1
|
Carrasco RA, Jang J, Jung J, McCosh RB, Kreisman MJ, Breen KM. Prostaglandin synthesis mediates the suppression of arcuate Kiss1 neuron activation and pulsatile luteinizing hormone secretion during immune/inflammatory stress in female mice. J Neuroendocrinol 2025; 37:e70004. [PMID: 40058772 PMCID: PMC12045731 DOI: 10.1111/jne.70004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/21/2024] [Revised: 01/29/2025] [Accepted: 02/03/2025] [Indexed: 03/14/2025]
Abstract
Stress induces a series of compensatory mechanisms with the objective of restoration or adaptation of physiological function. A common casualty of the response to stress is impaired reproduction via the inhibition of pulsatile luteinizing hormone (LH) secretion; however, how stressors convey LH inhibition remains unclear and may be dependent on stress type. Immune/inflammatory stress, modeled with peripheral lipopolysaccharide (LPS) exposure, induces a systemic inflammatory response which may contrast with the neural mechanisms employed by psychosocial stressors. We examined the suppressive effect of LPS versus psychosocial stress, modeled with restraint, on pulsatile LH secretion and investigated the neural mechanisms underlying LPS-induced LH suppression in ovariectomized (OVX) female mice. We observed that both LPS and restraint significantly suppressed mean LH concentrations; however, the dynamics of pulse suppression displayed stress-type dependency. LPS induced a reduction in both LH pulse frequency and amplitude, whereas restraint suppressed LH pulse frequency without compromising pulse amplitude. Next, we investigated the mediatory role of immune/inflammatory signaling for LPS to impair LH secretion and upstream arcuate Kiss1 cell function. Peripheral administration of flurbiprofen, a prostaglandin synthesis inhibitor, blocked the suppressive effect of LPS on LH pulse frequency and amplitude. Interestingly, flurbiprofen only partially prevented the suppressive effect of LPS on arcuate Kiss1 cell activity, as measured by c-Fos expression. These data demonstrate that immune/inflammatory stress inhibits the activity of the LH pulse generator, in part, via a prostaglandin-dependent pathway and supports the role of differential neural mechanisms mediating LH pulse suppression during stress.
Collapse
Affiliation(s)
- Rodrigo A. Carrasco
- Department of Obstetrics, Gynecology and Reproductive Sciences, University of California, San Diego, La Jolla, CA
| | - Jessica Jang
- Department of Obstetrics, Gynecology and Reproductive Sciences, University of California, San Diego, La Jolla, CA
| | - Jacklyn Jung
- Department of Obstetrics, Gynecology and Reproductive Sciences, University of California, San Diego, La Jolla, CA
| | | | - Michael J. Kreisman
- Department of Obstetrics, Gynecology and Reproductive Sciences, University of California, San Diego, La Jolla, CA
| | - Kellie M. Breen
- Department of Obstetrics, Gynecology and Reproductive Sciences, University of California, San Diego, La Jolla, CA
| |
Collapse
|
2
|
Tomaszewska-Zaremba D, Tomczyk M, Wojtulewicz K, Bochenek J, Pałatyńska K, Herman AP. Effect of central administration of indomethacin on anandamide-induced GnRH/LH secretion in the hypothalamus of anoestrous ewes. J Vet Res 2024; 68:451-459. [PMID: 39318510 PMCID: PMC11418386 DOI: 10.2478/jvetres-2024-0039] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2023] [Accepted: 07/15/2024] [Indexed: 09/26/2024] Open
Abstract
Introduction It is suggested that cannabinoids (CBs) may disturb reproduction through action on hypothalamic gonadotropin-releasing hormone (GnRH) neurons directly or indirectly through intermediates such as prostaglandins. The study aimed to determine the influence of intracerebroventricular (i.c.v.) injection of the endogenous cannabinoid anandamide (N-arachidonoylethanolamine - AEA), alone or with the prostaglandin synthesis inhibitor indomethacin (IND), on GnRH/luteinising hormone (LH) secretion. The purpose of the research was to clarify the role of endocannabinoids and their interaction with prostaglandins in the regulation of reproduction at the level of the hypothalamus and pituitary in anoestrous sheep. Material and Methods The study was performed on 24 anoestrous ewes divided into four experimental groups: a control group receiving i.c.v. injection of Ringer-Locke solution, an AEA group that received i.c.v. injection of 30 μM of AEA, an IND group receiving i.c.v. injection of 5 μM of IND and an AEA + IND group that received i.c.v. injections of 30 μM of AEA and 5 μM of IND. Results Anandamide stimulated GnRH protein and gene expression in the median eminence and protein expression in the preoptic area without influencing GnRH messenger RNA (mRNA) in this structure. Indomethacin reversed the changes in GnRH secretion after AEA administration. It was also found that AEA stimulated LH mRNA in the pituitary without influencing LH release. Conclusion Our results support the role of endogenous cannabinoids in the regulation of reproductive processes at the central nervous system level. They may act directly on the hypothalamic GnRH neurons or indirectly through intermediates such as prostaglandins.
