigestible to monogastrics. The objective of this study was to evaluate the effect of dietary incorporation of 7% U. lactuca, combined with carbohydrases supplementation (commercial carbohydrase mixture or recombinant ulvan lyase), on growth performance, nutrient digestibility and gut health parameters (morphology and microbiota) of weaned piglets. The experiment was conducted over 14 days using 40 weaned piglets randomly allocated to one of four experimental diets: a control diet based on wheat-maize-soybean meal, a diet with 7% U. lactuca replacing the control diet (UL), a diet with UL supplemented with 0.005% Rovabio® Excel AP, and a diet with UL supplemented with 0.01% of a recombinant ulvan lyase. The dietary treatments had no major effects on growth performance, nitrogen balance and gut content variables, as well as histological measurements. Contrarily, dry matter and organic matter digestibility decreased with dietary seaweed inclusion, while hemicellulose digestibility increased, suggesting a high fermentability of this cell wall fraction independently of carbohydrases supplementation. Some beneficial microbial populations increased as a consequence of enzymatic supplementation (e.g., Prevotella), while seaweed diets as a whole led to an increased abundance of Shuttleworthia, Anaeroplasma and Lachnospiraceae_NK3A20_group, all related with a healthier gut. It also decreased Lactobacillus when compared to controls, which is possibly related to increased bioavailability of seaweed zinc. This study indicates that, under these experimental conditions, up to 7% dietary U. lactuca has no detrimental effect on piglet growth, despite decreasing acid detergent fibre digestibility. Carbohydrases supplementation of Ulva diets is not required at this incorporation level.
Collapse
Affiliation(s)
- David Miguel Ribeiro
- LEAF - Linking Landscape, Environment, Agriculture and Food Research Center, Associate Laboratory TERRA, Instituto Superior de Agronomia, Universidade de Lisboa, Lisboa, Portugal
| | - Mónica M Costa
- CIISA - Centre for Interdisciplinary Research in Animal Health, Faculdade de Medicina Veterinária, Universidade de Lisboa, Lisboa, Portugal
- Laboratório Associado para Ciência Animal e Veterinária (AL4AnimalS), Lisboa, Portugal
| | - Paolo Trevisi
- DISTAL - Department of Agricultural and Food Sciences, University of Bologna, Bologna, Italy
| | - Daniela Filipa Pires Carvalho
- LEAF - Linking Landscape, Environment, Agriculture and Food Research Center, Associate Laboratory TERRA, Instituto Superior de Agronomia, Universidade de Lisboa, Lisboa, Portugal
| | - Federico Correa
- DISTAL - Department of Agricultural and Food Sciences, University of Bologna, Bologna, Italy
| | - Cátia F Martins
- LEAF - Linking Landscape, Environment, Agriculture and Food Research Center, Associate Laboratory TERRA, Instituto Superior de Agronomia, Universidade de Lisboa, Lisboa, Portugal
- CIISA - Centre for Interdisciplinary Research in Animal Health, Faculdade de Medicina Veterinária, Universidade de Lisboa, Lisboa, Portugal
- Laboratório Associado para Ciência Animal e Veterinária (AL4AnimalS), Lisboa, Portugal
| | - Mário Pinho
- CIISA - Centre for Interdisciplinary Research in Animal Health, Faculdade de Medicina Veterinária, Universidade de Lisboa, Lisboa, Portugal
- Laboratório Associado para Ciência Animal e Veterinária (AL4AnimalS), Lisboa, Portugal
| | - Miguel Mourato
- LEAF - Linking Landscape, Environment, Agriculture and Food Research Center, Associate Laboratory TERRA, Instituto Superior de Agronomia, Universidade de Lisboa, Lisboa, Portugal
| | - André M de Almeida
- LEAF - Linking Landscape, Environment, Agriculture and Food Research Center, Associate Laboratory TERRA, Instituto Superior de Agronomia, Universidade de Lisboa, Lisboa, Portugal
| | - João Pedro Bengala Freire
- CIISA - Centre for Interdisciplinary Research in Animal Health, Faculdade de Medicina Veterinária, Universidade de Lisboa, Lisboa, Portugal
- Laboratório Associado para Ciência Animal e Veterinária (AL4AnimalS), Lisboa, Portugal
| | - José António Mestre Prates
- CIISA - Centre for Interdisciplinary Research in Animal Health, Faculdade de Medicina Veterinária, Universidade de Lisboa, Lisboa, Portugal
- Laboratório Associado para Ciência Animal e Veterinária (AL4AnimalS), Lisboa, Portugal
| |
Collapse
|
5
|
Lawal AS, Ogunribido TZ, Fu Y, Adeola O, Ajuwon KM. Responses in weanling pigs fed low protein diets supplemented with dietary nucleotides. Transl Anim Sci 2024; 8:txae142. [PMID: 39444714 PMCID: PMC11497618 DOI: 10.1093/tas/txae142] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2024] [Accepted: 10/02/2024] [Indexed: 10/25/2024] Open
Abstract
Evidence suggests that nucleotide supplementation in diets improves intestinal development, immune function, and cell growth. Stressful events such as weaning in pigs may increase nucleotide demand, making exogenous supplementation potentially beneficial. This study evaluated the effects of low-protein (LP) diets supplemented with dietary nucleotides on growth performance, postweaning diarrhea (PWD), nutrient digestibility, and blood metabolites. A total of 210 piglets were weaned at 21 d of age, allowing a 3-d adaptation to a common nursery diet. At 24 d, pigs were reweighed (6.02 ± 0.05 kg) and allocated to 5 dietary treatments in a randomized complete block design to give 7 replicates per treatment (n = 6 piglets per replicate). The 5 dietary treatments included (i) a high protein positive control diet (PC) with 24% crude protein (CP); (ii) a low protein negative control (NC) with 16% CP; (iii) an NC diet with nucleotide supplementation at 1 g/kg (NC01), 3 g/kg (NC03), or 9 g/kg (NC09). Diets were provided ad libitum for 35 d, and weekly feed intake (FI) and body weight (BW) were recorded. Blood samples were collected on day 32 and fecal samples were collected on days 33, 34, and 35 to determine serum metabolites and nutrient digestibility, respectively. Relative to PC, the NC diet had lower overall average daily gain (ADG) (343.5 vs. 305.5 g/d), incidence of PWD (2.5 vs. 1.2 diarrhea score), and blood urea nitrogen (BUN) (11.3 vs. 3.4 mg/dL); (P < 0.05, < 0.05, and < 0.0001, respectively). The nucleotide-supplemented diets, NC01, NC03, and NC09, had comparable (P > 0.05) overall ADG to the PC and decreased (P < 0.0001) BUN. Additionally, NC09 had decreased (P < 0.05) incidence of PWD compared to PC. The apparent total tract digestibility (ATTD) of nitrogen increased linearly (P < 0.05) with nucleotide supplementation, although reducing CP decreased (P < 0.05) serum glutathione and insulin-like growth factor-1 (IGF-1) concentrations. However, IGF-1 concentration was linearly increased (P < 0.05) with nucleotide supplementation. Results suggest that feeding LP diets supplemented with dietary nucleotides after weaning can increase ATTD of nitrogen and protein utilization, reduce the incidence of PWD, and increase serum IGF-1 concentration while partially ameliorating the negative effects of LP diets on growth performance.
