1
|
Ryu YK, Hong HK, Park A, Lee WK, Kim T, Heo SJ, Park HS, Kim D, Oh C, Yang HS. Effect of diet changes in benthic ecosystems owing to climate change on the physiological responses of Turbo sazae in waters around Jeju Island, Korea. MARINE ENVIRONMENTAL RESEARCH 2025; 205:107001. [PMID: 39952222 DOI: 10.1016/j.marenvres.2025.107001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/20/2024] [Revised: 01/16/2025] [Accepted: 02/05/2025] [Indexed: 02/17/2025]
Abstract
The benthic ecosystem in temperate regions is becoming barren owing to the replacement of macroalgae by calcareous algae as a result of climate change-induced increases in water temperature. The aim of this study was to observe how the top shell, Turbo sazae, an invertebrate that feeds on macroalgae, adapts to a benthic environment with a reduced macroalgae population owing to replacement by calcareous algae. Using tank experiments, the top shells were cultured for 18 weeks. Within this period, they were fed a diet comprising either Eclonia cava or Corallina officinalis. Thereafter, hemocyte response, reproductive development, and the levels of biochemical compounds in the individuals under investigation were analyzed. The results obtained showed no significant differences in immunological responses, gonad development, and general body weight between the two feeding groups. However, amino acid profiling showed a decreasing trend in amino acid contents in both feeding groups, but no significant differences were observed with respect to overall protein content. These findings indirectly suggested that even in a macroalgae-depleted environment, the top shells can survive by consuming crustose calcareous algae, but with the change in diet affecting the levels of some amino acids in their bodies. Therefore, this study provides valuable insights into the adaptability of the top shells inhabiting the waters around Jeju Island to changes in their feeding environment and may also serve as basis for enhancing resource management strategies in response to climate change-induced changes in the benthic ecosystem.
Collapse
Affiliation(s)
- Yong-Kyun Ryu
- Jeju Bio Research Center, Korea Institute of Ocean Science and Technology (KIOST), 63349, Jeju, Republic of Korea
| | - Hyun-Ki Hong
- Department of Marine Biology and Aquaculture, Gyeongsang National University, 53064, Tongyeong, Republic of Korea
| | - Areumi Park
- Jeju Bio Research Center, Korea Institute of Ocean Science and Technology (KIOST), 63349, Jeju, Republic of Korea
| | - Won-Kyu Lee
- Jeju Bio Research Center, Korea Institute of Ocean Science and Technology (KIOST), 63349, Jeju, Republic of Korea
| | - Taeho Kim
- Jeju Bio Research Center, Korea Institute of Ocean Science and Technology (KIOST), 63349, Jeju, Republic of Korea
| | - Soo-Jin Heo
- Jeju Bio Research Center, Korea Institute of Ocean Science and Technology (KIOST), 63349, Jeju, Republic of Korea; Department of Marine Technology & Convergence Engineering (Marine Biotechnology), KIOST School, University of Science and Technology (UST), 34113, Daejeon, Republic of Korea
| | - Heung-Sik Park
- Department of Marine Technology & Convergence Engineering (Marine Biotechnology), KIOST School, University of Science and Technology (UST), 34113, Daejeon, Republic of Korea; Jeju Research Institute, Korea Institute of Ocean Science & Technology (KIOST, 63349, Jeju, Republic of Korea
| | - Dongsung Kim
- Jeju Research Institute, Korea Institute of Ocean Science & Technology (KIOST, 63349, Jeju, Republic of Korea
| | - Chulhong Oh
- Jeju Bio Research Center, Korea Institute of Ocean Science and Technology (KIOST), 63349, Jeju, Republic of Korea; Department of Marine Technology & Convergence Engineering (Marine Biotechnology), KIOST School, University of Science and Technology (UST), 34113, Daejeon, Republic of Korea.
| | - Hyun-Sung Yang
- Tropical & Subtropical Research Center, Korea Institute of Ocean Science and Technology (KIOST), 63349, Jeju, Republic of Korea.
