1
|
Al-Shabebi A, Althnaian T, Alkhodair K. Localization and expression of ADAM2 in the dromedary camel testis, epididymis and sperm during rutting season. Anim Reprod 2021; 18:e20200241. [PMID: 33936295 PMCID: PMC8078865 DOI: 10.1590/1984-3143-ar2020-0241] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
Abstract
ADAM2 (fertilin β) is a sperm surface protein reported in several mammalian species. However, the presence of ADAM2 in the male reproductive system and sperm of the camel is not well known. The present study was to clarify the localization and expression of ADAM2 in the dromedary camel testis, epididymis and spermatozoa during rutting season using immunohistochemistry (IHC) and the quantitative real-time polymerase chain reaction (qPCR). Tissue samples were obtained from the testis (proximal and distal) and epididymis (caput, corpus, and cauda) from eight mature male camels. Epididymal and ejaculated sperms were collected from four other fertile camels. IHC analysis clearly showed the localization of ADAM2 protein in the spermatocytes and the round and elongated spermatids of the testis, in the epithelial cells along the epididymis tract, on the posterior head of the sperm within the cauda epididymis, and on the acrosomal cap of both the epididymal and ejaculated sperm. The expression of camel ADAM2 mRNA was significantly higher (P < 0.05) in the testis when compared with the epididymis. These findings may suggest an important role of ADAM2 in the fertility of male dromedary camels.
Collapse
Affiliation(s)
- Abdulkarem Al-Shabebi
- Department of Anatomy, College of Veterinary Medicine, king Faisal University, Al-Ahsa, Saudi Arabia.,College of Veterinary Medicine, Thamar University, Dhamar, Yemen
| | - Thnaian Althnaian
- Department of Anatomy, College of Veterinary Medicine, king Faisal University, Al-Ahsa, Saudi Arabia
| | - Khalid Alkhodair
- Department of Anatomy, College of Veterinary Medicine, king Faisal University, Al-Ahsa, Saudi Arabia
| |
Collapse
|
2
|
Zhao XC, Wang L, Sun J, Jiang BW, Zhang EL, Ye J. Isolating Sperm from Cell Mixtures Using Magnetic Beads Coupled with an Anti-PH-20 Antibody for Forensic DNA Analysis. PLoS One 2016; 11:e0159401. [PMID: 27442128 PMCID: PMC4956189 DOI: 10.1371/journal.pone.0159401] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2016] [Accepted: 07/02/2016] [Indexed: 12/05/2022] Open
Abstract
Vaginal swabs taken in rape cases usually contain epithelial cells from the victim and sperm from the assailant and forensic DNA analysis requires separation of sperm from these cell mixtures. PH-20, which is a glycosylphosphatidylinositol-anchored hyaluronidase located on the head of sperm, has important functions in fertilization. Here we describe a newly developed method for sperm isolation using anti-PH-20 antibody-coupled immunomagnetic beads (anti-PH-20 IMBs). Optical microscopy and scanning electron microscopy showed the IMBs recognized the head of sperm specifically and exhibited a great capacity to capture sperm cells. However, we found it necessary to incubate the IMB–sperm complex with DNase I before sperm lysis in order to remove any female DNA completely. We compared the sensitivity of anti-PH-20 IMBs in sperm and epithelial cell discrimination to those coated with a different anti-sperm antibody (anti-SP-10, anti-ADAM2 or anti-JLP). Only the anti-PH-20 IMBs succeeded in isolating sperm from cell mixtures at a sperm/epithelial cell ratio of 103:105. Further, our method exhibited greater power and better stability for sperm isolation compared to the traditional differential lysis strategy. Taken together, the anti-PH-20 IMB method described here could be effective for the isolation of sperm needed to obtain a single-sourced DNA profile as an aid to identifying the perpetrator in sexual assault cases.