Collapse
Affiliation(s)
- Abiola S Lawal
- Department of Animal Sciences, Purdue University, West Lafayette, IN 47907, USA
| | - Tobi Z Ogunribido
- Department of Animal Sciences, Purdue University, West Lafayette, IN 47907, USA
| | - Yuechi Fu
- Department of Animal Sciences, Purdue University, West Lafayette, IN 47907, USA
| | - Olayiwola Adeola
- Department of Animal Sciences, Purdue University, West Lafayette, IN 47907, USA
| | - Kolapo M Ajuwon
- Department of Animal Sciences, Purdue University, West Lafayette, IN 47907, USA
| |
Collapse
|
6
|
Zigovski G, Bez ICC, Garrido LFC, Rodrigues CC, de Oliveira ACDF, Rupolo PE, de Azevedo LB, Hernandez EME, Genova JL, Weber SH, Carvalho PLDO, Costa LB. Ultra-diluted complex additive in the diet reveals benefits in the intestinal tract of nursery-phase piglets. Vet Res Commun 2024; 48:2385-2395. [PMID: 38801493 DOI: 10.1007/s11259-024-10422-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Accepted: 05/22/2024] [Indexed: 05/29/2024]
Abstract
This study aimed to assess an ultra-diluted (UD) complex, as a replacement for an antimicrobial growth promoter in diets, on growth performance, intestinal health, and inflammatory response of nursery piglets. The experiment lasted 37 days and involved 126 animals weaned at 21 ± 1.3 d, with an initial body weight of 5.62 ± 1.16 kg. Piglets were assigned to six dietary treatments in a randomized block design with seven replicates and three piglets per pen as experimental unit. The treatments were: positive control (PC)- basal diet + 120 mg/kg of chlorohydroxyquinoline; negative control (NC)- basal diet without additives; and NC containing 4.5; 6.0; 7.5 or 9.0 kg of UD additive/ton diet. Performance data were calculated, and daily diarrhea was observed. Blood samples were collected for hematological analysis. At the end of the experiment, one animal per pen was slaughtered for organ weighing, pH, and the collection of intestinal samples for histopathology. Feces and cecal contents were collected for microbiological and antibiogram analyses. There was no difference in the performance between the treatments. Throughout the study, UD levels were equal to those of PC for diarrhea occurrence. Higher levels of UD complex led to higher total leukocyte counts. The 4.5 treatment showed a reduction in total and thermotolerant Enterobacteriaceae populations in piglet feces and an increase in lactic acid bacteria compared to PC. All treatments resulted in fewer duodenal histopathological alterations than those in the NC group. The use of UD additives, especially at 4.5 kg/ton, is a good alternative to chlorohydroxyquinoline in piglet diets.
Collapse
Affiliation(s)
- Gustavo Zigovski
- School of Medicine and Life Sciences, Graduate Program in Animal Science, Pontifícia Universidade Católica do Paraná, Curitiba, 80215-901, PR, Brazil
| | - Isabela Cristina Colaço Bez
- School of Medicine and Life Sciences, Graduate Program in Animal Science, Pontifícia Universidade Católica do Paraná, Curitiba, 80215-901, PR, Brazil
| | - Luís Fernando Costa Garrido
- School of Medicine and Life Sciences, Graduate Program in Animal Science, Pontifícia Universidade Católica do Paraná, Curitiba, 80215-901, PR, Brazil
| | - Caroline Cintra Rodrigues
- School of Medicine and Life Sciences, Graduate Program in Animal Science, Pontifícia Universidade Católica do Paraná, Curitiba, 80215-901, PR, Brazil
| | | | - Paulo Evaristo Rupolo
- Animal Science Department, State University of Western Paraná, 85960-000, Marechal Cândido Rondon, PR, Brazil
| | - Liliana Bury de Azevedo
- Animal Science Department, State University of Western Paraná, 85960-000, Marechal Cândido Rondon, PR, Brazil
| | - Elmer Modesto Elvir Hernandez
- School of Medicine and Life Sciences, Graduate Program in Animal Science, Pontifícia Universidade Católica do Paraná, Curitiba, 80215-901, PR, Brazil
| | - Jansller Luiz Genova
- Animal Science Department, Federal University of Viçosa, Viçosa, 36570-900, MG, Brazil
| | - Saulo Henrique Weber
- School of Medicine and Life Sciences, Graduate Program in Animal Science, Pontifícia Universidade Católica do Paraná, Curitiba, 80215-901, PR, Brazil
| | | | - Leandro Batista Costa
- School of Medicine and Life Sciences, Graduate Program in Animal Science, Pontifícia Universidade Católica do Paraná, Curitiba, 80215-901, PR, Brazil.
| |
Collapse
|
7
|
Tang Q, Lan T, Zhou C, Gao J, Wu L, Wei H, Li W, Tang Z, Tang W, Diao H, Xu Y, Peng X, Pang J, Zhao X, Sun Z. Nutrition strategies to control post-weaning diarrhea of piglets: From the perspective of feeds. ANIMAL NUTRITION (ZHONGGUO XU MU SHOU YI XUE HUI) 2024; 17:297-311. [PMID: 38800731 PMCID: PMC11127239 DOI: 10.1016/j.aninu.2024.03.006] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/09/2023] [Revised: 01/26/2024] [Accepted: 03/21/2024] [Indexed: 05/29/2024]
Abstract
Post-weaning diarrhea (PWD) is a globally significant threat to the swine industry. Historically, antibiotics as well as high doses of zinc oxide and copper sulfate have been commonly used to control PWD. However, the development of bacterial resistance and environmental pollution have created an interest in alternative strategies. In recent years, the research surrounding these alternative strategies and the mechanisms of piglet diarrhea has been continually updated. Mechanically, diarrhea in piglets is a result of an imbalance in intestinal fluid and electrolyte absorption and secretion. In general, enterotoxigenic Escherichia coli (ETEC) and diarrheal viruses are known to cause an imbalance in the absorption and secretion of intestinal fluids and electrolytes in piglets, resulting in diarrhea when Cl- secretion-driven fluid secretion surpasses absorptive capacity. From a perspective of feedstuffs, factors that contribute to imbalances in fluid absorption and secretion in the intestines of weaned piglets include high levels of crude protein (CP), stimulation by certain antigenic proteins, high acid-binding capacity (ABC), and contamination with deoxynivalenol (DON) in the diet. In response, efforts to reduce CP levels in diets, select feedstuffs with lower ABC values, and process feedstuffs using physical, chemical, and biological approaches are important strategies for alleviating PWD in piglets. Additionally, the diet supplementation with additives such as vitamins and natural products can also play a role in reducing the diarrhea incidence in weaned piglets. Here, we examine the mechanisms of absorption and secretion of intestinal fluids and electrolytes in piglets, summarize nutritional strategies to control PWD in piglets from the perspective of feeds, and provide new insights towards future research directions.
