1
|
Shi M, Li W, Yang S, Lv Q, Yang J, Sun D, Yang G, Zhao Y, Zhang W, Li M, Yang Y, Cai C, Gao P, Guo X, Li B, Cao G. Integrated Multi-Tissue Lipidomics and Transcriptomics Reveal Differences in Lipid Composition Between Mashen and Duroc × (Landrace × Yorkshire) Pigs. Animals (Basel) 2025; 15:1280. [PMID: 40362094 PMCID: PMC12071155 DOI: 10.3390/ani15091280] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2025] [Revised: 04/27/2025] [Accepted: 04/28/2025] [Indexed: 05/15/2025] Open
Abstract
Chinese native pig breeds exhibit unique advantages over Western pig breeds, but the specific lipid metabolism mechanisms remain unclear. The phenotypic characteristics of Mashen (MS) pigs and Duroc × (Landrace × Yorkshire) (DLY) pigs are studied. The results show that MS pigs exhibit higher intramuscular fat (IMF) content. The area of adipocytes of MS pigs is significantly greater than that in DLY pigs (p < 0.01). Lipidomics analysis reveals distinct profiles in the upper layer of backfat (ULB), leaf lard (LL), greater omentum (GOM), and IMF, with MS pigs showing higher polyunsaturated fatty acids (PUFAs) in ULB, LL, and GOM. Key differential lipids identified in the two pig breeds include the following triglycerides (TGs) and phosphatidylcholines (PC): TG(16:1_18:1_18:3), TG(18:1_18:2_18:3), TG(18:3_18:2_18:2), PC(18:0_18:1), and PC(18:0_18:2). Weighted gene co-expression network analysis (WGCNA) reveals lipid molecules associated with serum biochemical indices. Transcriptomics analysis highlights 1944 differentially expressed genes between the MS-ULB and DLY-ULB. Notably, multiple genes from the cytochrome P450 family (CYP2E1, CYP4A24, CYP2J2), along with PLA2G2D, PLA2G4A, and multiple PCs, are associated with the metabolism of arachidonic acids and linoleic acids. PLA2G2D and PLA2G4A are also involved in the metabolism of α-linolenic acids. This comprehensive analysis provides essential information for breeding strategies and meat quality improvement.
Collapse
Affiliation(s)
- Mingyue Shi
- College of Animal Science, Shanxi Agricultural University, Jinzhong 030801, China; (M.S.); (Q.L.); (J.Y.); (D.S.); (Y.Z.); (W.Z.); (M.L.); (Y.Y.); (C.C.); (P.G.); (X.G.); (B.L.)
- Shanxi Key Laboratory of Animal Genetics Resource Utilization and Breeding, Jinzhong 030801, China
| | - Wenxia Li
- Institute of Ecological Agriculture and Animal Husbandry, Shanxi Agricultural University, Shuozhou 036002, China;
| | - Shuai Yang
- Shanxi Animal Husbandry Technology Extension Service Center, Taiyuan 030001, China;
| | - Qipin Lv
- College of Animal Science, Shanxi Agricultural University, Jinzhong 030801, China; (M.S.); (Q.L.); (J.Y.); (D.S.); (Y.Z.); (W.Z.); (M.L.); (Y.Y.); (C.C.); (P.G.); (X.G.); (B.L.)
- Shanxi Key Laboratory of Animal Genetics Resource Utilization and Breeding, Jinzhong 030801, China
| | - Jingxian Yang
- College of Animal Science, Shanxi Agricultural University, Jinzhong 030801, China; (M.S.); (Q.L.); (J.Y.); (D.S.); (Y.Z.); (W.Z.); (M.L.); (Y.Y.); (C.C.); (P.G.); (X.G.); (B.L.)
- Shanxi Key Laboratory of Animal Genetics Resource Utilization and Breeding, Jinzhong 030801, China
| | - Di Sun
- College of Animal Science, Shanxi Agricultural University, Jinzhong 030801, China; (M.S.); (Q.L.); (J.Y.); (D.S.); (Y.Z.); (W.Z.); (M.L.); (Y.Y.); (C.C.); (P.G.); (X.G.); (B.L.)
- Shanxi Key Laboratory of Animal Genetics Resource Utilization and Breeding, Jinzhong 030801, China
| | - Guanqing Yang
- Taigu Modern Agricultural Industry Development Center of Jinzhong City, Jinzhong 030801, China;
| | - Yan Zhao
- College of Animal Science, Shanxi Agricultural University, Jinzhong 030801, China; (M.S.); (Q.L.); (J.Y.); (D.S.); (Y.Z.); (W.Z.); (M.L.); (Y.Y.); (C.C.); (P.G.); (X.G.); (B.L.)
- Shanxi Key Laboratory of Animal Genetics Resource Utilization and Breeding, Jinzhong 030801, China
| | - Wanfeng Zhang
- College of Animal Science, Shanxi Agricultural University, Jinzhong 030801, China; (M.S.); (Q.L.); (J.Y.); (D.S.); (Y.Z.); (W.Z.); (M.L.); (Y.Y.); (C.C.); (P.G.); (X.G.); (B.L.)
- Shanxi Key Laboratory of Animal Genetics Resource Utilization and Breeding, Jinzhong 030801, China
| | - Meng Li
- College of Animal Science, Shanxi Agricultural University, Jinzhong 030801, China; (M.S.); (Q.L.); (J.Y.); (D.S.); (Y.Z.); (W.Z.); (M.L.); (Y.Y.); (C.C.); (P.G.); (X.G.); (B.L.)
- Shanxi Key Laboratory of Animal Genetics Resource Utilization and Breeding, Jinzhong 030801, China
| | - Yang Yang
- College of Animal Science, Shanxi Agricultural University, Jinzhong 030801, China; (M.S.); (Q.L.); (J.Y.); (D.S.); (Y.Z.); (W.Z.); (M.L.); (Y.Y.); (C.C.); (P.G.); (X.G.); (B.L.)
- Shanxi Key Laboratory of Animal Genetics Resource Utilization and Breeding, Jinzhong 030801, China
| | - Chunbo Cai
- College of Animal Science, Shanxi Agricultural University, Jinzhong 030801, China; (M.S.); (Q.L.); (J.Y.); (D.S.); (Y.Z.); (W.Z.); (M.L.); (Y.Y.); (C.C.); (P.G.); (X.G.); (B.L.)
- Shanxi Key Laboratory of Animal Genetics Resource Utilization and Breeding, Jinzhong 030801, China
| | - Pengfei Gao
- College of Animal Science, Shanxi Agricultural University, Jinzhong 030801, China; (M.S.); (Q.L.); (J.Y.); (D.S.); (Y.Z.); (W.Z.); (M.L.); (Y.Y.); (C.C.); (P.G.); (X.G.); (B.L.)
- Shanxi Key Laboratory of Animal Genetics Resource Utilization and Breeding, Jinzhong 030801, China
| | - Xiaohong Guo
- College of Animal Science, Shanxi Agricultural University, Jinzhong 030801, China; (M.S.); (Q.L.); (J.Y.); (D.S.); (Y.Z.); (W.Z.); (M.L.); (Y.Y.); (C.C.); (P.G.); (X.G.); (B.L.)
- Shanxi Key Laboratory of Animal Genetics Resource Utilization and Breeding, Jinzhong 030801, China
| | - Bugao Li
- College of Animal Science, Shanxi Agricultural University, Jinzhong 030801, China; (M.S.); (Q.L.); (J.Y.); (D.S.); (Y.Z.); (W.Z.); (M.L.); (Y.Y.); (C.C.); (P.G.); (X.G.); (B.L.)
- Shanxi Key Laboratory of Animal Genetics Resource Utilization and Breeding, Jinzhong 030801, China
| | - Guoqing Cao
- College of Animal Science, Shanxi Agricultural University, Jinzhong 030801, China; (M.S.); (Q.L.); (J.Y.); (D.S.); (Y.Z.); (W.Z.); (M.L.); (Y.Y.); (C.C.); (P.G.); (X.G.); (B.L.)
- Shanxi Key Laboratory of Animal Genetics Resource Utilization and Breeding, Jinzhong 030801, China
| |
Collapse
|
2
|
Xiong S. Gut-Microbiota-Driven Lipid Metabolism: Mechanisms and Applications in Swine Production. Metabolites 2025; 15:248. [PMID: 40278377 PMCID: PMC12029090 DOI: 10.3390/metabo15040248] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2025] [Revised: 03/28/2025] [Accepted: 04/01/2025] [Indexed: 04/26/2025] Open
Abstract
Background/Objectives: The gut microbiota plays a pivotal role in host physiology through metabolite production, with lipids serving as essential biomolecules for cellular structure, metabolism, and signaling. This review aims to elucidate the interactions between gut microbiota and lipid metabolism and their implications for enhancing swine production. Methods: We systematically analyzed current literature on microbial lipid metabolism, focusing on mechanistic studies on microbiota-lipid interactions, key regulatory pathways in microbial lipid metabolism, and multi-omics evidence (metagenomic/metabolomic) from swine models. Results: This review outlines the structural and functional roles of lipids in bacterial membranes and examines the influence of gut microbiota on the metabolism of key lipid classes, including cholesterol, bile acids, choline, sphingolipids, and fatty acids. Additionally, we explore the potential applications of microbial lipid metabolism in enhancing swine production performance. Conclusions: Our analysis establishes a scientific framework for microbiota-based strategies to optimize lipid metabolism. The findings highlight potential interventions to improve livestock productivity through targeted manipulation of gut microbial communities.