| |
Collapse
|
2
|
Li J, Chen Y, Yang Y, Yang Y, Wu Z. High-level L-Gln compromises intestinal amino acid utilization efficiency and inhibits protein synthesis by GCN2/eIF2α/ATF4 signaling pathway in piglets fed low-crude protein diets. ANIMAL NUTRITION (ZHONGGUO XU MU SHOU YI XUE HUI) 2024; 19:480-487. [PMID: 39659992 PMCID: PMC11629563 DOI: 10.1016/j.aninu.2024.06.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Revised: 05/30/2024] [Accepted: 06/03/2024] [Indexed: 12/12/2024]
Abstract
Gln, one of the most abundant amino acids (AA) in the body, performs a diverse range of fundamental physiological functions. However, information about the role of dietary Gln on AA levels, transporters, protein synthesis, and underlying mechanisms in vivo is scarce. The present study aimed to explore the effects of low-crude protein diet inclusion with differential doses of L-Gln on intestinal AA levels, transporters, protein synthesis, and potential mechanisms in weaned piglets. A total of 128 healthy weaned piglets (Landrace × Yorkshire) were randomly allocated into four treatments with four replicates. Pigs in the four groups were fed a low-crude protein diet containing 0%, 1%, 2%, or 3% L-Gln for 28 d. L-Gln administration markedly (linear, P < 0.05) increased Ala, Arg, Asn, Asp, Glu, Gln, His, Ile, Lys, Met, Orn, Phe, Ser, Thr, Tyr, and Val levels and promoted trypsin activity in the jejunal content of piglets. Moreover, L-Gln treatment significantly enhanced concentrations of colonic Gln and Trp, and serum Thr (linear, P < 0.01), and quadratically increased serum Lys and Phe levels (P < 0.05), and decreased plasma Glu, Ile, and Leu levels (linear, P < 0.05). Further investigation revealed that L-Gln administration significantly upregulated Atp1a1, Slc1a5, Slc3a2, Slc6a14, Slc7a5, Slc7a7, and Slc38a1 relative expressions in the jejunum (linear, P < 0.05). Additionally, dietary supplementation with L-Gln enhanced protein abundance of general control nonderepressible 2 (GCN2, P = 0.010), phosphorylated eukaryotic initiation factor 2 subunit alpha (eIF2α, P < 0.001), and activating transcription factor 4 (ATF4) in the jejunum of piglets (P = 0.008). These results demonstrated for the first time that a low crude protein diet with high-level L-Gln inclusion exhibited side effects on piglets. Specifically, 2% and 3% L-Gln administration exceeded the intestinal utilization capacity and compromised the jejunal AA utilization efficiency, which is independent of digestive enzyme activities. A high level of L-Gln supplementation would inhibit protein synthesis by GCN2/eIF2α/ATF4 signaling in piglets fed low-protein diets, which, in turn, upregulates certain AA transporters to maintain AA homeostasis.
Collapse
Affiliation(s)
- Jun Li
- State Key Laboratory of Animal Nutrition and Feeding, Department of Companion Animal Science, China Agricultural University, Beijing 100193, China
| | - Yinfeng Chen
- State Key Laboratory of Animal Nutrition and Feeding, Department of Companion Animal Science, China Agricultural University, Beijing 100193, China
| | - Yang Yang
- State Key Laboratory of Animal Nutrition and Feeding, Department of Companion Animal Science, China Agricultural University, Beijing 100193, China
| | - Ying Yang
- State Key Laboratory of Animal Nutrition and Feeding, Department of Companion Animal Science, China Agricultural University, Beijing 100193, China
| | - Zhenlong Wu
- State Key Laboratory of Animal Nutrition and Feeding, Department of Companion Animal Science, China Agricultural University, Beijing 100193, China
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, China Agricultural University, Beijing 100193, China
| |
Collapse
|
3
|
Chen C, Hu H, Li Z, Qi M, Qiu Y, Hu Z, Feng F, Tang W, Diao H, Sun W, Tang Z. Dietary tryptophan improves growth and intestinal health by promoting the secretion of intestinal β-defensins against enterotoxigenic Escherichia coli F4 in weaned piglets. J Nutr Biochem 2024; 129:109637. [PMID: 38574828 DOI: 10.1016/j.jnutbio.2024.109637] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2023] [Revised: 03/18/2024] [Accepted: 04/01/2024] [Indexed: 04/06/2024]
Abstract
Adequate dietary L-tryptophan (Trp) governs intestinal homeostasis in piglets. However, the defensive role of Trp in the diet against enterotoxigenic Escherichia coli F4 (K88) in pigs is still poorly understood. Here, sixty (6.15 ± 1.52 kg, 24-day-old, Duroc × Landrace × Yorkshire) weaned piglets were used for an E. coli F4 attack test in a 2 × 2 factorial design. The growth (ADG, ADFI, GH), immune factors (IL-10, IgA, IgG, IgM), Trp metabolite 5-HT, intestinal morphology (jejunal and colonic VH), mRNA expression of β-defensins (jejunal BD-127, BD-119, ileal BD-1, BD-127), and abundance of beneficial microorganisms in the colon (Prevotella 9, Lactobacillus, Phascolarctobacterium, Faecalibacterium) were higher in the piglets in the HT (High Trp) and HTK (High Trp, K88) groups than in the LT (Low Trp) and LTK (Low Trp, K88) groups (P<.05), while FCR, diarrhea rate, diarrhea index, serum Trp, Kyn, IDO, D-LA, ET, and abundance of harmful microorganisms in the colon (Spirochaetes, Fusobacteria, Prevotella, Christensenellaceae R7) were lower in the HT and HTK groups than in the LT and LTK groups (P<.05). High Trp reduced the expression of virulence genes (K88 and LT) after E. coli F4 attack (P<.05). The IL-6, TNF-α was lower in the HTK group than in the LT, LTK group (P<.05). In short, a diet containing 0.35% Trp protected piglets from enterotoxigenic E. coli F4 (K88) via Trp metabolism promoting BD expression in the intestinal mucosa, which improved growth and intestinal health.