Collapse
Affiliation(s)
- Qingsong Tang
- Laboratory for Bio-Feed and Molecular Nutrition, College of Animal Science and Technology, Southwest University, Chongqing 400715, China
| | - Tianyi Lan
- Laboratory for Bio-Feed and Molecular Nutrition, College of Animal Science and Technology, Southwest University, Chongqing 400715, China
| | - Chengyu Zhou
- Laboratory for Bio-Feed and Molecular Nutrition, College of Animal Science and Technology, Southwest University, Chongqing 400715, China
| | - Jingchun Gao
- Laboratory for Bio-Feed and Molecular Nutrition, College of Animal Science and Technology, Southwest University, Chongqing 400715, China
| | - Liuting Wu
- Laboratory for Bio-Feed and Molecular Nutrition, College of Animal Science and Technology, Southwest University, Chongqing 400715, China
| | - Haiyang Wei
- Laboratory for Bio-Feed and Molecular Nutrition, College of Animal Science and Technology, Southwest University, Chongqing 400715, China
| | - Wenxue Li
- Laboratory for Bio-Feed and Molecular Nutrition, College of Animal Science and Technology, Southwest University, Chongqing 400715, China
| | - Zhiru Tang
- Laboratory for Bio-Feed and Molecular Nutrition, College of Animal Science and Technology, Southwest University, Chongqing 400715, China
| | - Wenjie Tang
- Animal Breeding and Genetics Key Laboratory of Sichuan Province, Sichuan Animal Science Academy, Chengdu 610066, China
| | - Hui Diao
- Animal Breeding and Genetics Key Laboratory of Sichuan Province, Sichuan Animal Science Academy, Chengdu 610066, China
| | - Yetong Xu
- Laboratory for Bio-Feed and Molecular Nutrition, College of Animal Science and Technology, Southwest University, Chongqing 400715, China
| | - Xie Peng
- Laboratory for Bio-Feed and Molecular Nutrition, College of Animal Science and Technology, Southwest University, Chongqing 400715, China
| | - Jiaman Pang
- Laboratory for Bio-Feed and Molecular Nutrition, College of Animal Science and Technology, Southwest University, Chongqing 400715, China
| | - Xuan Zhao
- Laboratory for Bio-Feed and Molecular Nutrition, College of Animal Science and Technology, Southwest University, Chongqing 400715, China
| | - Zhihong Sun
- Laboratory for Bio-Feed and Molecular Nutrition, College of Animal Science and Technology, Southwest University, Chongqing 400715, China
- Yibin Academy of Southwest University, Yibin 644005, China
| |
Collapse
|
8
|
Li W, Lan T, Ding Q, Ren Z, Tang Z, Tang Q, Peng X, Xu Y, Sun Z. Effect of Low Protein Diets Supplemented with Sodium Butyrate, Medium-Chain Fatty Acids, or n-3 Polyunsaturated Fatty Acids on the Growth Performance, Immune Function, and Microbiome of Weaned Piglets. Int J Mol Sci 2023; 24:17592. [PMID: 38139420 PMCID: PMC10743886 DOI: 10.3390/ijms242417592] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2023] [Revised: 12/01/2023] [Accepted: 12/03/2023] [Indexed: 12/24/2023] Open
Abstract
This study aimed to investigate the effects of low-protein (LP) diets supplemented with sodium butyrate (SB), medium-chain fatty acids (MCT), or n-3 polyunsaturated fatty acids (n-3 PUFA) on the growth performance, immune function, and the microbiome of weaned piglets. A total of 120 healthy weaned piglets ((Landrace × Large White × Duroc); 7.93 ± 0.7 kg initial body weight), were randomly divided into five groups. Each group consisted of six replications with four piglets per replication. Dietary treatments included control diet (CON); LP diet (LP); LP + 0.2% SB diet (LP + SB); LP + 0.2% MCT diet (LP + MCT); and LP + PUFA diet (LP + PUFA). The experimental period lasted for 4 weeks. Compared with the CON diet, LP, LP + SB, LP + MCT, and LP + PUFA diets decreased the final weight and average daily gain (ADG) of piglets (p < 0.05). There were lower (p < 0.05) concentrations of IL-8 and higher (p < 0.05) Glutathione peroxidase (GSH-Px) activity in the plasma of piglets fed with LP + SB, LP + MCT, and LP + PUFA diets than those fed with the LP diet. The piglets in the LP + SB and LP + PUFA groups had lower IKK-alpha (IKKa) mRNA expression in the colonic mucosa compared with those in the CON and LP groups (p < 0.05). The mRNA expression of TLR4 in the colonic mucosa of piglets in the LP + SB, LP + MCT, and LP + PUFA groups was decreased when compared with the CON and LP groups (p < 0.05). The LP + MCT diets increased the gene expression of nuclear factor erythroid 2-related factor 2 (Nrf2) in the colonic mucosa of piglets compared with CON, LP, and LP + SB diets (p < 0.05). The abundance of Erysipelotrichaceae in the colonic microbiome of piglets in the LP group was higher than that in the other four groups (p < 0.05). Collectively, this study showed that LP diets supplemented with SB, MCT, or n-3 PUFA reduced plasma inflammatory factor levels, increased plasma GSH-Px activity, and declined mRNA expression of TLR4 and IKKa in the colonic epithelium, whereas it reduced the abundance of Erysipelotrichaceae in the colon of piglets.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | - Zhihong Sun
- Laboratory for Bio-Feed and Molecular Nutrition, College of Animal Science and Technology, Southwest University, Chongqing 400715, China; (W.L.)
| |
Collapse
|
9
|
Sanz-Fernández S, Díaz-Gaona C, Borge C, Quintanilla R, Rodríguez-Estévez V. Multi-Criteria Evaluation Model of Management for Weaned Piglets and Its Relations with Farm Performance and Veterinary Medicine Consumption. Animals (Basel) 2023; 13:3508. [PMID: 38003126 PMCID: PMC10668820 DOI: 10.3390/ani13223508] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Revised: 11/09/2023] [Accepted: 11/12/2023] [Indexed: 11/26/2023] Open
Abstract
Weaned piglets, being immature, demand careful handling to mitigate post-weaning stress in order to avoid immunosuppression and the use of antimicrobials to palliate the effects of disease outbreaks due to poor management. The objective of this work is to design a quick scan calculator or multi-criteria evaluation model of management for weaned piglets, founded on 10 critical indices covering post-weaning management aspects based on hygienic measures and management of facilities and animals. These include pre-weaning handling, batch management, biosecurity, water management, feed management, health program, stockmen training, temperature, ventilation, and floor conditions and density to relate handling and hygiene practices with farm performance and the consumption of veterinary medication. Each index carries a maximum score of ten, with evaluations derived from different management factors that make up each index (from three to eight factors were evaluated per index). Their cumulative score reflects the degree of adequacy of on-farm management. Therefore, a perfectly managed farm would achieve 100 points. The calculator underwent testing on 23 intensive farms with a total population of close to 16,000 sows and more than 400,000 weaned piglets, revealing the highest mean scores in floor conditions and density (8.03 out of 10) and pre-weaning handling and health programs (6.87 and 6.28, respectively). Conversely, the lowest scores corresponded to temperature, ventilation, water management, and stockmen training (4.08, 4.32, 4.81, and 4.93, respectively). The assessed farms averaged a global score of 56.12 out of 100 (from 37.65 to 76.76). The calculator's global score correlated with key post-weaning productivity and piglet health indicators, such as the feed conversion ratio, mortality rate, and piglet production cost, with r values of -0.442, -0.437, and -0.435, respectively (p < 0.05). Additionally, it negatively correlated with medication costs per piglet (r = -0.414; p < 0.05) and positively with annual farm productivity (r = 0.592; p < 0.01). To enhance management, hygiene, and prevention, farms should prioritize addressing indices with the lowest scores, thereby reducing medication consumption and enhancing productivity and health outcomes. Additionally, this quick scan calculator can be used for benchmarking purposes.
