1
|
Sengseng T, Okutsu T, Songnui A, Boonchuay J, Sakunrang C, Wonglapsuwan M. Molecular Markers of Ovarian Germ Cells of Banana Prawn ( Fenneropenaeus merguiensis). Curr Issues Mol Biol 2023; 45:5708-5724. [PMID: 37504276 PMCID: PMC10378296 DOI: 10.3390/cimb45070360] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2023] [Revised: 06/30/2023] [Accepted: 07/05/2023] [Indexed: 07/29/2023] Open
Abstract
The banana prawn (Fenneropenaeus merguiensis) is a valuable prawn in the worldwide market. However, cultivation of this species is limited owing to the difficulty in culture management and limited knowledge of reproduction. Therefore, we studied the gene expression and molecular mechanisms involved in oogenesis for elucidating ovarian germ cell development in banana prawns. The tissue-specific distribution of certain genes identified from previous transcriptome data showed that FmCyclinB, FmNanos, and nuclear autoantigenic sperm protein (FmNASP) were only expressed in gonads. The in situ hybridization (ISH) of these three genes showed different expression patterns throughout oogenesis. FmCyclinB was highly expressed in pre-vitellogenic oocytes. FmNanos was expressed at almost the same level during oogenesis but showed the most expression in late pre-vitellogenic stages. Based on the highest expression of FmCyclinB and FmNanos in mid pre-vitellogenic and late pre-vitellogenic oocytes, respectively, we suggested that FmNanos may suppress FmCyclinB expression before initiation of vitellogenesis. Meanwhile, FmNASP expression was detected only in pre-vitellogenesis. Moreover, quantitative real-time polymerase chain reaction (qRT-PCR) analysis of FmNASP expression was supported by FmNASP ISH analysis based on high expression of FmNASP in sub-adult ovaries, which contain most of pre-vitellogenic oocytes. In this study, we found three reliable ovarian markers for banana prawns and also found a dynamic change of molecular mechanism during the sub-stage of pre-vitellogenesis. We determined the expression levels of these genes involved in oogenesis. Our findings provide information for further studies on banana prawn reproduction which may assist in their cultivation.
Collapse
Affiliation(s)
- Tatiyavadee Sengseng
- Division of Biological Science, Faculty of Science, Prince of Songkla University, Hatyai, Songkhla 90110, Thailand
| | - Tomoyuki Okutsu
- Japan International Research Center for Agricultural Sciences, Tsukuba 305-8686, Ibaraki, Japan
| | - Anida Songnui
- Trang Coastal Fisheries Research and Development Center, Department of Fisheries, Trang 92150, Thailand
| | - Jaruwan Boonchuay
- Division of Biological Science, Faculty of Science, Prince of Songkla University, Hatyai, Songkhla 90110, Thailand
| | - Chanida Sakunrang
- Division of Biological Science, Faculty of Science, Prince of Songkla University, Hatyai, Songkhla 90110, Thailand
| | - Monwadee Wonglapsuwan
- Division of Biological Science, Faculty of Science, Prince of Songkla University, Hatyai, Songkhla 90110, Thailand
- Center for Genomics and Bioinformatics Research, Faculty of Science, Prince of Songkla University, Hatyai, Songkhla 90110, Thailand
| |
Collapse
|
2
|
Zhang BB, Li MX, Wang HN, Liu C, Sun YY, Ma TH. An integrative analysis of lncRNAs and mRNAs highlights the potential roles of lncRNAs in the process of follicle selection in Taihang chickens. Theriogenology 2023; 195:122-130. [DOI: 10.1016/j.theriogenology.2022.10.024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2022] [Revised: 10/17/2022] [Accepted: 10/20/2022] [Indexed: 11/07/2022]
|
3
|
Pan P, Huang X. The Clinical Application of Growth Hormone and Its Biological and Molecular Mechanisms in Assisted Reproduction. Int J Mol Sci 2022; 23:ijms231810768. [PMID: 36142677 PMCID: PMC9505823 DOI: 10.3390/ijms231810768] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2022] [Revised: 09/11/2022] [Accepted: 09/12/2022] [Indexed: 11/26/2022] Open
Abstract
Growth hormone (GH) has been used as a co-gonadotrophin in assisted reproduction, particularly in poor ovarian responders. The application of GH has been alleged to activate primordial follicles and improve oocyte quality, embryo quality, and steroidogenesis. However, the effects of GH on the live birth rate among women is controversial. Additionally, although the basic biological mechanisms that lead to the above clinical differences have been investigated, they are not yet well understood. The actions of GH are mediated by GH receptors (GHRs) or insulin-like growth factors (IGFs). GH regulates the vital signal transduction pathways that are involved in primordial follicular activation, steroidogenesis, and oocyte maturation. However, the therapeutic windows and duration of GH administration during assisted reproductive technology require further investigation. The review aimed to clarify the role of GH in human fertility from a molecular and biological point of view to provide evidence for proper GH administration.