Collapse
Affiliation(s)
- Chen Chen
- Animal Nutrition and Bio-feed, Chongqing Key Laboratory of Herbivore Science, College of Animal Science and Technology, Southwest University, Chongqing 400715, China
| | - Hong Hu
- Animal Nutrition and Bio-feed, Chongqing Key Laboratory of Herbivore Science, College of Animal Science and Technology, Southwest University, Chongqing 400715, China
| | - Zhangcheng Li
- Animal Nutrition and Bio-feed, Chongqing Key Laboratory of Herbivore Science, College of Animal Science and Technology, Southwest University, Chongqing 400715, China
| | - Min Qi
- Yunnan Animal Husbandry Station, Kunming 650225, China
| | - Yibin Qiu
- Animal Nutrition and Bio-feed, Chongqing Key Laboratory of Herbivore Science, College of Animal Science and Technology, Southwest University, Chongqing 400715, China
| | - Zhijin Hu
- Animal Nutrition and Bio-feed, Chongqing Key Laboratory of Herbivore Science, College of Animal Science and Technology, Southwest University, Chongqing 400715, China
| | - Fu Feng
- Animal Nutrition and Bio-feed, Chongqing Key Laboratory of Herbivore Science, College of Animal Science and Technology, Southwest University, Chongqing 400715, China
| | - Wenjie Tang
- Animal Breeding and Genetics Key Laboratory of Sichuan Province, Sichuan Animal Science Academy, Chengdu 610066, China; Livestock and Poultry Biological Products Key Laboratory of Sichuan Province, Sichuan Animtche Group Co., Ltd., Chengdu 610066, China
| | - Hui Diao
- Animal Breeding and Genetics Key Laboratory of Sichuan Province, Sichuan Animal Science Academy, Chengdu 610066, China; Livestock and Poultry Biological Products Key Laboratory of Sichuan Province, Sichuan Animtche Group Co., Ltd., Chengdu 610066, China
| | - Weizhong Sun
- Animal Nutrition and Bio-feed, Chongqing Key Laboratory of Herbivore Science, College of Animal Science and Technology, Southwest University, Chongqing 400715, China
| | - Zhiru Tang
- Animal Nutrition and Bio-feed, Chongqing Key Laboratory of Herbivore Science, College of Animal Science and Technology, Southwest University, Chongqing 400715, China.
| |
Collapse
|
4
|
Gao F, Liu H, Du Y, Fang X, Cheng B, Shi B. Dietary Resveratrol Ameliorates Hepatic Fatty Acid Metabolism and Jejunal Barrier in Offspring Induced by Maternal Oxidized Soybean Oil Challenge. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:3730-3740. [PMID: 38320975 DOI: 10.1021/acs.jafc.3c08553] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/08/2024]
Abstract
Increasing evidence indicates that maternal exposure to oxidized soybean oil (OSO) causes damage to the mother and offspring. The antioxidant resveratrol (Res) has a variety of health benefits. However, the protective effect of Res on mitigating offspring damage after maternal exposure to OSO and its mechanism remains unclear. Therefore, this study aimed to investigate the effect of Res on hepatic fatty acid metabolism and the jejunal barrier in suckling piglets after maternal OSO exposure. A total of 18 sows in late gestation were randomly assigned to three treatments. The sows were fed with a fresh soybean oil (FSO) diet, an OSO diet, or the OSO diet supplemented with 300 mg/kg Res (OSO + Res), respectively. The results showed that maternal supplementation of Res restored the mRNA levels of genes related to fatty acid metabolism and increased the activities of catalase (CAT) and total superoxide dismutase (T-SOD) in suckling piglets' livers under the OSO challenge. Moreover, the OSO + Res group restored the mRNA levels of occludin and claudin 4 in suckling piglet jejunum compared with the results of the OSO challenges. In summary, supplementation with Res improves hepatic fatty acid metabolism and intestinal barrier function of suckling piglets after maternal OSO challenge during late gestation and lactation.