Collapse
Affiliation(s)
- Santos Sanz-Fernández
- Department of Animal Production, UIC Zoonoses and Emerging Diseases (ENZOEM), Faculty of Veterinary Medicine, International Agrifood Campus of Excellence (ceiA3), University of Córdoba, Campus de Rabanales, 14071 Córdoba, Spain
| | - Cipriano Díaz-Gaona
- Department of Animal Production, UIC Zoonoses and Emerging Diseases (ENZOEM), Faculty of Veterinary Medicine, International Agrifood Campus of Excellence (ceiA3), University of Córdoba, Campus de Rabanales, 14071 Córdoba, Spain
| | - Carmen Borge
- Department of Animal Health, Faculty of Veterinary Medicine, International Agrifood Campus of Excellence (ceiA3), University of Córdoba, Campus de Rabanales, 14071 Córdoba, Spain
| | - Raquel Quintanilla
- Animal Breeding and Genetics Program, Institute of Agrifood Research and Technology (IRTA), 08140 Caldes de Montbui, Spain
| | - Vicente Rodríguez-Estévez
- Department of Animal Production, UIC Zoonoses and Emerging Diseases (ENZOEM), Faculty of Veterinary Medicine, International Agrifood Campus of Excellence (ceiA3), University of Córdoba, Campus de Rabanales, 14071 Córdoba, Spain
| |
Collapse
|
10
|
Duarte ME, Garavito-Duarte Y, Kim SW. Impacts of F18 +Escherichia coli on Intestinal Health of Nursery Pigs and Dietary Interventions. Animals (Basel) 2023; 13:2791. [PMID: 37685055 PMCID: PMC10487041 DOI: 10.3390/ani13172791] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2023] [Revised: 08/30/2023] [Accepted: 08/31/2023] [Indexed: 09/10/2023] Open
Abstract
This review focused on the impact of F18+E. coli on pig production and explored nutritional interventions to mitigate its deleterious effects. F18+E. coli is a primary cause of PWD in nursery pigs, resulting in substantial economic losses through diminished feed efficiency, morbidity, and mortality. In summary, the F18+E. coli induces intestinal inflammation with elevated IL6 (60%), IL8 (43%), and TNF-α (28%), disrupting the microbiota and resulting in 14% villus height reduction. Besides the mortality, the compromised intestinal health results in a 20% G:F decrease and a 10% ADFI reduction, ultimately culminating in a 28% ADG decrease. Among nutritional interventions to counter F18+E. coli impacts, zinc glycinate lowered TNF-α (26%) and protein carbonyl (45%) in jejunal mucosa, resulting in a 39% ADG increase. Lactic acid bacteria reduced TNF-α (36%), increasing 51% ADG, whereas Bacillus spp. reduced IL6 (27%), increasing BW (12%). Lactobacillus postbiotic increased BW (14%) and the diversity of beneficial bacteria. Phytobiotics reduced TNF-α (23%) and IL6 (21%), enhancing feed efficiency (37%). Additional interventions, including low crude protein formulation, antibacterial minerals, prebiotics, and organic acids, can be effectively used to combat F18+E. coli infection. These findings collectively underscore a range of effective strategies for managing the challenges posed by F18+E. coli in pig production.
Collapse
Affiliation(s)
| | | | - Sung Woo Kim
- Department of Animal Science, North Carolina State University, Raleigh, NC 27695, USA; (M.E.D.); (Y.G.-D.)
| |
Collapse
|
11
|
Feed additives of bacterial origin as an immunoprotective or imunostimulating factor. ANNALS OF ANIMAL SCIENCE 2023. [DOI: 10.2478/aoas-2023-0021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/18/2023]
Abstract
Abstract
Since January 2006 when using antibiotics as growth promoters in animal feed have been banned scientists are looking for the best resolution to apply alternative substances. Extensive research into the health-promoting properties of probiotics and prebiotics has led to significant interest in the mechanisms of action of the combined administration of these feed additives as a synbiotic. Subsequent research has led to the development of new products. Among the most important health benefits of additives are, inhibiting the growth of pathogenic bacteria in the GI tract, maintenance of homeostasis, treatment of inflammatory bowel diseases, and increase in immunity. Specific immunomodulatory mechanisms of action are not well understood and the effect is not always positive, though there are no reports of adverse effects of these substances found in the literature. For this reason, research is still being conducted on their proper application. However, due to the difficulties of carrying out research on humans, evidence of the beneficial effect of these additives comes mainly from experiments on animals. The objective of the present work was to assess the effect of probiotics, prebiotics, and synbiotics, as well as new additives including postbiotics, proteobiotics, nutribiotics, and pharmabiotics, on specific immunomodulatory mechanisms of action, increase in immunity, the reduction of a broad spectrum of diseases.
Collapse
|
12
|
Marchetti R, Faeti V, Gallo M, Pindo M, Bochicchio D, Buttazzoni L, Della Casa G. Protein Content in the Diet Influences Growth and Diarrhea in Weaning Piglets. Animals (Basel) 2023; 13:795. [PMID: 36899653 PMCID: PMC10000050 DOI: 10.3390/ani13050795] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2023] [Revised: 02/17/2023] [Accepted: 02/20/2023] [Indexed: 02/25/2023] Open
Abstract
The aim of this research has been to assess the effect of the dietary protein level on piglet growth and post-weaning diarrhea (PWD) incidence. Piglet fecal microbiota and feces composition were also assessed. The experiment was carried out on 144 weaned piglets (Duroc × Large White; 72 piglets per treatment) and lasted from weaning (at 25 days of age) until the end of the post-weaning phase (at 95 days). Two dietary protein levels were compared: high (HP; 17.5% crude protein on average, during the experiment) and low (LP; 15.5% on average). Lower (p < 0.01) average daily gain and feed conversion ratio were observed in LP piglets in the first growth phase. However, at the end of the post-weaning period, the growth parameters were not significantly different in the two diets. Diarrhea scores were lower in piglets fed LP diets than in piglets fed HP diets (28.6% of the total vs. 71.4% in the HP piglets). Fibrobacteres, Proteobacteria, and Spirochaetes were more abundant in the feces of the piglets fed LP diets. Feces nitrogen content was lower in piglets fed LP diets. In conclusion, low protein levels in the diet can reduce the incidence of PWD while only marginally affecting growth parameters.
Collapse
Affiliation(s)
- Rosa Marchetti
- Council for Agricultural Research and Economics, Research Centre for Animal Production and Aquaculture, Via Beccastecca 345, 41018 Modena, Italy
| | - Valerio Faeti
- Council for Agricultural Research and Economics, Research Centre for Animal Production and Aquaculture, Via Beccastecca 345, 41018 Modena, Italy
| | - Maurizio Gallo
- Associazione Nazionale Allevatori Suini, Via Nizza 53, 00198 Rome, Italy
| | - Massimo Pindo
- Fondazione Edmund Mach (FEM), Research and Innovation Centre, Via E. Mach 1, 38010 Trento, Italy
| | - Davide Bochicchio
- Council for Agricultural Research and Economics, Research Centre for Animal Production and Aquaculture, Via Beccastecca 345, 41018 Modena, Italy
| | - Luca Buttazzoni
- Council for Agricultural Research and Economics, Research Centre for Animal Production and Aquaculture, Via Salaria 31, 00015 Rome, Italy
| | - Giacinto Della Casa
- Council for Agricultural Research and Economics, Research Centre for Animal Production and Aquaculture, Via Beccastecca 345, 41018 Modena, Italy
| |
Collapse
|
13
|
Gomes MDS, Duarte ME, Saraiva A, de Oliveira LL, Teixeira LM, Rocha GC. Effect of antibiotics and low-crude protein diets on growth performance, health, immune response, and fecal microbiota of growing pigs. J Anim Sci 2023; 101:skad357. [PMID: 37843846 PMCID: PMC10630186 DOI: 10.1093/jas/skad357] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2023] [Accepted: 10/13/2023] [Indexed: 10/17/2023] Open
Abstract
This study aimed to investigate the effects of diets with and without antibiotics supplementation and diets with 18.5% and 13.0% crude protein (CP) on growth performance, carcass characteristics, disease incidence, fecal microbiota, immune response, and antioxidant capacity of growing pigs. One hundred and eighty pigs (59-day-old; 18.5 ± 2.5 kg) were distributed in a randomized complete block design in a 2 × 2 factorial arrangement, nine replicates, and five pigs per pen. The factors were CP (18.5% or 13.0%) and antibiotics (none or 100 mg/kg tiamulin + 506 mg/kg oxytetracycline). Medicated diets were fed from days 59 to 73. After that, all pigs were fed their respective CP diets from 73 to 87 days. Data were analyzed using the Mixed procedure in SAS version 9.4. From days 59 to 73, pigs fed antibiotics diets had higher (P < 0.05) average daily feed intake (ADFI), average daily weight gain (ADG), gain to feed ratio (G:F), compared to the diets without antibiotics. From days 73 to 87 (postmedicated period), any previous supplementation of antibiotics did not affect pig growth performance. Overall (days 59 to 87), pigs-fed antibiotics diets had higher (P < 0.05) G:F compared to pigs-fed diets without antibiotics. In all periods evaluated, pigs fed 18.5% CP diets had higher (P < 0.05) ADG and G:F compared to pigs fed 13.0% CP. Pigs fed the 13.0% CP diets had lower (P < 0.05) fecal score and diarrhea incidence than those fed 18.5% CP. Pigs fed 18.5% CP diets had improved (P < 0.05) loin area compared to pigs-fed diets with 13.0% CP. At 66 days of age, pigs-fed antibiotics diets had lower (P < 0.05) alpha diversity estimated with Shannon and Simpson compared to the pig-fed diets without antibiotics. At family level, pigs fed 18.5% CP diets had higher (P < 0.05) relative abundance of Streptococcaceae, and lower (P < 0.05) relative abundance of Clostridiaceae at days 66 and 87 compared with pigs fed 13.0% CP. Pigs-fed antibiotics diets had lower (P < 0.05) immunoglobulin G and protein carbonyl concentrations at day 66 compared to the pigs-fed diets without antibiotics. The reduction of dietary CP from 18.5% to 13.0% reduced the growth performance and loin muscle area of growing pigs, although it was effective to reduce diarrhea incidence. Antibiotics improved growth performance, lowered diarrhea incidence, improved components of the humoral immune response, and reduced microbiota diversity. However, in the postmedicated period, we found no residual effect on the general health of the animals, and considering the overall period, only G:F was improved by the use of antibiotics.
