1
|
Gao M, Irawan A, El-Sherbiny M, Szumacher-Strabel M, Cieślak A, Setiawan MA, Jallal H, Fusaro I, Jayanegara A, Yanza YR, Liu Y. Meta-Analysis of Incorporating Glucosinolates into Diets and Their Effects on Ruminant Performance, Ruminal Fermentation, Methane Emissions, Milk Composition, and Metabolic Biochemical Attributes. Animals (Basel) 2025; 15:1480. [PMID: 40427356 PMCID: PMC12108334 DOI: 10.3390/ani15101480] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2025] [Revised: 04/28/2025] [Accepted: 05/07/2025] [Indexed: 05/29/2025] Open
Abstract
Brassica-derived feeds have been recognized for their economic and environmental benefits in ruminant nutrition. However, their utilization is constrained by the presence of glucosinolates and sulfur-containing compounds that exhibit both beneficial and adverse effects. This meta-analysis included 36 studies that evaluated the impact of glucosinolate intake on ruminant performance, nutrient digestibility, milk composition, and methane emissions. This analysis, conducted in accordance with PRISMA guidelines, revealed that glucosinolate supplementation resulted in a quadratic increase in milk urea nitrogen concentration (p = 0.017). Additionally, significant interactions between glucosinolate level and source influenced crude protein digestibility (p = 0.026). Milk composition parameters, including 4% fat-corrected milk, energy-corrected milk, milk protein, and lactose proportions, were significantly affected (p < 0.05). Furthermore, methane emissions (g/kg DMI) decreased quadratically with increasing glucosinolate intake (p = 0.003), with additional interactions observed between dietary treatments and animal species (p = 0.029). Propionate and isobutyrate concentrations increased in a quadratic and linear manner, respectively (p < 0.05). These findings suggest that glucosinolate-containing feed can enhance nutrient utilization and mitigate methane emissions in ruminants. However, the magnitude of these effects is dependent on the glucosinolate dosage, source, animal species, and dietary composition, necessitating further research to optimize their use in ruminant nutrition.
Collapse
Affiliation(s)
- Min Gao
- State Key Laboratory of Reproductive Regulation & Breeding of Grassland Livestock, Inner Mongolia University, Hohhot 010021, China;
- National Sheep Genetic Evaluation Center, Inner Mongolia University, Hohhot 010070, China
| | - Agung Irawan
- Vocational School, Universitas Sebelas Maret, Surakarta 57126, Indonesia;
| | - Mohamed El-Sherbiny
- Department of Dairy Science, National Research Centre, 33 Bohouth St., Dokki, Giza 12622, Egypt;
- Institute of Animal Nutrition, Nutrition Diseases and Dietetics, Faculty of Veterinary Medicine, University of Leipzig, An den Tierkliniken 9, 04103 Leipzig, Germany
| | - Małgorzata Szumacher-Strabel
- Department of Animal Nutrition, Poznań University of Life Sciences, Wołyńska 33, 60-637 Poznań, Poland; (M.S.-S.); (A.C.)
| | - Adam Cieślak
- Department of Animal Nutrition, Poznań University of Life Sciences, Wołyńska 33, 60-637 Poznań, Poland; (M.S.-S.); (A.C.)
| | - Muhammad Ariana Setiawan
- Department of Animal Nutrition and Feed Technology, Faculty of Animal Husbandry, Universitas Padjadjaran, Sumedang 45363, Indonesia;
| | - Hassan Jallal
- Department of Veterinary Medicine, Faculty of Veterinary Medicine, University of Teramo, 64100 Teramo, Italy; (H.J.); (I.F.)
| | - Isa Fusaro
- Department of Veterinary Medicine, Faculty of Veterinary Medicine, University of Teramo, 64100 Teramo, Italy; (H.J.); (I.F.)
