1
|
Eliasson E, Sun L, Cervin G, Pavia H, Tällberg G, Ellström P, Ivarsson E. No colonization resistance to Campylobacter jejuni in broilers fed brown algal extract-supplemented diets. Front Microbiol 2024; 15:1396949. [PMID: 38993493 PMCID: PMC11236747 DOI: 10.3389/fmicb.2024.1396949] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2024] [Accepted: 06/06/2024] [Indexed: 07/13/2024] Open
Abstract
Introduction Campylobacter jejuni gastroenteritis is the most commonly reported zoonosis within the EU, with poultry products regarded as the primary source of transmission to humans. Therefore, finding strategies to reduce Campylobacter colonization in broilers holds importance for public health. Recent studies suggest that supplementation of broiler feed with brown algal extracts, particularly laminarin, can provide beneficial effects on broiler gut health, growth performance, and gut microbiota. However, its effect on gut microbiota development and subsequent reduction of Campylobacter loads in broiler caeca during the later stages of the birds' lives remains unclear. Methods Experimental colonization of Ross 308 broilers with two different strains of C. jejuni was conducted, with groups fed either a basal diet or the same basal diet supplemented with 725 ppm algal extract from Saccharina latissima to provide 290 ppm laminarin. Fecal samples were collected for bacterial enumeration, and caecal samples were obtained before and after the C. jejuni challenge for the determination of microbiota development. Results and discussion No significant differences in fecal C. jejuni concentrations between the groups fed different diets or exposed to different C. jejuni strains were observed. This suggests that both strains colonized the birds equally well and that the laminarin rich algal extract did not have any inhibitory effect on C. jejuni colonization. Notably, 16S rRNA amplicon sequencing revealed detailed data on the caecal microbiota development, likely influenced by both bird age and C. jejuni colonization, which can be valuable for further development of broiler feed formulations aimed at promoting gut health.
Collapse
Affiliation(s)
- Eliška Eliasson
- Department of Applied Animal Science and Welfare, Swedish University of Agricultural Sciences, Uppsala, Sweden
| | - Li Sun
- Department of Applied Animal Science and Welfare, Swedish University of Agricultural Sciences, Uppsala, Sweden
| | - Gunnar Cervin
- Department of Marine Sciences, Tjärnö, University of Gothenburg, Strömstad, Sweden
| | - Henrik Pavia
- Department of Marine Sciences, Tjärnö, University of Gothenburg, Strömstad, Sweden
| | - Gustav Tällberg
- Zoonosis Science Center, Uppsala University, Uppsala, Sweden
| | - Patrik Ellström
- Zoonosis Science Center, Department of Medical Sciences, Uppsala University, Uppsala, Sweden
| | - Emma Ivarsson
- Department of Applied Animal Science and Welfare, Swedish University of Agricultural Sciences, Uppsala, Sweden
| |
Collapse
|
2
|
Effects of hatching system on chick quality, welfare and health of young breeder flock offspring. Poult Sci 2023; 102:102448. [PMID: 36641993 PMCID: PMC9846018 DOI: 10.1016/j.psj.2022.102448] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2022] [Revised: 12/13/2022] [Accepted: 12/16/2022] [Indexed: 12/24/2022] Open
Abstract
Alternative hatching systems have been developed for broiler chickens to provide immediately feed and water after hatch and reduce the number or severity of early life stressors. Besides beneficial effects of these alternative hatching systems on chick quality and performance, broiler health and welfare may be positively affected as well. Especially offspring from young broiler breeder flocks may benefit, as they have been shown to be more sensitive to preturbations than offspring from older breeder flocks. This study evaluated effects of hatching systems on chick quality, health and welfare of young breeder flock offspring, using 3 different hatching systems: conventional hatchery-hatched (HH), hatchery-fed (HF), and on-farm hatching (OH). A total of 24 pens were used in a completely randomized block design, with 8 pens per hatching system and 30 chickens per pen. Chick quality at hatch and performance until 35 d of age was improved in the HF and OH compared to HH treatment, but only minor effects were found on the welfare indicators: footpad dermatitis, hock burn, cleanliness, skin lesion and gait score. No effect was observed on the dynamics of a humoral immune response after NCD vaccination, given at d 0 and 14 of age, as no differences between NCD titers were found at d 18. Animals were vaccinated with a live attenuated infectious bronchitis vaccine virus (IBV) at d 28 to address treatment related differences to disease resilience. The expressions of inflammation and epithelial integrity related genes in the trachea and histo-pathological changes in the trachea were examined at 3 d after vaccine administration. No differences between treatment groups were observed. Although beneficial effects of HF and OH systems were found for young breeder flock offspring on chick quality at hatch and body weight posthatch, only one effect of alternative hatching systems on welfare and health indicators were found. No effect of hatching system on humoral immune response or disease resilience was found.