Collapse
Affiliation(s)
- Maykelly da S Gomes
- Muscle Biology and Nutrigenomics Laboratory, Department of Animal Science, Universidade Federal de Viçosa, Minas Gerais, Brazil
| | - Marcos E Duarte
- Departament of Animal Science, North Carolina State University, Raleigh, USA
| | - Alysson Saraiva
- Muscle Biology and Nutrigenomics Laboratory, Department of Animal Science, Universidade Federal de Viçosa, Minas Gerais, Brazil
| | | | - Lucas M Teixeira
- Muscle Biology and Nutrigenomics Laboratory, Department of Animal Science, Universidade Federal de Viçosa, Minas Gerais, Brazil
| | - Gabriel C Rocha
- Muscle Biology and Nutrigenomics Laboratory, Department of Animal Science, Universidade Federal de Viçosa, Minas Gerais, Brazil
| |
Collapse
|
14
|
Rocha GC, Duarte ME, Kim SW. Advances, Implications, and Limitations of Low-Crude-Protein Diets in Pig Production. Animals (Basel) 2022; 12:3478. [PMID: 36552397 PMCID: PMC9774321 DOI: 10.3390/ani12243478] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2022] [Revised: 12/02/2022] [Accepted: 12/07/2022] [Indexed: 12/14/2022] Open
Abstract
Currently, five crystalline essential amino acids (Lys, Met, Thr, Trp, and Val) are generally used, allowing formulation of low-crude-protein (CP) diets. Moreover, Ile may also be used depending on its economic value and the specific feeding program. Experimentally, it has been shown that further reduced CP levels can be achieved by supplemental His, Leu, and Phe to the diets. However, decreasing the dietary CP level while maintaining optimal ratios of amino acids has shown contradictory effects on pigs' growth performance. Due to the divergence in the literature and the importance for practical formulation strategies in the swine industry, a literature review and a meta-analysis were performed to estimate the minimum CP level that would not compromise pig performance. Based on the present review, there is a minimum CP level after which the growth performance of pigs can be compromised, even though diets are balanced for essential amino acids. Considering average daily gain and gain to feed, respectively, these levels were estimated to be 18.4% CP (95% confidence interval [CI]: 16.3 to 18.4) and 18.3% CP (95% CI: 17.4 to 19.2) for nursery, 16.1% CP (95% CI: 16.0 to 16.2) and 16.3% CP (95% CI: 14.5 to 18.0) for growing, and 11.6% CP (95% CI: 10.8 to 12.3) and 11.4% CP (95% CI: 10.3 to 12.5) for finishing pigs.
Collapse
Affiliation(s)
- Gabriel Cipriano Rocha
- Department of Animal Science, Universidade Federal de Viçosa, Viçosa 36570-900, MG, Brazil
- Department of Animal Science, North Carolina State University, Raleigh, NC 27695, USA
| | - Marcos Elias Duarte
- Department of Animal Science, North Carolina State University, Raleigh, NC 27695, USA
| | - Sung Woo Kim
- Department of Animal Science, North Carolina State University, Raleigh, NC 27695, USA
| |
Collapse
|
15
|
Effects of a high protein starter diet with fermented soybean cake on growth performance of organic pigs weaned outdoor. Livest Sci 2022. [DOI: 10.1016/j.livsci.2022.105141] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
16
|
Lee J, González-Vega JC, Htoo JK, Yang C, Nyachoti CM. Effects of dietary protein content and crystalline amino acid supplementation patterns on growth performance, intestinal histomorphology, and immune response in weaned pigs raised under different sanitary conditions. J Anim Sci 2022; 100:skac285. [PMID: 36062846 PMCID: PMC9527300 DOI: 10.1093/jas/skac285] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2022] [Accepted: 09/02/2022] [Indexed: 11/12/2022] Open
Abstract
The aim of this experiment was to investigate the effects of dietary crude protein (CP) contents and crystalline amino acids (CAA) supplementation patterns on growth performance, intestinal histomorphology, and immune response in weaned pigs under clean (CSC) or unclean sanitary conditions (USC). A total of 144 weaned pigs (6.35 ± 0.63 kg body weight) were assigned to 6 treatments in a 3 × 2 factorial arrangement based on CP content and sanitary conditions using a randomized complete block design, giving 8 replicates per treatment with 3 pigs per pen. Pigs were fed one of three diets for 21 d: one high CP (HCP; 22%) and two low CP (LCP; 19%) diets supplemented with 9 indispensable AA or only 6 AA (Lys, Met, Thr, Trp, Val, and Ile) as CAA. The CSC room was washed weekly, whereas the USC room had sow manure spread in the pens and was not washed throughout the experiment. Body weight and feed disappearance were recorded weekly. Blood was sampled from 1 pig per pen weekly, and the same pig was euthanized for jejunal tissues sampling on day 21. Pigs raised under USC had reduced (P < 0.05) average daily gain (ADG) and gain to feed ratio (G:F) in week 2, but contrary results that greater (P < 0.05) ADG and G:F were found in pigs under USC in week 3. Overall, there was an interaction where G:F did not differ between HCP and LCP under CSC, however, LCP decreased (P < 0.05) G:F compared to HCP under USC. Pigs fed the HCP diet had higher (P < 0.05) fecal scores than those fed the LCP diets throughout the experiment. Pigs fed the LCP had higher (P < 0.05) villus height to crypt depth ratio than those fed the HCP. An interaction was observed where goblet cell density in the jejunum was higher (P < 0.05) in pigs fed LCP than HCP under CSC, but no difference was found between HCP and LCP under USC. Different CAA supplementation patterns did not influence both growth performance and histomorphology. Pigs raised under USC had greater (P < 0.05) plasma interleukin (IL)-10 and IL-6 concentrations and reduced (P < 0.05) plasma tumor necrosis factor-alpha concentration. Also, the LCP diets resulted in a greater (P < 0.05) plasma IL-10 concentration. In conclusion, overall growth performance did not differ between HCP and LCP under CSC, but LCP diets reduced G:F under USC. Feeding LCP diets to weaned pigs improved gut morphology under USC and ameliorated systemic inflammation induced by USC, whereas CAA supplementation patterns did not affect growth performance and gut morphology.