| | - Anuraga Jayanegara
- Department of Animal Nutrition and Feed Technology, Faculty of Animal Science, IPB University, Bogor 16680, Indonesia;
| | - Yulianri Rizki Yanza
- Department of Animal Nutrition and Feed Technology, Faculty of Animal Husbandry, Universitas Padjadjaran, Sumedang 45363, Indonesia;
| | - Yongbin Liu
- State Key Laboratory of Reproductive Regulation & Breeding of Grassland Livestock, Inner Mongolia University, Hohhot 010021, China;
- National Sheep Genetic Evaluation Center, Inner Mongolia University, Hohhot 010070, China
- Department of Animal Genetics, Breeding, and Reproduction, College of Animal Science, Inner Mongolia Agricultural University, Hohhot 010018, China
| |
Collapse
|
2
|
Ahmed MG, Elwakeel EA, El-Zarkouny SZ, Al-Sagheer AA. Environmental impact of phytobiotic additives on greenhouse gas emission reduction, rumen fermentation manipulation, and performance in ruminants: an updated review. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:37943-37962. [PMID: 38772996 PMCID: PMC11189335 DOI: 10.1007/s11356-024-33664-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/25/2023] [Accepted: 05/06/2024] [Indexed: 05/23/2024]
Abstract
Ruminal fermentation is a natural process involving beneficial microorganisms that contribute to the production of valuable products and efficient nutrient conversion. However, it also leads to the emission of greenhouse gases, which have detrimental effects on the environment and animal productivity. Phytobiotic additives have emerged as a potential solution to these challenges, offering benefits in terms of rumen fermentation modulation, pollution reduction, and improved animal health and performance. This updated review aims to provide a comprehensive understanding of the specific benefits of phytobiotic additives in ruminant nutrition by summarizing existing studies. Phytobiotic additives, rich in secondary metabolites such as tannins, saponins, alkaloids, and essential oils, have demonstrated biological properties that positively influence rumen fermentation and enhance animal health and productivity. These additives contribute to environmental protection by effectively reducing nitrogen excretion and methane emissions from ruminants. Furthermore, they inhibit microbial respiration and nitrification in soil, thereby minimizing nitrous oxide emissions. In addition to their environmental impact, phytobiotic additives improve rumen manipulation, leading to increased ruminant productivity and improved quality of animal products. Their multifaceted properties, including anthelmintic, antioxidant, antimicrobial, and immunomodulatory effects, further contribute to the health and well-being of both animals and humans. The potential synergistic effects of combining phytobiotic additives with probiotics are also explored, highlighting the need for further research in this area. In conclusion, phytobiotic additives show great promise as sustainable and effective solutions for improving ruminant nutrition and addressing environmental challenges.
Collapse
Affiliation(s)
- Mariam G Ahmed
- Agriculture Research Center, Animal Production Research Institute, Nadi El-Said, Giza, 11622, Egypt
- Department of Animal and Fish Production, Faculty of Agriculture (El-Shatby), Alexandria University, Alexandria, 21545, Egypt
| | - Eman A Elwakeel
- Department of Animal and Fish Production, Faculty of Agriculture (El-Shatby), Alexandria University, Alexandria, 21545, Egypt
| | - Samir Z El-Zarkouny
- Department of Animal and Fish Production, Faculty of Agriculture (El-Shatby), Alexandria University, Alexandria, 21545, Egypt
| | - Adham A Al-Sagheer
- Animal Production Department, Faculty of Agriculture, Zagazig University, Zagazig, 44511, Egypt.
