1
|
Bouba I, A. Videla Rodriguez E, Smith VA, van den Brand H, Rodenburg TB, Visser B. A two-step Bayesian network approach to identify key SNPs associated to multiple phenotypic traits in four purebred laying hen lines. PLoS One 2024; 19:e0297533. [PMID: 38547081 PMCID: PMC10977676 DOI: 10.1371/journal.pone.0297533] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2023] [Accepted: 01/08/2024] [Indexed: 04/02/2024] Open
Abstract
When purebred laying hen chicks hatch, they remain at a rearing farm until approximately 17 weeks of age, after which they are transferred to a laying farm. Chicks or pullets are removed from the flocks during these 17 weeks if they display any rearing abnormality. The aim of this study was to investigate associations between single nucleotide polymorphisms (SNPs) and rearing success of 4 purebred White Leghorns layer lines by implementing a Bayesian network approach. Phenotypic traits and SNPs of four purebred genetic White Leghorn layer lines were available for 23,000 rearing batches obtained between 2010 and 2020. Associations between incubation traits (clutch size, embryo mortality), rearing traits (genetic line, first week mortality, rearing abnormalities, natural death, rearing success, pullet flock age, and season) and SNPs were analyzed, using a two-step Bayesian Network (BN) approach. Furthermore, the SNPs were connected to their corresponding genes, which were further explored in bioinformatics databases. BN analysis revealed a total of 28 SNPs associated with some of the traits: ten SNPs were associated with clutch size, another 10 with rearing abnormalities, a single SNP with natural death, and seven SNPs with first week mortality. Exploration via bioinformatics databases showed that one of the SNPs (ENAH) had a protein predicted network composed of 11 other proteins. The major hub of this SNP was CDC42 protein, which has a role in egg production and reproduction. The results highlight the power of BNs in knowledge discovery and how their application in complex biological systems can help getting a deeper understanding of functionality underlying genetic variation of rearing success in laying hens. Improved welfare and production might result from the identified SNPs. Selecting for these SNPs through breeding could reduce stress and increase livability during rearing.
Collapse
Affiliation(s)
- Ismalia Bouba
- Hendrix Genetics Research Technology & Services B.v, Hendrix Genetics, Boxmeer, North Brabant, The Netherlands
- Animals in Science and Society, Faculty of Veterinary Medicine, Utrecht University, Utrecht, The Netherlands
| | | | - V. Anne Smith
- School of Biology, University of St Andrews, St Andrews, Scotland, United Kingdom
| | - Henry van den Brand
- Adaptation Physiology Group, Department of Animal Sciences, Wageningen University & Research, Wageningen, Gelderland, The Netherlands
| | - T. Bas Rodenburg
- Animals in Science and Society, Faculty of Veterinary Medicine, Utrecht University, Utrecht, The Netherlands
- Adaptation Physiology Group, Department of Animal Sciences, Wageningen University & Research, Wageningen, Gelderland, The Netherlands
| | - Bram Visser
- Hendrix Genetics Research Technology & Services B.v, Hendrix Genetics, Boxmeer, North Brabant, The Netherlands
| |
Collapse
|
2
|
De Caroli M, Rampino P, Curci LM, Pecatelli G, Carrozzo S, Piro G. CiXTH29 and CiLEA4 Role in Water Stress Tolerance in Cichorium intybus Varieties. BIOLOGY 2023; 12:444. [PMID: 36979136 PMCID: PMC10045840 DOI: 10.3390/biology12030444] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Revised: 03/07/2023] [Accepted: 03/10/2023] [Indexed: 03/17/2023]
Abstract
Drought causes massive crop quality and yield losses. Limiting the adverse effects of water deficits on crop yield is an urgent goal for a more sustainable agriculture. With this aim, six chicory varieties were subjected to drought conditions during seed germination and at the six week-old plant growth stage, in order to identify some morphological and/or molecular markers of drought resistance. Selvatica, Zuccherina di Trieste and Galatina varieties, with a high vegetative development, showed a major germination index, greater seedling development (6 days of growth) and a greater dehydration resistance (6 weeks of growth plus 10 days without water) than the other ones (Brindisina, Esportazione and Rossa Italiana). Due to the reported involvement, in the abiotic stress response, of xyloglucan endotransglucosylase/hydrolases (XTHs) and late embryogenesis abundant (LEA) multigene families, XTH29 and LEA4 expression profiles were investigated under stress conditions for all analyzed chicory varieties. We showed evidence that chicory varieties with high CiXTH29 and CiLEA4 basal expression and vegetative development levels better tolerate drought stress conditions than varieties that show overexpression of the two genes only in response to drought. Other specific morphological traits characterized almost all chicory varieties during dehydration, i.e., the appearance of lysigen cavities and a general increase of the amount of xyloglucans in the cell walls of bundle xylem vessels. Our results highlighted that high CiXTH29 and CiLEA4 basal expression, associated with a high level of vegetative growth, is a potential marker for drought stress tolerance.
Collapse
Affiliation(s)
- Monica De Caroli
- Department of Biological and Environmental Sciences and Technologies, University of Salento, 73100 Lecce, Italy
| | - Patrizia Rampino
- Department of Biological and Environmental Sciences and Technologies, University of Salento, 73100 Lecce, Italy
| | - Lorenzo M. Curci
- Department of Biological and Environmental Sciences and Technologies, University of Salento, 73100 Lecce, Italy
| | - Gabriele Pecatelli
- Department of Biological and Environmental Sciences and Technologies, University of Salento, 73100 Lecce, Italy
| | - Sara Carrozzo
- Department of Biological and Environmental Sciences and Technologies, University of Salento, 73100 Lecce, Italy
- NBCF National Biodiversity Future Center, 90133 Palermo, Italy
| | - Gabriella Piro
- Department of Biological and Environmental Sciences and Technologies, University of Salento, 73100 Lecce, Italy
- NBCF National Biodiversity Future Center, 90133 Palermo, Italy
| |
Collapse
|
3
|
De Paolis A, De Caroli M, Rojas M, Curci LM, Piro G, Di Sansebastiano GP. Evaluation of Dittrichia viscosa Aquaporin Nip1.1 Gene as Marker for Arsenic-Tolerant Plant Selection. PLANTS 2022; 11:plants11151968. [PMID: 35956446 PMCID: PMC9370626 DOI: 10.3390/plants11151968] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/19/2022] [Revised: 07/26/2022] [Accepted: 07/27/2022] [Indexed: 11/16/2022]
Abstract
Dittrichia viscosa (L.) Greuter is gaining attention for its high genetic plasticity and ability to adapt to adverse environmental conditions, including heavy metal and metalloid pollution. Uptake and translocation of cadmium, copper, iron, nickel, lead, and zinc to the shoots have been characterized, but its performance with arsenic is less known and sometimes contradictory. Tolerance to As is not related to a reduced uptake, but the null mutation of the aquaporin Nip1.1 gene in Arabidopsis makes the plant completely resistant to the metalloid. This aquaporin, localized in the endoplasmic reticulum, is responsible for arsenite and antimony (Sb) membrane permeation, but the uptake of arsenite occurs also in the null mutant, suggesting a more sophisticated action mechanism than direct uptake. In this study, the DvNip1 gene homologue is cloned and its expression profile in roots and shoots is characterized in different arsenic stress conditions. The use of clonal lines allowed to evidence that DvNip1.1 expression level is influenced by arsenic stress. The proportion of gene expression in roots and shoots can be used to generate an index that appears to be a promising putative selection marker to predict arsenic-resistant lines of Dittrichia viscosa plants.
Collapse
Affiliation(s)
- Angelo De Paolis
- Institute of Sciences of Food Production (ISPA-CNR), 73100 Lecce, Italy;
| | - Monica De Caroli
- DiSTeBA (Department of Biological and Environmental Sciences and Technologies), University of Salento, 73100 Lecce, Italy; (M.D.C.); (M.R.); (L.M.C.); (G.P.)
| | - Makarena Rojas
- DiSTeBA (Department of Biological and Environmental Sciences and Technologies), University of Salento, 73100 Lecce, Italy; (M.D.C.); (M.R.); (L.M.C.); (G.P.)
| | - Lorenzo Maria Curci
- DiSTeBA (Department of Biological and Environmental Sciences and Technologies), University of Salento, 73100 Lecce, Italy; (M.D.C.); (M.R.); (L.M.C.); (G.P.)
| | - Gabriella Piro
- DiSTeBA (Department of Biological and Environmental Sciences and Technologies), University of Salento, 73100 Lecce, Italy; (M.D.C.); (M.R.); (L.M.C.); (G.P.)
| | - Gian-Pietro Di Sansebastiano
- DiSTeBA (Department of Biological and Environmental Sciences and Technologies), University of Salento, 73100 Lecce, Italy; (M.D.C.); (M.R.); (L.M.C.); (G.P.)
