1
|
Li Y, Xiao P, Boadu F, Goldkamp AK, Nirgude S, Cheng J, Hagen DE, Kalish JM, Rivera RM. Beckwith-Wiedemann syndrome and large offspring syndrome involve alterations in methylome, transcriptome, and chromatin configuration. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2025:2023.12.14.23299981. [PMID: 38168424 PMCID: PMC10760283 DOI: 10.1101/2023.12.14.23299981] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2024]
Abstract
Beckwith-Wiedemann Syndrome (BWS) is the most common epigenetic overgrowth syndrome, caused by epigenetic alterations on chromosome 11p15. In ∼50% of patients with BWS, the imprinted region KvDMR1 (IC2) is hypomethylated. Nearly all children with BWS develop organ overgrowth and up to 28% develop cancer during childhood. The global epigenetic alterations beyond the 11p15 region in BWS are not currently known. Uncovering these alterations at the methylome, transcriptome, and chromatin architecture levels are necessary steps to improve the diagnosis and understanding of patients with BWS. Here we characterized the complete epigenetic profiles of BWS IC2 individuals together with the animal model of BWS, bovine large offspring syndrome (LOS). A novel finding of this research is the identification of two molecular subgroups of BWS IC2 individuals. Genome-wide alternations were detected for DNA methylation, transcript abundance, alternative splicing events of RNA, chromosome compartments, and topologically associating domains (TADs) in BWS and LOS, with shared alterations identified between species. Altered chromosome compartments and TADs were correlated with differentially expressed genes in BWS and LOS. Together, we highlight genes and genomic regions that have the potential to serve as targets for biomarker development to improve current molecular diagnostic methodologies for BWS.
Collapse
|
2
|
Verruma CG, Santos RS, Marchesi JAP, Sales SLA, Vila RA, Rios ÁFL, Furtado CLM, Ramos ES. Dynamic methylation pattern of H19DMR and KvDMR1 in bovine oocytes and preimplantation embryos. J Assist Reprod Genet 2024; 41:333-345. [PMID: 38231285 PMCID: PMC10894807 DOI: 10.1007/s10815-023-03011-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2023] [Accepted: 12/19/2023] [Indexed: 01/18/2024] Open
Abstract
PURPOSE This study aimed to evaluate the epigenetic reprogramming of ICR1 (KvDMR1) and ICR2 (H19DMR) and expression of genes controlled by them as well as those involved in methylation, demethylation, and pluripotency. METHODS We collected germinal vesicle (GV) and metaphase II (MII) oocytes, and preimplantation embryos at five stages [zygote, 4-8 cells, 8-16 cells, morula, and expanded blastocysts (ExB)]. DNA methylation was assessed by BiSeq, and the gene expression was evaluated using qPCR. RESULTS H19DMR showed an increased DNA methylation from GV to MII oocytes (68.04% and 98.05%, respectively), decreasing in zygotes (85.83%) until morula (61.65%), and ExB (63.63%). H19 and IGF2 showed increased expression in zygotes, which decreased in further stages. KvDMR1 was hypermethylated in both GV (71.82%) and MII (69.43%) and in zygotes (73.70%) up to morula (77.84%), with a loss of methylation at the ExB (36.64%). The zygote had higher expression of most genes, except for CDKN1C and PHLDA2, which were highly expressed in MII and GV oocytes, respectively. DNMTs showed increased expression in oocytes, followed by a reduction in the earliest stages of embryo development. TET1 was downregulated until 4-8-cell and upregulated in 8-16-cell embryos. TET2 and TET3 showed higher expression in oocytes, and a downregulation in MII oocytes and 4-8-cell embryo. CONCLUSION We highlighted the heterogeneity in the DNA methylation of H19DMR and KvDMR1 and a dynamic expression pattern of genes controlled by them. The expression of DNMTs and TETs genes was also dynamic owing to epigenetic reprogramming.
Collapse
Affiliation(s)
- Carolina G Verruma
- Department of Genetics, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, SP, 14049-900, Brazil
| | - Renan S Santos
- Postgraduate Program in Physiology and Pharmacology, Drug Research and Development Center (NPDM), Federal University of Ceara (UFC), Fortaleza, CE, 60430-275, Brazil
| | - Jorge A P Marchesi
- Department of Genetics, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, SP, 14049-900, Brazil
| | - Sarah L A Sales
- Postgraduate Program in Physiology and Pharmacology, Drug Research and Development Center (NPDM), Federal University of Ceara (UFC), Fortaleza, CE, 60430-275, Brazil
| | - Reginaldo A Vila
- Department of Genetics, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, SP, 14049-900, Brazil
| | - Álvaro F L Rios
- Biotechnology Laboratory, Center of Bioscience and Biotechnology, State University of North Fluminense Darcy Ribeiro, Goitacazes Campus, Rio de Janeiro, Brazil
| | - Cristiana L M Furtado
- Experimental Biology Center, Graduate Program in Medical Sciences, University of Fortaleza - UNIFOR, Fortaleza, CE, 60811-905, Brazil
- Drug Research and Development Center (NPDM), Postgraduate Program in Translational Medicine, Federal University of Ceara (UFC), Fortaleza, CE, 60430-275, Brazil
| | - Ester S Ramos
- Department of Genetics, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, SP, 14049-900, Brazil.
| |
Collapse
|
3
|
Bina M. Defining Candidate Imprinted loci in Bos taurus. Genes (Basel) 2023; 14:1036. [PMID: 37239396 PMCID: PMC10217866 DOI: 10.3390/genes14051036] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Revised: 04/27/2023] [Accepted: 04/30/2023] [Indexed: 05/28/2023] Open
Abstract
Using a whole-genome assembly of Bos taurus, I applied my bioinformatics strategy to locate candidate imprinting control regions (ICRs) genome-wide. In mammals, genomic imprinting plays essential roles in embryogenesis. In my strategy, peaks in plots mark the locations of known, inferred, and candidate ICRs. Genes in the vicinity of candidate ICRs correspond to potential imprinted genes. By displaying my datasets on the UCSC genome browser, one could view peak positions with respect to genomic landmarks. I give two examples of candidate ICRs in loci that influence spermatogenesis in bulls: CNNM1 and CNR1. I also give examples of candidate ICRs in loci that influence muscle development: SIX1 and BCL6. By examining the ENCODE data reported for mice, I deduced regulatory clues about cattle. I focused on DNase I hypersensitive sites (DHSs). Such sites reveal accessibility of chromatin to regulators of gene expression. For inspection, I chose DHSs in chromatin from mouse embryonic stem cells (ESCs) ES-E14, mesoderm, brain, heart, and skeletal muscle. The ENCODE data revealed that the SIX1 promoter was accessible to the transcription initiation apparatus in mouse ESCs, mesoderm, and skeletal muscles. The data also revealed accessibility of BCL6 locus to regulatory proteins in mouse ESCs and examined tissues.
Collapse
Affiliation(s)
- Minou Bina
- Department of Chemistry, Purdue University, West Lafayette, IN 47907, USA
| |
Collapse
|
4
|
Nava-Trujillo H, Rivera RM. Review: Large offspring syndrome in ruminants: current status and prediction during pregnancy. Animal 2023; 17 Suppl 1:100740. [PMID: 37567678 DOI: 10.1016/j.animal.2023.100740] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2022] [Revised: 01/03/2023] [Accepted: 01/06/2023] [Indexed: 08/13/2023] Open
Abstract
Large/abnormal Offspring Syndrome (LOS/AOS) is a congenital overgrowth condition of cattle and sheep, characterized by macrosomia, abdominal wall defects, organomegaly, difficulty to stand and suckle at parturition. The condition was first described as an exclusive consequence of assisted reproductive technologies, such as in vitro production and somatic cell nuclear transfer (cloning). However, we recently reported the spontaneous occurrence of this syndrome in cattle. The etiology of LOS is unclear, although the syndrome is an epigenetic condition characterized by multi-locus loss-of-imprinting, global dysregulation of small and long RNAs, changes in DNA methylation, and altered chromosomal architecture. These molecular and epigenetic changes affect biological pathways implicated in organ size, cell proliferation, cell survival, resulting in the phenotypes which characterize LOS. The lack of accurate tools for the prediction and diagnosis of LOS and the prevention of dystocia resulting from fetal overgrowth is a major concern for the dairy and beef industries. Furthermore, death of the calf and/or dam during calving adds animal welfare issues and affects the net income of the industry. An early diagnosis of LOS/AOS during gestation is critical to facilitate the decision-making process on whether to allow the pregnancy to continue or not in order to prevent harm to the dam as well as to provide producers with the timely necessary information to prepare for a difficult birth. The present review summarizes the definition, traits, incidence, and molecular characteristics of LOS to provide information and serve as a guide for future investigations regarding the early identification of LOS during pregnancy in cattle.
Collapse
|
5
|
Mangiavacchi PM, Caldas-Bussiere MC, Mendonça MDS, Rumpf R, Lemos Júnior PES, Alves CS, Carneiro WDS, Dias AJB, Rios ÁFL. Multi-locus DNA methylation analysis of imprinted genes in cattle from somatic cell nuclear transfer. Theriogenology 2022; 186:95-107. [DOI: 10.1016/j.theriogenology.2022.04.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2021] [Revised: 04/06/2022] [Accepted: 04/08/2022] [Indexed: 10/18/2022]
|
6
|
Wyss P, Song C, Bina M. Along the Bos taurus genome, uncover candidate imprinting control regions. BMC Genomics 2022; 23:478. [PMID: 35764919 PMCID: PMC9241299 DOI: 10.1186/s12864-022-08694-3] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2022] [Accepted: 06/01/2022] [Indexed: 11/17/2022] Open
Abstract
BACKGROUND In mammals, Imprinting Control Regions (ICRs) regulate a subset of genes in a parent-of-origin-specific manner. In both human and mouse, previous studies identified a set of CpG-rich motifs occurring as clusters in ICRs and germline Differentially Methylated Regions (gDMRs). These motifs consist of the ZFP57 binding site (ZFBS) overlapping a subset of MLL binding units known as MLL morphemes. MLL or MLL1 (Mixed Lineage Leukemia 1) is a relatively large multidomain protein that plays a central role in the regulation of transcription. The structures of both MLL1 and MLL2 include a domain (MT) that binds CpG-rich DNA and a conserved domain (SET) that methylates lysine 4 in histone H3 producing H3K4me3 marks in chromatin. RESULTS Since genomic imprinting impacts many developmental and key physiological processes, we followed a previous bioinformatics strategy to pinpoint ICR positions in the Bos taurus genome. Initial genome-wide analyses involved finding the positions of ZFP57 binding sites, and the CpG-rich motifs (ZFBS-morph overlaps) along cattle chromosomal DNA. By creating plots displaying the density of ZFBS-morph overlaps, we removed background noise and thus improved signal detection. With the density-plots, we could view the positions of peaks locating known and candidate ICRs in cattle DNA. Our evaluations revealed the correspondence of peaks in plots to reported known and inferred ICRs/DMRs in cattle. Beside peaks pinpointing such ICRs, the density-plots also revealed additional peaks. Since evaluations validated the robustness of our approach, we inferred that the additional peaks may correspond to candidate ICRs for imprinted gene expression. CONCLUSION Our bioinformatics strategy offers the first genome-wide approach for systematically localizing candidate ICRs. Furthermore, we have tailored our datasets for upload onto the UCSC genome browser so that researchers could find known and candidate ICRs with respect to a wide variety of annotations at all scales: from the positions of Single Nucleotide Polymorphisms (SNPs), to positions of genes, transcripts, and repeated DNA elements. Furthermore, the UCSC genome browser offers tools to produce enlarged views: to uncover the genes in the vicinity of candidate ICRs and thus discover potential imprinted genes for experimental validations.