Collapse
Affiliation(s)
- Feng Gao
- College of Animal Science and Technology, Northeast Agricultural University, Harbin, Heilongjiang 150030, P. R. China
| | - Haiyang Liu
- College of Animal Science and Technology, Northeast Agricultural University, Harbin, Heilongjiang 150030, P. R. China
| | - Yongqing Du
- College of Animal Science and Technology, Northeast Agricultural University, Harbin, Heilongjiang 150030, P. R. China
| | - Xiuyu Fang
- College of Animal Science and Technology, Northeast Agricultural University, Harbin, Heilongjiang 150030, P. R. China
| | - Baojing Cheng
- College of Animal Science and Technology, Northeast Agricultural University, Harbin, Heilongjiang 150030, P. R. China
| | - Baoming Shi
- College of Animal Science and Technology, Northeast Agricultural University, Harbin, Heilongjiang 150030, P. R. China
| |
Collapse
|
5
|
Deng Y, Cheng H, Li J, Han H, Qi M, Wang N, Tan B, Li J, Wang J. Effects of glutamine, glutamate, and aspartate on intestinal barrier integrity and amino acid pool of the small intestine in piglets with normal or low energy diet. Front Vet Sci 2023; 10:1202369. [PMID: 37576837 PMCID: PMC10414990 DOI: 10.3389/fvets.2023.1202369] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2023] [Accepted: 07/03/2023] [Indexed: 08/15/2023] Open
Abstract
Aspartate (asp), glutamate (glu), and glutamine (gln) are the major energy fuels for the small intestine, and it had been indicated in our previous study that the mix of these three amino acid supplementations could maintain intestinal energy homeostasis. This study aimed to further investigate whether the treatment of gln, glu, and asp in low energy diet affects the intestinal barrier integrity and amino acid pool in weaning piglets. A total of 198 weaned piglets were assigned to 3 treatments: control (basal diet + 1.59% L-Ala); T1 (basal diet + 1% L-Gln + 0.5% L-Glu + 0.1% L-Asp); and T2 (low energy diet + 1% L-Gln + 0.5% L-Glu + 0.1% L-Asp). The blood, jejunum, and ileum were obtained on day 5 or on day 21 post-weaning, respectively. Our results showed that T1 and T2 treatments increased the abundances of occludin, claudin-1, and claudin-3 in the small intestine while decreasing the serum diamine oxidase (DAO) and D-lactate levels in weaning piglets. Meanwhile, T1 and T2 treatments significantly increased the positive rate of proliferating cell nuclear antigen (PCNA) of the small intestine, promoting intestinal cell proliferation. We also found that supplementation with glu, gln, and asp improved the serum amino acid pool and promoted ileal amino acid transporter gene expression of slc3a2, slc6a14, and slc7a11 in weaned piglets. Additionally, on day 21 post-weaning, T1 and T2 treatments stimulated the phosphorylation of the mTOR-S6K1-4EBP1 signaling pathway in the small intestine, which may implicate the enhanced protein synthesis rate. In summary, dietary supplementation of gln, glu, and asp was beneficial to the intestinal barrier function and amino acid pool regulation, while the benefits of gln, glu, and asp treatment might be diminished by the low-energy diet. The results demonstrated that the supplementation of gln, glu, and asp under low energy levels was preferentially supplied as the energy fuel to restore the gut barrier function in piglets on day 5 post-weaning. With the increase in age and intestinal maturation (on day 21 post-weaning), gln, glu, and asp supplementation could also show an effect on the regulation of the amino acid pool and protein synthesis.