- Correspondence:
| |
Collapse
|
4
|
Han X, Song Z, Wang W, Tang H. Polymorphism in the 5' regulatory region of CTNNB1 gene and association with age at first lay and egg production. Br Poult Sci 2022; 63:510-518. [PMID: 35164622 DOI: 10.1080/00071668.2022.2042484] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Abstract
1. The Wnt signalling pathway is centred on the fact that catenin beta-1(CTNNB1) participates in the regulation of ovarian follicle development. The aim of the following study was to identify the polymorphism in the 5' regulatory region of the chicken CTNNB1 gene and evaluate the association between SNPs and egg production traits.2. The study demonstrated that the 5' regulatory region of the CTNNB1 gene has ten SNPs in the chicken flock. After Bonferroni correction for multiple testing, five SNPs (rs315692306, 2:g43385123, rs735854102, 2:g43385457 and rs737907370) were significantly correlated with egg laying traits.3. An association study of the haplotypes with egg laying traits revealed that both haplotypes in block 1 (consisting of rs735052881, rs740662190, rs315692306, and 2:43385123) and block 2 (consisting of rs735854102 and 2:g43385457) were associated with point of lay age and the number of eggs laid at 18-23 weeks. Prediction of transcription factor binding sites showed that transcription factors changed after mutation in block 2. The luciferase assay revealed that the priming activity of the CA haplotype in block2 was the highest.4. Taken together, the rs315692306, 2:g43385123, rs735854102, 2:g43385457 and rs737907370 in the 5' regulatory region of the CTNNB1 gene have significant impacts on egg production.
Collapse
Affiliation(s)
- Xu Han
- Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, Shandong Agricultural University, Taian City, Shandong Province, China
| | - Zhifang Song
- Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, Shandong Agricultural University, Taian City, Shandong Province, China
| | - Wenwen Wang
- Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, Shandong Agricultural University, Taian City, Shandong Province, China
| | - Hui Tang
- Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, Shandong Agricultural University, Taian City, Shandong Province, China
| |
Collapse
|
5
|
Cheng Y, Niu Z, Cai Y, Zhang W. Emerging role of UFMylation in secretory cells involved in the endocrine system by maintaining ER proteostasis. Front Endocrinol (Lausanne) 2022; 13:1085408. [PMID: 36743909 PMCID: PMC9894094 DOI: 10.3389/fendo.2022.1085408] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Accepted: 12/13/2022] [Indexed: 01/21/2023] Open
Abstract
Ubiquitin-fold modifier 1 (UFM1) is a ubiquitin-like molecule (UBL) discovered almost two decades ago, but our knowledge about the cellular and molecular mechanisms of this novel protein post-translational modification is still very fragmentary. In this review, we first summarize the core enzymes and factors involved in the UFMylation cascade, which, similar to ubiquitin, is consecutively catalyzed by UFM1-activating enzyme 5 (UBA5), UFM1-conjugating enzyme 1 (UFC1) and UFM1-specific ligase 1 (UFL1). Inspired by the substantial implications of UFM1 machinery in the secretory pathway, we next concentrate on the puzzling role of UFMylation in maintaining ER protein homeostasis, intending to illustrate the underlying mechanisms and future perspectives. At last, given a robust ER network is a hallmark of healthy endocrine secretory cells, we emphasize the function of UFM1 modification in physiology and pathology in the context of endocrine glands pancreas and female ovaries, aiming to provide precise insight into other internal glands of the endocrine system.
Collapse
Affiliation(s)
- Yun Cheng
- Jiangsu Cancer Hospital, Jiangsu Institute of Cancer Research, The Affiliated Cancer Hospital of Nanjing Medical University, Nanjing, China
| | - Zikang Niu
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, China
| | - Yafei Cai
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, China
| | - Wei Zhang
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, China
- *Correspondence: Wei Zhang,
| |
Collapse
|
6
|
Bello SF, Xu H, Guo L, Li K, Zheng M, Xu Y, Zhang S, Bekele EJ, Bahareldin AA, Zhu W, Zhang D, Zhang X, Ji C, Nie Q. Hypothalamic and ovarian transcriptome profiling reveals potential candidate genes in low and high egg production of white Muscovy ducks (Cairina moschata). Poult Sci 2021; 100:101310. [PMID: 34298381 PMCID: PMC8322464 DOI: 10.1016/j.psj.2021.101310] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2021] [Revised: 05/24/2021] [Accepted: 06/01/2021] [Indexed: 01/16/2023] Open
Abstract
In China, the low egg production rate is a major challenge to Muscovy duck farmers. Hypothalamus and ovary play essential role in egg production of birds. However, there are little or no reports from these tissues to identify potential candidate genes responsible for egg production in White Muscovy ducks. A total of 1,537 laying ducks were raised; the egg production traits which include age at first egg (days), number of eggs at 300 d, and number of eggs at 59 wk were recorded. Moreover, 4 lowest (LP) and 4 highest producing (HP) were selected at 59 wk of age, respectively. To understand the mechanism of egg laying regulation, we sequenced the hypothalamus and ovary transcriptome profiles in LP and HP using RNA-Seq. The results showed that the number of eggs at 300 d and number of eggs at 59 wk in the HP were significantly more (P < 0.001) than the LP ducks. In total, 106.98G clean bases were generated from 16 libraries with an average of 6.68G clean bases for each library. Further analysis showed 569 and 2,259 differentially expressed genes (DEGs) were identified in the hypothalamus and ovary between LP and HP, respectively. The KEGG pathway enrichment analysis revealed 114 and 139 pathways in the hypothalamus and ovary, respectively which includes Calcium signaling pathway, ECM-receptor interaction, Focal adhesion, MAPK signaling pathway, Apoptosis and Apelin signaling pathways that are involved in egg production. Based on the GO terms and KEGG pathways results, 10 potential candidate genes (P2RX1, LPAR2, ADORA1, FN1, AKT3, ADCY5, ADCY8, MAP3K8, PXN, and PTTG1) were identified to be responsible for egg production. Further, protein-protein interaction was analyzed to show the relationship between these candidate genes. Therefore, this study provides useful information on transcriptome of hypothalamus and ovary of LP and HP Muscovy ducks.