Collapse
Affiliation(s)
- Shuqi Xiong
- National Key Laboratory of Pig Genetic Improvement and Germplasm Innovation, College of Animal Science and Technology, Jiangxi Agricultural University, Nanchang 330045, China
| |
Collapse
|
3
|
Li W, Zeng X, Wang L, Yin L, Wang Q, Yang H. Comparative Analysis of Gut Microbiota Diversity Across Different Digestive Tract Sites in Ningxiang Pigs. Animals (Basel) 2025; 15:936. [PMID: 40218330 PMCID: PMC11987976 DOI: 10.3390/ani15070936] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2025] [Revised: 03/21/2025] [Accepted: 03/24/2025] [Indexed: 04/14/2025] Open
Abstract
BACKGROUND Microbial communities in the gastrointestinal tract play a critical role in nutrient absorption, metabolism, and overall health of animals. Understanding the structure and function of tissue-specific microbial communities in Ningxiang pigs is essential for optimizing their growth, development, and nutritional efficiency. However, the diversity and functional roles of microbiota in different nutrient absorption tissues remain underexplored. METHODS We collected samples from four key nutrient absorption tissues (NFC: Cecal Content, NFI: Ileal Content, NFL: Colonic Content, NFG: Gastric Content, N = 6) of Ningxiang pigs and performed 16S rRNA gene sequencing to analyze microbial community composition. Bioinformatics analyses included alpha and beta diversity assessments, linear discriminant analysis effect size (LEfSe) for biomarker identification, and PICRUSt2-based functional prediction. Comparative metabolic abundance analysis was conducted to explore functional differences among tissues. RESULTS Alpha diversity indices (ACE, Chao1, Simpson, and Shannon) revealed significant differences in microbial richness and evenness among the four tissues. At the phylum level, Firmicutes dominated the microbiota, while Bacteroidota was prominent in NFC and NFL. LEfSe analysis identified tissue-specific dominant microbial groups, such as f_Prevotellaceae in NFC, o_Lactobacillales in NFG, f_Clostridiaceae in NFI, and f_Muribaculaceae in NFL. Functional profiling using PICRUSt2 showed that the microbiota was primarily involved in organismal systems (e.g., aging, digestion), cellular processes (e.g., cell growth, transport), environmental information processing (e.g., signaling), genetic information processing (e.g., transcription, translation), and metabolic regulation (e.g., amino acid and carbohydrate metabolism). Comparative metabolic abundance analysis highlighted distinct functional profiles across tissues, with significant differences observed in pathways related to the immune system, energy metabolism, lipid metabolism, transcriptional and translational regulation, and aging. CONCLUSIONS Our findings demonstrate that tissue-specific microbial communities in Ningxiang pigs exhibit distinct structural and functional characteristics, which are closely associated with nutrient absorption and metabolic regulation. These results provide valuable insights into the roles of microbiota in the growth and health of Ningxiang pigs and pave the way for future studies on microbe-mediated nutritional interventions.
Collapse
Affiliation(s)
- Wangchang Li
- Hunan Provincial Key Laboratory of Animal Intestinal Function and Regulation, Hunan International Joint Laboratory of Animal Intestinal Ecology and Health, Laboratory of Animal Nutrition and Human Health, College of Life Sciences, Hunan Normal University, Changsha 410081, China; (W.L.)
- Yuelushan Laboratory, Changsha 410128, China
| | - Xianglin Zeng
- Hunan Provincial Key Laboratory of Animal Intestinal Function and Regulation, Hunan International Joint Laboratory of Animal Intestinal Ecology and Health, Laboratory of Animal Nutrition and Human Health, College of Life Sciences, Hunan Normal University, Changsha 410081, China; (W.L.)
- Yuelushan Laboratory, Changsha 410128, China
| | - Lu Wang
- Hunan Provincial Key Laboratory of Animal Intestinal Function and Regulation, Hunan International Joint Laboratory of Animal Intestinal Ecology and Health, Laboratory of Animal Nutrition and Human Health, College of Life Sciences, Hunan Normal University, Changsha 410081, China; (W.L.)
- Yuelushan Laboratory, Changsha 410128, China
| | - Lanmei Yin
- Hunan Provincial Key Laboratory of Animal Intestinal Function and Regulation, Hunan International Joint Laboratory of Animal Intestinal Ecology and Health, Laboratory of Animal Nutrition and Human Health, College of Life Sciences, Hunan Normal University, Changsha 410081, China; (W.L.)
- Yuelushan Laboratory, Changsha 410128, China
| | - Qiye Wang
- Hunan Provincial Key Laboratory of Animal Intestinal Function and Regulation, Hunan International Joint Laboratory of Animal Intestinal Ecology and Health, Laboratory of Animal Nutrition and Human Health, College of Life Sciences, Hunan Normal University, Changsha 410081, China; (W.L.)
- Yuelushan Laboratory, Changsha 410128, China
| | - Huansheng Yang
- Hunan Provincial Key Laboratory of Animal Intestinal Function and Regulation, Hunan International Joint Laboratory of Animal Intestinal Ecology and Health, Laboratory of Animal Nutrition and Human Health, College of Life Sciences, Hunan Normal University, Changsha 410081, China; (W.L.)
- Yuelushan Laboratory, Changsha 410128, China
| |
Collapse
|
4
|
Mkuye R, Yang C, Masanja F, Ibrahim S, Yang X, Mwemi H, Mrope P, Salman M, Alfatat A, Deng Y. Omics insights in responses of bivalves exposed to plastic pollution. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2025; 279:107224. [PMID: 39799760 DOI: 10.1016/j.aquatox.2024.107224] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/26/2024] [Revised: 12/22/2024] [Accepted: 12/26/2024] [Indexed: 01/15/2025]
Abstract
Plastic pollution, particularly microplastics and nanoplastics, poses a significant threat to marine ecosystems. Bivalves, vital filter feeders that accumulate plastic particles, underscore the necessity for advanced omics technologies to grasp their molecular reactions to plastic exposure. This review delves into the impact of microplastics and nanoplastics on bivalves utilizing advanced omics technologies. Through an examination of omics data, this review sheds light on how bivalves react to plastic pollution, informing strategies for conservation and food safety. Furthermore, theoretical pathways have been formulated to decipher how bivalves respond to environmental stressors from microplastics or nanoplastics through the integration of diverse biological fields. In this review, we report that microplastics and nanoplastics in marine ecosystems primarily stem from human activities on land and in marine domains. Bivalves are negatively influenced by plastic contamination, impacting their health and economic worth. Exposure to plastic particles disrupts bivalve behavior, metabolism, and reproduction, precipitating health concerns. Integration of omics data is instrumental in unraveling molecular interactions and devising biomarkers for monitoring purposes. Ingestion of plastics by bivalves poses risks to human health. Additionally, mitigation tactics involve bans, levies, and advocating for biodegradable alternatives to curtail plastic pollution. The amalgamation of omics findings aids in the comprehension of bivalve responses and effectively addressing plastic pollution. Moreover, addressing plastic pollution necessitates a multidisciplinary approach encompassing scientific inquiry, regulatory frameworks, and collaboration with stakeholders. These strategies are paramount in safeguarding bivalves, marine ecosystems, food safety, and human health.
Collapse
Affiliation(s)
- Robert Mkuye
- Fisheries College, Guangdong Ocean University, Zhanjiang 524088, China
| | - Chuangye Yang
- Fisheries College, Guangdong Ocean University, Zhanjiang 524088, China; Pearl Breeding and Processing Engineering Technology Research Centre of Guangdong Province, Zhanjiang 524088, China; Guangdong Provincial Key Laboratory of Aquatic Animal Disease Control and Healthy Culture, Zhanjiang, 524088, China.
| | | | - Salifu Ibrahim
- Fisheries College, Guangdong Ocean University, Zhanjiang 524088, China
| | - Xiuyan Yang
- Fisheries College, Guangdong Ocean University, Zhanjiang 524088, China
| | - Happiness Mwemi
- Fisheries College, Guangdong Ocean University, Zhanjiang 524088, China
| | - Peter Mrope
- Fisheries College, Guangdong Ocean University, Zhanjiang 524088, China
| | - Muhammed Salman
- Fisheries College, Guangdong Ocean University, Zhanjiang 524088, China
| | - Alma Alfatat
- Fisheries College, Guangdong Ocean University, Zhanjiang 524088, China
| | - Yuewen Deng
- Fisheries College, Guangdong Ocean University, Zhanjiang 524088, China; Pearl Breeding and Processing Engineering Technology Research Centre of Guangdong Province, Zhanjiang 524088, China; Guangdong Provincial Key Laboratory of Aquatic Animal Disease Control and Healthy Culture, Zhanjiang, 524088, China; Pearl Research Institute, Guangdong Ocean University, Zhanjiang, China
| |
Collapse
|
5
|
Ghosh A, Gorain B. Mechanistic insight of neurodegeneration due to micro/nano-plastic-induced gut dysbiosis. Arch Toxicol 2025; 99:83-101. [PMID: 39370473 DOI: 10.1007/s00204-024-03875-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2024] [Accepted: 09/19/2024] [Indexed: 10/08/2024]
Abstract
Despite offering significant conveniences, plastic materials contribute substantially in developing environmental hazards and pollutants. Plastic trash that has not been adequately managed may eventually break down into fragments caused by human or ecological factors. Arguably, the crucial element for determining the biological toxicities of plastics are micro/nano-forms of plastics (MPs/NPs), which infiltrate the mammalian tissue through different media and routes. Infiltration of MPs/NPs across the intestinal barrier leads to microbial architectural dysfunction, which further modulates the population of gastrointestinal microbes. Thereby, it triggers inflammatory mediators (e.g., IL-1α/β, TNF-α, and IFN-γ) by activating specific receptors located in the gut barrier. Mounting evidence indicates that MPs/NPs disrupt host pathophysiological function through modification of junctional proteins and effector cells. Moreover, the alteration of microbial diversity by MPs/NPs causes the breakdown of the blood-brain barrier and translocation of metabolites (e.g., SCFAs, LPS) through the vagus nerve. Potent penetration affects the neuronal networks, neuronal protein accumulation, acceleration of oxidative stress, and alteration of neurofibrillary tangles, and hinders distinctive communicating pathways. Conclusively, alterations of these neurotoxic factors are possibly responsible for the associated neurodegenerative disorders due to the exposure of MPs/NPs. In this review, the hypothesis on MPs/NPs associated with gut microbial dysbiosis has been interlinked to the distinct neurological impairment through the gut-brain axis.