Collapse
Affiliation(s)
- Dorota Tomaszewska-Zaremba
- Department of Animal Physiology, The Kielanowski Institute of Animal Physiology and Nutrition, Polish Academy of Sciences, 05-110Jabłonna, Poland
| | - Monika Tomczyk
- Department of Genetic Engineering, The Kielanowski Institute of Animal Physiology and Nutrition, Polish Academy of Sciences, 05-110Jabłonna, Poland
| | - Karolina Wojtulewicz
- Department of Genetic Engineering, The Kielanowski Institute of Animal Physiology and Nutrition, Polish Academy of Sciences, 05-110Jabłonna, Poland
| | - Joanna Bochenek
- Department of Genetic Engineering, The Kielanowski Institute of Animal Physiology and Nutrition, Polish Academy of Sciences, 05-110Jabłonna, Poland
| | - Kinga Pałatyńska
- Department of Animal Physiology, The Kielanowski Institute of Animal Physiology and Nutrition, Polish Academy of Sciences, 05-110Jabłonna, Poland
| | - Andrzej Przemysław Herman
- Department of Genetic Engineering, The Kielanowski Institute of Animal Physiology and Nutrition, Polish Academy of Sciences, 05-110Jabłonna, Poland
| |
Collapse
|
3
|
Wójcik M, Zieba DA, Bochenek J, Krawczyńska A, Barszcz M, Gajewska A, Antushevich H, Herman AP. The Effect of Endotoxin-Induced Inflammation on the Activity of the Somatotropic Axis in Sheep. Int J Inflam 2024; 2024:1057299. [PMID: 39149693 PMCID: PMC11325012 DOI: 10.1155/2024/1057299] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2024] [Revised: 05/31/2024] [Accepted: 07/27/2024] [Indexed: 08/17/2024] Open
Abstract
The hypothalamic-pituitary-somatotropic (HPS) axis controls many physiological and pathophysiological processes. The phenomenon of insensitivity to growth hormone resistance (GHres) was previously reported to be due to the development of inflammation. Therefore, the primary aim of the study was to determine the impact of inflammation caused by lipopolysaccharides (LPS) on the secretory activity of the HPS axis in sheep. The further goal was to determine the effect of inflammatory factors on individual components involved in intracellular signal transduction to GH via the GH receptor (GHR). The research was carried out on 24 seasonal sheep kept under a short-day photoperiod, randomly divided into two groups. Before the experiment, the sheep estrous cycles were synchronized. The results of the current study in a sheep model showed that inflammation impairs the activity of the somatotropic axis. On the one hand, LPS injection stimulated (p < 0.01) GH secretion, and on the other hand, it reduced the liver's sensitivity to this hormone by directly reducing (p < 0.01) GHR expression and activating the GHR inhibitory signal transduction mechanism. A symptom of such an inhibitory postreceptor signaling pathway may be due to an increase in SOCS3 expression (p < 0.01). The effect of various inhibition pathways is a significant reduction in the expression of the main transcription activator IGF1-STAT5B (p < 0.05). The action of GHres in the liver resulted in the inhibition of IGF1 secretion, which in the long term may have negative consequences for growth and development. Our study suggests that disruption of the GH cell signaling pathway may be one of the important elements of the pathophysiology of inflammation. It can suppress growth and hepatic metabolism to spare energy expenditure.