Collapse
Affiliation(s)
- Semiu Folaniyi Bello
- Department of Animal Genetics, Breeding and Reproduction, College of Animal Science, South China Agricultural University, Guangzhou 510642, Guangdong, China; Guangdong Provincial Key Lab of Agro-Animal Genomics and Molecular Breeding and Key Lab of Chicken Genetics, Breeding and Reproduction, Ministry of Agriculture, Guangzhou 510642, Guangdong, China
| | - Haiping Xu
- Department of Animal Genetics, Breeding and Reproduction, College of Animal Science, South China Agricultural University, Guangzhou 510642, Guangdong, China; Guangdong Provincial Key Lab of Agro-Animal Genomics and Molecular Breeding and Key Lab of Chicken Genetics, Breeding and Reproduction, Ministry of Agriculture, Guangzhou 510642, Guangdong, China
| | - Lijin Guo
- Department of Animal Genetics, Breeding and Reproduction, College of Animal Science, South China Agricultural University, Guangzhou 510642, Guangdong, China; Guangdong Provincial Key Lab of Agro-Animal Genomics and Molecular Breeding and Key Lab of Chicken Genetics, Breeding and Reproduction, Ministry of Agriculture, Guangzhou 510642, Guangdong, China
| | - Kan Li
- Department of Animal Genetics, Breeding and Reproduction, College of Animal Science, South China Agricultural University, Guangzhou 510642, Guangdong, China; Guangdong Provincial Key Lab of Agro-Animal Genomics and Molecular Breeding and Key Lab of Chicken Genetics, Breeding and Reproduction, Ministry of Agriculture, Guangzhou 510642, Guangdong, China
| | - Ming Zheng
- Department of Animal Genetics, Breeding and Reproduction, College of Animal Science, South China Agricultural University, Guangzhou 510642, Guangdong, China; Guangdong Provincial Key Lab of Agro-Animal Genomics and Molecular Breeding and Key Lab of Chicken Genetics, Breeding and Reproduction, Ministry of Agriculture, Guangzhou 510642, Guangdong, China
| | - Yibin Xu
- Department of Animal Genetics, Breeding and Reproduction, College of Animal Science, South China Agricultural University, Guangzhou 510642, Guangdong, China; Guangdong Provincial Key Lab of Agro-Animal Genomics and Molecular Breeding and Key Lab of Chicken Genetics, Breeding and Reproduction, Ministry of Agriculture, Guangzhou 510642, Guangdong, China
| | - Siyu Zhang
- Department of Animal Genetics, Breeding and Reproduction, College of Animal Science, South China Agricultural University, Guangzhou 510642, Guangdong, China; Guangdong Provincial Key Lab of Agro-Animal Genomics and Molecular Breeding and Key Lab of Chicken Genetics, Breeding and Reproduction, Ministry of Agriculture, Guangzhou 510642, Guangdong, China
| | - Endashaw Jebessa Bekele
- Department of Animal Genetics, Breeding and Reproduction, College of Animal Science, South China Agricultural University, Guangzhou 510642, Guangdong, China; Guangdong Provincial Key Lab of Agro-Animal Genomics and Molecular Breeding and Key Lab of Chicken Genetics, Breeding and Reproduction, Ministry of Agriculture, Guangzhou 510642, Guangdong, China
| | - Ali Abdalla Bahareldin
- Department of Animal Genetics, Breeding and Reproduction, College of Animal Science, South China Agricultural University, Guangzhou 510642, Guangdong, China; Guangdong Provincial Key Lab of Agro-Animal Genomics and Molecular Breeding and Key Lab of Chicken Genetics, Breeding and Reproduction, Ministry of Agriculture, Guangzhou 510642, Guangdong, China
| | - Weijian Zhu
- Wens Foodstuff Group Co. Ltd., Yunfu, 527400 Guangdong, China
| | - Dexiang Zhang
- Department of Animal Genetics, Breeding and Reproduction, College of Animal Science, South China Agricultural University, Guangzhou 510642, Guangdong, China; Guangdong Provincial Key Lab of Agro-Animal Genomics and Molecular Breeding and Key Lab of Chicken Genetics, Breeding and Reproduction, Ministry of Agriculture, Guangzhou 510642, Guangdong, China; Wens Foodstuff Group Co. Ltd., Yunfu, 527400 Guangdong, China
| | - Xiquan Zhang
- Department of Animal Genetics, Breeding and Reproduction, College of Animal Science, South China Agricultural University, Guangzhou 510642, Guangdong, China; Guangdong Provincial Key Lab of Agro-Animal Genomics and Molecular Breeding and Key Lab of Chicken Genetics, Breeding and Reproduction, Ministry of Agriculture, Guangzhou 510642, Guangdong, China
| | - Congliang Ji
- Wens Foodstuff Group Co. Ltd., Yunfu, 527400 Guangdong, China
| | - Qinghua Nie
- Department of Animal Genetics, Breeding and Reproduction, College of Animal Science, South China Agricultural University, Guangzhou 510642, Guangdong, China; Guangdong Provincial Key Lab of Agro-Animal Genomics and Molecular Breeding and Key Lab of Chicken Genetics, Breeding and Reproduction, Ministry of Agriculture, Guangzhou 510642, Guangdong, China; Wens Foodstuff Group Co. Ltd., Yunfu, 527400 Guangdong, China.
| |
Collapse
|
7
|
Comparison of Selection Signatures between Korean Native and Commercial Chickens Using 600K SNP Array Data. Genes (Basel) 2021; 12:genes12060824. [PMID: 34072132 PMCID: PMC8230197 DOI: 10.3390/genes12060824] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2021] [Revised: 05/18/2021] [Accepted: 05/24/2021] [Indexed: 12/14/2022] Open
Abstract
Korean native chickens (KNCs) comprise an indigenous chicken breed of South Korea that was restored through a government project in the 1990s. The KNC population has not been developed well and has mostly been used to maintain purebred populations in the government research institution. We investigated the genetic features of the KNC population in a selection signal study for the efficient improvement of this breed. We used 600K single nucleotide polymorphism data sampled from 191 KNCs (NG, 38; NL, 29; NR, 52; NW, 39; and NY, 33) and 54 commercial chickens (Hy-line Brown, 10; Lohmann Brown, 10; Arbor Acres, 10; Cobb, 12; and Ross, 12). Haplotype phasing was performed using EAGLE software as the initial step for the primary data analysis. Pre-processed data were analyzed to detect selection signals using the ‘rehh’ package in R software. A few common signatures of selection were identified in KNCs. Most quantitative trait locus regions identified as candidate regions were associated with traits related to reproductive organs, eggshell characteristics, immunity, and organ development. Block patterns with high linkage disequilibrium values were observed for LPP, IGF11, LMNB2, ERBB4, GABRB2, NTM, APOO, PLOA1, CNTN1, NTSR1, DEF3, CELF1, and MEF2D genes, among regions with confirmed selection signals. NL and NW lines contained a considerable number of selective sweep regions related to broilers and layers, respectively. We recommend focusing on improving the egg and meat traits of KNC NL and NW lines, respectively, while improving multiple traits for the other lines.
Collapse
|
8
|
Characterization of hypothalamo-pituitary-thyroid axis gene expression in the hypothalamus, pituitary gland, and ovarian follicles of turkey hens during the preovulatory surge and in hens with low and high egg production. Poult Sci 2021; 100:100928. [PMID: 33588341 PMCID: PMC7896151 DOI: 10.1016/j.psj.2020.12.026] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2020] [Accepted: 12/10/2020] [Indexed: 11/20/2022] Open
Abstract
Dysregulation of the preovulatory surge (PS) leads to lowered egg production. The hypothalamo-pituitary-thyroid (HPT) axis has been shown to influence plasma progesterone levels and follicle ovulation. The presence of thyroid hormone receptors (THR) in the reproductive axis suggests possible effects of thyroid hormone. To further understand the potential role of thyroid hormone on the PS, HPT axis plasma hormone concentrations and gene expression were characterized surrounding the PS in average egg producing hens (AEPH), low egg producing hens (LEPH), and high egg producing hens (HEPH) (n = 3 hens/group). Data were analyzed using the mixed models procedure of SAS, with significance indicated at P < 0.05. Average egg producing hens and HEPH displayed lower levels of triiodothyronine (T3) and higher levels of thyroxine (T4) inside of the PS, whereas LEPH showed inverse T3 and T4 levels relative to the PS. Expression of mRNA for hypothalamic thyrotropin-releasing hormone (TRH), pituitary thyrotropin (TSHB), and the main thyroid hormone metabolism enzyme (DIO2) were downregulated during the PS in AEPH and HEPH. Low egg producing hens displayed higher expression of mRNA for hypothalamic TRH as well as pituitary TSHB and DIO2 compared with HEPH. Average egg producing hens expression of THR mRNAs was upregulated during the PS in the hypothalamus but downregulated in the pituitary. High egg producing hens showed decreased expression of THR mRNAs in both the hypothalamus and pituitary when compared with LEPH. In ovarian follicles, THR mRNAs were more prevalent in the thecal layer of the follicle wall compared with the granulosa layer, and expression tended to decrease with follicle maturity. Minimal differences in follicular THR expression were seen between LEPH and HEPH, indicating that THR expression is unlikely to be responsible for steroid hormone production differences occurring between LEPH and HEPH. Generally, downregulation of the HPT axis was seen during the PS in AEPH and HEPH, whereas upregulation of the HPT axis was seen in LEPH. Further studies will be required to clarify the role of the HPT axis in the regulation of ovulation and egg production rates in turkey hens.
Collapse
|
9
|
Yu S, Wang G, Liao J, Tang M, Chen J. Identification of differentially expressed genes associated with egg production in black-boned chicken. Br Poult Sci 2020; 61:3-7. [PMID: 32134329 DOI: 10.1080/00071668.2020.1736268] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
Abstract
1. Muchuan black-bone chicken is well known in China for its meat quality and medicinal properties; however, its egg-laying performance is not ideal. To better understand the molecular mechanisms of black-boned chicken egg-laying, high-throughput RNA sequencing was performed to compare differences in the pituitary transcriptome between three high-rate (group H) and three low-rate (group L) egg production chickens. 2. In total, 171 differentially expressed genes (DEGs) were identified between the two groups, of which 113 were upregulated and 58 were downregulated in group L. Some of these genes are known to be related to hormone secretion or the regulation of reproductive processes; these include prolactin-releasing hormone (PRLH), distal-less homeobox 6 (DLX6), interferon regulatory factor 4 (IRF4), and cilia and flagella associated protein 69 (CFAP69). Notably, expression pattern analysis indicated that both PRLH and DLX6 may influence egg-laying performance. 3. The dataset provided a foundation for discovering important genes and pathways involved in the chicken egg-laying process, and may help to improve understanding of the molecular mechanisms of chicken reproduction.