Collapse
Affiliation(s)
- Phillip Wyss
- Department of Chemistry, Purdue University, West Lafayette, IN, 47907, USA
| | - Carol Song
- Information Technology, Purdue University, West Lafayette, IN, 47907, USA
| | - Minou Bina
- Department of Chemistry, Purdue University, West Lafayette, IN, 47907, USA.
| |
Collapse
|
7
|
Lafontaine S, Sirard MA. IGF2R, KCNQ1, PLAGL1, and SNRPN DNA methylation is completed in bovine by the early antral follicle stage. Mol Reprod Dev 2022; 89:290-297. [PMID: 35698757 DOI: 10.1002/mrd.23621] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2022] [Revised: 05/03/2022] [Accepted: 06/03/2022] [Indexed: 11/06/2022]
Abstract
Imprinted genes are inherited with different DNA methylation patterns depending on the maternal or paternal origin of the allele. In cattle (Bos taurus), abnormal methylation of these genes is linked to the large offspring syndrome, a neonatal overgrowth phenotype analogous to the human Beckwith-Wiedemann syndrome. We hypothesized that in bovine oocytes, some of the methylation patterns on maternally imprinted genes are acquired in the last phase of folliculogenesis. The pyrosequencing analysis of IGF2R, KCNQ1, PLAGL1, and SNRPN imprinted genes showed no clear progression of methylation in oocytes from follicles 1-2 mm (late pre antral/early antral) and up. Instead, these oocytes displayed complete methylation at the imprinted differentially methylated regions (>80%). Other mechanisms related to imprint maintenance should be investigated to explain the hypomethylation at IGF2R, KCNQ1, PLAGL1, and SNRPN maternally imprinted sites observed in some bovine embryos.
Collapse
Affiliation(s)
- Simon Lafontaine
- Centre de recherche en reproduction, développement et santé intergénérationnelle, Département des Sciences Animales, Faculté des sciences de l'agriculture et de l'alimentation, Université Laval, Québec, Québec, Canada
| | - Marc-André Sirard
- Centre de recherche en reproduction, développement et santé intergénérationnelle, Département des Sciences Animales, Faculté des sciences de l'agriculture et de l'alimentation, Université Laval, Québec, Québec, Canada
| |
Collapse
|
8
|
Li Y, Sena Lopes J, Fuster PC, Rivera RM. Spontaneous and ART-induced large offspring syndrome: similarities and differences in DNA methylome. Epigenetics 2022; 17:1477-1496. [PMID: 35466858 PMCID: PMC9586674 DOI: 10.1080/15592294.2022.2067938] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
Large/abnormal offspring syndrome (LOS/AOS) is a congenital overgrowth syndrome reported in ruminants produced by assisted reproduction (ART-LOS) which exhibit global disruption of the epigenome and transcriptome. LOS/AOS shares phenotypes and epigenotypes with the human congenital overgrowth condition Beckwith-Wiedemann syndrome. We have reported that LOS occurs spontaneously (SLOS); however, to date, no study has been conducted to determine if SLOS has the same methylome epimutations as ART-LOS. In this study, we performed whole-genome bisulphite sequencing to examine global DNA methylation in bovine SLOS and ART-LOS tissues. We observed unique patterns of global distribution of differentially methylated regions (DMRs) over different genomic contexts, such as promoters, CpG Islands, shores and shelves, as well as at repetitive sequences. In addition, we included data from two previous LOS studies to identify shared vulnerable genomic loci in LOS. Overall, we identified 320 genomic loci in LOS that have alterations in DNA methylation when compared to controls. Specifically, there are 25 highly vulnerable loci that could potentially serve as molecular markers for the diagnosis of LOS, including at the promoters of DMRT2 and TBX18, at the imprinted gene bodies of IGF2R, PRDM8, and BLCAP/NNAT, and at multiple CpG Islands. We also observed tissue-specific DNA methylation patterns between muscle and blood, and conservation of ART-induced DNA methylation changes between muscle and blood. We conclude that as ART-LOS, SLOS is an epigenetic condition. In addition, SLOS and ART-LOS share similarities in methylome epimutations.
Collapse
Affiliation(s)
- Yahan Li
- Division of Animal Sciences, University of Missouri, Columbia, Missouri, USA
| | - Jordana Sena Lopes
- Physiology Department. International Excellence Campus for Higher Education and Research (Campus Mare Nostrum), Universidad de Murcia, Murcia, Spain.,Institute for Biomedical Research of Murcia (IMIB), Murcia, Spain.,Mediterranean Institute for Agriculture, Environment and Development (MED), University of Évora, Portugal
| | - Pilar Coy Fuster
- Physiology Department. International Excellence Campus for Higher Education and Research (Campus Mare Nostrum), Universidad de Murcia, Murcia, Spain.,Institute for Biomedical Research of Murcia (IMIB), Murcia, Spain
| | | |
Collapse
|
9
|
Mangiavacchi PM, Caldas-Bussiere MC, Mendonça MDS, Dias AJB, Rios ÁFL. Multi-locus imprinting disturbances of Beckwith-Wiedemann and Large offspring syndrome/Abnormal offspring syndrome: A brief review. Theriogenology 2021; 173:193-201. [PMID: 34399383 DOI: 10.1016/j.theriogenology.2021.08.005] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2021] [Revised: 07/30/2021] [Accepted: 08/05/2021] [Indexed: 12/30/2022]
Abstract
In vitro fertilization and somatic cell nuclear transfer are assisted reproduction technologies commonly used in humans and cattle, respectively. Despite advances in these technologies, molecular failures can occur, increasing the chance of the onset of imprinting disorders in the offspring. Large offspring syndrome/abnormal offspring syndrome (LOS/AOS) has been described in cattle and has features such as hypergrowth, malformation of organs, and skeletal and placental defects. In humans, Beckwith-Wiedemann syndrome (BWS) has phenotypic characteristics similar to those found in LOS/AOS. In both syndromes, disruption of genomic imprinting associated with loss of parental-specific expression and parental-specific epigenetic marks is involved in the molecular etiology. Changes in the imprinting pattern of these genes lead to loss of imprinting (LOI) due to gain or loss of methylation, inducing the emergence of these syndromes. Several studies have reported locus-specific alterations in these syndromes, such as hypomethylation in imprinting control region 2 (KvDMR1) in BWS and LOS/AOS. These LOI events can occur at multiple imprinted loci in the same affected individual, which are called multi-locus methylation defect (MLMD) events. Although the bovine species has been proposed as a developmental model for human imprinting disorders, there is little information on bovine imprinted genes in the literature, even the correlation of epimutation data with clinical characteristics. In this study, we performed a systematic review of all the multi-locus LOI events described in human BWS and LOS/AOS, in order to determine in which imprinted genes the largest changes in the pattern of DNA methylation and expression occur, helping to fill gaps for a better understanding of the etiology of both syndromes.
Collapse
Affiliation(s)
- Paula Magnelli Mangiavacchi
- Laboratory of Reproduction and Animal Breeding, Universidade Estadual do Norte Fluminense Darcy Ribeiro, 28013-602, Campos dos Goytacazes, RJ, Brazil
| | - Maria Clara Caldas-Bussiere
- Laboratory of Reproduction and Animal Breeding, Universidade Estadual do Norte Fluminense Darcy Ribeiro, 28013-602, Campos dos Goytacazes, RJ, Brazil
| | - Mariana da Silva Mendonça
- Laboratory of Biotechnology, Universidade Estadual do Norte Fluminense Darcy Ribeiro, 28013-602, Campos dos Goytacazes, RJ, Brazil
| | - Angelo José Burla Dias
- Laboratory of Reproduction and Animal Breeding, Universidade Estadual do Norte Fluminense Darcy Ribeiro, 28013-602, Campos dos Goytacazes, RJ, Brazil
| | - Álvaro Fabrício Lopes Rios
- Laboratory of Biotechnology, Universidade Estadual do Norte Fluminense Darcy Ribeiro, 28013-602, Campos dos Goytacazes, RJ, Brazil.
| |
Collapse
|
10
|
Ealy AD, Speckhart SL, Wooldridge LK. Cytokines That Serve as Embryokines in Cattle. Animals (Basel) 2021; 11:ani11082313. [PMID: 34438770 PMCID: PMC8388520 DOI: 10.3390/ani11082313] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2021] [Revised: 07/27/2021] [Accepted: 08/02/2021] [Indexed: 12/24/2022] Open
Abstract
Simple Summary This review will explore how some cytokines also influence early embryonic development. We term these types of molecules as embryokines. Understanding how cytokines serve as embryokines could offer new opportunities to improve embryo development and the overall health of the embryo so that pregnancies will be retained after embryo transfer and so that viable offspring are produced. At least two cytokines may offer these benefits to bovine embryos produced in vitro. Additional cytokines also are identified in this review that may contain beneficial activities on bovine embryos. Abstract The term “embryokine” has been used to denote molecules produced by the endometrium, oviduct, or by embryo itself that will influence embryo development. Several cytokines have been identified as embryokines in cattle and other mammals. This review will describe how these cytokines function as embryokines, with special emphasis being placed on their actions on in vitro produced (IVP) bovine embryos. Embryokines are being explored for their ability to overcome the poor development rates of IVP embryos and to limit post-transfer pregnancy retention efficiencies that exist in IVP embryos. This review will focus on describing two of the best-characterized cytokines, colony-stimulating factor 2 and interleukin 6, for their ability to modify bovine embryo quality and confirmation, promote normal fetal development, and generate healthy calves. Additional cytokines will also be discussed for their potential to serve as embryokines.
Collapse
Affiliation(s)
- Alan D. Ealy
- Department of Animal and Poultry Sciences, Virginia Tech, Blacksburg, VA 24061, USA;
- Correspondence:
| | - Savannah L. Speckhart
- Department of Animal and Poultry Sciences, Virginia Tech, Blacksburg, VA 24061, USA;
| | | |
Collapse
|
11
|
DNA methylation studies in cattle. J Appl Genet 2021; 62:121-136. [PMID: 33400132 DOI: 10.1007/s13353-020-00604-1] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2020] [Revised: 10/23/2020] [Accepted: 12/22/2020] [Indexed: 12/12/2022]
Abstract
Investigation of the role of epigenetics in cattle breeding is gaining importance. DNA methylation represents an epigenetic modification which is essential for genomic stability and maintenance of development. Recently, DNA methylation research in cattle has intensified. The studies focus on the definition of methylomes in various organs and tissues in relation to the expression of genes underlying economically important traits, and explore methylome changes under developmental, environmental, disease, and diet influences. The investigations further characterize the methylation patterns of gametes in connection with their quality, and study methylome alterations in the developing naturally or assisted produced zygotes, embryos, and fetuses, considering their viability. A wide array of technologies developed for accurate and precise analysis of DNA methylation patterns is employed for both single-gene and genome-wide studies. Overall, the research is directed towards the identification of single methylation markers or their combinations which may be useful in the selection and breeding of animals to ensure cattle improvement.