Collapse
Affiliation(s)
- Arya Ghosh
- Department of Pharmaceutical Sciences and Technology, Birla Institute of Technology, Mesra, Ranchi, Jharkhand, 835215, India
| | - Bapi Gorain
- Department of Pharmaceutical Sciences and Technology, Birla Institute of Technology, Mesra, Ranchi, Jharkhand, 835215, India.
| |
Collapse
|
6
|
Yan E, Sun H, He L, Wan B, Shen M, Miao Q, Yin J, Zhang X. Dietary inositol supplementation improves meat quality by modulating amino acid metabolism and gut microbiota composition of finishing pigs. ANIMAL NUTRITION (ZHONGGUO XU MU SHOU YI XUE HUI) 2024; 19:180-191. [PMID: 39635421 PMCID: PMC11615912 DOI: 10.1016/j.aninu.2024.05.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/06/2024] [Revised: 05/06/2024] [Accepted: 05/11/2024] [Indexed: 12/07/2024]
Abstract
Intramuscular fat (IMF) content influences various meat quality traits, including tenderness, flavor, juiciness and nutritional value. This study aimed to investigate the effects of dietary inositol supplementation on meat quality, metabolic profiles, and gut microbiota composition of finishing pigs. A total of 144 finishing pigs (initial body weight 70.41 ± 0.78 kg) were randomly divided into control, 0.075%, 0.15%, and 0.3% inositol groups. The data showed that inositol increased backfat thickness at the 6th to 7th rib and 10th rib, IMF content, and improved tenderness (P ≤ 0.05, n = 8). Paralleling an increase in fat deposition, 0.3% inositol also increased the protein level of PPARγ in the subcutaneous fat (P ≤ 0.05) and longissimus thoracis (LT) muscle (P = 0.062). Inositol elevated the content of amino acids in LT muscle and enhanced amino acid metabolism of finishing pigs, including lysine degradation, tyrosine metabolism, and arginine and proline metabolism. The 16S ribosomal RNA (rRNA) sequencing showed that 0.3% inositol supplementation altered the profiles of microbes in the colon, particularly decreasing the abundance of Firmicutes (P < 0.01) and increasing the abundance of Bacteroidota (P ≤ 0.05). Correlation analysis showed that differential microbes had strong correlation with differential metabolites in serum, including amino acids. In conclusion, this study demonstrated that dietary inositol supplementation could effectively improve IMF content and tenderness of pork, enhance amino acid metabolism, and regulate gut microbiota composition of finishing pigs.
Collapse
Affiliation(s)
- Enfa Yan
- State Key Laboratory of Animal Nutrition and Feeding, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China
| | - Haijun Sun
- State Key Laboratory of Animal Nutrition and Feeding, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China
| | - Linjuan He
- State Key Laboratory of Animal Nutrition and Feeding, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China
| | - Boyang Wan
- State Key Laboratory of Animal Nutrition and Feeding, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China
| | - Ming Shen
- State Key Laboratory of Animal Nutrition and Feeding, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China
| | - Qiyuan Miao
- State Key Laboratory of Animal Nutrition and Feeding, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China
| | - Jingdong Yin
- State Key Laboratory of Animal Nutrition and Feeding, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China
- Frontiers Science Center for Molecular Design Breeding (MOE), Beijing 100193, China
| | - Xin Zhang
- State Key Laboratory of Animal Nutrition and Feeding, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China
- Frontiers Science Center for Molecular Design Breeding (MOE), Beijing 100193, China
| |
Collapse
|
7
|
Su J, Li J, Azad MAK, Wang W, Luo Z, Wang J, Yin J, Yin Y, Tan B, Chen J. Dynamic distribution of gut microbiota-metabolites during post-weaning longissimus dorsi muscle development in Ningxiang pigs. Microbiol Spectr 2024; 12:e0081324. [PMID: 39162499 PMCID: PMC11452052 DOI: 10.1128/spectrum.00813-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2024] [Accepted: 07/10/2024] [Indexed: 08/21/2024] Open
Abstract
Ningxiang pigs (NXPs) have a strong ability to deposit fat and intramuscular fat (IMF). However, microbiota-metabolite development and the role in IMF deposition have been rarely reported. Here, we compared the gut microbiota and metabolite profiles and IMF content at 30, 70, 150, 200, and 250 days of age of NXPs. The results revealed that the IMF content in NXPs increased significantly (P < 0.05) as the pigs' age extended. Additionally, the C14:0 content in the longissimus dorsi muscle at 30 and 70 days of age was significantly lower (P < 0.05) than that at 150 and 200 days of age. The Shannon index and ACE index showed a pattern of initially increasing and then decreasing. LEfSe analysis revealed that 41 differential bacteria at the genus level were specific to different growth stages, indicating the dominant bacteria's dynamic changes in the NXPs during different stages of age. Furthermore, we found that there were significant differences in cecal metabolism, the classification of differential metabolites revealed that 15.61% of compounds were fatty acyls, 13.98% were prenol lipids, and 10.57% were steroids and steroid derivatives. Next, the network analysis showed that Lachnospiraceae-XPB1014-group was positively related to 4-2-Aminophenyl-2-4-dioxobutanoic-acid, (Z)-3-Octene, 5-Methyl-furaldehyde, Propyl-2-4-decadienoate, which were also positively correlated with the IMF content. Our findings illustrated the dynamic distribution of cecal microbiota and metabolite composition at different growth stages in NXPs and their correlation with IMF deposition. These results provide a valuable insight into optimizing meat quality and overall health in post-weaning NXPs, providing a foundation for enhancement in pork product.IMPORTANCEUnderstanding the dynamic interplay between gut microbiota, metabolites, and intramuscular fat (IMF) deposition in pigs at various growth stages holds significant importance for the pork industry. This research sheds light on how the composition of gut microbiota and metabolites changes throughout the developmental stages of pigs, impacting IMF content in meat. By identifying specific bacterial genera and metabolites associated with IMF deposition, this study offers valuable insights for optimizing meat quality and health in post-weaning pigs. Such knowledge could lead to targeted interventions or management strategies aimed at enhancing pork product quality and overall profitability for producers. Ultimately, this research contributes to advancing our understanding of the complex relationship between gut microbiota, metabolites, and meat quality, offering practical implications for the swine industry.
Collapse
Affiliation(s)
- Jiayi Su
- Animal Nutritional Genome and Germplasm Innovation Research Center, College of Animal Science and Technology, Hunan Agricultural University, Changsha, Hunan, China
| | - Jinxuan Li
- Animal Nutritional Genome and Germplasm Innovation Research Center, College of Animal Science and Technology, Hunan Agricultural University, Changsha, Hunan, China
| | - Md. Abul Kalam Azad
- CAS Key Laboratory of Agro ecological Processes in Subtropical Region, Institute of Subtropical Agriculture, Changsha, Hunan, China
| | - Wenliang Wang
- Animal Nutritional Genome and Germplasm Innovation Research Center, College of Animal Science and Technology, Hunan Agricultural University, Changsha, Hunan, China
| | - Zhili Luo
- Animal Nutritional Genome and Germplasm Innovation Research Center, College of Animal Science and Technology, Hunan Agricultural University, Changsha, Hunan, China
| | - Jing Wang
- Animal Nutritional Genome and Germplasm Innovation Research Center, College of Animal Science and Technology, Hunan Agricultural University, Changsha, Hunan, China
| | - Jie Yin
- Animal Nutritional Genome and Germplasm Innovation Research Center, College of Animal Science and Technology, Hunan Agricultural University, Changsha, Hunan, China
- CAS Key Laboratory of Agro ecological Processes in Subtropical Region, Institute of Subtropical Agriculture, Changsha, Hunan, China
| | - Yulong Yin
- Animal Nutritional Genome and Germplasm Innovation Research Center, College of Animal Science and Technology, Hunan Agricultural University, Changsha, Hunan, China
- CAS Key Laboratory of Agro ecological Processes in Subtropical Region, Institute of Subtropical Agriculture, Changsha, Hunan, China
| | - Bie Tan
- Animal Nutritional Genome and Germplasm Innovation Research Center, College of Animal Science and Technology, Hunan Agricultural University, Changsha, Hunan, China
| | - Jiashun Chen
- Animal Nutritional Genome and Germplasm Innovation Research Center, College of Animal Science and Technology, Hunan Agricultural University, Changsha, Hunan, China
| |
Collapse
|
8
|
Wang J, Zhu H, Li H, Xia S, Zhang F, Liu C, Zheng W, Yao W. Metabolic and microbial mechanisms related to the effects of dietary wheat levels on intramuscular fat content in finishing pigs. Meat Sci 2024; 216:109574. [PMID: 38909450 DOI: 10.1016/j.meatsci.2024.109574] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2023] [Revised: 06/12/2024] [Accepted: 06/19/2024] [Indexed: 06/25/2024]
Abstract
The current study aimed to investigate the metabolic and microbial mechanisms behind the effects of dietary wheat levels on intramuscular fat (IMF) content in the psoas major muscle (PM) of finishing pigs. Thirty-six barrows were arbitrarily assigned to two groups and fed with diets containing 25% or 55% wheat. Enhancing dietary wheat levels led to low energy states, resulting in reduced IMF content. This coincided with reduced serum glucose and low-density lipoprotein cholesterol levels. The AMP-activated protein kinase α2/sirtuin 1/peroxisome proliferator-activated receptor-γ coactivator 1α pathway may be activated by high-wheat diets, causing downregulation of adipogenesis and lipogenesis genes, and upregulation of lipolysis and gluconeogenesis genes. High-wheat diets decreased relative abundance of Lactobacillus and Coprococcus, whereas increased SMB53 proportion, subsequently decreasing colonic propionate content. Microbial glycolysis/gluconeogenesis, d-glutamine and D-glutamate metabolism, flagellar assembly, and caprolactam degradation were linked to IMF content. Metabolomic analysis indicated that enhancing dietary wheat levels promoted the protein digestion and absorption and affected amino acids and lipid metabolism. Enhancing dietary wheat levels reduced serum glucose and colonic propionate content, coupled with strengthened amino acid metabolism, contributing to the low energy states. Furthermore, alterations in microbial composition and propionate resulted from high-wheat diets were associated with primary bile acid biosynthesis, arachidonic acid metabolism, steroid hormone biosynthesis, and biosynthesis of unsaturated fatty acids, as well as IMF content. Colonic microbiota played a role in reducing IMF content through modulating the propionate-mediated peroxisome proliferators-activated receptor signaling pathway. In conclusion, body energy and gut microbiota balance collectively influenced lipid metabolism.