Collapse
Affiliation(s)
- S Yu
- Engineering Research Center of Sichuan Province Higher School of Local Chicken Breeds Industrialization in Southern Sichuan, College of Life Science, Leshan Normal University , Leshan, China
| | - G Wang
- Engineering Research Center of Sichuan Province Higher School of Local Chicken Breeds Industrialization in Southern Sichuan, College of Life Science, Leshan Normal University , Leshan, China
| | - J Liao
- Engineering Research Center of Sichuan Province Higher School of Local Chicken Breeds Industrialization in Southern Sichuan, College of Life Science, Leshan Normal University , Leshan, China
| | - M Tang
- Engineering Research Center of Sichuan Province Higher School of Local Chicken Breeds Industrialization in Southern Sichuan, College of Life Science, Leshan Normal University , Leshan, China
| | - J Chen
- Engineering Research Center of Sichuan Province Higher School of Local Chicken Breeds Industrialization in Southern Sichuan, College of Life Science, Leshan Normal University , Leshan, China
| |
Collapse
|
10
|
Characterization of the hypothalamo-pituitary-gonadal axis in low and high egg producing turkey hens. Poult Sci 2020; 99:1163-1173. [PMID: 32029148 PMCID: PMC7587793 DOI: 10.1016/j.psj.2019.12.028] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2019] [Indexed: 11/22/2022] Open
Abstract
Variation in egg production exists in commercial turkey hens, with low egg producing hens (LEPH) costing more per egg produced than high egg producing hens (HEPH). Egg production correlates with ovulation frequency, which is governed by the hypothalamic-pituitary-gonadal (HPG) axis. Ovulation is stimulated by a preovulatory surge (PS) of progesterone and luteinizing hormone, triggered by gonadotropin releasing hormone release and inhibited by gonadotropin inhibiting hormone. Differences between LEPH and HEPH were characterized by determining HPG axis plasma hormone profiles and mRNA levels for key genes, both outside and inside of the PS (n = 3 per group). Data were analyzed with a 2-way ANOVA using the mixed models procedure of SAS. In the HPG axis, plasma progesterone levels were not affected by egg production level but were elevated during the PS. In contrast, plasma estradiol levels were higher in HEPH than in LEPH but were not associated with the PS. LEPH exhibited decreased gene expression associated with ovulation stimulation and increased gene expression associated with ovulation inhibition in the hypothalamus and pituitary. In ovarian follicle cells, LEPH displayed decreased gene expression associated with progesterone, androgen, and estradiol production in the F1 follicle granulosa cells, F5 theca interna cells, and small white follicle cells, respectively. Different degrees of stimulation and inhibition within all tissues of the HPG axis were noted between LEPH and HEPH turkey hens, with HEPH showing higher expression of genes related to ovulation and steroidogenesis.
Collapse
|
11
|
Nivet AL, Dufort I, Gilbert I, Sirard MA. Short-term effect of FSH on gene expression in bovine granulosa cells in vitro. Reprod Fertil Dev 2019. [PMID: 29529392 DOI: 10.1071/rd17469] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
In reproduction, FSH is one of the most important hormones, especially in females, because it controls the number of follicles and the rate of follicular growth. Although several studies have examined the follicular response at the transcriptome level, it is difficult to obtain a clear and complete picture of the genes responding to an increase in FSH in an in vivo context because follicles undergo rapid morphological and physical changes during their growth. To help define the transcriptome downstream response to FSH, an in vitro model was used in the present study to observe the short-term (4h) cellular response. Gene expression analysis highlighted a set of novel transcripts that had not been reported previously as being part of the FSH response. Moreover, the results of the present study indicate that the epithelial to mesenchymal transition pathway is inhibited by short-term FSH stimuli, maintaining follicles in a growth phase and preventing differentiation. Modulating gene expression in vitro has physiological limitations, but it can help assess the potential downstream response and begin the mapping of the granulosa cell transcriptome in relation to FSH. This information is a key feature to help discriminate between the effects of FSH and LH, or to elucidate the overlapping of insulin-like growth factor 1 and FSH in the granulosa mitogenic response.
Collapse
Affiliation(s)
- Anne-Laure Nivet
- Centre de recherche en reproduction, développement et santé intergénérationnelle, Faculté des sciences de l'agriculture et de l'alimentation, Département des sciences animales, Université Laval, Québec, QC G1V 0A6, Canada
| | - Isabelle Dufort
- Centre de recherche en reproduction, développement et santé intergénérationnelle, Faculté des sciences de l'agriculture et de l'alimentation, Département des sciences animales, Université Laval, Québec, QC G1V 0A6, Canada
| | - Isabelle Gilbert
- Centre de recherche en reproduction, développement et santé intergénérationnelle, Faculté des sciences de l'agriculture et de l'alimentation, Département des sciences animales, Université Laval, Québec, QC G1V 0A6, Canada
| | - Marc-André Sirard
- Centre de recherche en reproduction, développement et santé intergénérationnelle, Faculté des sciences de l'agriculture et de l'alimentation, Département des sciences animales, Université Laval, Québec, QC G1V 0A6, Canada
| |
Collapse
|
12
|
Zhang T, Chen L, Han K, Zhang X, Zhang G, Dai G, Wang J, Xie K. Transcriptome analysis of ovary in relatively greater and lesser egg producing Jinghai Yellow Chicken. Anim Reprod Sci 2019; 208:106114. [PMID: 31405454 DOI: 10.1016/j.anireprosci.2019.106114] [Citation(s) in RCA: 57] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2018] [Revised: 06/19/2019] [Accepted: 06/27/2019] [Indexed: 12/11/2022]
Abstract
Egg production is determined by the function of ovary and is regulated by the hypothalamic-pituitary-ovary axis. The mechanism by which the ovary regulates egg production, however, is still poorly understood. The purpose of this study is to compare the transcriptome difference in ovary of relatively greater and lesser egg producing chickens, and to screen candidate genes related to egg production. A RNA sequencing was performed to analyze and compare the mRNA in ovarian tissues of relatively greater and lesser egg producing chickens. A total of 4 431 new genes expressed in the chicken ovary were mined. There were 305 differentially expressed genes (DEGs) identified between the relatively greater and lesser egg producing hens. Gene ontology analysis identified five candidate genes related to egg production, including ZP2, WNT4, AMH, IGF1, and CYP17A1 genes. Tissue expression profiles indicated these five candidate genes were highly expressed in chicken ovarian tissues, indicating a potential role in regulating chicken ovarian function and egg production. The KEGG analysis indicated the neuroactive ligand-receptor interaction pathway might have an important function in regulation of egg production. In addition, four known pathways related to reproduction were detected, including the calcium signaling, wnt signaling pathway, focal adhesion, and cytokine-cytokine receptor interaction pathways. Results of the present study indicate gene expression differences in the ovarian tissues of relatively greater and lesser egg producing chickens, and identified five important candidate genes related to egg production, which provided a theoretical basis for improving egg production of Jinghai Yellow Chickens.