Collapse
|
12
|
Lafontaine S, Labrecque R, Palomino JM, Blondin P, Sirard MA. Specific imprinted genes demethylation in association with oocyte donor's age and culture conditions in bovine embryos assessed at day 7 and 12 post insemination. Theriogenology 2020; 158:321-330. [PMID: 33010654 DOI: 10.1016/j.theriogenology.2020.09.027] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2020] [Revised: 08/24/2020] [Accepted: 09/23/2020] [Indexed: 12/30/2022]
Abstract
The production of bovine embryos through in vitro maturation and fertilization is an important tool of the genomic revolution in dairy cattle. Gene expression analysis of these embryos revealed differences according to the culture conditions or oocyte donor's pubertal status compared to in vivo derived embryos. We hypothesized that some of the methylation patterns in oocytes are acquired in the last step of folliculogenesis and could be influenced by the environment created in the follicles containing these oocytes. These altered patterns may not be erased during the first week of embryonic development in culture or may be sensitive to the conditions during that time. To quantify the changes related to culture conditions, an in vivo control group consisting of embryos (Day 12 post fertilization for all groups) obtained from superovulated and artificially inseminated cows was compared to in vitro produced (IVP) embryos cultured with or without Fetal Bovine Serum (FBS). To measure the effect of the oocytes donor's age, we also compared a fourth group consisting of IVP embryos produced with oocytes collected following ovarian stimulation of pre-pubertal animals. Embryonic disk and trophoblast cells were processed separately and the methylation status of ten imprinted genes (H19, MEST, KCNQ1, SNRPN, PEG3, NNAT, GNASXL, IGF2R, PEG10, and PLAGL1) was assessed by pyrosequencing. Next, ten Day 7 blastocysts were produced following the same methodology as for the D12 embryos (four groups) to observe the most interesting genes (KCNQ1, SNRPN, IGF2R and PLAGL1) at an earlier developmental stage. For all samples, we observed overall lower methylation levels and greater variability in the three in vitro groups compared to the in vivo group. The individual embryo analysis indicated that some embryos were deviant from the others and some were not affected. We concluded that IGF2R, SNRPN, and PEG10 were particularly sensitive to culture conditions and the presence of FBS, while KCNQ1 and PLAGL1 were more affected in embryos derived from pre-pubertal donors. This work provides markers at the single imprinted control region (ICR) resolution to assess the culture environment required to minimize epigenetic perturbations in bovine embryos generated by assisted reproduction techniques, thus laying the groundwork for a better comprehension of the complex interplay between in vitro conditions and imprinted genes.
Collapse
Affiliation(s)
- Simon Lafontaine
- Centre de Recherche en Reproduction, Développement et Santé Intergénérationnelle (CRDSI), Département des Sciences Animals, Faculté des Sciences de l'agriculture et de l'alimentation, Université Laval, Québec, Canada
| | - Rémi Labrecque
- SEMEX Boviteq, 3450 Rue Sicotte, Saint-Hyacinthe, QC J2S, Canada
| | | | - Patrick Blondin
- SEMEX Boviteq, 3450 Rue Sicotte, Saint-Hyacinthe, QC J2S, Canada
| | - Marc-André Sirard
- Centre de Recherche en Reproduction, Développement et Santé Intergénérationnelle (CRDSI), Département des Sciences Animals, Faculté des Sciences de l'agriculture et de l'alimentation, Université Laval, Québec, Canada.
| |
Collapse
|
13
|
Morgan HL, Eid N, Khoshkerdar A, Watkins AJ. Defining the male contribution to embryo quality and offspring health in assisted reproduction in farm animals. Anim Reprod 2020; 17:e20200018. [PMID: 33029211 PMCID: PMC7534566 DOI: 10.1590/1984-3143-ar2020-0018] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Assisted reproductive technologies such as artificial insemination have delivered significant benefits for farm animal reproduction. However, as with humans, assisted reproduction in livestock requires the manipulation of the gametes and preimplantation embryo. The significance of this ‘periconception’ period is that it represents the transition from parental genome regulation to that of the newly formed embryo. Environmental perturbations during these early developmental stages can result in persistent changes in embryonic gene expression, fetal organ development and ultimately the long-term health of the offspring. While associations between maternal health and offspring wellbeing are well-defined, the significance of paternal health for the quality of his semen and the post-conception development of his offspring have largely been overlooked. Human and animal model studies have identified sperm epigenetic status (DNA methylation levels, histone modifications and RNA profiles) and seminal plasma-mediated maternal uterine immunological, inflammatory and vascular responses as the two central mechanisms capable of linking paternal health and post-fertilisation development. However, there is a significant knowledge gap about the father’s contribution to the long-term health of his offspring, especially with regard to farm animals. Such insights are essential to ensure the safety of widely used assisted reproductive practices and to gain better understanding of the role of paternal health for the well-being of his offspring. In this article, we will outline the impact of male health on semen quality (both sperm and seminal plasma), reproductive fitness and post-fertilisation offspring development and explore the mechanisms underlying the paternal programming of offspring health in farm animals.
Collapse
Affiliation(s)
- Hannah Louise Morgan
- Division of Child Health, Obstetrics and Gynaecology, Queen's Medical Centre, School of Medicine, University of Nottingham, Nottingham, United Kingdom
| | - Nader Eid
- Division of Child Health, Obstetrics and Gynaecology, Queen's Medical Centre, School of Medicine, University of Nottingham, Nottingham, United Kingdom
| | - Afsaneh Khoshkerdar
- Division of Child Health, Obstetrics and Gynaecology, Queen's Medical Centre, School of Medicine, University of Nottingham, Nottingham, United Kingdom
| | - Adam John Watkins
- Division of Child Health, Obstetrics and Gynaecology, Queen's Medical Centre, School of Medicine, University of Nottingham, Nottingham, United Kingdom
| |
Collapse
|
14
|
Abstract
Many factors influence the final oocyte maturation, fertilisation, and early embryo development, and there are both similarities and differences between species. When comparing the advancement of assisted reproductive technologies (ARTs), the development in the bovine species is not far behind the medical front, with around one million in vitro-produced bovine embryos each year. This rate of progress is not seen in the other domestic species. This review aims to give an overview of the development and specific difficulties of in vitro embryo production in various domestic animal species, with the main focus on cows, pigs, and cats. In production animals, the aim of ARTs is commonly to increase the genetic progress, not to treat reproductive failure. The ARTs are also used for preservation of genetic diversity for the future. However, specifically for oocyte maturation, fertilisation, and early embryonic development, domestic mammals such as the cow and pig can be used as models for humans. This is particularly attractive from an animal welfare point of view since bovine and porcine oocytes are available in large numbers from discarded slaughterhouse material, thereby decreasing the need for research animals. Both for researchers on the animal and human medical fronts, we aim for the development of in vitro production systems that will produce embryos and offspring that are no different from those conceived and developed in vivo. Species-comparative research and development can provide us with crucial knowledge to achieve this aim and hopefully help us avoid unnecessary problems in the future.
Collapse
Affiliation(s)
- Ylva Sjunnesson
- Department of Clinical Sciences, Reproduction, The Centre for Reproductive Biology in Uppsala (CRU), Swedish University of Agricultural Sciences (SLU), Uppsala, Sweden
- CONTACT Ylva Sjunnesson Department of Clinical Sciences, Reproduction, The Centre for Reproductive Biology in Uppsala (CRU), Swedish University of Agricultural Sciences (SLU), PO Box 7054, SE-750 07Uppsala, Sweden
| |
Collapse
|
15
|
Ealy AD, Wooldridge LK, McCoski SR. BOARD INVITED REVIEW: Post-transfer consequences of in vitro-produced embryos in cattle. J Anim Sci 2019; 97:2555-2568. [PMID: 30968113 DOI: 10.1093/jas/skz116] [Citation(s) in RCA: 92] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2019] [Accepted: 04/08/2019] [Indexed: 01/09/2023] Open
Abstract
In vitro embryo production (IVP) in cattle has gained worldwide interest in recent years, but the efficiency of using IVP embryos for calf production is far from optimal. This review will examine the pregnancy retention rates of IVP embryos and explore causes for pregnancy failures. Based on work completed over the past 25 yr, only 27% of cattle receiving IVP embryos will produce a live calf. Approximately 60% of these pregnancies fail during the first 6 wk of gestation. When compared with embryos generated by superovulation, pregnancy rates are 10% to 40% lower for cattle carrying IVP embryos, exemplifying that IVP embryos are consistently less competent than in vivo-generated embryos. Several abnormalities have been observed in the morphology of IVP conceptuses. After transfer, IVP embryos are less likely to undergo conceptus elongation, have reduced embryonic disk diameter, and have compromised yolk sac development. Marginal binucleate cell development, cotyledon development, and placental vascularization have also been documented, and these abnormalities are associated with altered fetal growth trajectories. Additionally, in vitro culture conditions increase the risk of large offspring syndrome. Further work is needed to decipher how the embryo culture environment alters post-transfer embryo development and survival. The risk of these neonatal disorders has been reduced by the use of serum-free synthetic oviductal fluid media formations and culture in low oxygen tension. However, alterations are still evident in IVP oocyte and embryo transcript abundances, timing of embryonic cleavage events and blastulation, incidence of aneuploidy, and embryonic methylation status. The inclusion of oviductal and uterine-derived embryokines in culture media is being examined as one way to improve the competency of IVP embryos. To conclude, the evidence presented herein clearly shows that bovine IVP systems still must be refined to make it an economical technology in cattle production systems. However, the current shortcomings do not negate its current value for certain embryo production needs and for investigating early embryonic development in cattle.
Collapse
Affiliation(s)
- Alan D Ealy
- Department of Animal & Poultry Sciences, Virginia Polytechnic Institute and State University, Blacksburg, VA
| | - Lydia K Wooldridge
- Department of Animal & Poultry Sciences, Virginia Polytechnic Institute and State University, Blacksburg, VA
| | - Sarah R McCoski
- Department of Animal & Poultry Sciences, Virginia Polytechnic Institute and State University, Blacksburg, VA
| |
Collapse
|
16
|
Yamanaka KI, Yamashita K, Khatun H, Wada Y, Tatemoto H, Sakatani M, Takenouchi N, Takahashi M, Watanabe S. Normal DNA methylation status in sperm from a somatic cell cloned bull and their fertilized embryos. Anim Sci J 2018; 89:1406-1414. [DOI: 10.1111/asj.13086] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2018] [Accepted: 06/26/2018] [Indexed: 11/27/2022]
Affiliation(s)
- Ken-Ichi Yamanaka
- Faculty of Agriculture; Saga University; Saga Japan
- The United Graduate School of Agricultural Sciences; Kagoshima University; Kagoshima Japan
| | | | - Hafiza Khatun
- Faculty of Agriculture; Saga University; Saga Japan
- The United Graduate School of Agricultural Sciences; Kagoshima University; Kagoshima Japan
| | - Yasuhiko Wada
- Faculty of Agriculture; Saga University; Saga Japan
- The United Graduate School of Agricultural Sciences; Kagoshima University; Kagoshima Japan
| | - Hideki Tatemoto
- The United Graduate School of Agricultural Sciences; Kagoshima University; Kagoshima Japan
- Faculty of Agriculture; University of Ryukyus; Okinawa Japan
| | - Miki Sakatani
- Kyushu Okinawa Agricultural Research Center; NARO; Kosi Japan
| | | | | | - Shinya Watanabe
- Institute of Livestock and Grassland Science; NARO; Tsukuba Japan
| |
Collapse
|
17
|
Mussa A, Molinatto C, Cerrato F, Palumbo O, Carella M, Baldassarre G, Carli D, Peris C, Riccio A, Ferrero GB. Assisted Reproductive Techniques and Risk of Beckwith-Wiedemann Syndrome. Pediatrics 2017. [PMID: 28634246 DOI: 10.1542/peds.2016-4311] [Citation(s) in RCA: 66] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
BACKGROUND AND OBJECTIVES The emerging association of assisted reproductive techniques (ART) with imprinting disorders represents a major issue in the scientific debate on infertility treatment and human procreation. We studied the prevalence of Beckwith-Wiedemann syndrome (BWS) in children conceived through ART to define the specific associated relative risk. METHODS Patients with BWS born in Piemonte, Italy, were identified and matched with the general demographic data and corresponding regional ART registry. RESULTS Between 2005 and 2014, live births in Piemonte were 379 872, including 7884 from ART. Thirty-eight patients with BWS were born, 7 from ART and 31 naturally conceived. BWS birth prevalence in the ART group was significantly higher than that of the naturally conceived group (1:1126 vs 1:12 254, P < .001). The absolute live birth risk in the ART group was 887.9 per 1 000 000 vs 83.3 per 1 000 000 in the naturally conceived group, providing a relative risk of 10.7 (95% confidence interval 4.7-24.2). During the 1997-2014 period, 67 patients were diagnosed with BWS out of 663 834 newborns (1:9908 live births). Nine out of the 67 BWS patients were conceived through ART (13.4%), and 8 were molecularly tested, with 4 having an imprinting center 2 loss of methylation, 2 with 11p15.5 paternal uniparental disomy, and 2 negative results. CONCLUSIONS ART entails a 10-fold increased risk of BWS and could be implicated in the pathogenesis of genomic events besides methylation anomalies. These data highlight the need for awareness of ART-associated health risk.