| |
Collapse
|
3
|
Zhao Y, Liu M, Jiang L, Guan L. Could natural phytochemicals be used to reduce nitrogen excretion and excreta-derived N 2O emissions from ruminants? J Anim Sci Biotechnol 2023; 14:140. [PMID: 37941085 PMCID: PMC10634152 DOI: 10.1186/s40104-023-00942-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2023] [Accepted: 09/20/2023] [Indexed: 11/10/2023] Open
Abstract
Ruminants play a critical role in our food system by converting plant biomass that humans cannot or choose not to consume into edible high-quality food. However, ruminant excreta is a significant source of nitrous oxide (N2O), a potent greenhouse gas with a long-term global warming potential 298 times that of carbon dioxide. Natural phytochemicals or forages containing phytochemicals have shown the potential to improve the efficiency of nitrogen (N) utilization and decrease N2O emissions from the excreta of ruminants. Dietary inclusion of tannins can shift more of the excreted N to the feces, alter the urinary N composition and consequently reduce N2O emissions from excreta. Essential oils or saponins could inhibit rumen ammonia production and decrease urinary N excretion. In grazed pastures, large amounts of glucosinolates or aucubin can be introduced into pasture soils when animals consume plants rich in these compounds and then excrete them or their metabolites in the urine or feces. If inhibitory compounds are excreted in the urine, they would be directly applied to the urine patch to reduce nitrification and subsequent N2O emissions. The phytochemicals' role in sustainable ruminant production is undeniable, but much uncertainty remains. Inconsistency, transient effects, and adverse effects limit the effectiveness of these phytochemicals for reducing N losses. In this review, we will identify some current phytochemicals found in feed that have the potential to manipulate ruminant N excretion or mitigate N2O production and deliberate the challenges and opportunities associated with using phytochemicals or forages rich in phytochemicals as dietary strategies for reducing N excretion and excreta-derived N2O emissions.
Collapse
Affiliation(s)
- Yuchao Zhao
- Beijing Key Laboratory of Dairy Cow Nutrition, College of Animal Science and Technology, Beijing University of Agriculture, Beijing, 102206, China
- College of Animal Science and Technology, China Agricultural University, Beijing, 100193, China
| | - Ming Liu
- Beijing Key Laboratory of Dairy Cow Nutrition, College of Animal Science and Technology, Beijing University of Agriculture, Beijing, 102206, China
| | - Linshu Jiang
- Beijing Key Laboratory of Dairy Cow Nutrition, College of Animal Science and Technology, Beijing University of Agriculture, Beijing, 102206, China.
| | - Leluo Guan
- Department of Agricultural, Food and Nutritional Science, University of Alberta, Edmonton, AB, T6G 2R3, Canada
| |
Collapse
|
4
|
Paśko P, Okoń K, Prochownik E, Krośniak M, Francik R, Kryczyk-Kozioł J, Grudzińska M, Tyszka-Czochara M, Malinowski M, Sikora J, Galanty A, Zagrodzki P. The Impact of Kohlrabi Sprouts on Various Thyroid Parameters in Iodine Deficiency- and Sulfadimethoxine-Induced Hypothyroid Rats. Nutrients 2022; 14:nu14142802. [PMID: 35889759 PMCID: PMC9316894 DOI: 10.3390/nu14142802] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2022] [Revised: 07/03/2022] [Accepted: 07/05/2022] [Indexed: 01/20/2023] Open
Abstract
Brassica sprouts, as the rich source of dietary glucosinolates, may have a negative effect on thyroid function. In this study, kohlrabi sprouts diet, combined with two models of rat hypothyroidism, was tested. TSH, thyroid hormones and histopathology analysis were completed with the evaluation of immunological, biochemical, haematological parameters, cytosolic glutathione peroxidase, thioredoxin reductase in the thyroid, and plasma glutathione peroxidase. A thermographic analysis was also adapted to confirm thyroid dysfunction. The levels of TSH, fT3 and fT4, antioxidant enzyme (GPX) as well as histopathology parameters remained unchanged following kohlrabi sprouts ingestion, only TR activity significantly increased in response to the sprouts. In hypothyroid animals, sprouts diet did not prevent thyroid damage. In comparison with the rats with iodine deficiency, kohlrabi sprouts diet decreased TNF-α level. Neither addition of the sprouts to the diet, nor sulfadimethoxine and iodine deficiency, caused negative changes in red blood cell parameters, glucose and uric acid concentrations, or kidney function. However, such a dietary intervention resulted in reduced WBC levels, and adversely interfered with liver function in rats, most likely due to a higher dietary intake of glucosinolates. Moreover, the possible impact of the breed of the rats on the evaluated parameters was indicated.