Collapse
Affiliation(s)
- Tao Zhang
- College of Animal Science and Technology, Yangzhou University, Jiangsu, Yangzhou 225009, China; Key Laboratory for Animal Genetics, Breeding, Reproduction and Molecular Design of Jiangsu Province, Jiangsu, Yangzhou 225009, China; Joint International Research Laboratory of Agriculture and Agri-Product Safety of Ministry of Eduction of China, Yangzhou University, China.
| | - Lan Chen
- College of Animal Science and Technology, Yangzhou University, Jiangsu, Yangzhou 225009, China; Key Laboratory for Animal Genetics, Breeding, Reproduction and Molecular Design of Jiangsu Province, Jiangsu, Yangzhou 225009, China; Joint International Research Laboratory of Agriculture and Agri-Product Safety of Ministry of Eduction of China, Yangzhou University, China.
| | - Kunpeng Han
- College of Animal Science and Technology, Yangzhou University, Jiangsu, Yangzhou 225009, China; Key Laboratory for Animal Genetics, Breeding, Reproduction and Molecular Design of Jiangsu Province, Jiangsu, Yangzhou 225009, China; Joint International Research Laboratory of Agriculture and Agri-Product Safety of Ministry of Eduction of China, Yangzhou University, China.
| | - Xiangqian Zhang
- College of Animal Science and Technology, Yangzhou University, Jiangsu, Yangzhou 225009, China; Key Laboratory for Animal Genetics, Breeding, Reproduction and Molecular Design of Jiangsu Province, Jiangsu, Yangzhou 225009, China; Joint International Research Laboratory of Agriculture and Agri-Product Safety of Ministry of Eduction of China, Yangzhou University, China.
| | - Genxi Zhang
- College of Animal Science and Technology, Yangzhou University, Jiangsu, Yangzhou 225009, China; Key Laboratory for Animal Genetics, Breeding, Reproduction and Molecular Design of Jiangsu Province, Jiangsu, Yangzhou 225009, China; Joint International Research Laboratory of Agriculture and Agri-Product Safety of Ministry of Eduction of China, Yangzhou University, China.
| | - Guojun Dai
- College of Animal Science and Technology, Yangzhou University, Jiangsu, Yangzhou 225009, China; Key Laboratory for Animal Genetics, Breeding, Reproduction and Molecular Design of Jiangsu Province, Jiangsu, Yangzhou 225009, China; Joint International Research Laboratory of Agriculture and Agri-Product Safety of Ministry of Eduction of China, Yangzhou University, China.
| | - Jinyu Wang
- College of Animal Science and Technology, Yangzhou University, Jiangsu, Yangzhou 225009, China; Key Laboratory for Animal Genetics, Breeding, Reproduction and Molecular Design of Jiangsu Province, Jiangsu, Yangzhou 225009, China; Joint International Research Laboratory of Agriculture and Agri-Product Safety of Ministry of Eduction of China, Yangzhou University, China.
| | - Kaizhou Xie
- College of Animal Science and Technology, Yangzhou University, Jiangsu, Yangzhou 225009, China; Key Laboratory for Animal Genetics, Breeding, Reproduction and Molecular Design of Jiangsu Province, Jiangsu, Yangzhou 225009, China; Joint International Research Laboratory of Agriculture and Agri-Product Safety of Ministry of Eduction of China, Yangzhou University, China.
| |
Collapse
|
13
|
Juma AR, Hall NE, Wong J, Gasperoni JG, Watanabe Y, Sahota A, Damdimopoulou PE, Grommen SVH, De Groef B. PLAG1 expression and target genes in the hypothalamo-pituitary system in male mice. Mol Cell Endocrinol 2018; 478:77-83. [PMID: 30048678 DOI: 10.1016/j.mce.2018.07.009] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/27/2018] [Revised: 06/28/2018] [Accepted: 07/23/2018] [Indexed: 12/26/2022]
Abstract
Knockout of pleomorphic adenoma gene 1 (PLAG1) in mice results in reduced fertility. To investigate whether PLAG1 is involved in reproductive control by the hypothalamo-pituitary system in males, we determined PLAG1 expression sites and compared gene expression between hypothalami and pituitary glands from Plag1 knockout and wildtype animals. Abundant expression of PLAG1 was detected throughout the pituitary gland, including gonadotropes and somatotropes. The hypothalamus also contained a large number of PLAG1-expressing cells. PLAG1 was expressed in some gonadotropin-releasing hormone neurons, but not in kisspeptin neurons. Gene ontology analysis indicated upregulation of cell proliferation in both structures, and of cholesterol biosynthesis in the hypothalamus, but functional confirmation is required. Expression levels of pituitary gonadotropins and gonadotropin-releasing hormone receptor, and of brain gonadotropin-releasing hormone and kisspeptin mRNA were unaffected in knockout mice. We conclude that PLAG1 deficiency does not have a major impact on the reproductive control by the hypothalamo-pituitary system.
Collapse
Affiliation(s)
- Almas R Juma
- Department of Physiology, Anatomy and Microbiology, La Trobe University, Bundoora, Victoria, 3086, Australia
| | - Nathan E Hall
- Department of Biochemistry and Genetics and La Trobe Institute for Molecular Sciences, La Trobe University, Bundoora, Victoria, 3086, Australia
| | - Joanne Wong
- Department of Physiology, Anatomy and Microbiology, La Trobe University, Bundoora, Victoria, 3086, Australia
| | - Jemma G Gasperoni
- Department of Physiology, Anatomy and Microbiology, La Trobe University, Bundoora, Victoria, 3086, Australia
| | - Yugo Watanabe
- Department of Physiology, Anatomy and Microbiology, La Trobe University, Bundoora, Victoria, 3086, Australia
| | - Akashdeep Sahota
- Department of Physiology, Anatomy and Microbiology, La Trobe University, Bundoora, Victoria, 3086, Australia
| | - Pauliina E Damdimopoulou
- Department of Clinical Sciences, Intervention and Technology, Karolinska Institute, Karolinska University Hospital, 14183, Huddinge, Sweden
| | - Sylvia V H Grommen
- Department of Physiology, Anatomy and Microbiology, La Trobe University, Bundoora, Victoria, 3086, Australia
| | - Bert De Groef
- Department of Physiology, Anatomy and Microbiology, La Trobe University, Bundoora, Victoria, 3086, Australia.
| |
Collapse
|
14
|
Huang T, Cheng S, Feng Y, Sheng Z, Gong Y. A copy number variation generated by complicated organization of PCDHA gene cluster is associated with egg performance traits in Xinhua E-strain. Poult Sci 2018; 97:3435-3445. [PMID: 30007306 DOI: 10.3382/ps/pey236] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2017] [Accepted: 07/07/2018] [Indexed: 01/15/2023] Open
Abstract
In recent years, a mass of duplicated and deleted DNA sequences have been found in human and animal genomes following the prevalence of employing high-throughput sequencing and SNP array. However, few copy number variation (CNV) studies have been performed on egg performance traits of chicken. In this study, 17 loci reported in previous studies were selected for CNV detection in the Xinhua E-strain by using the CNVplex kit, and the detection results showed that locus14 exhibited CNV. Further association analysis indicated the copies of locus14 could be significantly associated with age at first egg (AFE; P < 0.0086) and egg number at 250 d (250EN; P < 0.036). DNA sequence amplification showed the loss of a 260-bp-long fragment in the upstream of locus14, which mainly occurred in normal or copy-gain individuals. The qPCR results showed that subjects with gain of copies could promote the total expression level of the PCDHA gene cluster in the pituitary gland of adult individuals. Additionally, PCR amplification with randomly combined primers revealed a larger number of chicken variable exons than that previously reported, indicating the complexity of the organization of the PCDHA gene cluster. Those variable exons are divergent in their distribution among the populations of Xinhua E-strain, Chahua, Tibetan, and Tulufan Game Chicken, and most individuals only possess part of variable exons. Overall, the copies of locus14 reflect the variable exon dosage effects on the total expression level of the PCDHA gene cluster, which may regulate the layer egg production by affecting the development of the neural system.
Collapse
Affiliation(s)
- Tao Huang
- Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction, Ministry of Education, Huazhong Agricultural University, Wuhan, Hubei Province 430070, China
| | - Shengqi Cheng
- Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction, Ministry of Education, Huazhong Agricultural University, Wuhan, Hubei Province 430070, China
| | - Yanping Feng
- Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction, Ministry of Education, Huazhong Agricultural University, Wuhan, Hubei Province 430070, China
| | - Zheya Sheng
- Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction, Ministry of Education, Huazhong Agricultural University, Wuhan, Hubei Province 430070, China
| | - Yanzhang Gong
- Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction, Ministry of Education, Huazhong Agricultural University, Wuhan, Hubei Province 430070, China
| |
Collapse
|
15
|
Effect of different levels of feed restriction and fish oil fatty acid supplementation on fat deposition by using different techniques, plasma levels and mRNA expression of several adipokines in broiler breeder hens. PLoS One 2018; 13:e0191121. [PMID: 29364913 PMCID: PMC5783386 DOI: 10.1371/journal.pone.0191121] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2017] [Accepted: 12/28/2017] [Indexed: 12/17/2022] Open
Abstract
Background Reproductive hens are subjected to a restricted diet to limit the decline in fertility associated with change in body mass. However, endocrine and tissue responses to diet restriction need to be documented. Objective We evaluated the effect of different levels of feed restriction, with or without fish oil supplementation, on metabolic parameters and adipokine levels in plasma and metabolic tissues of reproductive hens. Methods We designed an in vivo protocol involving 4 groups of hens; RNS: restricted (Rt) unsupplemented, ANS: ad libitum (Ad, receiving an amount of feed 1.7 times greater than animals on the restricted diet) unsupplemented, RS: Rt supplemented, and AS: Ad supplemented. The fish oil supplement was used at 1% of the total diet composition. Results Hens fed with the Rt diet had a significantly (P < 0.0001) lower growth than Ad hens, while the fish oil supplementation had no effect on these parameters. Furthermore, the bioelectrical impedance analysis (BIA) and the fat ultrasonographic examinations produced similar results to the other methods that required animals to be killed (carcass analysis and weight of adipose tissue). In addition, the Rt diet significantly (P < 0.05) decreased plasma levels of triglycerides, phospholipids, glucose and ADIPOQ, and fish oil supplementation decreased plasma levels of RARRES2. We also showed a positive correlation between insulin values and ADIPOQ or NAMPT or RARRES2 values, and a negative correlation of fat percentage to RARRES2 values. Moreover, the effects of the Rt diet and fish oil supplementation on the mRNA expression depended on the factors tested and the hen age. Conclusions Rt diet and fish oil supplementation are able to modulate metabolic parameters and the expression of adipokines and their receptors in metabolic tissue.