Collapse
|
4
|
Mechanisms of tRNA-derived fragments and tRNA halves in cancer treatment resistance. Biomark Res 2020; 8:52. [PMID: 33072328 PMCID: PMC7559774 DOI: 10.1186/s40364-020-00233-0] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2020] [Accepted: 10/02/2020] [Indexed: 12/22/2022] Open
Abstract
The tRNA-derived fragments (tRFs) and tRNA halves (tiRNAs) are newly discovered noncoding RNAs in recent years. They are derived from specific cleavage of mature and pre-tRNAs and expressed in various cancers. They enhance cell proliferation and metastasis or inhibit cancer progression. Many studies have investigated their roles in the diagnosis, progression, metastasis, and prognosis of various cancers, but the mechanisms through which they are involved in resistance to cancer treatment are unclear. This review outlines the classification of tRFs and tiRNAs and their mechanisms in cancer drug resistance, thus providing new ideas for cancer treatment.
Collapse
|
5
|
Identification of a Growth-Associated Single Nucleotide Polymorphism (SNP) in Cyclin C of the Giant Tiger Shrimp Penaeus monodon. Biochem Genet 2020; 59:114-133. [PMID: 32780225 DOI: 10.1007/s10528-020-09993-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2019] [Accepted: 07/31/2020] [Indexed: 10/23/2022]
Abstract
The full-length cDNA of cyclin C of the giant tiger shrimp Penaeus monodon (PmCyC) was isolated by RACE-PCR. It was 1443 bp in length containing an open reading frame (ORF) of 804 bp and 267 deduced amino acids. Tissue distribution analysis indicated that PmCyC was more abundantly expressed in ovaries and testes than other tissues of female and male juveniles (P < 0.05). A pair of primers was designed, and an amplification product of 403 bp containing an intron of 123 bp was obtained. Polymorphism of amplified PmCyC gene segments of the 5th (3-month-old G5, N = 30) and 7th (5-month-old G7, N = 18) generations of domesticated juveniles was analyzed. Four conserved SNPs (T>C134, T>C188, G>A379, and T>C382) were found within the examined sequences. A TaqMan genotyping assay was developed for detection of a T>C134 SNP. Association analysis indicated that this SNP displayed significant association with body weight (P < 4.2e-10) and total length (P < 2e-09) of the examined G7 P. monodon (N = 419) with an allele substitution effect of 5.02 ± 0.78 g and 1.41 ± 0.19 cm, respectively. Juveniles with C/C134 (22.80 ± 2.51 g and 12.97 ± 0.53 cm, N = 19) and T/C134 (20.41 ± 0.93 g and 12.77 ± 0.21 cm, N = 129) genotypes exhibited a significantly greater average body weight and total length than those with a T/T134 genotype (14.72 ± 0.53 g and 11.37 ± 0.13 cm, N = 271) (P < 0.05).