Collapse
Affiliation(s)
- Yuankun Deng
- College of Animal Science and Technology, Hunan Agricultural University, Changsha, Hunan, China
| | - Hao Cheng
- College of Animal Science and Technology, Hunan Agricultural University, Changsha, Hunan, China
| | - Junyao Li
- College of Animal Science and Technology, Hunan Agricultural University, Changsha, Hunan, China
| | - Hui Han
- Laboratory of Animal Nutritional Physiology and Metabolic Process, Key Laboratory of Agroecological Processes in Subtropical Region, National Engineering Laboratory for Pollution Control and Waste Utilization in Livestock and Poultry Production, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha, Hunan, China
| | - Ming Qi
- Laboratory of Animal Nutritional Physiology and Metabolic Process, Key Laboratory of Agroecological Processes in Subtropical Region, National Engineering Laboratory for Pollution Control and Waste Utilization in Livestock and Poultry Production, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha, Hunan, China
| | - Nan Wang
- College of Animal Science and Technology, Hunan Agricultural University, Changsha, Hunan, China
| | - Bi'e Tan
- College of Animal Science and Technology, Hunan Agricultural University, Changsha, Hunan, China
| | - Jianjun Li
- Laboratory of Animal Nutritional Physiology and Metabolic Process, Key Laboratory of Agroecological Processes in Subtropical Region, National Engineering Laboratory for Pollution Control and Waste Utilization in Livestock and Poultry Production, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha, Hunan, China
| | - Jing Wang
- College of Animal Science and Technology, Hunan Agricultural University, Changsha, Hunan, China
| |
Collapse
|
6
|
Müller M, Xu C, Navarro M, Elias-Masiques N, Tilbrook A, van Barneveld R, Roura E. An oral gavage of lysine elicited early satiation while gavages of lysine, leucine, or isoleucine prolonged satiety in pigs. J Anim Sci 2022; 100:6783074. [PMID: 36315475 DOI: 10.1093/jas/skac361] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2022] [Accepted: 10/28/2022] [Indexed: 12/14/2022] Open
Abstract
Excess dietary amino acids (AA) may negatively affect feed intake in pigs. Previous results showed that Lys, Leu, Ile, Phe, and Glu significantly increased gut peptide secretion (i.e., cholecystokinin, glucagon-like peptide 1). However, the link between dietary AA and gut peptide secretion with changes in feeding behavior patterns has not been demonstrated to date in pigs. The aim of the present study was to determine the effect of Lys, Leu, Ile, Phe, and Glu, on feed intake and meal patterns in young pigs. Twelve male pigs (Landrace × Large White, body weight = 16.10 ± 2.69 kg) were administered an oral gavage of water (control) or Lys, Leu, Ile, Phe, Glu, or glucose (positive control) at 3 mmol.kg-1 following an overnight fasting. The experiment consisted in measuring individual feed disappearance and changes in meal pattern (including latency to first meal, first meal duration, intermeal interval, second meal duration, and number of meals) based on video footage. Compared to the control group Lys significantly (P ≤ 0.01) reduced feed intake during the first 30 min and up to 2.5 h post-gavage, including a reduction (P ≤ 0.05) in the first meal duration. Similarly, Leu and Ile also significantly decreased feed intake up to 3 h post-gavage on a cumulative count. However, the strongest (P ≤ 0.01) impacts on feed intake by the two branched chained AA were observed after the first- or second-hour post-gavage for Leu or Ile, respectively. In addition, Leu or Ile did not affect the first meal duration (P ≥ 0.05). Leu significantly increased (P ≤ 0.01) the intermeal interval while decreasing (P ≤ 0.05) the number of meals during the initial 2 h following the gavage when compared with the control group. In contrast, the oral gavages of Phe or Glu had no significant impact (P > 0.05) on the feeding behavior parameters measured relative to the control pigs. In turn, glucose had a short-lived effect on appetite by reducing (P < 0.05) feed intake for 30 min after the first-hour post-gavage. In conclusion, the impact of an oral gavage of Lys on feeding behavior is compatible with a stimulation of early satiation and an increased duration of satiety. The main impact of the oral gavages of Leu and Ile was an increase in the duration of satiety. The gastrointestinal mechanisms associated with non-bound dietary AA sensing and the impact on voluntary feed intake warrant further investigations.
Collapse
Affiliation(s)
- Maximiliano Müller
- Centre of Nutrition and Food Sciences, Queensland Alliance for Agriculture and Food Innovation, The University of Queensland, Brisbane, Queensland 4072, Australia
| | - Chenjing Xu
- Centre of Nutrition and Food Sciences, Queensland Alliance for Agriculture and Food Innovation, The University of Queensland, Brisbane, Queensland 4072, Australia
| | - Marta Navarro
- Centre of Nutrition and Food Sciences, Queensland Alliance for Agriculture and Food Innovation, The University of Queensland, Brisbane, Queensland 4072, Australia
| | - Nuria Elias-Masiques
- Centre of Nutrition and Food Sciences, Queensland Alliance for Agriculture and Food Innovation, The University of Queensland, Brisbane, Queensland 4072, Australia