Collapse
|
16
|
Khan AM, Grant AH, Martinez A, Burns GAPC, Thatcher BS, Anekonda VT, Thompson BW, Roberts ZS, Moralejo DH, Blevins JE. Mapping Molecular Datasets Back to the Brain Regions They are Extracted from: Remembering the Native Countries of Hypothalamic Expatriates and Refugees. ADVANCES IN NEUROBIOLOGY 2018; 21:101-193. [PMID: 30334222 PMCID: PMC6310046 DOI: 10.1007/978-3-319-94593-4_6] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
This article focuses on approaches to link transcriptomic, proteomic, and peptidomic datasets mined from brain tissue to the original locations within the brain that they are derived from using digital atlas mapping techniques. We use, as an example, the transcriptomic, proteomic and peptidomic analyses conducted in the mammalian hypothalamus. Following a brief historical overview, we highlight studies that have mined biochemical and molecular information from the hypothalamus and then lay out a strategy for how these data can be linked spatially to the mapped locations in a canonical brain atlas where the data come from, thereby allowing researchers to integrate these data with other datasets across multiple scales. A key methodology that enables atlas-based mapping of extracted datasets-laser-capture microdissection-is discussed in detail, with a view of how this technology is a bridge between systems biology and systems neuroscience.
Collapse
Affiliation(s)
- Arshad M Khan
- UTEP Systems Neuroscience Laboratory, University of Texas at El Paso, El Paso, TX, USA.
- Department of Biological Sciences, University of Texas at El Paso, El Paso, TX, USA.
- Border Biomedical Research Center, University of Texas at El Paso, El Paso, TX, USA.
| | - Alice H Grant
- UTEP Systems Neuroscience Laboratory, University of Texas at El Paso, El Paso, TX, USA
- Department of Biological Sciences, University of Texas at El Paso, El Paso, TX, USA
- Graduate Program in Pathobiology, University of Texas at El Paso, El Paso, TX, USA
| | - Anais Martinez
- UTEP Systems Neuroscience Laboratory, University of Texas at El Paso, El Paso, TX, USA
- Department of Biological Sciences, University of Texas at El Paso, El Paso, TX, USA
- Graduate Program in Pathobiology, University of Texas at El Paso, El Paso, TX, USA
| | - Gully A P C Burns
- Information Sciences Institute, Viterbi School of Engineering, University of Southern California, Marina del Rey, CA, USA
| | - Brendan S Thatcher
- VA Puget Sound Health Care System, Office of Research and Development Medical Research Service, Department of Veterans Affairs Medical Center, Seattle, WA, USA
| | - Vishwanath T Anekonda
- VA Puget Sound Health Care System, Office of Research and Development Medical Research Service, Department of Veterans Affairs Medical Center, Seattle, WA, USA
| | - Benjamin W Thompson
- VA Puget Sound Health Care System, Office of Research and Development Medical Research Service, Department of Veterans Affairs Medical Center, Seattle, WA, USA
| | - Zachary S Roberts
- VA Puget Sound Health Care System, Office of Research and Development Medical Research Service, Department of Veterans Affairs Medical Center, Seattle, WA, USA
| | - Daniel H Moralejo
- Division of Neonatology, Department of Pediatrics, University of Washington School of Medicine, Seattle, WA, USA
| | - James E Blevins
- VA Puget Sound Health Care System, Office of Research and Development Medical Research Service, Department of Veterans Affairs Medical Center, Seattle, WA, USA
- Division of Metabolism, Endocrinology, and Nutrition, Department of Medicine, University of Washington School of Medicine, Seattle, WA, USA
| |
Collapse
|
17
|
Juma AR, Damdimopoulou PE, Grommen SVH, Van de Ven WJM, De Groef B. Emerging role of PLAG1 as a regulator of growth and reproduction. J Endocrinol 2016; 228:R45-56. [PMID: 26577933 DOI: 10.1530/joe-15-0449] [Citation(s) in RCA: 66] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 11/17/2015] [Indexed: 12/15/2022]
Abstract
Pleomorphic adenoma gene 1 (PLAG1) belongs to the PLAG family of zinc finger transcription factors along with PLAG-like 1 and PLAG-like 2. The PLAG1 gene is best known as an oncogene associated with certain types of cancer, most notably pleomorphic adenomas of the salivary gland. While the mechanisms of PLAG1-induced tumorigenesis are reasonably well understood, the role of PLAG1 in normal physiology is less clear. It is known that PLAG1 is involved in cell proliferation by directly regulating a wide array of target genes, including a number of growth factors such as insulin-like growth factor 2. This is likely to be a central mode of action for PLAG1 both in embryonic development and in cancer. The phenotype of Plag1 knockout mice suggests an important role for PLAG1 also in postnatal growth and reproduction, as PLAG1 deficiency causes growth retardation and reduced fertility. A role for PLAG1 in growth and reproduction is further corroborated by genome-wide association studies in humans and domestic animals in which polymorphisms in the PLAG1 genomic region are associated with body growth and reproductive traits. Here we review the current evidence for PLAG1 as a regulator of growth and fertility and discuss possible endocrine mechanisms involved.
Collapse
Affiliation(s)
- Almas R Juma
- Department of PhysiologyAnatomy and Microbiology, School of Life Sciences, La Trobe University, Bundoora, Victoria 3086, AustraliaDepartment of Clinical SciencesIntervention and Technology, Karolinska Institutet and Karolinska University Hospital, Huddinge, 141 86 Stockholm, SwedenDepartment of Human GeneticsKU Leuven, B-3000 Leuven, Belgium
| | - Pauliina E Damdimopoulou
- Department of PhysiologyAnatomy and Microbiology, School of Life Sciences, La Trobe University, Bundoora, Victoria 3086, AustraliaDepartment of Clinical SciencesIntervention and Technology, Karolinska Institutet and Karolinska University Hospital, Huddinge, 141 86 Stockholm, SwedenDepartment of Human GeneticsKU Leuven, B-3000 Leuven, Belgium
| | - Sylvia V H Grommen
- Department of PhysiologyAnatomy and Microbiology, School of Life Sciences, La Trobe University, Bundoora, Victoria 3086, AustraliaDepartment of Clinical SciencesIntervention and Technology, Karolinska Institutet and Karolinska University Hospital, Huddinge, 141 86 Stockholm, SwedenDepartment of Human GeneticsKU Leuven, B-3000 Leuven, Belgium
| | - Wim J M Van de Ven
- Department of PhysiologyAnatomy and Microbiology, School of Life Sciences, La Trobe University, Bundoora, Victoria 3086, AustraliaDepartment of Clinical SciencesIntervention and Technology, Karolinska Institutet and Karolinska University Hospital, Huddinge, 141 86 Stockholm, SwedenDepartment of Human GeneticsKU Leuven, B-3000 Leuven, Belgium
| | - Bert De Groef
- Department of PhysiologyAnatomy and Microbiology, School of Life Sciences, La Trobe University, Bundoora, Victoria 3086, AustraliaDepartment of Clinical SciencesIntervention and Technology, Karolinska Institutet and Karolinska University Hospital, Huddinge, 141 86 Stockholm, SwedenDepartment of Human GeneticsKU Leuven, B-3000 Leuven, Belgium
| |
Collapse
|
18
|
Ji H, Wang J, Liu J, Guo J, Wang Z, Zhang X, Guo L, Yang H. Selection of Reliable Reference Genes for Real-time qRT-PCR Analysis of Zi Geese (Anser anser domestica) Gene Expression. ASIAN-AUSTRALASIAN JOURNAL OF ANIMAL SCIENCES 2014; 26:423-32. [PMID: 25049806 PMCID: PMC4093479 DOI: 10.5713/ajas.2012.12417] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/05/2012] [Revised: 10/31/2012] [Accepted: 09/10/2012] [Indexed: 12/02/2022]
Abstract
Zi geese (Anser anser domestica) belong to the white geese and are excellent layers with a superior feed-to-egg conversion ratio. Quantitative gene expression analysis, such as Real-time qRT-PCR, will provide a good understanding of ovarian function during egg-laying and consequently improve egg production. However, we still don’t know what reference genes in geese, which show stable expression, should be used for such quantitative analysis. In order to reveal such reference genes, the stability of seven genes were tested in five tissues of Zi geese. Methodology/Principal Findings: The relative transcription levels of genes encoding hypoxanthine guanine phosphoribosyl transferase 1 (HPRT1), β-actin (ACTB), β-tubulin (TUB), glyceraldehyde-3-phosphate-dehydrogenase (GADPH), succinate dehydrogenase flavoprotein (SDH), 28S rRNA (28S) and 18S rRNA (18S) have been quantified in heart, liver, kidney, muscle and ovary in Zi geese respectively at different developmental stages (1 d, 2, 4, 6 and 8 months). The expression stability of these genes was analyzed using geNorm, NormFinder and BestKeeper software. Conclusions: The expression of 28S in heart, GAPDH in liver and ovary, ACTB in kidney and HPRT1 in muscle are the most stable genes as identified by the three different analysis methods. Thus, these genes are recommended for use as candidate reference genes to compare mRNA transcription in various developmental stages of geese.