Collapse
Affiliation(s)
- Alessandro Mussa
- Department of Public Health and Pediatric Sciences, University of Torino, Torino, Italy.,NICU and Neonatology, Department of Gynecology and Obstetrics, S. Anna Hospital, Città della Salute e della Scienza di Torino, Torino, Italy
| | - Cristina Molinatto
- Department of Public Health and Pediatric Sciences, University of Torino, Torino, Italy
| | - Flavia Cerrato
- DiSTABiF, Second University of Naples and Institute of Genetics and Biophysics "A. Buzzati-Traverso" - CNR, Naples, Italy
| | - Orazio Palumbo
- Medical Genetics Unit, IRCCS Casa Sollievo della Sofferenza, San Giovanni Rotondo (FG), Italy; and
| | - Massimo Carella
- Medical Genetics Unit, IRCCS Casa Sollievo della Sofferenza, San Giovanni Rotondo (FG), Italy; and
| | | | - Diana Carli
- Department of Public Health and Pediatric Sciences, University of Torino, Torino, Italy
| | | | - Andrea Riccio
- DiSTABiF, Second University of Naples and Institute of Genetics and Biophysics "A. Buzzati-Traverso" - CNR, Naples, Italy
| | | |
Collapse
|
18
|
Kaneda M, Watanabe S, Akagi S, Inaba Y, Geshi M, Nagai T. Proper reprogramming of imprinted and non-imprinted genes in cloned cattle gametogenesis. Anim Sci J 2017; 88:1678-1685. [PMID: 28574624 DOI: 10.1111/asj.12846] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2017] [Accepted: 04/05/2017] [Indexed: 12/18/2022]
Abstract
Epigenetic abnormalities in cloned animals are caused by incomplete reprogramming of the donor nucleus during the nuclear transfer step (first reprogramming). However, during the second reprogramming step that occurs only in the germline cells, epigenetic errors not corrected during the first step are repaired. Consequently, epigenetic abnormalities in the somatic cells of cloned animals should be erased in their spermatozoa or oocytes. This is supported by the fact that offspring from cloned animals do not exhibit defects at birth or during postnatal development. To test this hypothesis in cloned cattle, we compared the DNA methylation level of two imprinted genes (H19 and PEG3) and three non-imprinted genes (XIST, OCT4 and NANOG) and two repetitive elements (Satellite I and Satellite II) in blood and sperm DNAs from cloned and non-cloned bulls. We found no differences between cloned and non-cloned bulls. We also analyzed the DNA methylation levels of four repetitive elements (Satellite I, Satellite II, Alpha-satellite and Art2) in oocytes recovered from cloned and non-cloned cows. Again, no significant differences were observed between clones and non-clones. These results suggested that imprinted and non-imprinted genes and repetitive elements were properly reprogramed during gametogenesis in cloned cattle; therefore, they contributed to the soundness of cloned cattle offspring.
Collapse
Affiliation(s)
- Masahiro Kaneda
- Division of Animal Life Science, Tokyo University of Agriculture and Technology, Fuchu, Japan
| | - Shinya Watanabe
- Institute of Livestock and Grassland Science, NARO, Tsukuba, Japan
| | - Satoshi Akagi
- Institute of Livestock and Grassland Science, NARO, Tsukuba, Japan
| | - Yasushi Inaba
- National Livestock Breeding Center Tottori Station, Tottori, Japan
| | - Masaya Geshi
- Institute of Agrobiological Sciences, NARO, Tsukuba, Japan
| | | |
Collapse
|
19
|
Anckaert E, Fair T. DNA methylation reprogramming during oogenesis and interference by reproductive technologies: Studies in mouse and bovine models. Reprod Fertil Dev 2017; 27:739-54. [PMID: 25976160 DOI: 10.1071/rd14333] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2014] [Accepted: 04/01/2015] [Indexed: 12/24/2022] Open
Abstract
The use of assisted reproductive technology (ART) to overcome fertility problems has continued to increase since the birth of the first baby conceived by ART over 30 years ago. Similarly, embryo transfer is widely used as a mechanism to advance genetic gain in livestock. Despite repeated optimisation of ART treatments, pre- and postnatal outcomes remain compromised. Epigenetic mechanisms play a fundamental role in successful gametogenesis and development. The best studied of these is DNA methylation; the appropriate establishment of DNA methylation patterns in gametes and early embryos is essential for healthy development. Superovulation studies in the mouse indicate that specific ARTs are associated with normal imprinting establishment in oocytes, but abnormal imprinting maintenance in embryos. A similar limited impact of ART on oocytes has been reported in cattle, whereas the majority of embryo-focused studies have used cloned embryos, which do exhibit aberrant DNA methylation. The present review discusses the impact of ART on oocyte and embryo DNA methylation with regard to data available from mouse and bovine models.
Collapse
Affiliation(s)
- Ellen Anckaert
- Follicle Biology Laboratory and Center for Reproductive Medicine, UZ Brussel, Vrije Universiteit Brussel, Laarbeeklaan 101, Brussels 1090, Belgium
| | - Trudee Fair
- School of Agriculture and Food Sciences, University College Dublin, Belfield, Dublin 4, Ireland
| |
Collapse
|
20
|
Polejaeva IA, Rutigliano HM, Wells KD. Livestock in biomedical research: history, current status and future prospective. Reprod Fertil Dev 2017; 28:112-24. [PMID: 27062879 DOI: 10.1071/rd15343] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Livestock models have contributed significantly to biomedical and surgical advances. Their contribution is particularly prominent in the areas of physiology and assisted reproductive technologies, including understanding developmental processes and disorders, from ancient to modern times. Over the past 25 years, biomedical research that traditionally embraced a diverse species approach shifted to a small number of model species (e.g. mice and rats). The initial reasons for focusing the main efforts on the mouse were the availability of murine embryonic stem cells (ESCs) and genome sequence data. This powerful combination allowed for precise manipulation of the mouse genome (knockouts, knockins, transcriptional switches etc.) leading to ground-breaking discoveries on gene functions and regulation, and their role in health and disease. Despite the enormous contribution to biomedical research, mouse models have some major limitations. Their substantial differences compared with humans in body and organ size, lifespan and inbreeding result in pronounced metabolic, physiological and behavioural differences. Comparative studies of strategically chosen domestic species can complement mouse research and yield more rigorous findings. Because genome sequence and gene manipulation tools are now available for farm animals (cattle, pigs, sheep and goats), a larger number of livestock genetically engineered (GE) models will be accessible for biomedical research. This paper discusses the use of cattle, goats, sheep and pigs in biomedical research, provides an overview of transgenic technology in farm animals and highlights some of the beneficial characteristics of large animal models of human disease compared with the mouse. In addition, status and origin of current regulation of GE biomedical models is also reviewed.
Collapse
Affiliation(s)
- Irina A Polejaeva
- Department of Animal, Dairy and Veterinary Sciences, Utah State University, Logan, UT 84322, USA
| | - Heloisa M Rutigliano
- Department of Animal, Dairy and Veterinary Sciences, Utah State University, Logan, UT 84322, USA
| | - Kevin D Wells
- Division of Animal Sciences, Animal Sciences Research Center, University of Missouri, Columbia, MO 65211, USA
| |
Collapse
|
21
|
Sinclair KD, Rutherford KMD, Wallace JM, Brameld JM, Stöger R, Alberio R, Sweetman D, Gardner DS, Perry VEA, Adam CL, Ashworth CJ, Robinson JE, Dwyer CM. Epigenetics and developmental programming of welfare and production traits in farm animals. Reprod Fertil Dev 2016; 28:RD16102. [PMID: 27439952 DOI: 10.1071/rd16102] [Citation(s) in RCA: 66] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2016] [Accepted: 06/06/2016] [Indexed: 12/11/2022] Open
Abstract
The concept that postnatal health and development can be influenced by events that occur in utero originated from epidemiological studies in humans supported by numerous mechanistic (including epigenetic) studies in a variety of model species. Referred to as the 'developmental origins of health and disease' or 'DOHaD' hypothesis, the primary focus of large-animal studies until quite recently had been biomedical. Attention has since turned towards traits of commercial importance in farm animals. Herein we review the evidence that prenatal risk factors, including suboptimal parental nutrition, gestational stress, exposure to environmental chemicals and advanced breeding technologies, can determine traits such as postnatal growth, feed efficiency, milk yield, carcass composition, animal welfare and reproductive potential. We consider the role of epigenetic and cytoplasmic mechanisms of inheritance, and discuss implications for livestock production and future research endeavours. We conclude that although the concept is proven for several traits, issues relating to effect size, and hence commercial importance, remain. Studies have also invariably been conducted under controlled experimental conditions, frequently assessing single risk factors, thereby limiting their translational value for livestock production. We propose concerted international research efforts that consider multiple, concurrent stressors to better represent effects of contemporary animal production systems.