| | - Alan Tilbrook
- Centre for Animal Science, Queensland Alliance for Agriculture and Food Innovation and the School of Veterinary Science, The University of Queensland, Brisbane, Queensland 4072, Australia
| | | | - Eugeni Roura
- Centre of Nutrition and Food Sciences, Queensland Alliance for Agriculture and Food Innovation, The University of Queensland, Brisbane, Queensland 4072, Australia
| |
Collapse
|
7
|
Gao Y, Liu P, Wang D, Liu J, Yang L, Kang Y, Han B, Yin J, Zhu J, Wang K, Li C. Isolation and characterization of a novel protein from Momordica charantia L. Positively regulates lipid metabolism activity in vivo and in vitro. J Funct Foods 2022. [DOI: 10.1016/j.jff.2022.105218] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
|
8
|
Mateus-Silva JR, Oliveira CR, Brandao-Rangel MAR, Silva-Reis A, Olimpio FRDS, Zamarioli LDS, Aimbire F, Vieira RP. A Nutritional Blend Suppresses the Inflammatory Response from Bronchial Epithelial Cells Induced by SARS-CoV-2. J Diet Suppl 2022; 20:156-170. [PMID: 35930300 DOI: 10.1080/19390211.2022.2103607] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/16/2022]
Abstract
Even after virus elimination, numerous sequelae of coronavirus disease 2019 (COVID-19) persist. Based on accumulating evidence, large amounts of proinflammatory cytokines are released to drive COVID-19 progression, severity, and mortality, and their levels remain elevated after the acute phase of COVID-19, playing a central role in the disease' sequelae. In this manner, bronchial epithelial cells are the first cells hyperactivated by severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2), leading to massive cytokine release, triggering the hyperactivation of leukocytes and other cells, and mediating COVID-19 sequelae. Therefore, proinflammatory cytokine production is initiated by the host. This in vitro study tested the hypothesis that ImmuneRecov™, a nutritional blend, inhibits the SARS-CoV-2-induced hyperactivation of human bronchial epithelial cells (BEAS-2B). BEAS-2B (5x104/mL/well) cells were cocultivated with 1 ml of blood from a SARS-CoV-2-infected patient for 4 h, and the nutritional blend (1 µg/mL) was added in the first minute of coculture. After 4 h, the cells were recovered and used for analyses of cytotoxicity with the (3-[4,5-dimethylthiazol-2-yl]-2,5 diphenyl tetrazolium bromide) (MTT) assay and the expression of the IL-1β, IL-6, and IL-10 mRNAs. The supernatant was collected to measure cytokine levels. SARS-CoV-2 incubation resulted in increased levels of IL-1β and IL-6 in BEAS-2B cells (p < 0.001). Treatment with the nutritional blend resulted in reduced levels of the proinflammatory cytokines IL-1β and IL-6 (p < 0.001) and increased levels of the anti-inflammatory cytokine IL-10 (p < 0.001). Additionally, the nutritional blend reduced the expression of the IL-1β and IL-6 mRNAs in SARS-CoV-2-stimulated cells and increased the expression of the IL-10 and IFN-γ mRNAs. In conclusion, the nutritional blend exerts important anti-inflammatory effects on cells in the context of SARS-CoV-2 infection.
Collapse
Affiliation(s)
- José Roberto Mateus-Silva
- GAP Biotech, São José dos Campos, SP, Brazil
- School of Medicine, Anhembi Morumbi University, São José dos Campos, SP, Brazil
- Pontifical Catholic University of Rio Grande do Sul, Porto Alegre, RS, Brazil
- Post-graduate Program in Biomedical Engineering, Federal University of Sao Paulo, São José dos Campos, SP, Brazil
| | - Carlos Rocha Oliveira
- GAP Biotech, São José dos Campos, SP, Brazil
- School of Medicine, Anhembi Morumbi University, São José dos Campos, SP, Brazil
- Post-graduate Program in Biomedical Engineering, Federal University of Sao Paulo, São José dos Campos, SP, Brazil
| | | | - Anamei Silva-Reis
- Post-graduate Program in Sciences of Human Movement and Rehabilitation, Federal University of São Paulo, Santos, SP, Brazil
| | | | | | - Flavio Aimbire
- Postgraduate Program in Translational Medicine, Federal University of São Paulo, São Paulo, SP, Brazil
| | - Rodolfo P Vieira
- GAP Biotech, São José dos Campos, SP, Brazil
- Department of Pharmacology, Federal University of São Paulo, São Paulo, SP, Brazil
- Brazilian Institute of Teaching and Research in Pulmonary and Exercise Immunology (IBEPIPE), São José dos Campos, SP, Brazil
- Post-graduation Program in Human Movement and Rehabilitation, Evangelical University of Goiás (Unievangélica), Anápolis, GO, Brazil
- Post-graduation Program in Bioengineering, Universidade Brasil, São Paulo, SP, Brazil
| |
Collapse
|
9
|
Wu D, Fan Z, Li J, Zhang Y, Xu Q, Wang L, Wang L. Low Protein Diets Supplemented With Alpha-Ketoglutarate Enhance the Growth Performance, Immune Response, and Intestinal Health in Common Carp ( Cyprinus carpio). Front Immunol 2022; 13:915657. [PMID: 35720284 PMCID: PMC9200961 DOI: 10.3389/fimmu.2022.915657] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2022] [Accepted: 05/04/2022] [Indexed: 11/13/2022] Open
Abstract