Collapse
Affiliation(s)
- Jiguang Wang
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, Jiangsu 210095, China
| | - He Zhu
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, Jiangsu 210095, China
| | - Haojie Li
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, Jiangsu 210095, China
| | - Shuangshuang Xia
- Anyou Biotechnology Group Co., Ltd, Suzhou, Jiangsu 215400, China
| | - Fang Zhang
- Anyou Biotechnology Group Co., Ltd, Suzhou, Jiangsu 215400, China
| | - Chunxue Liu
- Anyou Biotechnology Group Co., Ltd, Suzhou, Jiangsu 215400, China
| | - Weijiang Zheng
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, Jiangsu 210095, China
| | - Wen Yao
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, Jiangsu 210095, China; Key Lab of Animal Physiology and Biochemistry, Ministry of Agriculture and Rural Affairs of the People's Republic of China, Nanjing Agricultural University, Nanjing, Jiangsu 210095, China.
| |
Collapse
|
9
|
Hu Y, Wu A, Yan H, Pu J, Luo J, Zheng P, Luo Y, Yu J, He J, Yu B, Chen D. Secondary bile acids are associated with body lipid accumulation in obese pigs. ANIMAL NUTRITION (ZHONGGUO XU MU SHOU YI XUE HUI) 2024; 18:246-256. [PMID: 39281048 PMCID: PMC11402430 DOI: 10.1016/j.aninu.2024.04.019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/10/2023] [Revised: 02/22/2024] [Accepted: 04/03/2024] [Indexed: 09/18/2024]
Abstract
The aim of this study was to investigate the reasons for the differences in lipid accumulation between lean and obese pigs. The bile acids with varying levels within two types of pigs were found and then in vitro experiments were conducted to identify whether these bile acids can directly affect lipid accumulation. Fourteen pigs, including seven lean and seven obese pigs with body weights of approximately 80 kg, were fed the same diet at an amount approximately equivalent to 3% of their respective body weights daily for 42 d. In vitro, 3T3-L1 preadipocytes were cultured in medium with high glucose levels and were differentiated into mature adipocytes using differentiation medium. Then, bile acids were added to mature adipocytes for 4 d. The results showed that there was a difference in body lipids levels and gut microbiota composition between obese and lean pigs (P < 0.05). According to the results of gut microbial function prediction, the bile acid biosynthesis in colonic digesta of obese pigs were different from that in lean pig. Sixty-five bile acids were further screened by metabolomics, of which 4 were upregulated (P < 0.05) and 2 were downregulated (P < 0.05) in obese pigs compared to lean pigs. The results of the correlation analysis demonstrated that chenodeoxycholic acid-3-β-D-glucuronide (CDCA-3Gln) and ω-muricholic acid (ω-MCA) had a negative correlation with abdominal fat weight and abdominal fat rate, while isoallolithocholic acid (IALCA) was positively associated with crude fat in the liver and abdominal fat rate. There was a positive correlation between loin muscle area and CDCA-3Gln and ω-MCA (P < 0.05), however, IALCA and 3-oxodeoxycholic acid (3-oxo-DCA) were negatively associated with loin eye muscle area (P < 0.05). Isoallolithocholic acid increased the gene expression of peroxisome proliferator-activated receptor gamma (PPARG) and the number of lipid droplets (P < 0.05), promoting the lipid storage when IALCA was added to 3T3-L1 mature adipocytes in vitro. In conclusion, the concentration of bile acids, especially gut microbiota related-secondary bile acids, in obese pigs was different from that in lean pigs, which may contribute to lipid accumulation within obese pigs.
Collapse
Affiliation(s)
- Yaolian Hu
- Key Laboratory of Animal Disease-Resistant Nutrition, Ministry of Education, Animal Nutrition Institute, Sichuan Agricultural University, Ya'an 625014, China
| | - Aimin Wu
- Key Laboratory of Animal Disease-Resistant Nutrition, Ministry of Education, Animal Nutrition Institute, Sichuan Agricultural University, Ya'an 625014, China
| | - Hui Yan
- Key Laboratory of Animal Disease-Resistant Nutrition, Ministry of Education, Animal Nutrition Institute, Sichuan Agricultural University, Ya'an 625014, China
| | - Junning Pu
- Key Laboratory of Animal Disease-Resistant Nutrition, Ministry of Education, Animal Nutrition Institute, Sichuan Agricultural University, Ya'an 625014, China
| | - Junqiu Luo
- Key Laboratory of Animal Disease-Resistant Nutrition, Ministry of Education, Animal Nutrition Institute, Sichuan Agricultural University, Ya'an 625014, China
| | - Ping Zheng
- Key Laboratory of Animal Disease-Resistant Nutrition, Ministry of Education, Animal Nutrition Institute, Sichuan Agricultural University, Ya'an 625014, China
| | - Yuheng Luo
- Key Laboratory of Animal Disease-Resistant Nutrition, Ministry of Education, Animal Nutrition Institute, Sichuan Agricultural University, Ya'an 625014, China
| | - Jie Yu
- Key Laboratory of Animal Disease-Resistant Nutrition, Ministry of Education, Animal Nutrition Institute, Sichuan Agricultural University, Ya'an 625014, China
| | - Jun He
- Key Laboratory of Animal Disease-Resistant Nutrition, Ministry of Education, Animal Nutrition Institute, Sichuan Agricultural University, Ya'an 625014, China
| | - Bing Yu
- Key Laboratory of Animal Disease-Resistant Nutrition, Ministry of Education, Animal Nutrition Institute, Sichuan Agricultural University, Ya'an 625014, China
| | - Daiwen Chen
- Key Laboratory of Animal Disease-Resistant Nutrition, Ministry of Education, Animal Nutrition Institute, Sichuan Agricultural University, Ya'an 625014, China
| |
Collapse
|
10
|
Wang L, Nabi F, Zhang X, Zhou G, Shah QA, Li S, Lu Y, Mu S, Zhu X, Lin Z, Li J. Effects of Lactobacillus plantarum on Broiler Health: Integrated Microbial and Metabolomics Analysis. Probiotics Antimicrob Proteins 2024:10.1007/s12602-024-10336-x. [PMID: 39090454 DOI: 10.1007/s12602-024-10336-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/24/2024] [Indexed: 08/04/2024]
Abstract
Given China's prohibition on the utilization of antibiotics as feed additives in 2020, we aim to investigate nutrition additives that are both efficient and safe. Lactobacillus, a well-recognized beneficial probiotic, has explicitly been investigated for its effects on health status of the host and overall impact on food industry. To evaluate effects of Lactobacillus plantarum (LW) supplementation on broiler chicken, we conducted comprehensive multi-omics analysis, growth performance evaluation, RT-qPCR analysis, and immunofluorescence. The findings revealed that LW supplementation resulted in a substantial progress in growth performance (approximately 205 g increase in final body weight in comparison to the control group (p < 0.01)). Additionally, LW exhibited promising potential for enhancing antioxidant properties of serum and promoting gut integrity and growth as evidenced by improved antioxidant indices (p < 0.01), intestinal villus morphology (p < 0.01), and enhanced gut barrier function (p < 0.01). Meanwhile, the multi-omics analysis, including 16S rRNA sequencing and liquid chromatography-tandem mass spectrometry, revealed an enrichment of beneficial microbes in the gut of broilers that were supplemented with LW, while simultaneously depleting harmful microorganisms. Moreover, a noteworthy modification was observed in gut metabolic profiling subsequent to the execution of the probiotic strategy. Specifically, variations were noticed in the levels of metabolites and metabolic pathways such as parathyroid hormone synthesis, inflammatory mediator regulation of TRP channels, oxidative phosphorylation, and mineral absorption. Taken together, our findings validate that LW administration produces valuable effects on the health and growth performance of broilers owing to its capability to boost the gut microbiota homeostasis and intestinal metabolism. Present findings signify the potential of LW as a dietary additive to promote growth and development in broiler chickens.