Collapse
|
22
|
Lipopolysaccharide (LPS) disrupts particle transport, cilia function and sperm motility in an ex vivo oviduct model. Sci Rep 2016; 6:24583. [PMID: 27079521 PMCID: PMC4832340 DOI: 10.1038/srep24583] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2015] [Accepted: 04/01/2016] [Indexed: 12/16/2022] Open
Abstract
The oviduct functions in the transportation of gametes to the site of fertilization (the ampulla) and is the site of early embryonic development. Alterations of this early developmental environment, such as the presence of sexually transmitted pathogens, may affect oviduct function leading to reduced fertilization rates and contribute to compromised embryonic development. In this study, sperm interactions, particle transport speed (PTS) and cilia beat frequency (CBF) in the ampulla following exposure to lipopolysaccharide (LPS), a constituent of the sexually transmitted pathogens Chlamydia trachomatis and Chlamydia abortus, was investigated. Three complementary experiments were performed to analyse; (1) bound sperm motility and cilia function (2) transport velocity in the oviduct and (3) the expression of genes related to immune function and inflammatory response (CASP3, CD14, MYD88, TLR4 and TRAF6). The motility of bound sperm was significantly lower in ampullae that were exposed to LPS. CBF and PTS significantly increased after treatment with LPS for 2 hours. Finally, gene expression analysis revealed that CASP3 and CD14 were significantly upregulated and TLR4 trended towards increased expression following treatment with LPS. These findings provide an insight on the impact of LPS on the oviduct sperm interaction, and have implications for both male and female fertility.
Collapse
|
23
|
Ventura-Juncá P, Irarrázaval I, Rolle AJ, Gutiérrez JI, Moreno RD, Santos MJ. In vitro fertilization (IVF) in mammals: epigenetic and developmental alterations. Scientific and bioethical implications for IVF in humans. Biol Res 2015; 48:68. [PMID: 26683055 PMCID: PMC4684609 DOI: 10.1186/s40659-015-0059-y] [Citation(s) in RCA: 68] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2015] [Accepted: 11/30/2015] [Indexed: 01/06/2023] Open
Abstract
The advent of in vitro fertilization (IVF) in animals and humans implies an extraordinary change in the environment where the beginning of a new organism takes place. In mammals fertilization occurs in the maternal oviduct, where there are unique conditions for guaranteeing the encounter of the gametes and the first stages of development of the embryo and thus its future. During this period a major epigenetic reprogramming takes place that is crucial for the normal fate of the embryo. This epigenetic reprogramming is very vulnerable to changes in environmental conditions such as the ones implied in IVF, including in vitro culture, nutrition, light, temperature, oxygen tension, embryo-maternal signaling, and the general absence of protection against foreign elements that could affect the stability of this process. The objective of this review is to update the impact of the various conditions inherent in the use of IVF on the epigenetic profile and outcomes of mammalian embryos, including superovulation, IVF technique, embryo culture and manipulation and absence of embryo-maternal signaling. It also covers the possible transgenerational inheritance of the epigenetic alterations associated with assisted reproductive technologies (ART), including its phenotypic consequences as is in the case of the large offspring syndrome (LOS). Finally, the important scientific and bioethical implications of the results found in animals are discussed in terms of the ART in humans.
Collapse
Affiliation(s)
- Patricio Ventura-Juncá
- Bioethical Center and Department of Pediatrics, Faculty of Medicine, Pontificia Universidad Católica de Chile, Santiago, Chile. .,Bioethics Center, Universidad Finis Terrae, Pedro de Valdivia 1509, Providencia, Región Metropolitana, 7501015, Santiago, Chile.
| | - Isabel Irarrázaval
- Bioethical Center and Department of Pediatrics, Faculty of Medicine, Pontificia Universidad Católica de Chile, Santiago, Chile.
| | - Augusto J Rolle
- Bioethical Center and Department of Pediatrics, Faculty of Medicine, Pontificia Universidad Católica de Chile, Santiago, Chile.
| | - Juan I Gutiérrez
- Bioethical Center and Department of Pediatrics, Faculty of Medicine, Pontificia Universidad Católica de Chile, Santiago, Chile.
| | - Ricardo D Moreno
- Department of Physiology, Faculty of Biological Sciences, Pontificia Universidad Católica de Chile, Santiago, Chile. .,Department of Cellular and Molecular Biology, Faculty of Biological Sciences, Pontificia Universidad Católica de Chile, Santiago, Chile.
| | - Manuel J Santos
- Bioethical Center and Department of Pediatrics, Faculty of Medicine, Pontificia Universidad Católica de Chile, Santiago, Chile. .,Department of Cellular and Molecular Biology, Faculty of Biological Sciences, Pontificia Universidad Católica de Chile, Santiago, Chile.
| |
Collapse
|
24
|
Ren L, Wang Z, An L, Zhang Z, Tan K, Miao K, Tao L, Cheng L, Zhang Z, Yang M, Wu Z, Tian J. Dynamic comparisons of high-resolution expression profiles highlighting mitochondria-related genes between in vivo and in vitro fertilized early mouse embryos. Hum Reprod 2015; 30:2892-911. [PMID: 26385791 DOI: 10.1093/humrep/dev228] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2015] [Accepted: 08/24/2015] [Indexed: 12/11/2022] Open
Abstract
STUDY QUESTION Does in vitro fertilization (IVF) induce comprehensive and consistent changes in gene expression associated with mitochondrial biogenesis and function in mouse embryos from the pre- to post-implantation stage? SUMMARY ANSWER IVF-induced consistent mitochondrial dysfunction in early mouse embryos by altering the expression of a number of mitochondria-related genes. WHAT IS KNOWN ALREADY Although IVF is generally safe and successful for the treatment of human infertility, there is increasing evidence that those conceived by IVF suffer increased health risks. The mitochondrion is a multifunctional organelle that plays a crucial role in early development. We hypothesized that mitochondrial dysfunction is associated with increased IVF-induced embryonic defects and risks in offspring. STUDY DESIGN, SIZE, DURATION After either IVF and development (IVO groups as control) or IVF and culture (IVF groups), blastocysts were collected and transferred to pseudo-pregnant recipient mice. Both IVO and IVF embryos were sampled at E3.5, E7.5 and E10.5, and the expression profiles of mitochondria-related genes from the pre- to post-implantation stage were compared. PARTICIPANTS/MATERIALS, SETTING, METHODS ICR mice (5- to 6-week-old males and 8- to 9-week-old females) were used to generate IVO and IVF blastocysts. Embryo day (E) 3.5 blastocysts were transferred to pseudo-pregnant recipient mice. Both IVO and IVF embryos were sampled at E3.5, E7.5 and E10.5 for generating transcriptome data. Mitochondria-related genes were filtered for dynamic functional profiling. Mitochondrial dysfunctions indicated by bioinformatic analysis were further validated using cytological and molecular detection, morphometric and phenotypic analysis and integrated analysis with other high-throughput data. MAIN RESULTS AND THE ROLE OF CHANCE A total of 806, 795 and 753 mitochondria-related genes were significantly (P < 0.05) dysregulated in IVF embryos at E3.5, E7.5 and E10.5, respectively. Dynamic functional profiling, together with cytological and molecular investigations, indicated that IVF-induced mitochondrial dysfunctions mainly included: (i) inhibited mitochondrial biogenesis and impaired maintenance of DNA methylation of mitochondria-related genes during the post-implantation stage; (ii) dysregulated glutathione/glutathione peroxidase (GSH/Gpx) system and increased mitochondria-mediated apoptosis; (iii) disturbed mitochondrial β-oxidation, oxidative phosphorylation and amino acid metabolism; and (iv) disrupted mitochondrial transmembrane transport and membrane organization. We also demonstrated that some mitochondrial dysfunctions in IVF embryos, including impaired mitochondrial biogenesis, dysregulated GSH homeostasis and reactive oxygen species-induced apoptosis, can be rescued by treatment with melatonin, a mitochondria-targeted antioxidant, during in vitro culture. LIMITATIONS, REASONS FOR CAUTION Findings in mouse embryos and fetuses may not be fully transferable to humans. Further studies are needed to confirm these findings and to determine their clinical significance better. WIDER IMPLICATIONS OF THE FINDINGS The present study provides a new insight in understanding the mechanism of IVF-induced aberrations during embryonic development and the increased health risks in the offspring. In addition, we highlighted the possibility of improving existing IVF systems by modulating mitochondrial functions.
Collapse
Affiliation(s)
- Likun Ren
- Ministry of Agriculture Key Laboratory of Animal Genetics, Breeding and Reproduction, National Engineering Laboratory for Animal Breeding, College of Animal Sciences and Technology, China Agricultural University, Haidian District, Beijing 100193, China
| | - Zhuqing Wang
- Ministry of Agriculture Key Laboratory of Animal Genetics, Breeding and Reproduction, National Engineering Laboratory for Animal Breeding, College of Animal Sciences and Technology, China Agricultural University, Haidian District, Beijing 100193, China
| | - Lei An
- Ministry of Agriculture Key Laboratory of Animal Genetics, Breeding and Reproduction, National Engineering Laboratory for Animal Breeding, College of Animal Sciences and Technology, China Agricultural University, Haidian District, Beijing 100193, China
| | - Zhennan Zhang
- Ministry of Agriculture Key Laboratory of Animal Genetics, Breeding and Reproduction, National Engineering Laboratory for Animal Breeding, College of Animal Sciences and Technology, China Agricultural University, Haidian District, Beijing 100193, China
| | - Kun Tan
- Ministry of Agriculture Key Laboratory of Animal Genetics, Breeding and Reproduction, National Engineering Laboratory for Animal Breeding, College of Animal Sciences and Technology, China Agricultural University, Haidian District, Beijing 100193, China
| | - Kai Miao
- Ministry of Agriculture Key Laboratory of Animal Genetics, Breeding and Reproduction, National Engineering Laboratory for Animal Breeding, College of Animal Sciences and Technology, China Agricultural University, Haidian District, Beijing 100193, China
| | - Li Tao
- Ministry of Agriculture Key Laboratory of Animal Genetics, Breeding and Reproduction, National Engineering Laboratory for Animal Breeding, College of Animal Sciences and Technology, China Agricultural University, Haidian District, Beijing 100193, China
| | - Linghua Cheng
- Ministry of Agriculture Key Laboratory of Animal Genetics, Breeding and Reproduction, National Engineering Laboratory for Animal Breeding, College of Animal Sciences and Technology, China Agricultural University, Haidian District, Beijing 100193, China
| | - Zhenni Zhang
- Ministry of Agriculture Key Laboratory of Animal Genetics, Breeding and Reproduction, National Engineering Laboratory for Animal Breeding, College of Animal Sciences and Technology, China Agricultural University, Haidian District, Beijing 100193, China
| | - Mingyao Yang
- Ministry of Agriculture Key Laboratory of Animal Genetics, Breeding and Reproduction, National Engineering Laboratory for Animal Breeding, College of Animal Sciences and Technology, China Agricultural University, Haidian District, Beijing 100193, China
| | - Zhonghong Wu
- Ministry of Agriculture Key Laboratory of Animal Genetics, Breeding and Reproduction, National Engineering Laboratory for Animal Breeding, College of Animal Sciences and Technology, China Agricultural University, Haidian District, Beijing 100193, China
| | - Jianhui Tian
- Ministry of Agriculture Key Laboratory of Animal Genetics, Breeding and Reproduction, National Engineering Laboratory for Animal Breeding, College of Animal Sciences and Technology, China Agricultural University, Haidian District, Beijing 100193, China
| |
Collapse
|
25
|
The placenta: phenotypic and epigenetic modifications induced by Assisted Reproductive Technologies throughout pregnancy. Clin Epigenetics 2015; 7:87. [PMID: 26300992 PMCID: PMC4546204 DOI: 10.1186/s13148-015-0120-2] [Citation(s) in RCA: 68] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2015] [Accepted: 08/02/2015] [Indexed: 02/07/2023] Open
Abstract
Today, there is growing interest in the potential epigenetic risk related to assisted reproductive technologies (ART). Much evidence in the literature supports the hypothesis that adverse pregnancy outcomes linked to ART are associated with abnormal trophoblastic invasion. The aim of this review is to investigate the relationship between epigenetic dysregulation caused by ART and subsequent placental response. The dialogue between the endometrium and the embryo is a crucial step to achieve successful trophoblastic invasion, thus ensuring a non-complicated pregnancy and healthy offspring. However, as described in this review, ART could impair both actors involved in this dialogue. First, ART may induce epigenetic defects in the conceptus by modifying the embryo environment. Second, as a result of hormone treatments, ART may impair endometrial receptivity. In some cases, it results in embryonic growth arrest but, when the development of the embryo continues, the placenta could bring adaptive responses throughout pregnancy. Amongst the different mechanisms, epigenetics, especially thanks to a finely tuned network of imprinted genes stimulated by foetal signals, may modify nutrient transfer, placental growth and vascularization. If these coping mechanisms are overwhelmed, improper maternal-foetal exchanges occur, potentially leading to adverse pregnancy outcomes such as abortion, preeclampsia or intra-uterine growth restriction. But in most cases, successful placental adaptation enables normal progress of the pregnancy. Nevertheless, the risks induced by these modifications during pregnancy are not fully understood. Metabolic diseases later in life could be exacerbated through the memory of epigenetic adaptation mechanisms established during pregnancy. Thus, more research is still needed to better understand abnormal interactions between the embryo and the milieu in artificial conditions. As trophectoderm cells are in direct contact with the environment, they deserve to be studied in more detail. The ultimate goal of these studies will be to render ART protocols safer. Optimization of the environment will be the key to improving the dialogue between the endometrium and embryo, so as to ensure that placentation after ART is similar to that following natural conception.