Collapse
Affiliation(s)
- Xing-Chun Zhao
- Beijing Engineering Research Center of Crime Scene Evidence Examination, Institute of Forensic Science, Ministry of Public Security, Beijing, People's Republic of China
- Key Laboratory of Forensic Genetics, Institute of Forensic Science, Ministry of Public Security, Beijing, People's Republic of China
- * E-mail: (XCZ); (JY)
| | - Le Wang
- Beijing Engineering Research Center of Crime Scene Evidence Examination, Institute of Forensic Science, Ministry of Public Security, Beijing, People's Republic of China
- Key Laboratory of Forensic Genetics, Institute of Forensic Science, Ministry of Public Security, Beijing, People's Republic of China
| | - Jing Sun
- Beijing Engineering Research Center of Crime Scene Evidence Examination, Institute of Forensic Science, Ministry of Public Security, Beijing, People's Republic of China
- Key Laboratory of Forensic Genetics, Institute of Forensic Science, Ministry of Public Security, Beijing, People's Republic of China
| | - Bo-Wei Jiang
- Department of Scientific Instruments, the First Research Institute of the Ministry of Public Security, Beijing, People's Republic of China
| | - Er-Li Zhang
- Department of Criminalistics, People's Public Security University of China, Beijing, People's Republic of China
| | - Jian Ye
- Beijing Engineering Research Center of Crime Scene Evidence Examination, Institute of Forensic Science, Ministry of Public Security, Beijing, People's Republic of China
- Key Laboratory of Forensic Genetics, Institute of Forensic Science, Ministry of Public Security, Beijing, People's Republic of China
- * E-mail: (XCZ); (JY)
| |
Collapse
|
3
|
Abstract
The members of the ADAM (a disintegrin and metalloprotease) family are membrane-anchored multi-domain proteins that play prominent roles in male reproduction. ADAM2, which was one of the first identified ADAMs, is the best studied ADAM in reproduction. In the male germ cells of mice, ADAM2 and other ADAMs form complexes that contribute to sperm-sperm adhesion, sperm-egg interactions, and the migration of sperm in the female reproductive tract. Here, we generated specific antibodies against mouse and human ADAM2, and investigated various features of ADAM2 in mice, monkeys and humans. We found that the cytoplasmic domain of ADAM2 might enable the differential association of this protein with other ADAMs in mice. Western blot analysis with the anti-human ADAM2 antibodies showed that ADAM2 is present in the testis and sperm of monkeys. Monkey ADAM2 was found to associate with chaperone proteins in testis. In humans, we identified ADAM2 as a 100-kDa protein in the testis, but failed to detect it in sperm. This is surprising given the results in mice and monkeys, but it is consistent with the failure of ADAM2 identification in the previous proteomic analyses of human sperm. These findings suggest that the reproductive functions of ADAM2 differ between humans and mice. Our protein analysis showed the presence of potential ADAM2 complexes involving yet-unknown proteins in human testis. Taken together, our results provide new information regarding the characteristics of ADAM2 in mammalian species, including humans.
Collapse
|
4
|
Choi H, Jin S, Kwon JT, Kim J, Jeong J, Kim J, Jeon S, Park ZY, Jung KJ, Park K, Cho C. Characterization of Mammalian ADAM2 and Its Absence from Human Sperm. PLoS One 2016; 11:e0158321. [PMID: 27341348 PMCID: PMC4920383 DOI: 10.1371/journal.pone.0158321] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2016] [Accepted: 06/14/2016] [Indexed: 12/16/2022] Open
Abstract
The members of the ADAM (a disintegrin and metalloprotease) family are membrane-anchored multi-domain proteins that play prominent roles in male reproduction. ADAM2, which was one of the first identified ADAMs, is the best studied ADAM in reproduction. In the male germ cells of mice, ADAM2 and other ADAMs form complexes that contribute to sperm-sperm adhesion, sperm-egg interactions, and the migration of sperm in the female reproductive tract. Here, we generated specific antibodies against mouse and human ADAM2, and investigated various features of ADAM2 in mice, monkeys and humans. We found that the cytoplasmic domain of ADAM2 might enable the differential association of this protein with other ADAMs in mice. Western blot analysis with the anti-human ADAM2 antibodies showed that ADAM2 is present in the testis and sperm of monkeys. Monkey ADAM2 was found to associate with chaperone proteins in testis. In humans, we identified ADAM2 as a 100-kDa protein in the testis, but failed to detect it in sperm. This is surprising given the results in mice and monkeys, but it is consistent with the failure of ADAM2 identification in the previous proteomic analyses of human sperm. These findings suggest that the reproductive functions of ADAM2 differ between humans and mice. Our protein analysis showed the presence of potential ADAM2 complexes involving yet-unknown proteins in human testis. Taken together, our results provide new information regarding the characteristics of ADAM2 in mammalian species, including humans.