Collapse
|
6
|
Li Y, Liu H, Yu Q, Liu H, Huang T, Zhao S, Ma J, Zhao H. Growth Hormone Promotes in vitro Maturation of Human Oocytes. Front Endocrinol (Lausanne) 2019; 10:485. [PMID: 31396155 PMCID: PMC6667636 DOI: 10.3389/fendo.2019.00485] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/27/2019] [Accepted: 07/04/2019] [Indexed: 01/18/2023] Open
Abstract
Increasing the success rate of in vitro maturation (IVM) for human oocytes has a major clinical significance. Previous studies have shown that growth hormone (GH) added into IVM medium could promote IVM of oocytes from non-human beings. However, few studies on systematic IVM for human oocytes with GH have been reported. Human germinal vesicle (GV) oocytes collected for IVM were cultured with different concentrations of GH to optimize the concentration. Metaphase II (MII) stage oocytes obtained from IVM were fertilized by intracytoplasmic sperm injection (ICSI). Maturation rate, fertilization rate, and blastocyst rate were assessed after IVM with or without GH. Furthermore, gene expression profiles were compared in oocytes between the two groups using single-cell RNA-seq. The optimal concentration of GH for IVM was 200 ng/ml, and the maturation rate of this group reached 70% which was double that of the control group (35%, P = 0.004). The fertilization rate (73.1 vs. 60.3%) and blastocyst rate (25.0 vs. 15.5%) both had an increasing trend in the GH group compared to controls. Single-cell RNA-Seq and real-time PCR data showed that GH could significantly enhance the expression of genes associated with meiotic progression and embryo development, such as AURKA (aurora kinase A, P = 0.007), PDIA6 (protein disulfide isomerase family A member 6, P = 0.007), LINGO2 (leucine rich repeat and Ig domain containing 2, P = 0.007), and CENPJ (centromere protein J, P = 0.039). Taken together, GH could promote maturation of human oocytes, probably through accelerating meiotic progression, balancing redox homeostasis of cellular environment, and promoting oocyte developmental competence.
Collapse
Affiliation(s)
- Yue Li
- Center for Reproductive Medicine, Shandong University, Jinan, China
- The Key Laboratory of Reproductive Endocrinology of Ministry of Education, Jinan, China
- National Research Center for Assisted Reproductive Technology and Reproductive Genetics, Jinan, China
| | - Hui Liu
- Center for Reproductive Medicine, Shandong University, Jinan, China
- The Key Laboratory of Reproductive Endocrinology of Ministry of Education, Jinan, China
- National Research Center for Assisted Reproductive Technology and Reproductive Genetics, Jinan, China
| | - Qingqing Yu
- Center for Reproductive Medicine, Shandong University, Jinan, China
- The Key Laboratory of Reproductive Endocrinology of Ministry of Education, Jinan, China
- National Research Center for Assisted Reproductive Technology and Reproductive Genetics, Jinan, China
| | - Hongbin Liu
- Center for Reproductive Medicine, Shandong University, Jinan, China
- The Key Laboratory of Reproductive Endocrinology of Ministry of Education, Jinan, China
- National Research Center for Assisted Reproductive Technology and Reproductive Genetics, Jinan, China
| | - Tao Huang
- Center for Reproductive Medicine, Shandong University, Jinan, China
- The Key Laboratory of Reproductive Endocrinology of Ministry of Education, Jinan, China
- National Research Center for Assisted Reproductive Technology and Reproductive Genetics, Jinan, China
| | - Shigang Zhao
- Center for Reproductive Medicine, Shandong University, Jinan, China
- The Key Laboratory of Reproductive Endocrinology of Ministry of Education, Jinan, China
- National Research Center for Assisted Reproductive Technology and Reproductive Genetics, Jinan, China