Collapse
Affiliation(s)
- Paweł Paśko
- Department of Food Chemistry and Nutrition, Jagiellonian University Medical College, Medyczna 9, 30-688 Kraków, Poland; (E.P.); (M.K.); (J.K.-K.); (M.T.-C.); (P.Z.)
- Correspondence:
| | - Krzysztof Okoń
- Department of Pathomorphology, Jagiellonian University Medical College, Grzegórzecka 16, 31-531 Kraków, Poland;
| | - Ewelina Prochownik
- Department of Food Chemistry and Nutrition, Jagiellonian University Medical College, Medyczna 9, 30-688 Kraków, Poland; (E.P.); (M.K.); (J.K.-K.); (M.T.-C.); (P.Z.)
| | - Mirosław Krośniak
- Department of Food Chemistry and Nutrition, Jagiellonian University Medical College, Medyczna 9, 30-688 Kraków, Poland; (E.P.); (M.K.); (J.K.-K.); (M.T.-C.); (P.Z.)
| | - Renata Francik
- Department of Bioorganic Chemistry, Medical College, Jagiellonian University, Medyczna 9, 30-688 Kraków, Poland;
- Institute of Health, State Higher Vocational School, Staszica 1, 33-300 Nowy Sącz, Poland
| | - Jadwiga Kryczyk-Kozioł
- Department of Food Chemistry and Nutrition, Jagiellonian University Medical College, Medyczna 9, 30-688 Kraków, Poland; (E.P.); (M.K.); (J.K.-K.); (M.T.-C.); (P.Z.)
| | - Marta Grudzińska
- Department of Pharmacognosy, Jagiellonian University Medical College, Medyczna 9, 30-688 Kraków, Poland; (M.G.); (A.G.)
| | - Małgorzata Tyszka-Czochara
- Department of Food Chemistry and Nutrition, Jagiellonian University Medical College, Medyczna 9, 30-688 Kraków, Poland; (E.P.); (M.K.); (J.K.-K.); (M.T.-C.); (P.Z.)
| | - Mateusz Malinowski
- Department of Bioprocesses Engineering, Energetics and Automatization, Faculty of Production and Power Engineering, University of Agriculture in Krakow, Balicka 116b, 30-149 Kraków, Poland; (M.M.); (J.S.)
| | - Jakub Sikora
- Department of Bioprocesses Engineering, Energetics and Automatization, Faculty of Production and Power Engineering, University of Agriculture in Krakow, Balicka 116b, 30-149 Kraków, Poland; (M.M.); (J.S.)
| | - Agnieszka Galanty
- Department of Pharmacognosy, Jagiellonian University Medical College, Medyczna 9, 30-688 Kraków, Poland; (M.G.); (A.G.)
| | - Paweł Zagrodzki
- Department of Food Chemistry and Nutrition, Jagiellonian University Medical College, Medyczna 9, 30-688 Kraków, Poland; (E.P.); (M.K.); (J.K.-K.); (M.T.-C.); (P.Z.)