Collapse
Affiliation(s)
- Heejin Choi
- School of Life Sciences, Gwangju Institute of Science and Technology, Gwangju, Korea
| | - Sora Jin
- School of Life Sciences, Gwangju Institute of Science and Technology, Gwangju, Korea
| | - Jun Tae Kwon
- School of Life Sciences, Gwangju Institute of Science and Technology, Gwangju, Korea
| | - Jihye Kim
- School of Life Sciences, Gwangju Institute of Science and Technology, Gwangju, Korea
| | - Juri Jeong
- School of Life Sciences, Gwangju Institute of Science and Technology, Gwangju, Korea
| | - Jaehwan Kim
- School of Life Sciences, Gwangju Institute of Science and Technology, Gwangju, Korea
| | - Suyeon Jeon
- School of Life Sciences, Gwangju Institute of Science and Technology, Gwangju, Korea
| | - Zee Yong Park
- School of Life Sciences, Gwangju Institute of Science and Technology, Gwangju, Korea
| | - Kang-Jin Jung
- The National Primate Research Center, Korea Research Institute of Bioscience and Biotechnology, Cheongju, Korea
| | - Kwangsung Park
- Department of Urology, Chonnam National University Medical School, Gwangju, Korea
| | - Chunghee Cho
- School of Life Sciences, Gwangju Institute of Science and Technology, Gwangju, Korea
- * E-mail:
| |
Collapse
|
5
|
Kim E. Molecular cloning and characterization of Izumo1 gene from bovine testis. JOURNAL OF ANIMAL SCIENCE AND TECHNOLOGY 2015; 57:16. [PMID: 26290736 PMCID: PMC4540309 DOI: 10.1186/s40781-015-0049-1] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/03/2014] [Accepted: 03/19/2015] [Indexed: 01/12/2023]
Abstract
A well-characterized sperm specific protein of the Member of immunoglobulin superfamily, IZUMO1, has crucial role in fertilization by mediating sperm binding to the egg plasma membrane in the mouse. However little is known about IZUMO1 in bovine. Here, we describe the molecular cloning and expression analysis of bovine IZUMO1 (bIZUMO1). RT-PCR and Western blot analysis of the bovine tissues indicated that bIZUMO1 was specifically expressed in the testis and sperm, Furthermore, the result of our biotinylation assay from ejaculated bovine sperm strongly suggest the assumption that bIZUMO1 is localized on the cell surface. These data imply the potential role of bovine IZUMO1 in mammalian fertilization.
Collapse
Affiliation(s)
- Ekyune Kim
- College of Pharmacy, Catholic University of Daegu, Gyeongsan, 712-702 Republic of Korea
| |
Collapse
|
6
|
He L, Jiang H, Cao D, Liu L, Hu S, Wang Q. Comparative transcriptome analysis of the accessory sex gland and testis from the Chinese mitten crab (Eriocheir sinensis). PLoS One 2013; 8:e53915. [PMID: 23342039 PMCID: PMC3547057 DOI: 10.1371/journal.pone.0053915] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2012] [Accepted: 12/04/2012] [Indexed: 01/30/2023] Open
Abstract
The accessory sex gland (ASG) is an important component of the male reproductive system, which functions to enhance the fertility of spermatozoa during male reproduction. Certain proteins secreted by the ASG are known to bind to the spermatozoa membrane and affect its function. The ASG gene expression profile in Chinese mitten crab (Eriocheir sinensis) has not been extensively studied, and limited genetic research has been conducted on this species. The advent of high-throughput sequencing technologies enables the generation of genomic resources within a short period of time and at minimal cost. In the present study, we performed de novo transcriptome sequencing to produce a comprehensive transcript dataset for the ASG of E. sinensis using Illumina sequencing technology. This analysis yielded a total of 33,221,284 sequencing reads, including 2.6 Gb of total nucleotides. Reads were assembled into 85,913 contigs (average 218 bp), or 58,567 scaffold sequences (average 292 bp), that identified 37,955 unigenes (average 385 bp). We assembled all unigenes and compared them with the published testis transcriptome from E. sinensis. In order to identify which genes may be involved in ASG function, as it pertains to modification of spermatozoa, we compared the ASG and testis transcriptome of E. sinensis. Our analysis identified specific genes with both higher and lower tissue expression levels in the two tissues, and the functions of these genes were analyzed to elucidate their potential roles during maturation of spermatozoa. Availability of detailed transcriptome data from ASG and testis in E. sinensis can assist our understanding of the molecular mechanisms involved with spermatozoa conservation, transport, maturation and capacitation and potentially acrosome activation.