To investigate the effects of alpha-ketoglutarate (AKG) supplementation in a low protein (LP) diet on the growth performance, immune response, and intestinal health of common carp (Cyprinus carpio), 600 carp were randomly divided into five dietary groups: a normal protein (NP) diet containing 32% crude protein, an LP diet formulated with 28% crude protein, and LP with AKG at 0.4%, 0.8%, and 1.2% (dry matter). After an 8-week trial period, the results demonstrated that an LP diet led to a decrease in performance, immune response, and intestinal barrier function. Compared with the LP group, the final body weight and weight gain rate in the LP+0.4% AKG group were significantly higher, the feed conversion ratio was significantly decreased with the addition of 0.4% and 0.8% AKG. The supplementation with 0.4% and 0.8% AKG markedly increased the activities of T-SOD and GSH-Px, as well as the expression levels of GPX1a and GPX1b relative to the LP group, whereas the MDA content was significantly decreased in the LP+0.4% AKG group. In addition, the expression levels of tight junctions including claudin-3, claudin-7, ZO-1, and MLCK were significantly up-regulated in the LP+0.4% AKG group, and the relative expression levels of the pro-inflammatory factors IL-1β and IL-6α were significantly lower with the addition of 0.4%, 0.8%, and 1.2% AKG. Moreover, the abundance of Proteobacteria in the LP+0.4% AKG group was lower than that in the LP group, and the abundance of Firmicutes and Fusobacteria was higher at the phylum level. The abundance of Citrobacter in the LP+0.4% AKG group was decreased compared to the LP group, while the abundance of Aeromonas was increased at the genus level. In short, the effects of AKG on the intestinal health of the common carp were systematically and comprehensively evaluated from the perspectives of intestinal physical barrier, chemical barrier, biological barrier, and immune barrier. We found that an LP diet supplemented with 0.4% AKG was beneficial to the growth performance and intestinal health of common carp.
Collapse
Affiliation(s)
- Di Wu
- Key Laboratory of Aquatic Animal Diseases and Immune Technology of Heilongjiang Province, Heilongjiang River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Harbin, China
| | - Ze Fan
- Key Laboratory of Aquatic Animal Diseases and Immune Technology of Heilongjiang Province, Heilongjiang River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Harbin, China
| | - Jinnan Li
- Key Laboratory of Aquatic Animal Diseases and Immune Technology of Heilongjiang Province, Heilongjiang River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Harbin, China
| | - Yuanyuan Zhang
- Key Laboratory of Aquatic Animal Diseases and Immune Technology of Heilongjiang Province, Heilongjiang River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Harbin, China
| | - Qiyou Xu
- School of Life Science, Huzhou University, Huzhou, China
| | - Liang Wang
- AHP Application Research Institute, Weifang Addeasy Bio-Technology Co., Ltd, Weifang, China
| | - Liansheng Wang
- Key Laboratory of Aquatic Animal Diseases and Immune Technology of Heilongjiang Province, Heilongjiang River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Harbin, China
| |
Collapse
|
10
|
Wang J, Wang N, Qi M, Li J, Tan B. Glutamine, glutamate, and aspartate differently modulate energy homeostasis of small intestine under normal or low energy status in piglets. ANIMAL NUTRITION (ZHONGGUO XU MU SHOU YI XUE HUI) 2022; 8:216-226. [PMID: 34977390 PMCID: PMC8685906 DOI: 10.1016/j.aninu.2021.07.009] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/16/2021] [Revised: 07/01/2021] [Accepted: 07/08/2021] [Indexed: 06/14/2023]
Abstract
Weaning stress may cause reduced energy intake for maintenance of mucosal structure. Gln, Glu, and Asp are major energy sources for the small intestine. This study investigated whether Gln, Glu, and Asp improve the intestinal morphology via regulating the energy metabolism in weaning piglets. A total of 198 weaned piglets were assigned to 3 treatments: Control (Basal diet + 1.59% L-Ala); T1 (Basal diet + 1% L-Gln + 0.5% L-Glu + 0.1% L-Asp); T2 (Low energy diet + 1% L-Gln + 0.5% L-Glu + 0.1% L-Asp). Jejunum and ileum were obtained on d 5 or 21 post-weaning. T1 enhanced growth performance. T1 and T2 treatments improved small intestinal morphology by increasing villus height, goblet cell number and decreasing crypt depth. Days post-weaning affected the efficacy of T2, but not T1, on energy metabolism. At normal energy supplementation, Gln, Glu, and Asp restored small intestinal energy homeostasis via replenishing the Krebs' cycle and down-regulating the AMPK (adenosine monophosphate activated protein kinase) pathway. As these are not sufficient to maintain the intestinal energy-balance of piglets fed with a low energy diet on d 5 post-weaning, the AMPK, glycolysis, beta-oxidation, and mitochondrial biogenesis are activated to meet the high energy demand of enterocytes. These data indicated that Gln, Glu, and Asp could restore the energy homeostasis of intestinal mucosa of weaning piglets under normal energy fed. Low energy feeding may increase the susceptibility of piglets to stress, which may decrease the efficacy of Gln, Glu, and Asp on the restoration of energy balance. These findings provide new information on nutritional intervention for insufficient energy intake in weaning piglets.