Collapse
|
3
|
Boyner M, Ivarsson E, Wattrang E, Sun L, Wistedt A, Wall H. Effects of access to feed, water, and a competitive exclusion product in the hatcher on some immune traits and gut development in broiler chickens. Br Poult Sci 2023. [PMID: 36628611 DOI: 10.1080/00071668.2022.2163152] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
This study evaluated the effect of access to feed, water, and the competitive exclusion (CE) product Broilact®, administered in the hatcher, on broiler performance, caecal microbiota development, organ development, intestinal morphology, serum levels of IgY and vaccine-induced antibody responses.In total, 250 chicks were hatched in a HatchCareTM hatcher and divided into four groups, given access to feed, water and the CE product sprayed on the chicks (CEs); access to feed, water, and the CE product in water (CEw); access to feed and water (Cpos); or no access to feed and water (Cneg) in the hatcher. At the research facility, 10 chicks per hatching treatment were euthanized for organ measurements. The remaining 200 chicks were randomly distributed to 20 pens. On d 11, all birds were vaccinated against avian pneumovirus (APV). Three focal birds per pen were blood-sampled weekly for quantification of IgY and serum antibodies to APV. On d 11 and 32, two birds per replicate pen were euthanised for organ measurements and sample collection. Feed intake and body weight were recorded weekly.Delayed access to feed and water reduced weight gain and feed intake early in life. At the end of the study, no differences in body weight remained.There were some early effects on organs, with depressed intestinal development and higher relative gizzard weight for the Cneg group at placement. No treatment effects on the immune traits measured were detected. The relative abundance of seven bacterial genera differed between treatment groups at d 11 of age. The results suggested that chickens are capable of compensating for 40 h feed and water deprival post-hatch. Provision of Broilact® did not have any persistent performance-enhancing properties, although different outcomes under rearing conditions closer to commercial production cannot be ruled out.
Collapse
Affiliation(s)
- M Boyner
- Department of Animal Nutrition and Management, Swedish University of Agricultural Sciences, Uppsala, Sweden
| | - E Ivarsson
- Department of Animal Nutrition and Management, Swedish University of Agricultural Sciences, Uppsala, Sweden
| | - E Wattrang
- Department of Microbiology, National Veterinary Institute, Uppsala
| | - L Sun
- Department of Animal Nutrition and Management, Swedish University of Agricultural Sciences, Uppsala, Sweden
| | - A Wistedt
- Department of Anatomy, Physiology and Biochemistry, Swedish University of Agricultural Sciences, Uppsala, Sweden
| | - H Wall
- Department of Animal Nutrition and Management, Swedish University of Agricultural Sciences, Uppsala, Sweden
| |
Collapse
|
4
|
Peng X, Ed-Dra A, Song Y, Elbediwi M, Nambiar RB, Zhou X, Yue M. Lacticaseibacillus rhamnosus alleviates intestinal inflammation and promotes microbiota-mediated protection against Salmonella fatal infections. Front Immunol 2022; 13:973224. [PMID: 36032095 PMCID: PMC9411107 DOI: 10.3389/fimmu.2022.973224] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2022] [Accepted: 07/21/2022] [Indexed: 01/17/2023] Open
Abstract
The fatal impairment of the intestinal mucosal barrier of chicks caused by Salmonella significantly resulting economic losses in the modern poultry industry. Probiotics are recognized for beneficially influencing host immune responses, promoting maintenance of intestinal epithelial integrity, antagonistic activity against pathogenic microorganisms and health-promoting properties. Some basic studies attest to probiotic capabilities and show that Lacticaseibacillus rhamnosus could protect intestinal mucosa from injury in animals infected with Salmonella Typhimurium. However, the mechanisms underlying its protective effects in chicks are still not fully understood. Here, we used the chick infection model combined with histological, immunological, and molecular approaches to address this question. The results indicated that L. rhamnosus significantly reduced the diarrhea rate and increased the daily weight gain and survival rate of chicks infected with S. Typhimurium. Furthermore, we found that L. rhamnosus markedly improved the immunity of gut mucosa by reducing apoptotic cells, hence effectively inhibiting intestinal inflammation. Notably, pre-treatment chicks with L. rhamnosus balanced the expression of interleukin-1β and interleukin-18, moderated endotoxin and D-lactic acid levels, and expanded tight junction protein levels (Zonula occluden-1 and Claudin-1), enhanced the function of the intestinal mucosal epithelial cells. Additionally, investigations using full-length 16S rRNA sequencing also demonstrated that L. rhamnosus greatly weakened the adhesion of Salmonella, the mainly manifestation is the improvement of the diversity of intestinal microbiota in infected chicks. Collectively, these results showed the application of L. rhamnosus against Salmonella fatal infection by enhancing barrier integrity and the stability of the gut microbiota and reducing inflammation in new hatch chicks, offering new antibiotic alternatives for farming animals.