Collapse
Affiliation(s)
- Hong Ji
- College of Animal Science and Veterinary Medicine, Heilongjiang Bayi Agricultural University, Daqing 163319, China
| | - Jianfa Wang
- College of Animal Science and Veterinary Medicine, Heilongjiang Bayi Agricultural University, Daqing 163319, China
| | - Juxiong Liu
- College of Animal Science and Veterinary Medicine, Heilongjiang Bayi Agricultural University, Daqing 163319, China
| | - Jingru Guo
- College of Animal Science and Veterinary Medicine, Heilongjiang Bayi Agricultural University, Daqing 163319, China
| | - Zhongwei Wang
- College of Animal Science and Veterinary Medicine, Heilongjiang Bayi Agricultural University, Daqing 163319, China
| | - Xu Zhang
- College of Animal Science and Veterinary Medicine, Heilongjiang Bayi Agricultural University, Daqing 163319, China
| | - Li Guo
- College of Animal Science and Veterinary Medicine, Heilongjiang Bayi Agricultural University, Daqing 163319, China
| | - Huanmin Yang
- College of Animal Science and Veterinary Medicine, Heilongjiang Bayi Agricultural University, Daqing 163319, China
| |
Collapse
|
19
|
Expression of Eleven Egg Performance-associated Genes in the Ovary of Zi Geese <i>Anser anser domestica</i>. J Poult Sci 2013. [DOI: 10.2141/jpsa.0120029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
|
20
|
Shen X, Zeng H, Xie L, He J, Li J, Xie X, Luo C, Xu H, Zhou M, Nie Q, Zhang X. The GTPase activating Rap/RanGAP domain-like 1 gene is associated with chicken reproductive traits. PLoS One 2012; 7:e33851. [PMID: 22496769 PMCID: PMC3322132 DOI: 10.1371/journal.pone.0033851] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2011] [Accepted: 02/19/2012] [Indexed: 11/28/2022] Open
Abstract
Background Abundant evidence indicates that chicken reproduction is strictly regulated by the hypothalamic-pituitary-gonad (HPG) axis, and the genes included in the HPG axis have been studied extensively. However, the question remains as to whether any other genes outside of the HPG system are involved in regulating chicken reproduction. The present study was aimed to identify, on a genome-wide level, novel genes associated with chicken reproductive traits. Methodology/Principal Finding Suppressive subtractive hybridization (SSH), genome-wide association study (GWAS), and gene-centric GWAS were used to identify novel genes underlying chicken reproduction. Single marker-trait association analysis with a large population and allelic frequency spectrum analysis were used to confirm the effects of candidate genes. Using two full-sib Ningdu Sanhuang (NDH) chickens, GARNL1 was identified as a candidate gene involved in chicken broodiness by SSH analysis. Its expression levels in the hypothalamus and pituitary were significantly higher in brooding chickens than in non-brooding chickens. GWAS analysis with a NDH two tail sample showed that 2802 SNPs were significantly associated with egg number at 300 d of age (EN300). Among the 2802 SNPs, 2 SNPs composed a block overlapping the GARNL1 gene. The gene-centric GWAS analysis with another two tail sample of NDH showed that GARNL1 was strongly associated with EN300 and age at first egg (AFE). Single marker-trait association analysis in 1301 female NDH chickens confirmed that variation in this gene was related to EN300 and AFE. The allelic frequency spectrum of the SNP rs15700989 among 5 different populations supported the above associations. Western blotting, RT-PCR, and qPCR were used to analyze alternative splicing of the GARNL1 gene. RT-PCR detected 5 transcripts and revealed that the transcript, which has a 141 bp insertion, was expressed in a tissue-specific manner. Conclusions/Significance Our findings demonstrate that the GARNL1 gene contributes to chicken reproductive traits.
Collapse
Affiliation(s)
- Xu Shen
- Department of Animal Genetics, Breeding and Reproduction, College of Animal Science, South China Agricultural University, Guangzhou, Guangdong, China
- Guangdong Provincial Key Lab of Agro-Animal Genomics and Molecular Breeding, Guangzhou, China
| | - Hua Zeng
- Department of Animal Genetics, Breeding and Reproduction, College of Animal Science, South China Agricultural University, Guangzhou, Guangdong, China
| | - Liang Xie
- Department of Animal Genetics, Breeding and Reproduction, College of Animal Science, South China Agricultural University, Guangzhou, Guangdong, China
- Institute of Animal Science and Veterinary, Hainan Academy of Agricultural Sciences, Haikou, Hainan, China
| | - Jun He
- Department of Animal Genetics, Breeding and Reproduction, College of Animal Science, South China Agricultural University, Guangzhou, Guangdong, China
- Guangdong Provincial Key Lab of Agro-Animal Genomics and Molecular Breeding, Guangzhou, China
| | - Jian Li
- Department of Animal Genetics, Breeding and Reproduction, College of Animal Science, South China Agricultural University, Guangzhou, Guangdong, China
- Guangdong Provincial Key Lab of Agro-Animal Genomics and Molecular Breeding, Guangzhou, China
| | - Xiujuan Xie
- Department of Animal Genetics, Breeding and Reproduction, College of Animal Science, South China Agricultural University, Guangzhou, Guangdong, China
- Guangdong Provincial Key Lab of Agro-Animal Genomics and Molecular Breeding, Guangzhou, China
| | - Chenglong Luo
- Institute of Animal Science, Guangdong Academy of Agricultural Sciences, Guangzhou, Guangdong, China
| | - Haiping Xu
- Department of Animal Genetics, Breeding and Reproduction, College of Animal Science, South China Agricultural University, Guangzhou, Guangdong, China
- Guangdong Provincial Key Lab of Agro-Animal Genomics and Molecular Breeding, Guangzhou, China
| | - Min Zhou
- Biotechnology Institute, Jiang Xi Education College, Nanchang, Jiangxi, China
| | - Qinghua Nie
- Department of Animal Genetics, Breeding and Reproduction, College of Animal Science, South China Agricultural University, Guangzhou, Guangdong, China
- Guangdong Provincial Key Lab of Agro-Animal Genomics and Molecular Breeding, Guangzhou, China
| | - Xiquan Zhang
- Department of Animal Genetics, Breeding and Reproduction, College of Animal Science, South China Agricultural University, Guangzhou, Guangdong, China
- Guangdong Provincial Key Lab of Agro-Animal Genomics and Molecular Breeding, Guangzhou, China
- * E-mail:
| |
Collapse
|
21
|
Characterization, tissue expression, and imprinting analysis of the porcine CDKN1C and NAP1L4 genes. J Biomed Biotechnol 2012; 2012:946527. [PMID: 22500112 PMCID: PMC3303864 DOI: 10.1155/2012/946527] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2011] [Revised: 10/25/2011] [Accepted: 11/15/2011] [Indexed: 01/07/2023] Open
Abstract
CDKN1C and NAP1L4 in human CDKN1C/KCNQ1OT1 imprinted domain are two key candidate genes responsible for BWS (Beckwith-Wiedemann syndrome) and cancer. In order to increase understanding of these genes in pigs, their cDNAs are characterized in this paper. By the IMpRH panel, porcine CDKN1C and NAP1L4 genes were assigned to porcine chromosome 2, closely linked with IMpRH06175 and with LOD of 15.78 and 17.94, respectively. By real-time quantitative RT-PCR and polymorphism-based method, tissue and allelic expression of both genes were determined using F1 pigs of Rongchang and Landrace reciprocal crosses. The transcription levels of porcine CDKN1C and NAP1L4 were significantly higher in placenta than in other neonatal tissues (P < 0.01) although both genes showed the highest expression levels in the lung and kidney of one-month pigs (P < 0.01). Imprinting analysis demonstrated that in pigs, CDKN1C was maternally expressed in neonatal heart, tongue, bladder, ovary, spleen, liver, skeletal muscle, stomach, small intestine, and placenta and biallelically expressed in lung and kidney, while NAP1L4 was biallelically expressed in the 12 neonatal tissues examined. It is concluded that imprinting of CDKN1C is conservative in mammals but has tissue specificity in pigs, and imprinting of NAP1L4 is controversial in mammalian species.