Collapse
Affiliation(s)
- Jinyoung Lee
- Department of Animal Science, University of Manitoba, Winnipeg, MB, R3T 2N2Canada
| | | | - John Kyaw Htoo
- Evonik Operations GmbH, Rodenbacher Chaussee, Hanau-Wolfgang, Hessen 63457, Germany
| | - Chengbo Yang
- Department of Animal Science, University of Manitoba, Winnipeg, MB, R3T 2N2Canada
| | | |
Collapse
|
17
|
Reduction in Diarrhoea and Modulation of Intestinal Gene Expression in Pigs Allocated a Low Protein Diet without Medicinal Zinc Oxide Post-Weaning. Animals (Basel) 2022; 12:ani12080989. [PMID: 35454236 PMCID: PMC9027983 DOI: 10.3390/ani12080989] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2022] [Revised: 04/05/2022] [Accepted: 04/06/2022] [Indexed: 11/17/2022] Open
Abstract
Simple Summary Post-weaning diarrhoea in pigs can be a challenge and medicinal zinc oxide can decrease the need for antibiotic treatment. Low protein diets decrease diarrhoea post-weaning and soy protein concentrate improves protein digestion when compared to a soybean meal based diet. The aim of this study was to test the effect of low protein diets with different protein sources as an alternative to medicinal zinc oxide. The study demonstrated that low protein diets can decrease diarrhoea-related antibiotic treatments but also reduces growth performance. Additionally, the study presented a difference in gut nutrient metabolism when feeding very low protein levels. Abstract Weaning comprises a challenging period for pigs, but dietary tools can be implemented to avoid excess antibiotics usage. Therefore, we tested the effect of a 17.6% crude protein (CP) diet on growth and diarrhoea and investigated the effect of a 15.5% CP diet post-weaning on transcriptomic responses, growth, and diarrhoea-related antibiotic treatments. At weaning, pigs were divided into five dietary treatment groups in a three-phase diet from weaning to 30 kg bodyweight. The diets included a positive control group (PC) with medicinal zinc oxide, a negative control group (NC), a 17.6% CP diet based on soy protein concentrate (SP), a 17.6% CP diet based on soybean meal (SB), and a 15.5% CP diet with additional amino acids (XLA). Growth performance and the occurrence of diarrhoea were similar between the SP and SB groups. The XLA pigs had a reduced weight gain and fewer antibiotics treatments caused by diarrhoea, as well as a reduced level of blood proteins. Intestinal tissue samples from the XLA pigs displayed decreased expression of genes involved in nutrient metabolism and immune responses relative to the PC group. In conclusion, a very low CP diet reduces antibiotics treatments, but also adapts gut nutrient metabolism and reduces growth performance.
Collapse
|
18
|
Oh HJ, Kim MH, Song MH, Lee JH, Kim YJ, Chang SY, An JW, Go YB, Song DC, Cho HA, Kim MJ, Kim HB, Cho JH. Effects of Replacing Medical Zinc Oxide with Different Ratios of Inorganic: Organic Zinc or Reducing Crude Protein Diet with Mixed Feed Additives in Weaned Piglet Diets. Animals (Basel) 2021; 11:3132. [PMID: 34827863 PMCID: PMC8614496 DOI: 10.3390/ani11113132] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2021] [Revised: 10/27/2021] [Accepted: 10/29/2021] [Indexed: 11/16/2022] Open
Abstract
One hundred twenty weaned piglets (9.34 ± 0.74 kg) were used in a four-week experiment to investigate the effects of replacing medical ZnO with a different ratio of inorganic and organic zinc (IZ:OZ) or a low-crude-protein diet (LP) with mixed feed additives (MFAs) in the weaned piglets' diet. The dietary treatments included a control (CON), T1 (T1; ZnO 1000 mg/kg), T2 (IZ:OZ 850:150), T3 (IZ:OZ 700:300), T4 (IZ:OZ, 500:500), and T5 (LP with MFAs (0.1% essential oils + 0.08% protease + 0.02% xylanase)). The growth performance was decreased (p < 0.05) in the CON treatment compared with the T4 treatment. The diarrhea incidence was decreased (p < 0.05) in the T4 and the T5 treatment compared with the CON and the T1 treatments. The apparent total tract digestibility (ATTD) of nutrients were increased (p < 0.05) in the T4 and T5 treatments compared with the CON, T1, and T2 treatments. The T4 treatment had a higher (p < 0.05) ATTD of zinc than the T1, T2, and T3 treatments. The fecal microflora was improved (p < 0.05) in the T5 treatment compared with the CON and T3 treatments. In conclusion, IZ:OZ 500:500 could improve growth performance, nutrient digestibility, and zinc utilization while reducing diarrhea incidence in weaned piglets. Moreover, LP with MFA could replace medical ZnO.
Collapse
Affiliation(s)
- Han Jin Oh
- Department of Animal Sciences, Chungbuk National University, Cheongju 286-44, Korea; (H.J.O.); (J.H.L.); (Y.J.K.); (S.Y.C.); (J.W.A.); (Y.B.G.); (D.C.S.); (H.A.C.)
| | - Myung Hoo Kim
- Department of Animal Science, Pusan National University, Miryang 504-63, Korea;
| | - Min Ho Song
- Division of Animal and Dairy Science, Chungnam National University, Daejeon 341-34, Korea;
| | - Ji Hwan Lee
- Department of Animal Sciences, Chungbuk National University, Cheongju 286-44, Korea; (H.J.O.); (J.H.L.); (Y.J.K.); (S.Y.C.); (J.W.A.); (Y.B.G.); (D.C.S.); (H.A.C.)
| | - Yong Ju Kim
- Department of Animal Sciences, Chungbuk National University, Cheongju 286-44, Korea; (H.J.O.); (J.H.L.); (Y.J.K.); (S.Y.C.); (J.W.A.); (Y.B.G.); (D.C.S.); (H.A.C.)
| | - Se Yeon Chang
- Department of Animal Sciences, Chungbuk National University, Cheongju 286-44, Korea; (H.J.O.); (J.H.L.); (Y.J.K.); (S.Y.C.); (J.W.A.); (Y.B.G.); (D.C.S.); (H.A.C.)
| | - Jae Woo An
- Department of Animal Sciences, Chungbuk National University, Cheongju 286-44, Korea; (H.J.O.); (J.H.L.); (Y.J.K.); (S.Y.C.); (J.W.A.); (Y.B.G.); (D.C.S.); (H.A.C.)
| | - Young Bin Go
- Department of Animal Sciences, Chungbuk National University, Cheongju 286-44, Korea; (H.J.O.); (J.H.L.); (Y.J.K.); (S.Y.C.); (J.W.A.); (Y.B.G.); (D.C.S.); (H.A.C.)
| | - Dong Cheol Song
- Department of Animal Sciences, Chungbuk National University, Cheongju 286-44, Korea; (H.J.O.); (J.H.L.); (Y.J.K.); (S.Y.C.); (J.W.A.); (Y.B.G.); (D.C.S.); (H.A.C.)
| | - Hyun Ah Cho
- Department of Animal Sciences, Chungbuk National University, Cheongju 286-44, Korea; (H.J.O.); (J.H.L.); (Y.J.K.); (S.Y.C.); (J.W.A.); (Y.B.G.); (D.C.S.); (H.A.C.)
| | - Min Ji Kim
- Animal Nutrition and Physiology Division, National Institute of Animal Science, Rural Development Administration, Wanju 553-65, Korea;
| | - Hyeun Bum Kim
- Department of Animal Resource, and Science, Dankook University, Cheonan 311-16, Korea
| | - Jin Ho Cho
- Department of Animal Sciences, Chungbuk National University, Cheongju 286-44, Korea; (H.J.O.); (J.H.L.); (Y.J.K.); (S.Y.C.); (J.W.A.); (Y.B.G.); (D.C.S.); (H.A.C.)