| |
Collapse
|
5
|
Gao J, Zhao G. Potentials of using dietary plant secondary metabolites to mitigate nitrous oxide emissions from excreta of cattle: Impacts, mechanisms and perspectives. ANIMAL NUTRITION (ZHONGGUO XU MU SHOU YI XUE HUI) 2022; 9:327-334. [PMID: 35647327 PMCID: PMC9118128 DOI: 10.1016/j.aninu.2021.12.006] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/07/2021] [Revised: 12/20/2021] [Accepted: 12/23/2021] [Indexed: 11/26/2022]
Abstract
Nitrous oxide (N2O) is a potent greenhouse gas as well as the key component depleting the ozone sphere of the earth. Cattle have high feed and water intakes and excrete large amounts of urine and feces. N2O can be produced from cattle excreta during storage and use as fertilizer. Mitigating the N2O emissions from cattle excreta during production is important for protecting the environment and the sustainable development of the cattle industry. Feeding cattle with low-protein diets increases N utilization rates, decreases N excretion and consequently reduces N2O emissions. However, this approach cannot be applied in the long term because of its negative impact on animal performance. Recent studies showed that dietary inclusion of some plant secondary metabolites such as tannins, anthocyanins, glucosinolates and aucubin could manipulate the N excretion and the urinary components and consequently regulate N2O emissions from cattle excreta. This review summarized the recent developments in the effects of dietary tannins, anthocyanins and glucosinolates on the metabolism of cattle and the N2O emissions from cattle excreta and concluded that dietary inclusion of tannins or anthocyanins could considerably reduce N2O emissions from cattle excreta.
Collapse
Affiliation(s)
- Jian Gao
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, 100193 Beijing, China
| | - Guangyong Zhao
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, 100193 Beijing, China
| |
Collapse
|
6
|
Gao J, Li MM, Zhao G. Thiocyanate increases the nitrous oxide formation process through modifying the soil bacterial community. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2022; 102:2321-2329. [PMID: 34625977 DOI: 10.1002/jsfa.11570] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/15/2021] [Revised: 09/07/2021] [Accepted: 10/09/2021] [Indexed: 06/13/2023]
Abstract
BACKGROUND Nitrous oxide (N2 O) is a potent greenhouse gas depleting the stratospheric ozone. Previous studies reported that the thiocyanate (TC) excretion in the urine of cattle fed rapeseed meals containing glucosinolates was positively correlated with the N2 O-nitrogen (N) emissions. The objectives of the experiment were to verify the effects and the mechanism of TC on the N2 O-N emissions from the soil applied with artificial urine using static incubation technique. Four levels of TC, that is 0.00, 0.26, 0.78 and 2.33 mmol L-1 were composited in artificial urine as experimental treatments. Soil inorganic N and bacterial community were analyzed to elucidate the effects of TC on the N2 O-N emissions of artificial urine. RESULTS Adding TC increased the N2 O-N fluxes, the N2 O-N to N application ratio, and the estimated N2 O-N emissions from the soil applied with artificial urine both linearly and quadratically. The estimated N2 O-N emission (Y, in μmol) was increased with the TC adding level (X, in μmol) in a quadratic manner: Y = 52.57 + 4.47 X - 0.123 X 2 (R 2 = 0.70). Adding TC did not affect the soil bacterial diversity and richness, but increased the relative abundances of Nitrosomonas (both for nitrification and denitrification) and Hyphomicrobium, Lysobacter and Terrimonas (for denitrification), and tended to increase the relative abundances of denitrification and dissimilatory nitrate reduction to ammonium. CONCLUSION TC increased the N2 O-N emissions of the soil applied with artificial urine possibly through enhancing the denitrification of nitrifiers in the soil. Field experiments are necessary to verify the laboratory results. © 2021 Society of Chemical Industry.
Collapse
Affiliation(s)
- Jian Gao
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing, P.R. China
| | - Meng M Li
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing, P.R. China
| | - Guangyong Zhao
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing, P.R. China
| |
Collapse
|
7
|
Gao J, Cheng B, Liu Y, Li MM, Zhao G. Dietary supplementation with red cabbage extract rich in anthocyanins increases urinary hippuric acid excretion and consequently decreases nitrous oxide emissions in beef bulls. Anim Feed Sci Technol 2021. [DOI: 10.1016/j.anifeedsci.2021.115075] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|