Collapse
Affiliation(s)
- Jing Wang
- College of Animal Science and Technology, Hunan Agricultural University, Changsha 410128, Hunan, China
- Animal Nutrition and Human Health Laboratory, Hunan Provincial Key Laboratory of Animal Intestinal Function and Regulation, School of Life Sciences, Hunan Normal University, Changsha 410081, Hunan, China
| | - Nan Wang
- College of Animal Science and Technology, Hunan Agricultural University, Changsha 410128, Hunan, China
| | - Ming Qi
- Laboratory of Animal Nutritional Physiology and Metabolic Process, Key Laboratory of Agroecological Processes in Subtropical Region, National Engineering Laboratory for Pollution Control and Waste Utilization in Livestock and Poultry Production, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha 410125, Hunan, China
- University of Chinese Academy of Sciences, Beijing 10008, China
| | - Jianjun Li
- Laboratory of Animal Nutritional Physiology and Metabolic Process, Key Laboratory of Agroecological Processes in Subtropical Region, National Engineering Laboratory for Pollution Control and Waste Utilization in Livestock and Poultry Production, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha 410125, Hunan, China
| | - Bie Tan
- College of Animal Science and Technology, Hunan Agricultural University, Changsha 410128, Hunan, China
- Laboratory of Animal Nutritional Physiology and Metabolic Process, Key Laboratory of Agroecological Processes in Subtropical Region, National Engineering Laboratory for Pollution Control and Waste Utilization in Livestock and Poultry Production, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha 410125, Hunan, China
| |
Collapse
|
11
|
Chen S, Wu X, Yu Z. Juglone Suppresses Inflammation and Oxidative Stress in Colitis Mice. Front Immunol 2021; 12:674341. [PMID: 34421890 PMCID: PMC8375437 DOI: 10.3389/fimmu.2021.674341] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2021] [Accepted: 07/12/2021] [Indexed: 12/22/2022] Open
Abstract
Juglone (JUG), a natural product found in walnut trees and other plants, shows potent antioxidant, antimicrobial, and immunoregulatory activities. However, it remains unknown whether JUG can alleviate ulcerative colitis. This study aims to explore the effect of JUG on dextran sulfate sodium (DSS)-induced colitis in mice. The mice were randomly assigned into three groups: the vehicle group, the DSS group, and the JUG group. The experiments lasted for 17 days; during the experiment, all mice received dimethyl sulfoxide (DMSO, 0.03% v/v)-containing water, while the mice in the JUG group received DMSO-containing water supplemented with JUG (0.04 w/v). Colitis was induced by administering DSS (3% w/v) orally for 10 consecutive days. The results showed that the JUG treatment significantly ameliorated body weight loss and disease activity index and improved the survival probability, colon length, and tissue damage. JUG reversed the DSS-induced up-regulation of proinflammatory cytokines, including interleukin (IL)-6, 12, 21, and 23, and tumor necrosis factor-alpha, and anti-inflammatory cytokines, such as IL-10 and transforming growth factor-beta, in the serum of the colitis mice. Additionally, the activation of mitochondrial uncoupling protein 2 and phospho-Nuclear Factor-kappa B p65 and the inhibition of the kelch-like ECH-associated protein 1 and NF-E2-related factor 2 induced by DSS were also reversed under JUG administration. Although the JUG group possessed a similar microbial community structure as the DSS group, JUG enriched potential beneficial microbes such as Lachnospiraceae_NK4A136_group but not pathogens such as Escherichia Shigella, which was dominative in DSS group, at the genus level. In conclusion, our results demonstrated that JUG could be a promising agent for UC prevention to regulate inflammatory cytokines and oxidative stress.
Collapse
Affiliation(s)
- Shuai Chen
- School of Public Health, Xinxiang Medical University, Xinxiang, China.,Key Laboratory of Agro-ecological Processes in Subtropical Region, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha, China
| | - Xin Wu
- Key Laboratory of Agro-ecological Processes in Subtropical Region, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha, China
| | - Zengli Yu
- School of Public Health, Xinxiang Medical University, Xinxiang, China.,School of Public Health, Zhengzhou University, Zhengzhou, China
| |
Collapse
|