- *Correspondence: Shigang Zhao
| | - Jinlong Ma
- Center for Reproductive Medicine, Shandong University, Jinan, China
- The Key Laboratory of Reproductive Endocrinology of Ministry of Education, Jinan, China
- National Research Center for Assisted Reproductive Technology and Reproductive Genetics, Jinan, China
| | - Han Zhao
- Center for Reproductive Medicine, Shandong University, Jinan, China
- The Key Laboratory of Reproductive Endocrinology of Ministry of Education, Jinan, China
- National Research Center for Assisted Reproductive Technology and Reproductive Genetics, Jinan, China
| |
Collapse
|
7
|
Wu C, Xu B, Li X, Ma W, Zhang P, Chen X, Wu J. Tracing and Characterizing the Development of Transplanted Female Germline Stem Cells In Vivo. Mol Ther 2017; 25:1408-1419. [PMID: 28528817 DOI: 10.1016/j.ymthe.2017.04.019] [Citation(s) in RCA: 60] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2016] [Revised: 04/16/2017] [Accepted: 04/23/2017] [Indexed: 12/25/2022] Open
Abstract
It has long been believed that most female mammalian species lose the ability to generate oocytes in postnatal ovaries. Recent evidence has demonstrated the isolation and culture of female germline stem cells (FGSCs) from adult mice and humans. However, the process and mechanisms of FGSC differentiation in vivo following transplantation have not yet been studied. Here, we isolated and characterized FGSCs from a single EGFP-transgenic mouse, and traced the development and behavior of transplanted FGSCs (F-TFs) in vivo. Comparisons of folliculogenesis between recipients with FGSC transplantation and wild-type (WT) mice were performed by single follicle RNA-sequencing (RNA-seq). Results showed that FGSCs exhibited a homing ability and began to differentiate into early-stage oocytes only when they reached the edge of the ovarian cortex. The F-TFs restored function of premature ovarian failure (gdf9iCre; PtenloxP/loxP genotype) and generated offspring. Furthermore, results demonstrated that the developmental mechanisms of follicles derived from F-TFs were similar to that of WT follicles. Weighted gene co-expression network analysis identified two potential sub-networks and core genes that played a critical role in follicular development. These findings provide a theoretical basis and lay a technology platform for specific or personalized medical treatment of ovarian failure or other ovarian diseases.
Collapse
Affiliation(s)
- Changqing Wu
- Key Laboratory for the Genetics of Developmental & Neuropsychiatric Disorders (Ministry of Education), Bio-X Institutes, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Bo Xu
- Key Laboratory for the Genetics of Developmental & Neuropsychiatric Disorders (Ministry of Education), Bio-X Institutes, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Xiaoyong Li
- Key Laboratory for the Genetics of Developmental & Neuropsychiatric Disorders (Ministry of Education), Bio-X Institutes, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Wenzhi Ma
- Key Laboratory of Fertility Preservation and Maintenance of Ministry of Education, Ningxia Medical University, Yinchuan 750004, China
| | - Ping Zhang
- School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, 800 Dongchuan Road, Minhang District, Shanghai 200240, China
| | - Xuejin Chen
- Department of Laboratory Animal Sciences, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Ji Wu
- Key Laboratory for the Genetics of Developmental & Neuropsychiatric Disorders (Ministry of Education), Bio-X Institutes, Shanghai Jiao Tong University, Shanghai 200240, China; Key Laboratory of Fertility Preservation and Maintenance of Ministry of Education, Ningxia Medical University, Yinchuan 750004, China; Shanghai Key Laboratory of Reproductive Medicine, Shanghai 200025, China.