Collapse
Affiliation(s)
- Lei Wang
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, 430070, People's Republic of China
| | - Fazul Nabi
- Faculty of Veterinary and Animal Sciences, Lasbela University of Agriculture, Water and Marine Sciences, Uthal, 90150, Pakistan
| | - Xiaohu Zhang
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, 430070, People's Republic of China
| | - Guangyu Zhou
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, 430070, People's Republic of China
| | - Qurban Ali Shah
- Faculty of Veterinary and Animal Sciences, Lasbela University of Agriculture, Water and Marine Sciences, Uthal, 90150, Pakistan
| | - Siyuan Li
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, 430070, People's Republic of China
| | - Yaozhong Lu
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, 430070, People's Republic of China
| | - Siyang Mu
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, 430070, People's Republic of China
| | - Xiaohui Zhu
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, 430070, People's Republic of China
| | - Zhengrong Lin
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, 430070, People's Republic of China
| | - Jiakui Li
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, 430070, People's Republic of China.
| |
Collapse
|
11
|
Zhang Y, Li H, Li B, He J, Peng C, Xie Y, Huang G, Zhao P, Wang Z. The Adaptive Alternation of Intestinal Microbiota and Regulation of Host Genes Jointly Promote Pigs to Digest Appropriate High-Fiber Diets. Animals (Basel) 2024; 14:2076. [PMID: 39061538 PMCID: PMC11274041 DOI: 10.3390/ani14142076] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2024] [Revised: 07/10/2024] [Accepted: 07/12/2024] [Indexed: 07/28/2024] Open
Abstract
Although studies have revealed the significant impact of dietary fiber on growth performance and nutrient digestibility, the specific characteristics of the intestinal microbiota and gene regulation in pigs capable of digesting high-fiber diets remained unclear. To investigate the traits associated with roughage tolerance in the Chinese indigenous pig breed, we conducted comparative analysis of growth performance, apparent fiber digestibility, intestinal microbiota, SCFA concentrations and intestinal transcriptome in Tunchang pigs, feeding them diets with different wheat bran levels. The results indicated that the growth performance of Tunchang pigs was not significantly impacted, and the apparent total tract digestibility of crude fiber was significantly improved with increasing dietary fiber content. High-fiber diets altered the diversity of intestinal microbiota, and increased the relative abundance of Prevotella, CF231, as well as the concentrations of isobutyrate, valerate and isovalerate. The LDA analysis identified potential microbial biomarkers that could be associated with roughage tolerance, such as Prevotella stercorea, and Eubacterium biforme. In addition, appropriate high-fiber diets containing 4.34% crude fiber upregulated the mRNA expressions of PYY, AQP8, and SLC5A8, while downregulating the mRNA expressions of CKM and CNN1.This indicated that appropriate high-fiber diets may inhibit intestine motility and increase the absorption of water and SCFAs.
Collapse
Affiliation(s)
- Yunchao Zhang
- Hainan Institute, Zhejiang University, Sanya 572000, China; (Y.Z.); (J.H.); (C.P.); (Y.X.); (G.H.); (P.Z.)
- College of Animal Sciences, Zhejiang University, Hangzhou 310000, China
| | - Hui Li
- Long Jian Animal Husbandry Company, Haikou 570100, China; (H.L.); (B.L.)
| | - Bengao Li
- Long Jian Animal Husbandry Company, Haikou 570100, China; (H.L.); (B.L.)
| | - Jiayi He
- Hainan Institute, Zhejiang University, Sanya 572000, China; (Y.Z.); (J.H.); (C.P.); (Y.X.); (G.H.); (P.Z.)
- College of Animal Sciences, Zhejiang University, Hangzhou 310000, China
| | - Chen Peng
- Hainan Institute, Zhejiang University, Sanya 572000, China; (Y.Z.); (J.H.); (C.P.); (Y.X.); (G.H.); (P.Z.)
- College of Animal Sciences, Zhejiang University, Hangzhou 310000, China
| | - Yanshe Xie
- Hainan Institute, Zhejiang University, Sanya 572000, China; (Y.Z.); (J.H.); (C.P.); (Y.X.); (G.H.); (P.Z.)
- College of Animal Sciences, Zhejiang University, Hangzhou 310000, China
| | - Guiqing Huang
- Hainan Institute, Zhejiang University, Sanya 572000, China; (Y.Z.); (J.H.); (C.P.); (Y.X.); (G.H.); (P.Z.)
- College of Animal Sciences, Zhejiang University, Hangzhou 310000, China
| | - Pengju Zhao
- Hainan Institute, Zhejiang University, Sanya 572000, China; (Y.Z.); (J.H.); (C.P.); (Y.X.); (G.H.); (P.Z.)
| | - Zhengguang Wang
- Hainan Institute, Zhejiang University, Sanya 572000, China; (Y.Z.); (J.H.); (C.P.); (Y.X.); (G.H.); (P.Z.)
- College of Animal Sciences, Zhejiang University, Hangzhou 310000, China
| |
Collapse
|
12
|
Wu J, Yu F, Di Z, Bian L, Yang J, Wang L, Jiang Q, Yin Y, Zhang L. Transcriptome analysis of adipose tissue and muscle of Laiwu and Duroc pigs. ANIMAL NUTRITION (ZHONGGUO XU MU SHOU YI XUE HUI) 2024; 17:134-143. [PMID: 38766520 PMCID: PMC11101945 DOI: 10.1016/j.aninu.2023.12.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/10/2023] [Revised: 12/10/2023] [Accepted: 12/15/2023] [Indexed: 05/22/2024]
Abstract
Fat content is an important trait in pig production. Adipose tissue and muscle are important sites for fat deposition and affect production efficiency and quality. To regulate the fat content in these tissues, we need to understand the mechanisms behind fat deposition. Laiwu pigs, a Chinese indigenous breed, have significantly higher fat content in both adipose tissue and muscle than commercial breeds such as Duroc. In this study, we analyzed the transcriptomes in adipose tissue and muscle of 21-d-old Laiwu and Duroc piglets. Results showed that there were 828 and 671 differentially expressed genes (DEG) in subcutaneous adipose tissue (SAT) and visceral adipose tissue (VAT), respectively. Functional enrichment analysis showed that these DEG were enriched in metabolic pathways, especially carbohydrate and lipid metabolism. Additionally, in the longissimus muscle (LM) and psoas muscle (PM), 312 and 335 DEG were identified, demonstrating enrichment in the cell cycle and metabolic pathways. The protein-protein interaction (PPI) networks of these DEG were analyzed and potential hub genes were identified, such as FBP1 and SCD in adipose tissues and RRM2 and GADL1 in muscles. Meanwhile, results showed that there were common DEG between adipose tissue and muscle, such as LDHB, THRSP, and DGAT2. These findings showed that there are significant differences in the transcriptomes of the adipose tissue and muscle between Laiwu and Duroc piglets (P < 0.05), especially in metabolic patterns. This insight serves to advance our comprehensive understanding of metabolic regulation in these tissues and provide targets for fat content regulation.
Collapse
Affiliation(s)
- Jie Wu
- National Engineering Research Center for Breeding Swine Industry, State Key Laboratory of Swine and Poultry Breeding Industry, Guangdong Laboratory of Lingnan Modern Agriculture, Guangdong Provincial Key Laboratory of Animal Nutrition Control, College of Animal Science, South China Agricultural University, Guangzhou, Guangdong 510642, China
| | - Fangyuan Yu
- National Engineering Research Center for Breeding Swine Industry, State Key Laboratory of Swine and Poultry Breeding Industry, Guangdong Laboratory of Lingnan Modern Agriculture, Guangdong Provincial Key Laboratory of Animal Nutrition Control, College of Animal Science, South China Agricultural University, Guangzhou, Guangdong 510642, China
| | - Zhaoyang Di
- National Engineering Research Center for Breeding Swine Industry, State Key Laboratory of Swine and Poultry Breeding Industry, Guangdong Laboratory of Lingnan Modern Agriculture, Guangdong Provincial Key Laboratory of Animal Nutrition Control, College of Animal Science, South China Agricultural University, Guangzhou, Guangdong 510642, China
| | - Liwen Bian
- National Engineering Research Center for Breeding Swine Industry, State Key Laboratory of Swine and Poultry Breeding Industry, Guangdong Laboratory of Lingnan Modern Agriculture, Guangdong Provincial Key Laboratory of Animal Nutrition Control, College of Animal Science, South China Agricultural University, Guangzhou, Guangdong 510642, China
| | - Jie Yang
- National Engineering Research Center for Breeding Swine Industry, State Key Laboratory of Swine and Poultry Breeding Industry, Guangdong Laboratory of Lingnan Modern Agriculture, Guangdong Provincial Key Laboratory of Animal Nutrition Control, College of Animal Science, South China Agricultural University, Guangzhou, Guangdong 510642, China
| | - Lina Wang
- National Engineering Research Center for Breeding Swine Industry, State Key Laboratory of Swine and Poultry Breeding Industry, Guangdong Laboratory of Lingnan Modern Agriculture, Guangdong Provincial Key Laboratory of Animal Nutrition Control, College of Animal Science, South China Agricultural University, Guangzhou, Guangdong 510642, China
| | - Qingyan Jiang
- National Engineering Research Center for Breeding Swine Industry, State Key Laboratory of Swine and Poultry Breeding Industry, Guangdong Laboratory of Lingnan Modern Agriculture, Guangdong Provincial Key Laboratory of Animal Nutrition Control, College of Animal Science, South China Agricultural University, Guangzhou, Guangdong 510642, China
| | - Yulong Yin
- Key Laboratory of Agro-Ecological Processes in Subtropical Region, Laboratory of Animal Nutritional Physiology and Metabolic Process, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha, Hunan 410125, China
| | - Lin Zhang
- National Engineering Research Center for Breeding Swine Industry, State Key Laboratory of Swine and Poultry Breeding Industry, Guangdong Laboratory of Lingnan Modern Agriculture, Guangdong Provincial Key Laboratory of Animal Nutrition Control, College of Animal Science, South China Agricultural University, Guangzhou, Guangdong 510642, China
| |
Collapse
|
13
|
Rischke S, Gurke R, Bennett A, Behrens F, Geisslinger G, Hahnefeld L. ALISTER - Application for lipid stability evaluation and research. Clin Chim Acta 2024; 557:117858. [PMID: 38492658 DOI: 10.1016/j.cca.2024.117858] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2023] [Revised: 01/30/2024] [Accepted: 03/03/2024] [Indexed: 03/18/2024]
Abstract
BACKGROUND AND AIMS In lipidomic and metabolomic studies, pre-analytical pitfalls enhance the risk of misusing resources such as time and money, as samples that are analyzed may not yield accurate or reliable data due to poor sample handling. Guidance and pre-analytic know-how are necessary for translation of omics technologies into routine clinical testing. The present work aims to enable decision making regarding sample stability in every phase of lipidomics- and metabolomics-centered studies. MATERIALS AND METHODS Data of multiple pre-analytic studies were aggregated into a database. Flexible approaches for evaluating these data were implemented in an RShiny-based web-application, tailored towards broad applicability in clinical and bioanalytic research. RESULTS Our "Application for lipid stability evaluation & research" - ALISTER facilitates decision making on blood sample stability during lipidomic and metabolomic studies, such as biomarker research, analysis of biobank samples and clinical testing. The interactive tool gives sampling recommendations when planning sample collection or aids in the assessment of sample quality of experiments retrospectively. CONCLUSION ALISTER is available for use under https://itmp.shinyapps.io/alister/. The application enables and simplifies data-driven decision making concerning pre-analytic blood sample handling and fits the needs of clinical investigations from multiple perspectives.