| |
Collapse
|
19
|
Szuba-Trznadel A, Rząsa A, Hikawczuk T, Fuchs B. Effect of Zinc Source and Level on Growth Performance and Zinc Status of Weaned Piglets. Animals (Basel) 2021; 11:2030. [PMID: 34359158 PMCID: PMC8300116 DOI: 10.3390/ani11072030] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2021] [Revised: 06/24/2021] [Accepted: 07/05/2021] [Indexed: 01/07/2023] Open
Abstract
The aim of this study was to evaluate the effect of zinc (Zn) supplementation in different commercial forms on the growth performance, health status, and Zn balance of weaners in field conditions. The animals were fed pre-starter (from the 28th to 47th day of life) and starter (from the 48th to 74th day of life) mixtures differing in Zn form and concentration. Group I was given ZnSO4 at 150 mg kg-1; Group II received pre-starter zinc oxide (ZnO) at 3000 mg kg-1 and starter at 150 mg kg-1; and Group III was given 150 mg kg-1 of zinc oxide nanoparticles (nZnO). We found that the average daily gain in Group I was significantly lower, compared to Groups II and III. A commonly accepted level of Zn (150 mg kg-1) as nZnO can be recommended, instead of therapeutic doses of Zn preparations with the same efficiency. Moreover, a lower level of Zn in the diet can prevent the excessive accumulation of this element in waste and, thus, reduce environmental damage.
Collapse
Affiliation(s)
- Anna Szuba-Trznadel
- Department of Animal Nutrition and Feed Management, Wrocław University of Environmental and Life Sciences, J. Chełmońskiego 38D, 51-630 Wrocław, Poland; (T.H.); (B.F.)
| | - Anna Rząsa
- Department of Immunology, Pathophysiology and Veterinary Preventive Medicine, Wrocław University of Environmental and Life Sciences, C.K. Norwida 31, 50-375 Wrocław, Poland;
| | - Tomasz Hikawczuk
- Department of Animal Nutrition and Feed Management, Wrocław University of Environmental and Life Sciences, J. Chełmońskiego 38D, 51-630 Wrocław, Poland; (T.H.); (B.F.)
| | - Bogusław Fuchs
- Department of Animal Nutrition and Feed Management, Wrocław University of Environmental and Life Sciences, J. Chełmońskiego 38D, 51-630 Wrocław, Poland; (T.H.); (B.F.)
| |
Collapse
|
20
|
Limbach JR, Espinosa CD, Perez-Calvo E, Stein HH. Effect of dietary crude protein level on growth performance, blood characteristics, and indicators of intestinal health in weanling pigs. J Anim Sci 2021; 99:6279783. [PMID: 34019637 DOI: 10.1093/jas/skab166] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2021] [Accepted: 05/18/2021] [Indexed: 12/16/2022] Open
Abstract
An experiment was conducted to test the hypothesis that reducing crude protein (CP) in starter diets for pigs reduces post-weaning diarrhea and improves intestinal health. In total, 180 weanling pigs were allotted to 3 diets containing 22, 19, or 16% CP. Fecal scores were visually assessed every other day. Blood samples were collected from 1 pig per pen on days 1, 6, 13, 20, and 27, and 1 pig per pen was euthanized on day 12. Results indicated that reducing dietary CP reduced (P < 0.01) overall average daily gain, gain to feed ratio, final body weight, and fecal scores of pigs. Pigs fed the 16% CP diet had reduced (P < 0.01) serum albumin compared with pigs fed other diets. Blood urea nitrogen, haptoglobin, interleukin-1β, and interleukin-6 concentrations in serum were greatest (P < 0.01) on day 13, whereas tumor necrosis factor-α and interleukin-10 concentrations were greatest (P < 0.01) on day 6. Villus height in the jejunum increased (P < 0.05) and crypt depth in the ileum was reduced (P < 0.01) if the 19% CP diet was fed to pigs compared with the 22% CP diet. A reduction (P < 0.05) in mRNA abundance of interferon-γ, chemokine ligand 10, occludin, trefoil factor-2, trefoil factor-3, and mucin 2 was observed when pigs were fed diets with 16% CP. In conclusion, reducing CP in diets for weanling pigs reduces fecal score and expression of genes associated with inflammation.
Collapse
Affiliation(s)
- Joseph R Limbach
- Department of Animal Sciences, University of Illinois, Urbana, IL 61801, USA
| | | | - Estefania Perez-Calvo
- DSM Nutritional Products, Animal Nutrition and Health, Village-Neuf, F-68128, France
| | - Hans H Stein
- Department of Animal Sciences, University of Illinois, Urbana, IL 61801, USA
| |
Collapse
|
21
|
Dell’Anno M, Reggi S, Caprarulo V, Hejna M, Sgoifo Rossi CA, Callegari ML, Baldi A, Rossi L. Evaluation of Tannin Extracts, Leonardite and Tributyrin Supplementation on Diarrhoea Incidence and Gut Microbiota of Weaned Piglets. Animals (Basel) 2021; 11:1693. [PMID: 34204108 PMCID: PMC8229630 DOI: 10.3390/ani11061693] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2021] [Revised: 05/13/2021] [Accepted: 05/26/2021] [Indexed: 12/16/2022] Open
Abstract
The effects of the dietary administration of a combination of Quebracho and Chestnut tannins, leonardite and tributyrin were evaluated in weaned piglets. A total of 168 weaned piglets (Landrace × Large White) were randomly allotted to two experimental groups (6 pens/group, 14 piglets/pen). Animals were fed a basal control diet (CTRL) and a treatment diet (MIX) supplemented with 0.75% tannin extracts, 0.25% leonardite and 0.20% tributyrin for 28 days. Individual body weight and feed intake were recorded weekly. Diarrhoea incidence was recorded by a faecal scoring scale (0-3; considering diarrhoea ≥ 2). At 0 and 28 days, faecal samples were obtained from four piglets/pen for microbiological and chemical analyses of faecal microbiota, which were then assessed by V3-V4 region amplification sequencing. At 28 days, blood from two piglets/pen was sampled to evaluate the serum metabolic profile. After 28 days, a reduction in diarrhoea incidence was observed in the MIX compared to CTRL group (p < 0.05). In addition, compared to CTRL, MIX showed a higher lactobacilli:coliform ratio and increased Prevotella and Fibrobacter genera presence (p < 0.01). The serum metabolic profile showed a decreased level of low-density lipoproteins in the treated group (p < 0.05). In conclusion, a combination of tannin extract, leonardite and tributyrin could decrease diarrhoea incidence and modulate the gut microbiota.
Collapse
Affiliation(s)
- Matteo Dell’Anno
- Department of Health, Animal Science and Food Safety “Carlo Cantoni” (VESPA), Università Degli Studi di Milano, 26900 Lodi, Italy; (S.R.); (M.H.); (C.A.S.R.); (A.B.); (L.R.)
| | - Serena Reggi
- Department of Health, Animal Science and Food Safety “Carlo Cantoni” (VESPA), Università Degli Studi di Milano, 26900 Lodi, Italy; (S.R.); (M.H.); (C.A.S.R.); (A.B.); (L.R.)
| | - Valentina Caprarulo
- Department of Molecular and Translational Medicine (DMMT), Università Degli Studi di Brescia, 25123 Brescia, Italy;
| | - Monika Hejna
- Department of Health, Animal Science and Food Safety “Carlo Cantoni” (VESPA), Università Degli Studi di Milano, 26900 Lodi, Italy; (S.R.); (M.H.); (C.A.S.R.); (A.B.); (L.R.)
| | - Carlo Angelo Sgoifo Rossi
- Department of Health, Animal Science and Food Safety “Carlo Cantoni” (VESPA), Università Degli Studi di Milano, 26900 Lodi, Italy; (S.R.); (M.H.); (C.A.S.R.); (A.B.); (L.R.)