| |
Collapse
|
8
|
Molecular characterization and expression analysis of Cyclin B and Cell division cycle 2 in gonads of diploid and triploid bighead catfish, Clarias macrocephalus Günther, 1864. ACTA ACUST UNITED AC 2017. [DOI: 10.1016/j.anres.2016.05.004] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
9
|
Fujioka YA, Onuma A, Fujii W, Sugiura K, Naito K. Analyses of EMI functions on meiotic maturation of porcine oocytes. Mol Reprod Dev 2016; 83:983-992. [PMID: 27649288 DOI: 10.1002/mrd.22738] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2016] [Accepted: 09/09/2016] [Indexed: 11/05/2022]
Abstract
Cyclin B (CCNB) accumulation is essential for regulating maturation/M-phase promoting factor activity during vertebrate oocyte maturation. Anaphase-promoting-complex/cyclosome (APC/C) degrades CCNB, allowing the cell cycle to progress; this complex is inhibited by Early mitotic inhibitors 1 and 2 (EMI1 and EMI2). The involvement of both EMI proteins in meiotic maturation has been reported in Xenopus and mouse oocytes, although a recent study described a marked difference in their respective function during meiotic resumption. Mouse is currently the only mammal in which the contribution of EMI to the oocyte maturation has been analyzed, so we used RNA injection methods to overexpress and knock down EMI1 and EMI2 to investigate their roles during porcine oocyte maturation. Up-regulation of either porcine EMI promoted precocious germinal vesicle breakdown (GVBD) with early CCNB1 accumulation in oocytes-which is consistent with their activities in mouse but not Xenopus oocytes. Knockdown of EMI1, but not EMI2, delayed GVBD and meiotic progression of oocytes from GVBD to meiotic metaphase I (MI). In contrast, knockdown of EMI2, but not EMI1, released oocytes from meiotic metaphase II (MII) arrest to produce a pronucleus. When injected oocytes were parthenogenetically activated, the up-regulation of EMI2, but not EMI1, prevented pronucleus formation. These results point to the similarities and differences of porcine EMI function with those of mouse versus Xenopus EMI, and generally contribute to our understanding of EMI function during mammalian oocyte maturation. Mol. Reprod. Dev. 83: 983-992, 2016 © 2016 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Yoshie A Fujioka
- Department of Animal Resource Sciences, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo, Japan
| | - Asuka Onuma
- Department of Animal Resource Sciences, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo, Japan
| | - Wataru Fujii
- Department of Animal Resource Sciences, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo, Japan
| | - Koji Sugiura
- Department of Animal Resource Sciences, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo, Japan
| | - Kunihiko Naito
- Department of Animal Resource Sciences, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo, Japan
| |
Collapse
|
10
|
Chen J, Lu H, Zhou W, Yin H, Zhu L, Liu C, Zhang P, Hu H, Yang Y, Han H. AURKA upregulation plays a role in fibroblast-reduced gefitinib sensitivity in the NSCLC cell line HCC827. Oncol Rep 2015; 33:1860-6. [PMID: 25634113 PMCID: PMC4440218 DOI: 10.3892/or.2015.3764] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2014] [Accepted: 12/29/2014] [Indexed: 12/12/2022] Open
Abstract
Epidermal growth factor receptor (EGFR) tyrosine kinase inhibitors (EGFR-TKIs) have been used to treat non-small cell lung carcinoma (NSCLC) patients that have EGFR-activating mutations. EGFR-TKI monotherapy in most NSCLC patients with EGFR mutations who initially respond to EGFR-TKIs results in the development of acquired resistance. We investigated the role of fibroblasts in stromal cell-mediated resistance to gefitinib-induced apoptosis in EGFR-mutant NSCLC cells. While gefitinib induced apoptosis in EGFR-mutant NSCLC cells, apoptosis induction was diminished under stromal co-culture conditions. Protection appeared to be mediated in part by Aurora-A kinase (AURKA) upregulation. The protective effect of stromal cells was significantly reduced by pre-exposure to AURKA-shRNA. We suggest that combinations of AURKA antagonists and EGFR inhibitors may be effective in clinical trials targeting mutant EGFR NSCLCs.