Collapse
Affiliation(s)
- Lin He
- School of Life Science, East China Normal University, Shanghai, China
| | - Hui Jiang
- School of Life Science, East China Normal University, Shanghai, China
| | - Dandan Cao
- Key Laboratory of Genome Sciences and Information, Beijing Institute of Genomics, Chinese Academy of Sciences, Beijing, China
| | - Lihua Liu
- School of Life Science, East China Normal University, Shanghai, China
| | - Songnian Hu
- Key Laboratory of Genome Sciences and Information, Beijing Institute of Genomics, Chinese Academy of Sciences, Beijing, China
| | - Qun Wang
- School of Life Science, East China Normal University, Shanghai, China
- * E-mail:
| |
Collapse
|
7
|
Cho C. Testicular and epididymal ADAMs: expression and function during fertilization. Nat Rev Urol 2012; 9:550-60. [DOI: 10.1038/nrurol.2012.167] [Citation(s) in RCA: 61] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
|
8
|
DACH1 regulates cell cycle progression of myeloid cells through the control of cyclin D, Cdk 4/6 and p21Cip1. Biochem Biophys Res Commun 2012; 420:91-5. [PMID: 22405764 DOI: 10.1016/j.bbrc.2012.02.120] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2012] [Accepted: 02/23/2012] [Indexed: 12/23/2022]
Abstract
The cell-fate determination factor Dachshund, a component of the Retinal Determination Gene Network (RDGN), has a role in breast tumor proliferation through the repression of cyclin D1 and several key regulators of embryonic stem cell function, such as Nanog and Sox2. However, little is known about the role of DACH1 in a myeloid lineage as a cell cycle regulator. Here, we identified the differential expression levels of extensive cell cycle regulators controlled by DACH1 in myeloid progenitor cells. The forced expression of DACH1 induced p27(Kip1) and repressed p21(Cip1), which is a pivotal characteristic of the myeloid progenitor. Furthermore, DACH1 significantly increased the expression of cyclin D1, D3, F, and Cdk 1, 4, and 6 in myeloid progenitor cells. The knockdown of DACH1 blocked the cell cycle progression of HL-60 promyeloblastic cells through the decrease of cyclin D1, D3, F, and Cdk 1, 4, and 6 and increase in p21(Cip1), which in turn decreased the phosphorylation of the Rb protein. The expression of Sox2, Oct4, and Klf4 was significantly up-regulated by the forced expression of DACH1 in mouse myeloid progenitor cells.
Collapse
|
9
|
Fàbrega A, Guyonnet B, Dacheux JL, Gatti JL, Puigmulé M, Bonet S, Pinart E. Expression, immunolocalization and processing of fertilins ADAM-1 and ADAM-2 in the boar (Sus domesticus) spermatozoa during epididymal maturation. Reprod Biol Endocrinol 2011; 9:96. [PMID: 21718510 PMCID: PMC3141649 DOI: 10.1186/1477-7827-9-96] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/20/2010] [Accepted: 06/30/2011] [Indexed: 11/10/2022] Open
Abstract
Fertilin alpha (ADAM-1) and beta (ADAM-2) are integral membrane proteins of the ADAM family that form a fertilin complex involved in key steps of the sperm-oocyte membrane interaction. In the present work, we analyzed the presence of ADAM-1 and ADAM-2 mRNAs, the spermatozoa proteins' processing and their sub-cellular localization in epididymal samples from adult boars. ADAM-1 and ADAM-2 mRNAs were highly produced in the testis, but also in the vas efferens and the epididymis. On immunoblots of sperm extracts, ADAM-1 subunit appeared as a main reactive band of ~50-55 kDa corresponding to occurrence of different isoforms throughout the epididymal duct, especially in the corpus region where isoforms ranged from acidic to basic pI. In contrast, ADAM-2 was detected as several bands of ~90 kDa, ~75 kDa, ~50-55 kDa and ~40 kDa. The intensity of high molecular mass bands decreased progressively in the distal corpus where lower bands were also transiently observed, and only the ~40 kDa was observed in the cauda. The presence of bands of different molecular weights likely results from a proteolytic processing occurring mainly in the testis for ADAM-1, and also throughout the caput epididymis for ADAM-2. Immunolocalization showed that fertilin migrates from the acrosomal region to the acrosomal ridge during the sperm transit from the distal corpus to the proximal cauda. This migration is accompanied by an important change in the extractability of a part of ADAM-1 from the sperm membrane. This suggests that the fertilin surface migration may be triggered by the biochemical changes induced by the epididymal post-translational processing of both ADAM1 and ADAM-2. Different patterns of fertilin immunolocalization then define several populations of spermatozoa in the cauda epididymis. Characterization of such fertilin complex maturation patterns is an important step to develop fertility markers based on epididymal maturation of surface membrane proteins in domestic mammals.