Collapse
Affiliation(s)
- Maciej Wójcik
- The Kielanowski Institute of Animal Physiology and Nutrition Polish Academy of Sciences, Instytucka 3 Street, Jabłonna 05-110, Poland
| | - Dorota Anna Zieba
- Department of Nutrition and Animal Biotechnology, and Fisheries Faculty of Animal Sciences University of Agriculture in Krakow, Krakow 31-120, Poland
| | - Joanna Bochenek
- The Kielanowski Institute of Animal Physiology and Nutrition Polish Academy of Sciences, Instytucka 3 Street, Jabłonna 05-110, Poland
| | - Agata Krawczyńska
- The Kielanowski Institute of Animal Physiology and Nutrition Polish Academy of Sciences, Instytucka 3 Street, Jabłonna 05-110, Poland
| | - Marcin Barszcz
- The Kielanowski Institute of Animal Physiology and Nutrition Polish Academy of Sciences, Instytucka 3 Street, Jabłonna 05-110, Poland
| | - Alina Gajewska
- The Kielanowski Institute of Animal Physiology and Nutrition Polish Academy of Sciences, Instytucka 3 Street, Jabłonna 05-110, Poland
| | - Hanna Antushevich
- The Kielanowski Institute of Animal Physiology and Nutrition Polish Academy of Sciences, Instytucka 3 Street, Jabłonna 05-110, Poland
| | - Andrzej Przemysław Herman
- The Kielanowski Institute of Animal Physiology and Nutrition Polish Academy of Sciences, Instytucka 3 Street, Jabłonna 05-110, Poland
| |
Collapse
|
4
|
Ezim OE, Nyeche J, Nebeolisa CE, Belonwu CD, Abarikwu SO. Ascorbic acid attenuates gasoline-induced testicular toxicity, sperm quality deterioration, and testosterone imbalance in rats. Toxicol Ind Health 2024; 40:323-336. [PMID: 38597120 DOI: 10.1177/07482337241245154] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/11/2024]
Abstract
The present study evaluated the protective effect of ascorbic acid (ASCB) against gasoline fumes (PET) induced testicular oxidative stress, sperm toxicity, and testosterone imbalance in Wistar rats. Twenty-four (24) male albino rats (75 ± 16 g) were randomized into three experimental groups (N = 8). The control group: received normal saline, PET group: exposed to PET 6 h daily by inhalation in an exposure chamber and PET + 200 mg ASCB/kg body weight group: exposed to PET 6 h daily by inhalation and administered ASCB per os. Treatment of ASCB and PET exposure was done thrice and five times weekly for a period of 10 weeks respectively. ASCB co-treatment prevented PET-induced increases in the oxidative stress markers (glutathione, glutathione S-transferase, superoxide dismutase, catalase, hydrogen peroxide generation, nitric oxide, and lipid peroxidation) and serum testosterone concentration (p < .05). Sperm quality was low and those with damaged heads and tails increased alongside histological injuries in the PET-exposed rats, which were also minimized with ASCB administration. ASCB protected against PET-induced oxidative stress, sperm, and testis damage in rats.
Collapse
Affiliation(s)
- Ogechukwu E Ezim
- Department of Biochemistry, University of Port Harcourt, Choba, Nigeria
| | - Joy Nyeche
- Department of Biochemistry, University of Port Harcourt, Choba, Nigeria
| | | | - Chuka D Belonwu
- Department of Biochemistry, University of Port Harcourt, Choba, Nigeria
| | - Sunny O Abarikwu
- Department of Biochemistry, University of Port Harcourt, Choba, Nigeria
| |
Collapse
|
5
|
Herman AP, Tomczyk M, Wójcik M, Bochenek J, Antushevich H, Herman A, Wiechetek W, Szczepkowska A, Marciniak E, Tomaszewska-Zaremba D. Effect of Caffeine on the Inflammatory-Dependent Changes in the GnRH/LH Secretion in a Female Sheep Model. Int J Mol Sci 2024; 25:2663. [PMID: 38473910 DOI: 10.3390/ijms25052663] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2024] [Revised: 02/22/2024] [Accepted: 02/23/2024] [Indexed: 03/14/2024] Open
Abstract
Caffeine is one of the most widely consumed psychoactive drugs in the world. It easily crosses the blood-brain barrier, and caffeine-interacting adenosine and ryanodine receptors are distributed in various areas of the brain, including the hypothalamus and pituitary. Caffeine intake may have an impact on reproductive and immune function. Therefore, in the present study performed on the ewe model, we decided to investigate the effect of peripheral administration of caffeine (30 mg/kg) on the secretory activity of the hypothalamic-pituitary unit which regulates the reproductive function in females during both a physiological state and an immune/inflammatory challenge induced by lipopolysaccharide (LPS; 400 ng/kg) injection. It was found that caffeine stimulated (p < 0.01) the biosynthesis of gonadotropin-releasing hormone (GnRH) in the hypothalamus of ewe under both physiological and inflammatory conditions. Caffeine also increased (p < 0.05) luteinizing hormone (LH) secretion in ewes in a physiological state; however, a single administration of caffeine failed to completely release the LH secretion from the inhibitory influence of inflammation. This could result from the decreased expression of GnRHR in the pituitary and it may also be associated with the changes in the concentration of neurotransmitters in the median eminence (ME) where GnRH neuron terminals are located. Caffeine and LPS increased (p < 0.05) dopamine in the ME which may explain the inhibition of GnRH release. Caffeine treatment also increased (p < 0.01) cortisol release, and this stimulatory effect was particularly evident in sheep under immunological stress. Our studies suggest that caffeine affects the secretory activity of the hypothalamic-pituitary unit, although its effect appears to be partially dependent on the animal's immune status.