Collapse
Affiliation(s)
- Xianqi Peng
- Department of Veterinary Medicine and Institute of Preventive Veterinary Sciences, College of Animal Science, Zhejiang University, Hangzhou, China
| | | | - Yan Song
- Department of Veterinary Medicine and Institute of Preventive Veterinary Sciences, College of Animal Science, Zhejiang University, Hangzhou, China
| | - Mohammed Elbediwi
- Department of Veterinary Medicine and Institute of Preventive Veterinary Sciences, College of Animal Science, Zhejiang University, Hangzhou, China
| | - Reshma B. Nambiar
- Department of Veterinary Medicine and Institute of Preventive Veterinary Sciences, College of Animal Science, Zhejiang University, Hangzhou, China
| | - Xiao Zhou
- Department of Veterinary Medicine and Institute of Preventive Veterinary Sciences, College of Animal Science, Zhejiang University, Hangzhou, China
| | - Min Yue
- Department of Veterinary Medicine and Institute of Preventive Veterinary Sciences, College of Animal Science, Zhejiang University, Hangzhou, China
- Hainan Institute of Zhejiang University, Sanya, China
- Zhejiang Provincial Key Laboratory of Preventive Veterinary Medicine, Hangzhou, China
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, National Medical Center for Infectious Diseases, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, China
- *Correspondence: Min Yue,
| |
Collapse
|
5
|
Zhao BC, Tang YX, Qiu BH, Xu HL, Wang TH, Elsherbeni AIA, Gharib HBA, Li JL. Astragalus polysaccharide mitigates transport stress-induced hepatic metabolic stress via improving hepatic glucolipid metabolism in chicks. J Anim Sci 2022; 100:6648457. [PMID: 35866893 DOI: 10.1093/jas/skac244] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2022] [Accepted: 07/20/2022] [Indexed: 11/14/2022] Open
Abstract
In the modern poultry industry, newly hatched chicks are unavoidably transported from the hatching to the rearing foster. Stress caused by multiple physical and psychological stressors during transportation is particularly harmful to the liver. Astragalus polysaccharide (APS) possesses multiple benefits against hepatic metabolic disorders. Given that transport stress could disturb hepatic glucolipid metabolism and the role of APS in metabolic regulation, we speculated that APS could antagonize transport stress-induced disorder of hepatic glucolipid metabolism. Firstly, newly hatched chicks were transported for 0, 2, 4, 8 h, respectively. Subsequently, to further investigated the effects of APS on transport stress-induced hepatic glucolipid metabolism disturbance, chicks were pretreated with water or APS and then subjected to transport treatment. Our study suggested that APS could relieve transport stress induced lipid deposition in liver. Meanwhile, transport stress also induced disturbances in glucose metabolism, reflected by augmented mRNA expression of key molecules in gluconeogenesis and glycogenolysis. Surprisingly, APS could simultaneously alleviate these alterations via PGC1α/SIRT1/AMPK pathway. Moreover, APS treatment regulated the level of PPARα and PPARγ, thereby alleviating transport stress-induced alterations of VLDL synthesis, cholesterol metabolism, lipid oxidation, synthesis and transport-related molecules. These findings indicated that APS could prevent the potential against transport stress-induced hepatic glucolipid metabolism disorders via PGC1α/ SIRT1/ AMPK/ PPARα/ PPARγ signaling system.
Collapse
Affiliation(s)
- Bi-Chen Zhao
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, 150030, P. R. China
| | - Yi-Xi Tang
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, 150030, P. R. China
| | - Bai-Hao Qiu
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, 150030, P. R. China
| | - Hao-Liang Xu
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, 150030, P. R. China
| | - Tian-Hao Wang
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, 150030, P. R. China
| | | | | | - Jin-Long Li
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, 150030, P. R. China.,Heilongjiang Key Laboratory for Laboratory Animals and Comparative Medicine, Northeast Agricultural University, Harbin, 150030, P. R. China.,Key Laboratory of the Provincial Education Department of Heilongjiang for Common Animal Disease Prevention and Treatment, Northeast Agricultural University, Harbin, 150030, P. R. China
| |
Collapse
|