Collapse
Affiliation(s)
- Anna Fàbrega
- Biotechnology of Animal and Human Reproduction (TechnoSperm), Department of Biology, Institute of Food and Agricultural Technology, University of Girona, Campus Montilivi, s/n, 17071 Girona, Spain
| | - Benoît Guyonnet
- Gamètes Males et Fertilité, Physiologie de la Reproduction et des Comportements, UMR 6175 INRA-CNRS-Université de Tours, 37380 Nouzilly, France
| | - Jean-Louis Dacheux
- Gamètes Males et Fertilité, Physiologie de la Reproduction et des Comportements, UMR 6175 INRA-CNRS-Université de Tours, 37380 Nouzilly, France
| | - Jean-Luc Gatti
- Gamètes Males et Fertilité, Physiologie de la Reproduction et des Comportements, UMR 6175 INRA-CNRS-Université de Tours, 37380 Nouzilly, France
- ESIM, UMR 1301 IBSV INRA-CNRS-Université Nice Sophia Antipolis, 400 route des Chappes, 06903 Sophia Antipolis, France
| | - Marta Puigmulé
- Biotechnology of Animal and Human Reproduction (TechnoSperm), Department of Biology, Institute of Food and Agricultural Technology, University of Girona, Campus Montilivi, s/n, 17071 Girona, Spain
| | - Sergi Bonet
- Biotechnology of Animal and Human Reproduction (TechnoSperm), Department of Biology, Institute of Food and Agricultural Technology, University of Girona, Campus Montilivi, s/n, 17071 Girona, Spain
| | - Elisabeth Pinart
- Biotechnology of Animal and Human Reproduction (TechnoSperm), Department of Biology, Institute of Food and Agricultural Technology, University of Girona, Campus Montilivi, s/n, 17071 Girona, Spain
| |
Collapse
|
10
|
Kim E, Lee Y, Kim JS, Song BS, Kim SU, Huh JW, Lee SR, Kim SH, Hong Y, Chang KT. Extracellular domain of V-set and immunoglobulin domain containing 1 (VSIG1) interacts with sertoli cell membrane protein, while its PDZ-binding motif forms a complex with ZO-1. Mol Cells 2010; 30:443-8. [PMID: 20957455 DOI: 10.1007/s10059-010-0138-4] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2010] [Revised: 08/17/2010] [Accepted: 08/19/2010] [Indexed: 10/18/2022] Open
Abstract
V-set and immunoglobulin domain containing 1 (VSIG1) is a newly discovered member of the junctional adhesion molecule (JAM) family; it is encoded by a gene located on human chromosome X and preferentially expressed in a variety of cancers in humans. Little is known about its physiological function. To determine the role(s) of VSIG1 in mammalian spermatogenesis, we first generated a specific antibody against mouse VSIG1 and examined the presence and localization of the protein in tissues. RTRCR and Western blot analysis of the mouse tissues indicated that VSIG1 was specifically expressed in the testis. Furthermore, the results of our trypsinization and biotinylation assays strongly support the assumption that VSIG1 is localized on the testicular germ cell surface. In order to determine whether VSIG1 is capable of participation in homotypic interactions, we performed a GST-pull down assay by using recombinant GST-fusion and Histagging proteins. The pull-down assay revealed that each GST-fusion Ig-like domain shows homotypic binding. We further show that mVSIG1 can adhere to the Sertoli cells through its first Ig-like domain. To identify the protein that interacted with cytoplasmic domain, we next performed co-immunoprecipitation analysis. This analysis showed that ZO-1, which is the central structural protein of the tight junction, is the binding partner of the cytoplasmic domain of mouse VSIG1. Our findings suggest that mouse VSIG1 interacts with Sertoli cells by heterophilic adhesion via its first Ig-like domain. In addition, its cytoplasmic domain is critical for binding to ZO-1.
Collapse
Affiliation(s)
- Ekyune Kim
- National Primate Research Center, Korea Research Institute of Biotechnology, Ochang, 363-883, Korea
| | | | | | | | | | | | | | | | | | | |
Collapse
|