Collapse
Affiliation(s)
- Samuel Rischke
- Goethe University Frankfurt, Institute of Clinical Pharmacology, Faculty of Medicine, Theodor Stern-Kai 7, 60590 Frankfurt am Main, Germany
| | - Robert Gurke
- Goethe University Frankfurt, Institute of Clinical Pharmacology, Faculty of Medicine, Theodor Stern-Kai 7, 60590 Frankfurt am Main, Germany; Fraunhofer Institute for Translational Medicine and Pharmacology (ITMP), and Fraunhofer Cluster of Excellence for Immune Mediated Diseases (CIMD), Theodor-Stern-Kai 7, 60596 Frankfurt am Main, Germany
| | - Alexandre Bennett
- Fraunhofer Institute for Translational Medicine and Pharmacology (ITMP), and Fraunhofer Cluster of Excellence for Immune Mediated Diseases (CIMD), Theodor-Stern-Kai 7, 60596 Frankfurt am Main, Germany
| | - Frank Behrens
- Goethe University Frankfurt, Institute of Clinical Pharmacology, Faculty of Medicine, Theodor Stern-Kai 7, 60590 Frankfurt am Main, Germany; Fraunhofer Institute for Translational Medicine and Pharmacology (ITMP), and Fraunhofer Cluster of Excellence for Immune Mediated Diseases (CIMD), Theodor-Stern-Kai 7, 60596 Frankfurt am Main, Germany; Goethe University Frankfurt, University Hospital, Department of Rheumatology, Theodor-Stern-Kai 7, 60590 Frankfurt am Main, Germany
| | - Gerd Geisslinger
- Goethe University Frankfurt, Institute of Clinical Pharmacology, Faculty of Medicine, Theodor Stern-Kai 7, 60590 Frankfurt am Main, Germany; Fraunhofer Institute for Translational Medicine and Pharmacology (ITMP), and Fraunhofer Cluster of Excellence for Immune Mediated Diseases (CIMD), Theodor-Stern-Kai 7, 60596 Frankfurt am Main, Germany
| | - Lisa Hahnefeld
- Goethe University Frankfurt, Institute of Clinical Pharmacology, Faculty of Medicine, Theodor Stern-Kai 7, 60590 Frankfurt am Main, Germany; Fraunhofer Institute for Translational Medicine and Pharmacology (ITMP), and Fraunhofer Cluster of Excellence for Immune Mediated Diseases (CIMD), Theodor-Stern-Kai 7, 60596 Frankfurt am Main, Germany.
| |
Collapse
|
14
|
Li Y, Shi P, Yao K, Lin Q, Wang M, Hou Z, Tang W, Diao H. Diarrhea induced by insufficient fat absorption in weaned piglets: Causes and nutrition regulation. ANIMAL NUTRITION (ZHONGGUO XU MU SHOU YI XUE HUI) 2024; 16:299-305. [PMID: 38371473 PMCID: PMC10869582 DOI: 10.1016/j.aninu.2023.12.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/27/2023] [Revised: 11/07/2023] [Accepted: 12/09/2023] [Indexed: 02/20/2024]
Abstract
Fat is one of the three macronutrients and a significant energy source for piglets. It plays a positive role in maintaining intestinal health and improving production performance. During the weaning period, physiological, stress and diet-related factors influence the absorption of fat in piglets, leading to damage to the intestinal barrier, diarrhea and even death. Signaling pathways, such as fatty acid translocase (CD36), pregnane X receptor (PXR), and AMP-dependent protein kinase (AMPK), are responsible for regulating intestinal fat uptake and maintaining intestinal barrier function. Therefore, this review mainly elaborates on the reasons for diarrhea induced by insufficient fat absorption and related signaling pathways in weaned-piglets, with an emphasis on the intestinal fat absorption disorder. Moreover, we focus on introducing nutritional strategies that can promote intestinal fat absorption in piglets with insufficient fat absorption-related diarrhea, such as lipase, amino acids, and probiotics.
Collapse
Affiliation(s)
- Yuying Li
- Institute of Bast Fiber Crops, Chinese Academy of Agricultural Sciences, Changsha 410205, China
| | - Pengjun Shi
- Institute of Bast Fiber Crops, Chinese Academy of Agricultural Sciences, Changsha 410205, China
| | - Kang Yao
- Institute of Subtropical Agriculture, Chinese Academy of Sciences, Hunan Province Key Laboratory of Animal Nutritional Physiology and Metabolic Process, Changsha 410125, China
| | - Qian Lin
- Institute of Bast Fiber Crops, Chinese Academy of Agricultural Sciences, Changsha 410205, China
| | - Mansheng Wang
- Institute of Bast Fiber Crops, Chinese Academy of Agricultural Sciences, Changsha 410205, China
| | - Zhenping Hou
- Institute of Bast Fiber Crops, Chinese Academy of Agricultural Sciences, Changsha 410205, China
| | - Wenjie Tang
- Animal Breeding and Genetics Key Laboratory of Sichuan Province, Livestock and Poultry Biological Products Key Laboratory of Sichuan Province, Sichuan Animal Science Academy, Sichuan Animtech Feed Co. Ltd, Chengdu 610066, China
| | - Hui Diao
- Animal Breeding and Genetics Key Laboratory of Sichuan Province, Livestock and Poultry Biological Products Key Laboratory of Sichuan Province, Sichuan Animal Science Academy, Sichuan Animtech Feed Co. Ltd, Chengdu 610066, China
| |
Collapse
|
15
|
Sun J, Xie F, Wang J, Luo J, Chen T, Jiang Q, Xi Q, Liu GE, Zhang Y. Integrated meta-omics reveals the regulatory landscape involved in lipid metabolism between pig breeds. MICROBIOME 2024; 12:33. [PMID: 38374121 PMCID: PMC10877772 DOI: 10.1186/s40168-023-01743-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/17/2023] [Accepted: 12/19/2023] [Indexed: 02/21/2024]
Abstract
BACKGROUND Domesticated pigs serve as an ideal animal model for biomedical research and also provide the majority of meat for human consumption in China. Porcine intramuscular fat content associates with human health and diseases and is essential in pork quality. The molecular mechanisms controlling lipid metabolism and intramuscular fat accretion across tissues in pigs, and how these changes in response to pig breeds, remain largely unknown. RESULTS We surveyed the tissue-resident cell types of the porcine jejunum, colon, liver, and longissimus dorsi muscle between Lantang and Landrace breeds by single-cell RNA sequencing. Combining lipidomics and metagenomics approaches, we also characterized gene signatures and determined key discriminating markers of lipid digestibility, absorption, conversion, and deposition across tissues in two pig breeds. In Landrace, lean-meat swine mainly exhibited breed-specific advantages in lipid absorption and oxidation for energy supply in small and large intestinal epitheliums, nascent high-density lipoprotein synthesis for reverse cholesterol transport in enterocytes and hepatocytes, bile acid formation, and secretion for fat emulsification in hepatocytes, as well as intestinal-microbiota gene expression involved in lipid accumulation product. In Lantang, obese-meat swine showed a higher synthesis capacity of chylomicrons responsible for high serum triacylglycerol levels in small intestinal epitheliums, the predominant characteristics of lipid absorption in muscle tissue, and greater intramuscular adipcytogenesis potentials from muscular fibro-adipogenic progenitor subpopulation. CONCLUSIONS The findings enhanced our understanding of the cellular biology of lipid metabolism and opened new avenues to improve animal production and human diseases. Video Abstract.