Collapse
|
22
|
Zhai G, Yang H, Ji X, Xiong F, Su J, McNutt MA, Li X. Correlation of LAPTM4B polymorphisms with hepatocellular carcinoma in Chinese patients. Med Oncol 2011; 29:2744-9. [PMID: 22207410 DOI: 10.1007/s12032-011-0139-y] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2011] [Accepted: 12/14/2011] [Indexed: 01/23/2023]
Abstract
Hepatocellular carcinoma (HCC) is the leading cause of cancer mortality in many countries. Evaluation of new susceptibility risk factors is therefore warranted in order to explore means to improve the survival rate. Here, we report on a novel HCC-related gene known as lysosomal protein transmembrane 4 beta (LAPTM4B) that has two alleles designated LAPTM4B*1 and LAPTM4B*2. Allele *1 differs from allele *2 in that it contains one copy of a 19-bp sequence, whereas this sequence is duplicated in allele *2 in exon 1 of LAPTM4B. In this study, we aimed to investigate the relationship between LAPTM4B allelic variation and HCC susceptibility. The LAPTM4B genotype was analyzed in the blood samples from 102 HCC patients and 135 healthy individuals by PCR. The genotypic distribution of LAPTM4B was analyzed using the chi-squared test. The frequencies of allele *2 were 38.24 and 24.07% in the HCC group and control group, respectively, representing a significant difference between these two groups (P<0.001). Thus, allele *2 of LAPTM4B appears to be associated with genetic susceptibility of HCC and may therefore be considered as a risk factor.
Collapse
Affiliation(s)
- Guojun Zhai
- Department of Interventional Radiology and Vascular Surgery, Peking University Third Hospital, Beijing, 100191, China
| | | | | | | | | | | | | |
Collapse
|
23
|
Kang L, Zhang Y, Zhang N, Zang L, Wang M, Cui X, Jiang Y. Identification of differentially expressed genes in ovaries of chicken attaining sexual maturity at different ages. Mol Biol Rep 2011; 39:3037-45. [PMID: 21691707 DOI: 10.1007/s11033-011-1066-x] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2010] [Accepted: 06/10/2011] [Indexed: 10/18/2022]
Abstract
In poultry as well as in other birds, sexual maturity is one of the important factors influencing female reproduction and egg production. In this study, cDNA-amplified fragment length polymorphism (cDNA-AFLP) differential display approach was used to identify genes related to sexual maturity. Using 54 EcoR I/Mse I selective primer combinations, totally 403 differentially expressed transcript-derived fragments (TDFs) were isolated, 27 of which belong to 25 unigenes. By real-time quantitative PCR (qPCR), the expression pattern of 13 genes was confirmed; among them, four genes including ZNF183 (P < 0.01), KIAA0700, CCT6A, and 23e 15 (P < 0.05) are significantly up-regulated and one gene (Loc418883) is significantly down-regulated (P < 0.01) in sexually mature ovaries compared to immature ones. The mRNA expression dynamics of ZNF183, CCT6A, 23e 15 and Loc418883 were further investigated in ovaries of 70-, 300- and 500-day-old commercial egg-laying hens: the expression level of CCT6A was the highest in 300-day-old hens (P < 0.05), while that of Loc418883 in 500-day-old hens was significantly higher than the other two stages (P < 0.01). The expression levels of ZNF183 and 23e 15 in ovary increase significantly from 70-day-old hens (P < 0.01) and 300-day-old (P < 0.05) to 500-day-old hens, respectively. The consistence of CCT6A expression and egg-laying performance suggests that CCT6A likely plays important role in sexual maturity in hens.
Collapse
Affiliation(s)
- Li Kang
- Lab of Animal Molecular Genetics, College of Animal Science, Shandong Agricultural University, Taian 271018, China
| | | | | | | | | | | | | |
Collapse
|
24
|
Chen LR, Lee SC, Lin YP, Hsieh YL, Chen YL, Yang JR, Liou JF, Chen CF, Lee YP, Shiue YL. Prostaglandin-D synthetase induces transcription of the LH beta subunit in the primary culture of chicken anterior pituitary cells via the PPAR signaling pathway. Theriogenology 2010; 73:367-82. [DOI: 10.1016/j.theriogenology.2009.09.020] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2009] [Revised: 09/16/2009] [Accepted: 09/24/2009] [Indexed: 11/28/2022]
|
25
|
Chen CF, Shiue YL, Yen CJ, Tang PC, Chang HC, Lee YP. Laying traits and underlying transcripts, expressed in the hypothalamus and pituitary gland, that were associated with egg production variability in chickens. Theriogenology 2007; 68:1305-15. [PMID: 17931698 DOI: 10.1016/j.theriogenology.2007.08.032] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2007] [Revised: 08/29/2007] [Accepted: 08/11/2007] [Indexed: 10/22/2022]
Abstract
The objective was to characterize the potential laying traits and underlying transcripts expressed in the hypothalamus and pituitary gland that were associated with egg production variability in five genetic stocks of chickens: two commercial lines, Red- (n=12) and Black-feather (n=14) Taiwan country chickens (TCCs); two selected lines of TCCs, B (high body weight/comb size; n=17) and L2 (high-egg production; n=14); and a commercial single comb White Leghorn (WL; n=17). Six laying traits, age at first egg, clutch length, pause length, oviposition lag within clutch, follicle rapid growth period, and rate of yolk accumulation were measured. The significance of differential values among five chicken stocks and correlation coefficients between laying traits and number of eggs to 50 weeks of age or laying rate after first egg, and the expression level of 33 transcripts were determined. Longer clutch length and shorter oviposition lag within clutch contributed to a higher number of eggs to 50 weeks of age or laying rate after first egg in L2 (P<0.05) and WL strains (P<0.05). However, their rate of yolk accumulation (P<0.05) and follicle rapid growth period (P<0.05) were different, indicating the accumulation of different alleles after long-term, independent selection. Across all five strains, numbers of eggs to 50 weeks of age were positive correlated with average clutch length (P<0.05) as well as the rate of yolk accumulation (P<0.05). Expressions of PLAG1, STMN2, PGDS, PARK7, ANP32A, PCDHA@, SCG2, BDH and SAR1A transcripts contributed to number of eggs to 50 weeks of age (P<0.05) or laying rate after first egg (P<0.05). Analysis of correlation coefficients indicated that PLAG1 additionally played roles in decreasing average pause length. Two transcripts, PRL and GARNL1, specifically contributed to number of eggs to 50 weeks of age or laying rate after first egg by reducing oviposition lag within clutch (P<0.05) and/or increasing average clutch length (P<0.05), respectively. Expression level of NCAM1, contributed to laying rate after first egg by association with a shorter oviposition lag within clutch (P<0.05). The current study attributed egg production phenotype in five strains into several laying traits; correlations between these traits and expression levels of underlying transcripts expressed in the hypothalamus and pituitary gland were also established.
Collapse
Affiliation(s)
- Chih-Feng Chen
- Department of Animal Science, National Chung-Hsing University, 402, Kuo-Kuang Road, Taichung, Taiwan
| | | | | | | | | | | |
Collapse
|