Collapse
|
26
|
Wang M, Li D, Zhang M, Yang W, Cui Y, Li S. Methylation of KvDMR1 involved in regulating the imprinting of CDKN1C gene in cattle. Anim Genet 2015; 46:354-60. [PMID: 26059028 DOI: 10.1111/age.12297] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/11/2015] [Indexed: 01/18/2023]
Abstract
The CDKN1C gene encodes a cyclin-dependent kinase inhibitor and is one of the key genes involved in the development of Beckwith-Wiedemann syndrome and cancer. In this study, using a direct sequencing approach based on a single nucleotide polymorphism (SNP) at genomic DNA and cDNA levels, we show that CDKN1C exhibits monoallelic expression in all seven studied organs (heart, liver, spleen, lung, kidney, muscle and subcutaneous fat) in cattle. To investigate how methylation regulates imprinting of CDKN1C in cattle, allele-specific methylation patterns in two putative differential methylation regions (DMRs), the CDKN1C DMR and KvDMR1, were analyzed in three tissues (liver, spleen and lung) using bisulfite sequencing PCR. Our results show that in the CDKN1C DMR both parental alleles were unmethylated in all three analyzed tissues. In contrast, KvDMR1 was differentially methylated between the two parental alleles in the same tissues. Statistical analysis showed that there is a significant difference in the methylation level between the two parental alleles (P < 0.01), confirming that this region is the DMR of KvDMR1 and that it may be correlated with CDKN1C imprinting.
Collapse
Affiliation(s)
- Mengnan Wang
- College of Life Science, Agricultural University of Hebei, Baoding, 071001, China
| | - Dongjie Li
- College of Life Science and Life Engineering, Science and Technology, University of Hebei, Shijiazhuang, 050018, China
| | - Mingyue Zhang
- College of Life Science, Agricultural University of Hebei, Baoding, 071001, China
| | - Wenzhi Yang
- College of Life Science, Agricultural University of Hebei, Baoding, 071001, China
| | - Yali Cui
- College of Life Science, Agricultural University of Hebei, Baoding, 071001, China
| | - Shijie Li
- College of Life Science, Agricultural University of Hebei, Baoding, 071001, China
| |
Collapse
|
27
|
O'Doherty AM, MacHugh DE, Spillane C, Magee DA. Genomic imprinting effects on complex traits in domesticated animal species. Front Genet 2015; 6:156. [PMID: 25964798 PMCID: PMC4408863 DOI: 10.3389/fgene.2015.00156] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2014] [Accepted: 04/06/2015] [Indexed: 11/13/2022] Open
Abstract
Monoallelically expressed genes that exert their phenotypic effect in a parent-of-origin specific manner are considered to be subject to genomic imprinting, the most well understood form of epigenetic regulation of gene expression in mammals. The observed differences in allele specific gene expression for imprinted genes are not attributable to differences in DNA sequence information, but to specific chemical modifications of DNA and chromatin proteins. Since the discovery of genomic imprinting some three decades ago, over 100 imprinted mammalian genes have been identified and considerable advances have been made in uncovering the molecular mechanisms regulating imprinted gene expression. While most genomic imprinting studies have focused on mouse models and human biomedical disorders, recent work has highlighted the contributions of imprinted genes to complex trait variation in domestic livestock species. Consequently, greater understanding of genomic imprinting and its effect on agriculturally important traits is predicted to have major implications for the future of animal breeding and husbandry. In this review, we discuss genomic imprinting in mammals with particular emphasis on domestic livestock species and consider how this information can be used in animal breeding research and genetic improvement programs.
Collapse
Affiliation(s)
- Alan M O'Doherty
- UCD Conway Institute of Biomolecular and Biomedical Research, University College Dublin, Belfield Ireland
| | - David E MacHugh
- UCD Conway Institute of Biomolecular and Biomedical Research, University College Dublin, Belfield Ireland ; Animal Genomics Laboratory, UCD School of Agriculture and Food Science, University College Dublin, Belfield Ireland
| | - Charles Spillane
- Genetics and Biotechnology Laboratory, Plant and AgriBiosciences Research Centre, School of Natural Sciences, National University of Ireland Galway, Galway Ireland
| | - David A Magee
- Animal Genomics Laboratory, UCD School of Agriculture and Food Science, University College Dublin, Belfield Ireland ; Department of Animal Science, University of Connecticut, Storrs, CT USA
| |
Collapse
|
28
|
Characterization of global loss of imprinting in fetal overgrowth syndrome induced by assisted reproduction. Proc Natl Acad Sci U S A 2015; 112:4618-23. [PMID: 25825726 DOI: 10.1073/pnas.1422088112] [Citation(s) in RCA: 102] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Embryos generated with the use of assisted reproductive technologies (ART) can develop overgrowth syndromes. In ruminants, the condition is referred to as large offspring syndrome (LOS) and exhibits variable phenotypic abnormalities including overgrowth, enlarged tongue, and abdominal wall defects. These characteristics recapitulate those observed in the human loss-of-imprinting (LOI) overgrowth syndrome Beckwith-Wiedemann (BWS). We have recently shown LOI at the KCNQ1 locus in LOS, the most common epimutation in BWS. Although the first case of ART-induced LOS was reported in 1995, studies have not yet determined the extent of LOI in this condition. Here, we determined allele-specific expression of imprinted genes previously identified in human and/or mouse in day ∼105 Bos taurus indicus × Bos taurus taurus F1 hybrid control and LOS fetuses using RNAseq. Our analysis allowed us to determine the monoallelic expression of 20 genes in tissues of control fetuses. LOS fetuses displayed variable LOI compared with controls. Biallelic expression of imprinted genes in LOS was associated with tissue-specific hypomethylation of the normally methylated parental allele. In addition, a positive correlation was observed between body weight and the number of biallelically expressed imprinted genes in LOS fetuses. Furthermore, not only was there loss of allele-specific expression of imprinted genes in LOS, but also differential transcript amounts of these genes between control and overgrown fetuses. In summary, we characterized previously unidentified imprinted genes in bovines and identified misregulation of imprinting at multiple loci in LOS. We concluded that LOS is a multilocus LOI syndrome, as is BWS.
Collapse
|
29
|
Franco MM, Prickett AR, Oakey RJ. The role of CCCTC-binding factor (CTCF) in genomic imprinting, development, and reproduction. Biol Reprod 2014; 91:125. [PMID: 25297545 DOI: 10.1095/biolreprod.114.122945] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
CCCTC-binding factor (CTCF) is the major protein involved in insulator activity in vertebrates, with widespread DNA binding sites in the genome. CTCF participates in many processes related to global chromatin organization and remodeling, contributing to the repression or activation of gene transcription. It is also involved in epigenetic reprogramming and is essential during gametogenesis and embryo development. Abnormal DNA methylation patterns at CTCF motifs may impair CTCF binding to DNA, and are related to fertility disorders in mammals. Therefore, CTCF and its binding sites are important candidate regions to be investigated as molecular markers for gamete and embryo quality. This article reviews the role of CTCF in genomic imprinting, gametogenesis, and early embryo development and, moreover, highlights potential opportunities for environmental influences associated with assisted reproductive techniques (ARTs) to affect CTCF-mediated processes. We discuss the potential use of CTCF as a molecular marker for assessing gamete and embryo quality in the context of improving the efficiency and safety of ARTs.
Collapse
Affiliation(s)
- Maurício M Franco
- Embrapa Genetic Resources & Biotechnology, Laboratory of Animal Reproduction, Parque Estação Biológica, Brasília, Brazil
| | - Adam R Prickett
- Department of Medical & Molecular Genetics, King's College London, Guy's Hospital, London, United Kingdom
| | - Rebecca J Oakey
- Department of Medical & Molecular Genetics, King's College London, Guy's Hospital, London, United Kingdom
| |
Collapse
|
30
|
Abstract
The UK Association of Clinical Embryologists held a workshop on Culture Systems for assisted conception in Sheffield on 22 May 2013. The meeting was organised in the light of the availability of numerous commercial products for the culture of human preimplantation embryos in vitro and the absence of data comparing the performance of these products. Expert opinions were presented, along with survey data provided by participating IVF Centres. The workshop highlighted the lack of a sound evidence base to support the selection of any one commercial product over another, and raised concerns over the lack of information defining precisely the composition of media, and the potential for adverse long-term effects of such products following their use in assisted conception.