Collapse
Affiliation(s)
- Jiajie Sun
- Guangdong Provincial Key Laboratory of Animal Nutrition Control, National Engineering Research Center for Breeding Swine Industry, College of Animal Science, South China Agricultural University, Guangzhou, Guangdong, 510642, China
| | - Fang Xie
- Guangdong Provincial Key Laboratory of Animal Nutrition Control, National Engineering Research Center for Breeding Swine Industry, College of Animal Science, South China Agricultural University, Guangzhou, Guangdong, 510642, China
| | - Jing Wang
- Institute of Animal Husbandry and Veterinary Medicine, Henan Academy of Agricultural Sciences, Zhengzhou, 450002, China
| | - Junyi Luo
- Guangdong Provincial Key Laboratory of Animal Nutrition Control, National Engineering Research Center for Breeding Swine Industry, College of Animal Science, South China Agricultural University, Guangzhou, Guangdong, 510642, China
| | - Ting Chen
- Guangdong Provincial Key Laboratory of Animal Nutrition Control, National Engineering Research Center for Breeding Swine Industry, College of Animal Science, South China Agricultural University, Guangzhou, Guangdong, 510642, China
| | - Qingyan Jiang
- Guangdong Provincial Key Laboratory of Animal Nutrition Control, National Engineering Research Center for Breeding Swine Industry, College of Animal Science, South China Agricultural University, Guangzhou, Guangdong, 510642, China
| | - Qianyun Xi
- Guangdong Provincial Key Laboratory of Animal Nutrition Control, National Engineering Research Center for Breeding Swine Industry, College of Animal Science, South China Agricultural University, Guangzhou, Guangdong, 510642, China.
| | - George E Liu
- Animal Genomics and Improvement Laboratory, USDA-ARS, BARC-East, Beltsville, MD, 20705, USA.
| | - Yongliang Zhang
- Guangdong Provincial Key Laboratory of Animal Nutrition Control, National Engineering Research Center for Breeding Swine Industry, College of Animal Science, South China Agricultural University, Guangzhou, Guangdong, 510642, China.
| |
Collapse
|
16
|
Ma L, Tao S, Song T, Lyu W, Li Y, Wang W, Shen Q, Ni Y, Zhu J, Zhao J, Yang H, Xiao Y. Clostridium butyricum and carbohydrate active enzymes contribute to the reduced fat deposition in pigs. IMETA 2024; 3:e160. [PMID: 38868506 PMCID: PMC10989082 DOI: 10.1002/imt2.160] [Citation(s) in RCA: 23] [Impact Index Per Article: 23.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/14/2023] [Accepted: 10/06/2023] [Indexed: 06/14/2024]
Abstract
Pig gastrointestinal tracts harbor a heterogeneous and dynamic ecosystem populated with trillions of microbes, enhancing the ability of the host to harvest energy from dietary carbohydrates and contributing to host adipogenesis and fatness. However, the microbial community structure and related mechanisms responsible for the differences between the fatty phenotypes and the lean phenotypes of the pigs remained to be comprehensively elucidated. Herein, we first found significant differences in microbial composition and potential functional capacity among different gut locations in Jinhua pigs with distinct fatness phenotypes. Second, we identified that Jinhua pigs with lower fatness exhibited higher levels of short-chain fatty acids in the colon, highlighting their enhanced carbohydrate fermentation capacity. Third, we explored the differences in expressed carbohydrate-active enzyme (CAZyme) in pigs, indicating their involvement in modulating fat storage. Notably, Clostridium butyricum might be a representative bacterial species from Jinhua pigs with lower fatness, and a significantly higher percentage of its genome was dedicated to CAZyme glycoside hydrolase family 13 (GH13). Finally, a subsequent mouse intervention study substantiated the beneficial effects of C. butyricum isolated from experimental pigs, suggesting that it may possess characteristics that promote the utilization of carbohydrates and hinder fat accumulation. Remarkably, when Jinhua pigs were administered C. butyricum, similar alterations in the gut microbiome and host fatness traits were observed, further supporting the potential role of C. butyricum in modulating fatness. Taken together, our findings reveal previously overlooked links between C. butyricum and CAZyme function, providing insight into the basic mechanisms that connect gut microbiome functions to host fatness.
Collapse
Affiliation(s)
- Lingyan Ma
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro‐Products, Institute of Agro‐product Safety and NutritionZhejiang Academy of Agricultural SciencesHangzhouChina
| | - Shiyu Tao
- Department of Animal Nutrition and Feed Science, College of Animal Sciences and TechnologyHuazhong Agricultural UniversityWuhanChina
| | - Tongxing Song
- Department of Animal Nutrition and Feed Science, College of Animal Sciences and TechnologyHuazhong Agricultural UniversityWuhanChina
| | - Wentao Lyu
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro‐Products, Institute of Agro‐product Safety and NutritionZhejiang Academy of Agricultural SciencesHangzhouChina
| | - Ying Li
- Guangdong Provincial Key Laboratory of Animal Molecular Design and Precise Breeding, College of Life Science and EngineeringFoshan UniversityFoshanChina
| | - Wen Wang
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro‐Products, Institute of Agro‐product Safety and NutritionZhejiang Academy of Agricultural SciencesHangzhouChina
| | - Qicheng Shen
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro‐Products, Institute of Agro‐product Safety and NutritionZhejiang Academy of Agricultural SciencesHangzhouChina
| | - Yan Ni
- The Children's Hospital, Zhejiang University School of MedicineNational Clinical Research Center for Child HealthHangzhouChina
| | - Jiang Zhu
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro‐Products, Institute of Agro‐product Safety and NutritionZhejiang Academy of Agricultural SciencesHangzhouChina
| | - Jiangchao Zhao
- Department of Animal Science, Division of AgricultureUniversity of ArkansasFayettevilleArkansasUSA
| | - Hua Yang
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro‐Products, Institute of Agro‐product Safety and NutritionZhejiang Academy of Agricultural SciencesHangzhouChina
| | - Yingping Xiao
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro‐Products, Institute of Agro‐product Safety and NutritionZhejiang Academy of Agricultural SciencesHangzhouChina
| |
Collapse
|
17
|
Zhang Z, Chen W, Chan H, Peng J, Zhu P, Li J, Jiang X, Zhang Z, Wang Y, Tan Z, Peng Y, Zhang S, Lin K, Yung KKL. Polystyrene microplastics induce size-dependent multi-organ damage in mice: Insights into gut microbiota and fecal metabolites. JOURNAL OF HAZARDOUS MATERIALS 2024; 461:132503. [PMID: 37717443 DOI: 10.1016/j.jhazmat.2023.132503] [Citation(s) in RCA: 20] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/01/2023] [Revised: 09/04/2023] [Accepted: 09/05/2023] [Indexed: 09/19/2023]
Abstract
Particle size is one of the most important factors in determining the biological toxicity of microplastics (MPs). In this study, we attempted to examine the systemic toxicity of polystyrene MPs of different sizes (0.5 µm MP1 and 5 µm MP2) in C57BL/6 J mice. After the mice were given oral gavage of MPs for 8 consecutive weeks, histopathology and molecular biology assays, 16 S rRNA sequencing of the gut microbiota, and untargeted metabolomics were performed. The results showed that MPs were distributed in the organs in a size-dependent manner, with smaller particles demonstrating greater biodistribution. Further analysis indicated that exposure to MPs caused multi-organ damage through distinct toxicity pathways. Specifically, exposure to 0.5 µm MP1 led to excessive accumulation and induced more serious inflammation and mechanical damage in the spleen, kidney, heart, lung, and liver. However, 5 µm MP2 led to more severe intestinal barrier dysfunction, as well as gut dysbiosis and metabolic disorder in association with neuroinflammation. These results are helpful in expanding our knowledge of the toxicity of MPs of different sizes in mammalian models.
Collapse
Affiliation(s)
- Zhu Zhang
- Golden Meditech Centre for NeuroRegeneration Sciences, Hong Kong Baptist University, Hong Kong Special Administrative Region; Department of Biology, Hong Kong Baptist University, Kowloon Tong, Kowloon, Hong Kong Special Administrative Region
| | - Wenqing Chen
- Department of Biology, Hong Kong Baptist University, Kowloon Tong, Kowloon, Hong Kong Special Administrative Region
| | - Hiutung Chan
- Department of Biology, Hong Kong Baptist University, Kowloon Tong, Kowloon, Hong Kong Special Administrative Region
| | - Junjie Peng
- Department of Biology, Hong Kong Baptist University, Kowloon Tong, Kowloon, Hong Kong Special Administrative Region
| | - Peili Zhu
- Golden Meditech Centre for NeuroRegeneration Sciences, Hong Kong Baptist University, Hong Kong Special Administrative Region; Department of Biology, Hong Kong Baptist University, Kowloon Tong, Kowloon, Hong Kong Special Administrative Region
| | - Junkui Li
- Golden Meditech Centre for NeuroRegeneration Sciences, Hong Kong Baptist University, Hong Kong Special Administrative Region; Department of Biology, Hong Kong Baptist University, Kowloon Tong, Kowloon, Hong Kong Special Administrative Region
| | - Xiaoli Jiang
- Department of Biology, Hong Kong Baptist University, Kowloon Tong, Kowloon, Hong Kong Special Administrative Region
| | - Zhang Zhang
- School of Public Health, Guangzhou Medical University, Guangzhou, China
| | - Ying Wang
- Key Laboratory of Cellular Physiology, Department of Physiology, Shanxi Medical University, Taiyuan, China
| | - Zicong Tan
- Department of Chemistry, City University of Hong Kong, Kowloon Tong, Kowloon, Hong Kong Special Administrative Region
| | - Yungkang Peng
- Department of Chemistry, City University of Hong Kong, Kowloon Tong, Kowloon, Hong Kong Special Administrative Region
| | - Shiqing Zhang
- JNU-HKUST Joint Laboratory for Neuroscience and Innovative Drug Research, College of Pharmacy, Jinan University, Guangzhou, China.
| | - Kaili Lin
- School of Public Health, Guangzhou Medical University, Guangzhou, China.
| | - Ken Kin-Lam Yung
- Golden Meditech Centre for NeuroRegeneration Sciences, Hong Kong Baptist University, Hong Kong Special Administrative Region; Department of Biology, Hong Kong Baptist University, Kowloon Tong, Kowloon, Hong Kong Special Administrative Region.
| |
Collapse
|
18
|
Lu S, Zou W, Chen X, Sun G, Cidan Y, Almutairi MH, Dunzhu L, Nazar M, Mehmood K, Zhu Y, Basang W, Li K. Effects of Cryptosporidium parvum infection on intestinal fungal microbiota in yaks (Bos grunniens). Microb Pathog 2023; 183:106322. [PMID: 37633503 DOI: 10.1016/j.micpath.2023.106322] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2023] [Revised: 08/22/2023] [Accepted: 08/23/2023] [Indexed: 08/28/2023]
Abstract
During the last decade, researchers had started to focus on the relationship between intestinal parasitic infection and variation of intestinal microflora. Cryptosporidium is a widely known opportunistic and zoonotic pathogen. Several studies have shown that Cryptosporidium infection has impact to alter the gut microflora. However, there are only few studies referring to the fungal microflora changes in response to Cryptosporidium infection in highland ruminants. Therefore, the present study was performed for exploring the alternations of intestinal fungal microbiota in yaks after exposure to Cryptosporidium infection. In present study, Amplicon sequencing of ITS regions was used to study the variations of fungal microflora in yaks. After filtering the raw data, over 45 000 and 62 000 clean data were obtained in uninfected and infected yaks, respectively. By using alpha diversity analysis, it was found that there is no significant difference in the richness and evenness when positive samples were compared with negative ones, whereas intestinal fungal communities in different taxa in yaks were changed. The results of present study depicted that 2-phyla and 21-genera in the infected animals had significantly (P < 0.05) changed. These genera were Septoria, Coniothyrium, Cleistothelebolus, Bensingtonia, Cystobasidium, Filobasidium, Coprotus, Carex, Blumeria, Coprinellus, Leucosporidium, Phialophora, Isolepis, Ascobolus, Thecaphora, Mortierella, Urocystis, Symmetrospora and Lasiobolus. In addition, we found variations in 28 enzymes suggesting that the function of microbiota was also affected. It is concluded that there are drastic changes in the fungal microflora and microbiota functions after exposure to Cryptosporidium infection in yak. Our results help to focus on the prompt way for the development of new therapies to control Cryptosporidiosis.