Collapse
Affiliation(s)
- Andrzej Przemysław Herman
- The Kielanowski Institute of Animal Physiology and Nutrition, Polish Academy of Sciences, 05-110 Jabłonna, Poland
| | - Monika Tomczyk
- The Kielanowski Institute of Animal Physiology and Nutrition, Polish Academy of Sciences, 05-110 Jabłonna, Poland
| | - Maciej Wójcik
- The Kielanowski Institute of Animal Physiology and Nutrition, Polish Academy of Sciences, 05-110 Jabłonna, Poland
| | - Joanna Bochenek
- The Kielanowski Institute of Animal Physiology and Nutrition, Polish Academy of Sciences, 05-110 Jabłonna, Poland
| | - Hanna Antushevich
- The Kielanowski Institute of Animal Physiology and Nutrition, Polish Academy of Sciences, 05-110 Jabłonna, Poland
| | - Anna Herman
- Chair of Drug and Cosmetics Biotechnology, Faculty of Chemistry, Warsaw University of Technology, 00-662 Warsaw, Poland
| | - Wiktoria Wiechetek
- The Kielanowski Institute of Animal Physiology and Nutrition, Polish Academy of Sciences, 05-110 Jabłonna, Poland
- Department of Ichthyology and Biotechnology in Aquaculture, Institute of Animal Sciences, University of Life Sciences, 02-786 Warsaw, Poland
| | - Aleksandra Szczepkowska
- Institute of Animal Reproduction and Food Research, Polish Academy of Sciences, 10-748 Olsztyn, Poland
| | - Elżbieta Marciniak
- The Kielanowski Institute of Animal Physiology and Nutrition, Polish Academy of Sciences, 05-110 Jabłonna, Poland
| | - Dorota Tomaszewska-Zaremba
- The Kielanowski Institute of Animal Physiology and Nutrition, Polish Academy of Sciences, 05-110 Jabłonna, Poland
| |
Collapse
|
6
|
The Effect of Leptin on the Blood Hormonal Profile (Cortisol, Insulin, Thyroid Hormones) of the Ewe in Acute Inflammation in Two Different Photoperiodical Conditions. Int J Mol Sci 2022; 23:ijms23158109. [PMID: 35897684 PMCID: PMC9331064 DOI: 10.3390/ijms23158109] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2022] [Revised: 07/20/2022] [Accepted: 07/21/2022] [Indexed: 01/25/2023] Open
Abstract
As a day animal with sensitivity to inflammation similar to that of humans, the sheep may highly outperform the rodent model in inflammation studies. Additionally, seasonality makes sheep an interesting model in endocrinology research. Although there are studies concerning inflammation’s influence on leptin secretion and vice versa, a ewe model, with its possible ‘long-day leptin resistance’, is still not examined enough. The present study aimed to examine whether leptin may modulate an acute inflammation influence on plasma hormones in two photoperiodical conditions. The experiment was conducted on 48 ewes divided into four groups (control, lipopolysaccharide (LPS), leptin, LPS + leptin) during short and long days. Blood sampling started 1 hour before and continued 3 h after LPS/saline administration for further hormonal analysis. The results showed that the photoperiod is one of the main factors influencing the basal concentrations of several hormones with higher values of leptin, insulin and thyroid hormones during long days. Additionally, the acute inflammation effect on cortisol, insulin and thyroid hormones was photoperiod-dependent. The endotoxemia may also exert an influence on leptin concentration regardless of season. The effects of leptin alone on hormone blood concentrations are rather limited; however, leptin can modulate the LPS influence on insulin or thyroxine in a photoperiod-dependent way.