Collapse
Affiliation(s)
- Virginia N Bolton
- Assisted Conception Unit, Guy's & St Thomas' NHS Foundation Trust, Guy's Hospital , Great Maze Pond, London , UK
| | | | | | | |
Collapse
|
31
|
Zhu J, Li M, Chen L, Liu P, Qiao J. The protein source in embryo culture media influences birthweight: a comparative study between G1 v5 and G1-PLUS v5. Hum Reprod 2014; 29:1387-92. [PMID: 24812314 DOI: 10.1093/humrep/deu103] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
STUDY QUESTION Does protein source or human serum albumin (HSA) in embryo culture media influence the subsequent birthweight? SUMMARY ANSWER A significant difference was observed in gestational age- and gender-adjusted birthweight (Z scores) and the proportion of large-for-gestational age (LGA) babies between embryos cultured in G1 v5 and those cultured in G1-PLUS v5 media. WHAT IS KNOWN ALREADY It has been reported that the birthweights of singletons born from embryos cultured in Vitrolife are significantly higher than those cultured in the Cook group of media, and that G1-PLUS (Vitrolife, Gothenburg, Sweden) is associated with increased birth and placenta weights compared with Medicult ISMI. STUDY DESIGN, SIZE, AND DURATION This study was a retrospective analysis of neonatal birthweights, and included 1097 singletons born from fresh embryo transfer cycles at the Center for Reproductive Medicine of Peking University Third Hospital between January 2011 and August 2012. The number of singletons born from G1 v5 culture media was 489, and the number of singletons born from G1-PLUS v5 media was 608. PARTICIPANTS/MATERIALS, SETTING, AND METHODS Patients <40 years of age with a BMI <30 kg/m² were analysed. Only data from newborns from singleton pregnancies and born alive after the 28th week of gestation were included. Patients with a vanishing twin or with pregnancy-related complications, such as diabetes and hypertension, were excluded, as were patients who received preimplantation genetic diagnosis or used donor oocytes. Multiple linear regression analysis was performed to determine the influence of individual factors on birthweights of singleton newborns. The birthweights and Z scores of singletons and LGA babies were compared between the G1 v5 and G1-PLUS v5 media groups. MAIN RESULTS AND THE ROLE OF CHANCE The absolute birthweights for singletons resulting from G1-PLUS v5 were not different from singletons resulting from G1 v5 (3375.9 ± 479.6 g versus 3333.2 ± 491.6 g, respectively; P = 0.14). However the Z scores for singletons from embryos cultured in G1-PLUS v5 were significantly higher than for singletons cultured in G1 v5 (0.28 ± 1.12 versus 0.09 ± 1.15, respectively; P = 0.04), and more LGA babies were born from G1-PLUS v5 culture compared with G1 v5 (16.8 versus 12.1%, respectively; P = 0.03) culture. Finally, multiple linear regression analysis suggested that female weight (P = 0.00), male height (P = 0.04), gestational age at birth (P = 0.00), infant gender (P = 0.00) and culture media (P = 0.04) all had significant effects on the birthweights of singleton newborns. LIMITATIONS AND REASONS FOR CAUTION This study was limited by its retrospective design. WIDER IMPLICATIONS OF THESE FINDINGS Our study suggests that protein source/HSA has a significant effect on birthweights of singleton newborns. STUDY FUNDING/COMPETING INTEREST(S) This study was funded by the National Natural Science Foundation of China for Young Scholars (81300483). The authors have no conflicts of interest to declare. TRIAL REGISTRATION NUMBER Not applicable.
Collapse
|
32
|
Urrego R, Rodriguez-Osorio N, Niemann H. Epigenetic disorders and altered gene expression after use of Assisted Reproductive Technologies in domestic cattle. Epigenetics 2014; 9:803-15. [PMID: 24709985 DOI: 10.4161/epi.28711] [Citation(s) in RCA: 123] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
The use of Assisted Reproductive Technologies (ARTs) in modern cattle breeding is an important tool for improving the production of dairy and beef cattle. A frequently employed ART in the cattle industry is in vitro production of embryos. However, bovine in vitro produced embryos differ greatly from their in vivo produced counterparts in many facets, including developmental competence. The lower developmental capacity of these embryos could be due to the stress to which the gametes and/or embryos are exposed during in vitro embryo production, specifically ovarian hormonal stimulation, follicular aspiration, oocyte in vitro maturation in hormone supplemented medium, sperm handling, gamete cryopreservation, and culture of embryos. The negative effects of some ARTs on embryo development could, at least partially, be explained by disruption of the physiological epigenetic profile of the gametes and/or embryos. Here, we review the current literature with regard to the putative link between ARTs used in bovine reproduction and epigenetic disorders and changes in the expression profile of embryonic genes. Information on the relationship between reproductive biotechnologies and epigenetic disorders and aberrant gene expression in bovine embryos is limited and novel approaches are needed to explore ways in which ARTs can be improved to avoid epigenetic disorders.
Collapse
Affiliation(s)
- Rodrigo Urrego
- Grupo CENTAURO; Universidad de Antioquia; Medellín, Colombia; Facultad de Medicina Veterinaria y Zootecnia; Grupo INCA-CES; Universidad CES; Medellín, Colombia
| | | | - Heiner Niemann
- Institute of Farm Animal Genetics; Friedrich-Loeffler-Institut (FLI); Mariensee, Germany
| |
Collapse
|
33
|
|
34
|
Chen CP, Su YN, Chen SU, Chang TY, Wu PC, Chern SR, Wu PS, Kuo YL, Wang W. Prenatal diagnosis of hypomethylation at KvDMR1 and Beckwith–Wiedemann syndrome in a pregnancy conceived by intracytoplasmic sperm injection and in vitro fertilization and embryo transfer. Taiwan J Obstet Gynecol 2014; 53:90-4. [DOI: 10.1016/j.tjog.2013.12.003] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/06/2013] [Indexed: 01/08/2023] Open
|
35
|
Fauser BCJM, Devroey P, Diedrich K, Balaban B, Bonduelle M, Delemarre-van de Waal HA, Estella C, Ezcurra D, Geraedts JPM, Howles CM, Lerner-Geva L, Serna J, Wells D. Health outcomes of children born after IVF/ICSI: a review of current expert opinion and literature. Reprod Biomed Online 2013; 28:162-82. [PMID: 24365026 DOI: 10.1016/j.rbmo.2013.10.013] [Citation(s) in RCA: 71] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2012] [Revised: 10/03/2013] [Accepted: 10/08/2013] [Indexed: 01/28/2023]
Abstract
The Sixth Evian Annual Reproduction (EVAR) Workshop Group Meeting was held to evaluate the impact of IVF/intracytoplasmic sperm injection on the health of assisted-conception children. Epidemiologists, reproductive endocrinologists, embryologists and geneticists presented data from published literature and ongoing research on the incidence of genetic and epigenetic abnormalities and congenital malformations in assisted-conception versus naturally conceived children to reach a consensus on the reasons for potential differences in outcomes between these two groups. IVF-conceived children have lower birthweights and higher peripheral fat, blood pressure and fasting glucose concentrations than controls. Growth, development and cognitive function in assisted-conception children are similar to controls. The absolute risk of imprinting disorders after assisted reproduction is less than 1%. A direct link between assisted reproduction and health-related outcomes in assisted-conception children could not be established. Women undergoing assisted reproduction are often older, increasing the chances of obtaining abnormal gametes that may cause deviations in outcomes between assisted-conception and naturally conceived children. However, after taking into account these factors, it is not clear to what extent poorer outcomes are due to the assisted reproduction procedures themselves. Large-scale, multicentre, prospective epidemiological studies are needed to investigate this further and to confirm long-term health consequences in assisted-conception children. Assisted reproduction treatment is a general term used to describe methods of achieving pregnancy by artificial means and includes IVF and sperm implantation. The effect of assisted reproduction treatment on the health of children born using these artificial methods is not fully understood. In April 2011, fertility research experts met to give presentations based on research in this area and to look carefully at the evidence for the effects of assisted reproduction treatment on children's health. The purpose of this review was to reach an agreement on whether there are differences in the health of assisted-conception children with naturally conceived children. The researchers discovered no increased risk in birth defects in assisted-conception children compared with naturally conceived children. They found that IVF-conceived children have lower birth weights and higher fat under the skin, higher blood pressure and higher fasting glucose concentrations than naturally conceived children; however, growth, development and cognitive function are similar between groups. A very low risk of disorders of genetic control was observed in assisted-conception children. Overall, there did not appear to be a direct link between assisted reproduction treatment and children's health. The researchers concluded that the cause of some differences in the health of children conceived using assisted reproduction treatment may be due to the age of the woman receiving treatment. Large-scale, research studies are needed to study the long-term health of children conceived using assisted reproduction treatment.
Collapse
Affiliation(s)
- B C J M Fauser
- Department of Reproductive Medicine and Gynaecology, University Medical Center Utrecht, Heidelberglaan 100, 3584 CX Utrecht, The Netherlands.
| | - P Devroey
- Center for Reproductive Medicine, Vrije Universiteit Brussel, Laarbeeklaan 101, 1090 Brussels, Belgium
| | - K Diedrich
- Department of Obstetrics and Gynecology, University Clinic of Schleswig-Holstein, Campus Luebeck, 23538 Luebeck, Germany
| | - B Balaban
- Assisted Reproduction Unit, American Hospital of Istanbul, Guzelbahce Sokak No 20, Nisantasi, Istanbul 34365, Turkey
| | - M Bonduelle
- Centre for Medical Genetics, Vrije Universiteit Brussel, Laarbeeklaan 101, 1090 Brussels, Belgium
| | | | - C Estella
- Fundación Instituto Valenciano de Infertilidad (FIVI), Valencia University, and Instituto Universitario IVI/INCLIVA, Parc Científic Universitat de València C/Catedrático Agustín Escardino n(o) 9, Edificio 3, 46980 Paterna, Spain; Departamento de Biología Molecular and Centro de Biología Molecular 'Severo Ochoa' (CSIC-UAM), Universidad Autónoma de Madrid, Madrid, Spain
| | - D Ezcurra
- Global Development and Medical Unit, Merck Serono SA Geneva, Chemin des Mines 9, 1202 Geneva, Switzerland
| | - J P M Geraedts
- Department of Genetics and Cell Biology, Research Institute GROW, Faculty of Health, Medicine and Life Sciences, Maastricht University, Maastricht, The Netherlands
| | - C M Howles
- Global Development and Medical Unit, Merck Serono SA Geneva, Chemin des Mines 9, 1202 Geneva, Switzerland
| | - L Lerner-Geva
- Woman and Child Health Research Unit, Gertner Institute for Epidemiology and Health Policy Research, Tel Hashomer 52621, Israel
| | - J Serna
- Instituto Valenciano de Infertilidad (IVI) Zaragoza, C/María Zambrano, 31, 50018 Zaragoza, Spain
| | - D Wells
- University of Oxford, Nuffield Department of Obstetrics and Gynaecology, Women's Centre, John Radcliffe Hospital, Oxford OX3 9DU, UK
| | | |
Collapse
|
36
|
Chen Z, Robbins KM, Wells KD, Rivera RM. Large offspring syndrome: a bovine model for the human loss-of-imprinting overgrowth syndrome Beckwith-Wiedemann. Epigenetics 2013; 8:591-601. [PMID: 23751783 PMCID: PMC3857339 DOI: 10.4161/epi.24655] [Citation(s) in RCA: 109] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
Abstract
Beckwith-Wiedemann syndrome (BWS) is a human loss-of-imprinting syndrome primarily characterized by macrosomia, macroglossia, and abdominal wall defects. BWS has been associated with misregulation of two clusters of imprinted genes. Children conceived with the use of assisted reproductive technologies (ART) appear to have an increased incidence of BWS. As in humans, ART can also induce a similar overgrowth syndrome in ruminants which is referred to as large offspring syndrome (LOS). The main goal of our study is to determine if LOS shows similar loss-of-imprinting at loci known to be misregulated in BWS. To test this, Bos taurus indicus × Bos taurus taurus F1 hybrids were generated by artificial insemination (AI; control) or by ART. Seven of the 27 conceptuses in the ART group were in the > 97th percentile body weight when compared with controls. Further, other characteristics reported in BWS were observed in the ART group, such as large tongue, umbilical hernia, and ear malformations. KCNQ1OT1 (the most-often misregulated imprinted gene in BWS) was biallelically-expressed in various organs in two out of seven overgrown conceptuses from the ART group, but shows monoallelic expression in all tissues of the AI conceptuses. Furthermore, biallelic expression of KCNQ1OT1 is associated with loss of methylation at the KvDMR1 on the maternal allele and with downregulation of the maternally-expressed gene CDKN1C. In conclusion, our results show phenotypic and epigenetic similarities between LOS and BWS, and we propose the use of LOS as an animal model to investigate the etiology of BWS.