Collapse
Affiliation(s)
- Jia Chen
- Translational Medicine Center, Changzheng Hospital, Affiliated to The Second Military Medical University, Shanghai, P.R. China
| | - Huiqi Lu
- Translational Medicine Center, Changzheng Hospital, Affiliated to The Second Military Medical University, Shanghai, P.R. China
| | - Wang Zhou
- Department of Bone Tumor Surgery, Changzheng Hospital, Second Military Medical University, Shanghai, P.R. China
| | - Huabin Yin
- Department of Bone Tumor Surgery, Changzheng Hospital, Second Military Medical University, Shanghai, P.R. China
| | - Lishuang Zhu
- Translational Medicine Center, Changzheng Hospital, Affiliated to The Second Military Medical University, Shanghai, P.R. China
| | - Chang Liu
- Translational Medicine Center, Changzheng Hospital, Affiliated to The Second Military Medical University, Shanghai, P.R. China
| | - Pengfei Zhang
- Translational Medicine Center, Changzheng Hospital, Affiliated to The Second Military Medical University, Shanghai, P.R. China
| | - Huimin Hu
- Translational Medicine Center, Changzheng Hospital, Affiliated to The Second Military Medical University, Shanghai, P.R. China
| | - Yili Yang
- Cancer and Developmental Biology Laboratory, National Cancer Institute, Frederick, MD, USA
| | - Huanxing Han
- Translational Medicine Center, Changzheng Hospital, Affiliated to The Second Military Medical University, Shanghai, P.R. China
| |
Collapse
|
11
|
McGinnis LK, Pelech S, Kinsey WH. Post-ovulatory aging of oocytes disrupts kinase signaling pathways and lysosome biogenesis. Mol Reprod Dev 2014; 81:928-45. [PMID: 25242074 DOI: 10.1002/mrd.22413] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2014] [Accepted: 08/07/2014] [Indexed: 12/21/2022]
Abstract
Post-ovulatory aging of oocytes results in the progressive loss of fertilization and developmental competence. This degradation of oocyte quality has been the object of numerous investigations, primarily focused on individual signaling pathways which provide limited insight into the status of global signaling events. The purpose of the present investigation was to comprehensively assess broad patterns of signaling pathway activity during in vitro aging as an initial step in defining control points that can be targeted to prevent the reduction in oocyte quality during prolonged culture. An antibody microarray-based phospho-proteome analysis performed on oocytes before and after eight hours of culture revealed significant changes in the abundance or activation state of 43 proteins that function in a wide variety of protein kinase-mediated signaling pathways. Several of the most significantly affected kinases were studied by Western blot and confocal immunofluorescence to corroborate the array results. Prolonged culture resulted in global changes in the abundance and activity of protein kinases that regulate the response to calcium, stress, and cell-cycle control. Examination of intracellular structures revealed a previously unrecognized increase in the abundance of large autophogagic lysosomes, which correlates with changes in protein kinase pathways. These results provide insight into the stresses experienced by oocytes during culture and the diversity of responses that results from them. The observed increase in autophagy-related activity, together with the disruptions in calcium signaling, cell-cycle, and stress-response pathways, have the potential to negatively impact oocyte quality by interfering with the normal sequence of biochemical changes that constitute egg activation following fertilization.
Collapse
Affiliation(s)
- Lynda K McGinnis
- Department Molecular and Integrative Physiology, University of Kansas Medical Center, Kansas City, Kansas; Department of Anatomy and Cell Biology, University of Kansas Medical Center, Kansas City, Kansas
| | | | | |
Collapse
|
12
|
Kohata C, Izquierdo-Rico MJ, Romar R, Funahashi H. Development competence and relative transcript abundance of oocytes derived from small and medium follicles of prepubertal gilts. Theriogenology 2013; 80:970-8. [PMID: 23987988 DOI: 10.1016/j.theriogenology.2013.07.023] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2012] [Revised: 07/14/2013] [Accepted: 07/15/2013] [Indexed: 11/29/2022]
Abstract
The objective of this study was to examine the competence of mature oocytes aspirated from small follicles (SF, <2 mm in diameter) and medium follicles (MF, 3-6 mm) of abattoir-derived prepubertal gilt ovaries. Oocytes were selected by the presence of the first polar body (1pb) after IVM in a chemically defined medium, for sperm penetration, pronuclear formation, cleavage rate, and development to the blastocyst stage. Relative transcript abundance of genes associated with regulation of oocyte maturation (AURKA, AURKB, and MOS), fertilization (ZP3 and ZP4), maternal effect (NALP9 and HSF1), and anti-apoptosis (BCL2) were also examined in oocytes at germinal vesicle (GV) and metaphase-II (MII) stages. In SF, compared with MF, the maturation rate post-IVM was lower (P < 0.05), but there were no differences in sperm penetration rate (78.2% and 68.5% at 6 hours after insemination and 90.8% and 91.9% at 9 hours after insemination, P = 0.51 and P = 0.67, respectively), the percentage of oocytes that formed both female and male pronuclei (27.9% and 25.8% at 6 hours after insemination and 79.4% and 76.1% at 9 hours after insemination), or cleavage rate at 48 hours after insemination (85.9% and 89.7%, respectively, P = 0.46), whereas blastocyst formation rate was lower (P < 0.05) in oocytes from SF versus MF (14.7% and 31.0%). Transcript abundances decreased (P < 0.05) in all genes examined between the GV and MII stages, although only transcript abundance for MOS was lower (P < 0.05) in GV oocytes from SF versus MF. In conclusion, mature oocytes from SF and MF of prepubertal gilts with a visible 1pb had similar fertilizability in vitro and relative transcript abundance of nine genes. However, follicle size affected meiotic competence, early embryonic development to the blastocyst stage, and transcript abundance of the MOS gene.