Collapse
|
7
|
Attia MM, Soliman SM, Mahmoud MA, Salem MA. Oxidative stress markers, immune-regulating cytokines, and the pathological evaluation of sheep co-infected with Oestrus ovis and Coenuruscerebralis. Microb Pathog 2022; 169:105613. [PMID: 35705111 DOI: 10.1016/j.micpath.2022.105613] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2021] [Revised: 05/28/2022] [Accepted: 05/31/2022] [Indexed: 11/18/2022]
Abstract
This study aimed to evaluate the immune response using the immune-regulating cytokines as (IL-1β; MHC-I and MHC-II) associated with co-infected sheep Oestrusovis and Coenurus cerebralisas well as oxidative stress markers (malondialdehyde "MDA" and nitric oxide "NO"). So; sheep samples from different regions in Egypt showed different neurological signs, were examined for detection of the cause of the nervous manifestations. Moreover, the O. ovis and C. cerebralis cysts were collected and identified using scanning electron microscopy. The brain tissues were evaluated for different immunological genes such as MHC-I, MHC-II, and Interleukin-1β activity using quantitative real-time PCR (qRT-PCR) techniques, where the infected sheep showed higher MHC-I gene expression (10-fold), higher MHC-II gene expression (peaked at 25-fold), and higher IL-1β gene expression (14-fold) than the control group. The MDA level was significantly increased. Also, stress marker (nitric oxide) levels were significantly higher in infectedsheep than in negative control one. During gross pathology, migrating larvae of O. ovis andC. cerebralis were noticed In such areas, hemorrhages and patches of clotted blood were noticed. cysts with prominent protoscolices were also observed and were attached to the caudal region near the cerebellum.
Collapse
Affiliation(s)
- Marwa M Attia
- Department of Parasitology, Faculty of Veterinary Medicine, Cairo University, 12211, Giza, Egypt.
| | - Soliman M Soliman
- Department of Medicine and Infectious Diseases, Faculty of Veterinary Medicine, Cairo University, 12211, Giza, Egypt
| | - Mahmoud A Mahmoud
- Department of Pathology, Faculty of Veterinary Medicine, Cairo University, PO.12211, Egypt
| | - Mai A Salem
- Department of Parasitology, Faculty of Veterinary Medicine, Cairo University, 12211, Giza, Egypt
| |
Collapse
|
8
|
Hashem NM, Gonzalez-Bulnes A. Perspective on the relationship between reproductive tract microbiota eubiosis and dysbiosis and reproductive function. Reprod Fertil Dev 2022; 34:531-539. [PMID: 35287791 DOI: 10.1071/rd21252] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2021] [Accepted: 12/30/2021] [Indexed: 11/23/2022] Open
Abstract
The role played by microbiota is attracting growing attention within the scientific and medical community, in both human and animal fields, in the last years. Most of the studies have been focused on the intestinal microbiome, whilst little attention has been paid to other systems, like the reproductive tract of both females and males. However, there is a growing body of information showing the interplay between reproductive tract dysbiosis, due to the action of pathogens and/or unhealthy lifestyle, and reproductive disease and disorders in many mammalian species. The present review aims to summarise current knowledge on the biodiversity of the microbiota of the reproductive tract, and the possible relationships between eubiosis or dysbiosis and reproductive health and function in both females and males.