Collapse
Affiliation(s)
- Sijia Lu
- Institute of Traditional Chinese Veterinary Medicine & MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, 210095, PR China
| | - Wen Zou
- Institute of Traditional Chinese Veterinary Medicine & MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, 210095, PR China
| | - Xiushuang Chen
- Institute of Traditional Chinese Veterinary Medicine & MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, 210095, PR China
| | - Guangming Sun
- Institute of Animal Husbandry and Veterinary Medicine, Tibet Academy of Agriculture and Animal Husbandry Science, Lhasa, 850009, China
| | - Yangji Cidan
- Institute of Animal Husbandry and Veterinary Medicine, Tibet Academy of Agriculture and Animal Husbandry Science, Lhasa, 850009, China
| | - Mikhlid H Almutairi
- Zoology Department, College of Science, King Saud University, P.O. Box: 2455, 11451, Riyadh, Saudi Arabia
| | - Luosang Dunzhu
- Institute of Animal Husbandry and Veterinary Medicine, Tibet Academy of Agriculture and Animal Husbandry Science, Lhasa, 850009, China
| | - Mudassar Nazar
- University of Agriculture Faisalabad, Sub-Campus, Burewala, 61010, Pakistan
| | - Khalid Mehmood
- Faculty of Veterinary and Animal Sciences, The Islamia University of Bahawalpur, 63100, Pakistan
| | - Yanbin Zhu
- Institute of Animal Husbandry and Veterinary Medicine, Tibet Academy of Agriculture and Animal Husbandry Science, Lhasa, 850009, China.
| | - Wangdui Basang
- Institute of Animal Husbandry and Veterinary Medicine, Tibet Academy of Agriculture and Animal Husbandry Science, Lhasa, 850009, China.
| | - Kun Li
- Institute of Traditional Chinese Veterinary Medicine & MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, 210095, PR China.
| |
Collapse
|
19
|
Lipo-nutritional quality of pork: the lipid composition, regulation, and molecular mechanisms of fatty acid deposition. ANIMAL NUTRITION 2023; 13:373-385. [DOI: 10.1016/j.aninu.2023.03.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/05/2022] [Revised: 12/13/2022] [Accepted: 03/01/2023] [Indexed: 03/09/2023]
|
20
|
Li A, Wang Y, Kulyar MFEA, Iqbal M, Lai R, Zhu H, Li K. Environmental microplastics exposure decreases antioxidant ability, perturbs gut microbial homeostasis and metabolism in chicken. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 856:159089. [PMID: 36174690 DOI: 10.1016/j.scitotenv.2022.159089] [Citation(s) in RCA: 37] [Impact Index Per Article: 18.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/01/2022] [Revised: 09/21/2022] [Accepted: 09/24/2022] [Indexed: 06/16/2023]
Abstract
The widespread presence and accumulation of microplastics (MPs) in organisms has led to their recognition as a major global ecological issue. There is a lot of data on how MPs affect the physiology and behavior of aquatic species, but the effects of MPs on poultry are less understood. Therefore, we aimed to explore the adverse effects and mechanisms of MPs exposure to chicken health. Results indicated that MPs exposure decreased growth performance and antioxidant ability and impaired chickens' intestine, liver, kidney, and spleen. Additionally, the gut microbiota in chickens exposed to MPs showed a significant decrease in alpha diversity, accompanied by significant alternations in taxonomic compositions. Microbial taxonomic investigation indicated that exposure to MPs resulted in a significant increase in the relative proportions of 11 genera and a distinct decline in the relative percentages of 3 phyla and 52 genera. Among decreased bacterial taxa, 11 genera even couldn't be detected in the gut microbiota of chickens exposed to MPs. Metabolomics analysis indicated that 2561 (1190 up-regulated, 1371 down-regulated) differential metabolites were identified, mainly involved in 5 metabolic pathways, including D-amino acid metabolism, ABC transporters, vitamin digestion and absorption, mineral absorption, and histidine metabolism. Taken together, this study indicated that MPs exposure resulted in adverse health outcomes for chickens by disturbing gut microbial homeostasis and intestinal metabolism. This study also provided motivation for environmental agencies worldwide to regulate the application and disposal of plastic products and decrease environmental contamination.
Collapse
Affiliation(s)
- Aoyun Li
- Institute of Traditional Chinese Veterinary Medicine, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, PR China; MOE Joint International Research Laboratory of Animal Health and Food Safety, Nanjing Agricultural University, Nanjing 210095, PR China; College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, PR China
| | - Yingli Wang
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, PR China
| | | | - Mudassar Iqbal
- Faculty of Veterinary and Animal Sciences, The Islamia University of Bahawalpur, Bahawalpur 63100, Pakistan
| | - Renhao Lai
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, PR China
| | - Huaisen Zhu
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, PR China
| | - Kun Li
- Institute of Traditional Chinese Veterinary Medicine, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, PR China; MOE Joint International Research Laboratory of Animal Health and Food Safety, Nanjing Agricultural University, Nanjing 210095, PR China.
| |
Collapse
|
21
|
Wang L, Zhang S, Huang Y, You W, Zhou Y, Chen W, Sun Y, Yi W, Sun H, Xie J, Zhu X, Zheng Q, Shan T. CLA improves the lipo-nutritional quality of pork and regulates the gut microbiota in Heigai pigs. Food Funct 2022; 13:12093-12104. [DOI: 10.1039/d2fo02549c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
CLA improves the lipo-nutritional quality in muscle and these changes are associated with the production and functions of differential bacteria and SCFAs in the gut of Heigai pigs.
Collapse
Affiliation(s)
- Liyi Wang
- College of Animal Sciences, Zhejiang University, Hangzhou, China
- Key Laboratory of Molecular Animal Nutrition (Zhejiang University), Ministry of Education, China
- Key Laboratory of Animal Feed and Nutrition of Zhejiang Province, Hangzhou, China
| | - Shu Zhang
- College of Animal Sciences, Zhejiang University, Hangzhou, China
- Key Laboratory of Molecular Animal Nutrition (Zhejiang University), Ministry of Education, China
- Key Laboratory of Animal Feed and Nutrition of Zhejiang Province, Hangzhou, China
| | - Yuqin Huang
- College of Animal Sciences, Zhejiang University, Hangzhou, China
- Key Laboratory of Molecular Animal Nutrition (Zhejiang University), Ministry of Education, China
- Key Laboratory of Animal Feed and Nutrition of Zhejiang Province, Hangzhou, China
| | - Wenjing You
- College of Animal Sciences, Zhejiang University, Hangzhou, China
- Key Laboratory of Molecular Animal Nutrition (Zhejiang University), Ministry of Education, China
- Key Laboratory of Animal Feed and Nutrition of Zhejiang Province, Hangzhou, China
| | - Yanbing Zhou
- College of Animal Sciences, Zhejiang University, Hangzhou, China
- Key Laboratory of Molecular Animal Nutrition (Zhejiang University), Ministry of Education, China
- Key Laboratory of Animal Feed and Nutrition of Zhejiang Province, Hangzhou, China
| | - Wentao Chen
- College of Animal Sciences, Zhejiang University, Hangzhou, China
- Key Laboratory of Molecular Animal Nutrition (Zhejiang University), Ministry of Education, China
- Key Laboratory of Animal Feed and Nutrition of Zhejiang Province, Hangzhou, China
| | - Ye Sun
- College of Animal Sciences, Zhejiang University, Hangzhou, China
- Key Laboratory of Molecular Animal Nutrition (Zhejiang University), Ministry of Education, China
- Key Laboratory of Animal Feed and Nutrition of Zhejiang Province, Hangzhou, China
| | - Wuzhou Yi
- College of Animal Sciences, Zhejiang University, Hangzhou, China
- Key Laboratory of Molecular Animal Nutrition (Zhejiang University), Ministry of Education, China
- Key Laboratory of Animal Feed and Nutrition of Zhejiang Province, Hangzhou, China
| | - Houwei Sun
- Shandong Chunteng Food Co. Ltd., Zaozhuang 277500, China
| | - Jintang Xie
- Shandong Chunteng Food Co. Ltd., Zaozhuang 277500, China
| | - Xiaodong Zhu
- Shandong Chunteng Food Co. Ltd., Zaozhuang 277500, China
| | | | - Tizhong Shan
- College of Animal Sciences, Zhejiang University, Hangzhou, China
- Key Laboratory of Molecular Animal Nutrition (Zhejiang University), Ministry of Education, China
- Key Laboratory of Animal Feed and Nutrition of Zhejiang Province, Hangzhou, China
| |
Collapse
|