Collapse
Affiliation(s)
- Chiyuki Kohata
- Department of Animal Science, Graduate School of Natural Science and Technology, Okayama University, Tsushima-Naka, Kita-Ku, Okayama, Japan
| | | | | | | |
Collapse
|
13
|
Solc P, Baran V, Mayer A, Bohmova T, Panenkova-Havlova G, Saskova A, Schultz RM, Motlik J. Aurora kinase A drives MTOC biogenesis but does not trigger resumption of meiosis in mouse oocytes matured in vivo. Biol Reprod 2012; 87:85. [PMID: 22837479 DOI: 10.1095/biolreprod.112.101014] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/01/2022] Open
Abstract
Aurora kinase A (AURKA) is an important mitotic kinase involved in the G2/M transition, centrosome maturation and separation, and spindle formation in somatic cells. We used transgenic models that specifically overexpress in mouse oocytes either wild-type (WT-AURKA) or a catalytically inactive (kinase-dead) (KD-AURKA) AURKA to gain new insights regarding the role of AURKA during oocyte maturation. AURKA activation occurs shortly after hCG administration that initiates maturation in vivo. Although AURKA activity is increased in WT-AURKA oocytes, resumption of meiosis is not observed in the absence of hCG administration. Control oocytes contain one to three microtubule organizing centers (MTOCs; centrosome equivalent) at prophase I. At the time of germinal vesicle breakdown (GVBD), the first visible marker of resumption of meiosis, the MTOC number increases. In WT-AURKA oocytes, the increase in MTOC number occurs prematurely but transiently without GVBD, whereas the increase in MTOC number does not occur in control and KD-AURKA oocytes. AURKA activation is biphasic with the initial activation not requiring CDC25B-CDK1 activity, whereas full activation, which is essential for the increase in MTOCs number, depends on CDK1 activity. AURKA activity also influences spindle length and regulates, independent of its protein kinase activity, the amount of MTOC associated with gamma-tubulin. Both WT-AURKA and KD-AURKA transgenic mice have normal fertility during first 6 mo of life. These results suggest that although AURKA is not a trigger kinase for G2/M transition in mouse oocytes, it regulates MTOC number and spindle length, and, independent of its protein kinase activity, gamma-tubulin recruitment to MTOCs.
Collapse
Affiliation(s)
- Petr Solc
- Institute of Animal Physiology and Genetics, Academy of Sciences of the Czech Republic, Libechov, Czech Republic.