| | - Maria Luisa Callegari
- Department for Sustainable Food Process (DiSTAS), Università Cattolica del Sacro Cuore, 29122 Piacenza, Italy;
| | - Antonella Baldi
- Department of Health, Animal Science and Food Safety “Carlo Cantoni” (VESPA), Università Degli Studi di Milano, 26900 Lodi, Italy; (S.R.); (M.H.); (C.A.S.R.); (A.B.); (L.R.)
| | - Luciana Rossi
- Department of Health, Animal Science and Food Safety “Carlo Cantoni” (VESPA), Università Degli Studi di Milano, 26900 Lodi, Italy; (S.R.); (M.H.); (C.A.S.R.); (A.B.); (L.R.)
| |
Collapse
|
22
|
A Very Low CP Level Reduced Diarrhoea and Productivity in Weaner Pigs, but No Differences between Post-Weaning Diets Including Soybean Meal or Soy Protein Concentrate Were Found. Animals (Basel) 2021; 11:ani11030678. [PMID: 33806270 PMCID: PMC7998764 DOI: 10.3390/ani11030678] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2021] [Revised: 02/25/2021] [Accepted: 02/26/2021] [Indexed: 11/17/2022] Open
Abstract
Soy protein concentrate improves nutrient utilization and growth performance compared to soybean meal, and diets with a low crude protein (CP) level decreases diarrhoea. The objectives were to (1) test a low CP diet based on different soy products, and (2) to test a very-low CP diet (15.1%) with amino acids (AA) on diarrhoea and productivity. A total of 5,635 weaned pigs (~28 days), were assigned to five dietary treatments; PC (positive control): Standard CP levels (192, 189, 191 g/kg CP) with 2500 ppm ZnO; NC (negative control): Same as PC without ZnO; SP (Soy protein concentrate): Low CP levels (176, 174, 191 g/kg CP); SB (Soybean meal): Low CP levels (177, 176, 191 g/kg CP); and XLA (X-low CP + AA): Very low CP levels (154, 151, 191 g/kg CP) with AA. The PC and XLA diets reduced diarrhoea by 41 and 61%, respectively, compared to the NC group, while no difference between SB and SP were observed. The XLA diet reduced feed intake and daily gain compared with PC and NC, where SP, SB, and XLA had a poorer feed conversion compared with PC. Conclusively, the SP and SB low-protein diets did not reduce diarrhoea or growth performance, whereas the XLA diet decreased both diarrhoea and performance.
Collapse
|
23
|
Larsen C, Lynegaard JC, Pedersen AØ, Kjeldsen NJ, Hansen CF, Nielsen JP, Amdi C. A reduced CP level without medicinal zinc oxide does not alter the intestinal morphology in weaned pigs 24 days post-weaning. Animal 2021; 15:100188. [PMID: 33610517 DOI: 10.1016/j.animal.2021.100188] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2020] [Revised: 01/19/2021] [Accepted: 01/19/2021] [Indexed: 01/20/2023] Open
Abstract
The use of medicinal zinc oxide (ZnO) to prevent diarrhoea post-weaning will be banned in the EU from 2022. Therefore, new alternatives are needed to avoid an increase in diarrhoea and higher antibiotic use. A low dietary CP level has shown to lower the frequency of diarrhoea in pigs, due to lower microbial protein fermentation in the colon as well as improved conditions in the small intestine after weaning. The objective of this study was to examine the effect of decreased CP levels post-weaning as an alternative to medicinal ZnO on gut morphology and histopathology. Five hundred and sixty pigs were randomly assigned into one of six groups receiving a two-phase diet from 5.5 to 15 kg: positive control group (PC) with medicinal ZnO and standard levels of protein (19.1-18.4% CP), negative control group (NC) without medicinal ZnO and standard levels of protein (19.1-18.4% CP). The remaining four low protein groups were a low-standard (LS) CP level (16.6-18.4% CP), a low-low (LL) CP level (16.6-16.2% CP), a very low-high (VLH) CP level (14-19.3% CP) and a very low-medium (VLM) CP level (14-17.4% CP). Individual BW was recorded at day 0, 10 and 24 post-weaning, and all antibiotic treatments were recorded. Tissue samples from the small intestine (mid-jejunum) for morphological and histopathologic analysis, organ weights, blood and urine samples were collected at day 10 and 24 post-weaning from a total of 90 sacrificed weaners. The results demonstrated no differences in intestinal morphology between groups, but the histopathology showed a damaged brush border score in VLM and VLH pigs . In addition, a lower blood urea nitrogen in VLM pigs at 24 days was found. The LL and VLM pigs had a significantly decreased average daily gain in the overall trial period compared to PC and NC pigs. Conclusively, intestinal brush border was damaged by the very low protein diet at 24 days post-weaning, but intestinal morphology was unaffected by dietary strategy.
Collapse
Affiliation(s)
- C Larsen
- Department of Veterinary and Animal Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Grønnegårdsvej 2, DK-1870 Frederiksberg C, Copenhagen, Denmark
| | - J C Lynegaard
- Department of Veterinary and Animal Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Grønnegårdsvej 2, DK-1870 Frederiksberg C, Copenhagen, Denmark.
| | - A Ø Pedersen
- Department of Veterinary and Animal Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Grønnegårdsvej 2, DK-1870 Frederiksberg C, Copenhagen, Denmark
| | - N J Kjeldsen
- Pig Research Centre, Danish Agriculture and Food Council, SEGES, Axeltorv 3, DK-1609 Copenhagen, Denmark
| | - C F Hansen
- Pig Research Centre, Danish Agriculture and Food Council, SEGES, Axeltorv 3, DK-1609 Copenhagen, Denmark
| | - J P Nielsen
- Department of Veterinary and Animal Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Grønnegårdsvej 2, DK-1870 Frederiksberg C, Copenhagen, Denmark
| | - C Amdi
- Department of Veterinary and Animal Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Grønnegårdsvej 2, DK-1870 Frederiksberg C, Copenhagen, Denmark
| |
Collapse
|
24
|
Using Nutritional Strategies to Shape the Gastro-Intestinal Tracts of Suckling and Weaned Piglets. Animals (Basel) 2021; 11:ani11020402. [PMID: 33562533 PMCID: PMC7914898 DOI: 10.3390/ani11020402] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2021] [Revised: 01/29/2021] [Accepted: 02/01/2021] [Indexed: 01/10/2023] Open
Abstract
This is a comprehensive review on the use of nutritional strategies to shape the functioning of the gastro-intestinal tract in suckling and weaned piglets. The progressive development of a piglet's gut and the associated microbiota and immune system offers a unique window of opportunity for supporting gut health through dietary modulation. This is particularly relevant for large litters, for which sow colostrum and milk are insufficient. The authors have therefore proposed the use of supplemental milk and creep feed with a dual purpose. In addition to providing nutrients to piglets, supplemental milk can also serve as a gut modulator in early life by incorporating functional ingredients with potential long-term benefits. To prepare piglets for weaning, it is important to stimulate the intake of solid feed before weaning, in addition to stimulating the number of piglets eating. The use of functional ingredients in creep feed and a transition diet around the time of weaning helps to habituate piglets to solid feed in general, while also preparing the gut for the digestion and fermentation of specific ingredients. In the first days after weaning (i.e., the acute phase), it is important to maintain high levels of feed intake and focus on nutritional strategies that support good gastric (barrier) function and that avoid overloading the impaired digestion and fermentation capacity of the piglets. In the subsequent maturation phase, the ratio of lysine to energy can be increased gradually in order to stimulate piglet growth. This is because the digestive and fermentation capacity of the piglets is more mature at this stage, thus allowing the inclusion of more fermentable fibres. Taken together, the nutritional strategies addressed in this review provide a structured approach to preparing piglets for success during weaning and the period that follows. The implementation of this approach and the insights to be developed through future research can help to achieve some of the most important goals in pig production: reducing piglet mortality, morbidity and antimicrobial use.
Collapse
|