Collapse
Affiliation(s)
- Zhiyuan Chen
- Division of Animal Sciences; University of Missouri; Columbia, MO USA
| | | | | | | |
Collapse
|
37
|
Couldrey C, Wells DN. DNA methylation at a bovine alpha satellite I repeat CpG site during development following fertilization and somatic cell nuclear transfer. PLoS One 2013; 8:e55153. [PMID: 23383311 PMCID: PMC3562336 DOI: 10.1371/journal.pone.0055153] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2012] [Accepted: 12/20/2012] [Indexed: 11/18/2022] Open
Abstract
Incomplete epigenetic reprogramming is postulated to contribute to the low developmental success following somatic cell nuclear transfer (SCNT). Here, we describe the epigenetic reprogramming of DNA methylation at an alpha satellite I CpG site (αsatI-5) during development of cattle generated either by artificial insemination (AI) or in vitro fertilization (IVF) and SCNT. Quantitative methylation analysis identified that SCNT donor cells were highly methylated at αsatI-5 and resulting SCNT blastocysts showed significantly more methylation than IVF blastocysts. At implantation, no difference in methylation was observed between SCNT and AI in trophoblast tissue at αsatI-5, however, SCNT embryos were significantly hyper-methylated compared to AI controls at this time point. Following implantation, DNA methylation at αsatI-5 decreased in AI but not SCNT placental tissues. In contrast to placenta, the proportion of methylation at αsatI-5 remained high in adrenal, kidney and muscle tissues during development. Differences in the average proportion of methylation were smaller in somatic tissues than placental tissues but, on average, SCNT somatic tissues were hyper-methylated at αsatI-5. Although sperm from all bulls was less methylated than somatic tissues at αsatI-5, on average this site remained hyper-methylated in sperm from cloned bulls compared with control bulls. This developmental time course confirms that epigenetic reprogramming does occur, at least to some extent, following SCNT. However, the elevated methylation levels observed in SCNT blastocysts and cellular derivatives implies that there is either insufficient time or abundance of appropriate reprogramming factors in oocytes to ensure complete reprogramming. Incomplete reprogramming at this CpG site may be a contributing factor to low SCNT success rates, but more likely represents the tip of the iceberg in terms of incompletely reprogramming. Until protocols ensure the epigenetic signature of a differentiated somatic cell is reset to a state resembling totipotency, the efficiency of SCNT is likely to remain low.
Collapse
Affiliation(s)
- Christine Couldrey
- Animal Productivity, AgResearch Ruakura Research Centre, Hamilton, New Zealand.
| | | |
Collapse
|
38
|
El Hajj N, Haaf T. Epigenetic disturbances in in vitro cultured gametes and embryos: implications for human assisted reproduction. Fertil Steril 2013; 99:632-41. [PMID: 23357453 DOI: 10.1016/j.fertnstert.2012.12.044] [Citation(s) in RCA: 131] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2012] [Revised: 12/21/2012] [Accepted: 12/26/2012] [Indexed: 01/01/2023]
Abstract
Although assisted reproductive technology (ART) has become a routine practice for human infertility treatment, the etiology of the increased risks for perinatal problems in ART-conceived children is still poorly understood. Data from mouse experiments and the in vitro production of livestock provide strong evidence that imprint establishment in late oocyte stages and reprogramming of the two germline genomes for somatic development after fertilization are vulnerable to environmental cues. In vitro culture and maturation of oocytes, superovulation, and embryo culture all represent artificial intrusions upon the natural development, which can be expected to influence the epigenome of the resultant offspring. However, in this context it is difficult to define the normal range of epigenetic variation in humans from conception throughout life. With the notable exception of a few highly penetrant imprinting mutations, the phenotypic consequences of any observed epigenetic differences between ART and non-ART groups remain largely unclear. The periconceptional period is not only critical for embryonal, placental, and fetal development, as well as the outcome at birth, but suboptimal in vitro culture conditions may also lead to persistent changes in the epigenome influencing disease susceptibilities later in life. The epigenome appears to be most plastic in the late stages of oocyte and the early stages of embryo development; this plasticity steadily decreases during prenatal and postnatal life. Therefore, when considering the safety of human ART from an epigenetic point of view, our main concern should not be whether or not a few rare imprinting disorders are increased, but rather we must be aware of a functional link between interference with epigenetic reprogramming in very early development and adult disease.
Collapse
Affiliation(s)
- Nady El Hajj
- Institute of Human Genetics, Julius Maximilians University, Wuerzburg, Germany
| | | |
Collapse
|
39
|
Abstract
Since the early twentieth century, inheritance was seen as the inheritance of genes. Concurrent with the acceptance of the genetic theory of inheritance was the rejection of the idea that the cytoplasm of the oocyte could also play a role in inheritance and a corresponding devaluation of embryology as a discipline critical for understanding human development. Development, and variation in development, came to be viewed solely as matters of genetic inheritance and genetic variation. We now know that inheritance is a matter of both genetic and cytoplasmic inheritance. A growing awareness of the centrality of the cytoplasm in explaining both human development and phenotypic variation has been promoted by two contemporaneous developments: the continuing elaboration of the molecular mechanisms of epigenetics and the global rise of artificial reproductive technologies. I review recent developments in the ongoing elaboration of the role of the cytoplasm in human inheritance and development.
Collapse
Affiliation(s)
- Evan Charney
- Sanford School of Public Policy, Duke University, Durham, NC, USA.
| |
Collapse
|
40
|
Robbins KM, Chen Z, Wells KD, Rivera RM. Expression of KCNQ1OT1, CDKN1C, H19, and PLAGL1 and the methylation patterns at the KvDMR1 and H19/IGF2 imprinting control regions is conserved between human and bovine. J Biomed Sci 2012; 19:95. [PMID: 23153226 PMCID: PMC3533950 DOI: 10.1186/1423-0127-19-95] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2012] [Accepted: 11/06/2012] [Indexed: 01/22/2023] Open
Abstract
Background Beckwith-Wiedemann syndrome (BWS) is a loss-of-imprinting pediatric overgrowth syndrome. The primary features of BWS include macrosomia, macroglossia, and abdominal wall defects. Secondary features that are frequently observed in BWS patients are hypoglycemia, nevus flammeus, polyhydramnios, visceromegaly, hemihyperplasia, cardiac malformations, and difficulty breathing. BWS is speculated to occur primarily as the result of the misregulation of imprinted genes associated with two clusters on chromosome 11p15.5, namely the KvDMR1 and H19/IGF2. A similar overgrowth phenotype is observed in bovine and ovine as a result of embryo culture. In ruminants this syndrome is known as large offspring syndrome (LOS). The phenotypes associated with LOS are increased birth weight, visceromegaly, skeletal defects, hypoglycemia, polyhydramnios, and breathing difficulties. Even though phenotypic similarities exist between the two syndromes, whether the two syndromes are epigenetically similar is unknown. In this study we use control Bos taurus indicus X Bos taurus taurus F1 hybrid bovine concepti to characterize baseline imprinted gene expression and DNA methylation status of imprinted domains known to be misregulated in BWS. This work is intended to be the first step in a series of experiments aimed at determining if LOS will serve as an appropriate animal model to study BWS. Results The use of F1 B. t. indicus x B. t. taurus tissues provided us with a tool to unequivocally determine imprinted status of the regions of interest in our study. We found that imprinting is conserved between the bovine and human in imprinted genes known to be associated with BWS. KCNQ1OT1 and PLAGL1 were paternally-expressed while CDKN1C and H19 were maternally-expressed in B. t. indicus x B. t. taurus F1 concepti. We also show that in bovids, differential methylation exists at the KvDMR1 and H19/IGF2 ICRs. Conclusions Based on these findings we conclude that the imprinted gene expression of KCNQ1OT1, CDKN1C, H19, and PLAGL1 and the methylation patterns at the KvDMR1 and H19/IGF2 ICRs are conserved between human and bovine. Future work will determine if LOS is associated with misregulation at these imprinted loci, similarly to what has been observed for BWS.
Collapse
|
41
|
Denomme MM, Mann MRW. Genomic imprints as a model for the analysis of epigenetic stability during assisted reproductive technologies. Reproduction 2012; 144:393-409. [DOI: 10.1530/rep-12-0237] [Citation(s) in RCA: 99] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
Gamete and early embryo development are important stages when genome-scale epigenetic transitions are orchestrated. The apparent lack of remodeling of differential imprinted DNA methylation during preimplantation development has lead to the argument that epigenetic disruption by assisted reproductive technologies (ARTs) is restricted to imprinted genes. We contend that aberrant imprinted methylation arising from assisted reproduction or infertility may be an indicator of more global epigenetic instability. Here, we review the current literature on the effects of ARTs, including ovarian stimulation,in vitrooocyte maturation, oocyte cryopreservation, IVF, ICSI, embryo culture, and infertility on genomic imprinting as a model for evaluating epigenetic stability. Undoubtedly, the relationship between impaired fertility, ARTs, and epigenetic stability is unquestionably complex. What is clear is that future studies need to be directed at determining the molecular and cellular mechanisms giving rise to epigenetic errors.
Collapse
|
42
|
Primary epimutations introduced during intracytoplasmic sperm injection (ICSI) are corrected by germline-specific epigenetic reprogramming. Proc Natl Acad Sci U S A 2012; 109:4163-8. [PMID: 22371603 DOI: 10.1073/pnas.1201990109] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023] Open
Abstract
The use of assisted reproductive technologies (ART) has become increasingly common worldwide and is now responsible for 2-3% of children born in developed countries. Multiple reports have suggested that ART-conceived children are more likely to develop rare epigenetic disorders such as Beckwith-Wiedemann Syndrome or Angelman Syndrome, both of which involve dysregulation of imprinted genes. Anecdotal reports suggest that animals produced with ART that manifest apparent epigenetic defects typically do not transmit these epimutations to subsequent generations when allowed to breed naturally, but this hypothesis has not been directly studied. We analyzed allele-specific DNA methylation and expression at three imprinted genes, H19, Snrpn, and Peg3, in somatic cells from adult mice generated with the use of intracytoplasmic sperm injection (ICSI), a type of ART. Epimutations were detected in most of the ICSI-derived mice, but not in somatic cells of their offspring produced by natural mating. We examined germ cells from the ICSI mice that exhibited epimutations in their somatic cells and confirmed normal epigenetic reprogramming of the three imprinted genes analyzed. Collectively, these results confirm that ART procedures can lead to the formation of primary epimutations, but while such epimutations are likely to be maintained indefinitely in somatic cells of the ART-derived individuals, they are normally corrected in the germ line by epigenetic reprogramming and thus, not propagated to subsequent generations.
Collapse
|
43
|
Abstract
During preimplantation development, major epigenetic reprogramming occurs, erasing gametic modifications, and establishing embryonic epigenetic modifications. Given the plasticity of these modifications, they are susceptible to disruption by assisted reproductive technologies, including embryo culture. The current state of evidence is presented for the effects of embryo culture on global DNA methylation and histone modifications, retroviral silencing, X-inactivation, and genomic imprinting. Several salient points emerge from the literature; that culture in the absence of other procedures can lead to epigenetic perturbations; that all media are suboptimal; and that embryo response to in vitro culture is stochastic. We propose that embryos adapt to the suboptimal environment generated by embryo culture, including epigenetic adaptations, and that "quiet" embryos may be the least epigenetically compromised by in vitro culture.
Collapse
|