| | | | | | | | | | | | | | | |
Collapse
|
14
|
|
15
|
Kang MK, Han SJ. Post-transcriptional and post-translational regulation during mouse oocyte maturation. BMB Rep 2011; 44:147-57. [DOI: 10.5483/bmbrep.2011.44.3.147] [Citation(s) in RCA: 52] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
|
16
|
Nishimura Y, Kano K, Naito K. Porcine CPEB1 is involved in Cyclin B translation and meiotic resumption in porcine oocytes. Anim Sci J 2010; 81:444-52. [PMID: 20662813 DOI: 10.1111/j.1740-0929.2010.00755.x] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Ovarian immature oocytes accumulate many dormant maternal mRNAs, which have short poly(A) tails. Cytoplasmic-polyadenylation-element binding protein (CPEB) has been reported to play key roles for the elongation of the tails and the translation of these mRNAs in Xenopus oocytes. However, the functions of CPEB in meiotic resumption have not yet been established in mammalian oocytes. The present study examined the roles of porcine CPEB in Cyclin B syntheses and meiotic resumption of porcine oocytes. Porcine CPEB1 (pCPEB1) cDNA was cloned from total RNA of immature oocytes by RT-PCR. The overexpression of pCPEB1 by mRNA injection into immature oocytes increased Cyclin B expression and the rate of meiotic resumption. Conversely, the inhibition of endogenous CPEB by expression of a dominant-negative mutant pCPEB1 (AA-CPEB), which replaced the expected phosphorylation sites with alanines, had the effect of inhibiting Cyclin B synthesis, ribosomal S6 kinase phosphorylation (an indicator of Mos activity), and meiotic resumption. The inhibition of porcine Aurora A by an injection of antisense RNA enhanced the inhibitory effects of AA-CPEB. These results suggest the involvement of mammalian CPEB1 in Cyclin B syntheses and meiotic resumption in mammalian oocytes. In addition, the phosphorylation sites of pCPEB1 were identified and are suggested to be phosphorylated by porcine Aurora A.
Collapse
Affiliation(s)
- Yukio Nishimura
- Department of Animal Resource Sciences, The University of Tokyo, Bunkyo, Tokyo, Japan
| | | | | |
Collapse
|
17
|
Preechaphol R, Klinbunga S, Khamnamtong B, Menasveta P. Isolation and characterization of genes functionally involved in ovarian development of the giant tiger shrimp Penaeus monodon by suppression subtractive hybridization (SSH). Genet Mol Biol 2010; 33:676-85. [PMID: 21637577 PMCID: PMC3036150 DOI: 10.1590/s1415-47572010000400014] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2009] [Accepted: 06/29/2010] [Indexed: 12/05/2022] Open
Abstract
Suppression subtractive hybridization (SSH) libraries between cDNA in stages I (previtellogenic) and III (cortical rod) ovaries of the giant tiger shrimp (Penaeus monodon) were established. In all, 452 ESTs were unidirectionally sequenced. Sequence assembly generated 28 contigs and 201 singletons, 109 of which (48.0%) corresponding to known sequences previously deposited in GenBank. Several reproduction-related transcripts were identified. The full-length cDNA of anaphase promoting complex subunit 11 (PmAPC11; 600 bp with an ORF of 255 bp corresponding to a polypeptide of 84 amino acids) and selenoprotein Mprecursor (PmSePM; 904 bp with an ORF of 396 bp corresponding to a polypeptide of 131 amino acids) were characterized and reported for the first time in penaeid shrimp. Semiquantitative RT-PCR revealed that the expression levels of PmSePM and keratinocyte-associated protein 2 significantly diminished throughout ovarian development, whereas Ser/Thrcheckpoint kinase 1 (Chk1), DNA replication licensing factor mcm2 and egalitarian were down-regulated in mature ovaries of wild P. monodon (p < 0.05). Accordingly, the expression profiles of PmSePM and keratinocyte-associated protein 2 could be used as biomarkers for evaluating the degree of reproductive maturation in domesticated P. monodon.
Collapse
Affiliation(s)
- Rachanimuk Preechaphol
- Program in Biotechnology, Faculty of Science, Chulalongkorn University, Bangkok Thailand
| | | | | | | |
Collapse
|
18
|
Klinbunga S, Sittikankaew K, Yuvanatemiya V, Preechaphol R, Prasertlux S, Yamano K, Menasveta P. Molecular Cloning and Expression Analysis ofOvary-Specific Transcript 1(Pm-OST1) of the Giant Tiger Shrimp,Penaeus monodon. Zoolog Sci 2009; 26:783-90. [DOI: 10.2108/zsj.26.783] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|