Collapse
Affiliation(s)
- Nesrein M Hashem
- Department of Animal and Fish Production, Faculty of Agriculture (El-Shatby), Alexandria University, Alexandria 21545, Egypt
| | - Antonio Gonzalez-Bulnes
- Departamento de Produccion y Sanidad Animal, Facultad de Veterinaria, Universidad Cardenal Herrera-CEU, CEU Universities, C/ Tirant lo Blanc, 7, Alfara del Patriarca, 46115 Valencia, Spain
| |
Collapse
|
9
|
The Effect of Photoperiodic Conditions on GnRH/LH Secretion in Ewes. Animals (Basel) 2022; 12:ani12030283. [PMID: 35158608 PMCID: PMC8833478 DOI: 10.3390/ani12030283] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2021] [Revised: 11/30/2021] [Accepted: 01/19/2022] [Indexed: 12/04/2022] Open
Abstract
Simple Summary During the course of evolution, animals have evolved biological rhythms that are associated with changes in the lighting and temperature of their environment. Females in most breeds of sheep are seasonal breeders, with ovulatory cycles occurring in the autumn and winter and anovulation in the spring and summer. Secretion of gonadotropin releasing hormone and luteinizing hormone, the main hormones regulating reproduction in females, displays a circadian pattern; however, data concerning the day/night differences in their secretion in ewes are incomplete. The aim of the undertaken study was to determine the day/night differences in the secretion of gonadotropin releasing hormone and luteinizing hormone in follicular phase and anestrous ewes. It was demonstrated that secretion of investigated hormones is subject to diurnal and seasonal changes. The observed reduction in luteinizing hormone release, a few hours after the sunset, seems to be universal for both the anestrus and follicular phase. It could be concluded that the nocturnal suppression of luteinizing hormone secretion in follicular phase ewes may be a mechanism moving this hormone surge to the early morning. Abstract Secretion of gonadotropin releasing hormone (GnRH) and luteinizing hormone (LH) displays a circadian pattern. Data concerning differences in daily GnRH/LH secretion during different seasons in sheep are fragmentary. The aim of the study was to determine day/night differences in GnRH/LH secretion in the follicular phase and in the anestrous ewes. The studies were performed on Blackhead ewes (n = 24). Ewes from each season were divided into two groups of six animals (day and night group). The animals were euthanized 5 h after sunset or 5 h after sunrise and blood was taken to determine LH and melatonin concentrations. In the hypothalamus, the expression of GnRH and gonadotropin releasing hormone receptor (GnRHR) was determined. In the anterior pituitary, the expression of mRNA encoding subunit β of LH (LHβ) and GnRHR was assayed. Our study showed that GnRH/LH secretion is subject to diurnal and seasonal changes. The observed reduction in LH release, a few hours after the sunset, seems to be universal for both the anestrus and follicular phase, when the processes occurring at the hypothalamus are more equivocal. It could be concluded that the nocturnal suppression of LH secretion in follicular phase ewes may be a mechanism moving the LH surge to the early morning.
Collapse
|
10
|
Butler T, Goldberg JD, Galvin JE, Maloney T, Ravdin L, Glodzik L, de Leon MJ, Hochman T, Bowen RL, Atwood CS. Rationale, study design and implementation of the LUCINDA Trial: Leuprolide plus Cholinesterase Inhibition to reduce Neurologic Decline in Alzheimer's. Contemp Clin Trials 2021; 107:106488. [PMID: 34166841 PMCID: PMC8550816 DOI: 10.1016/j.cct.2021.106488] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2021] [Revised: 06/11/2021] [Accepted: 06/14/2021] [Indexed: 11/20/2022]
Abstract
The LUCINDA Trial (Leuprolide plus Cholinesterase Inhibition to reduce Neurologic Decline in Alzheimer's) is a 52 week, randomized, placebo-controlled trial of leuprolide acetate (Eligard) in women with Alzheimer's disease (AD). Leuprolide acetate is a gonadotropin analogue commonly used for hormone-sensitive conditions such as prostate cancer and endometriosis. This repurposed drug demonstrated efficacy in a previous Phase II clinical trial in those women with AD who also received a stable dose of the acetylcholinesterase inhibitor donepezil (Bowen et al., 2015). Basic biological, epidemiological and clinical trial data suggest leuprolide acetate mediates improvement and stabilization of neuropathology and cognitive performance via the modulation of gonadotropin and/or gonadotropin-releasing hormone signaling. LUCINDA will enroll 150 women with mild-moderate AD who are receiving a stable dose of donepezil from three study sites in the United States. Cognition and function are the primary outcome measures as assessed by the Alzheimer's Disease Assessment Scale-Cognitive Subscale. Blood and MRI biomarkers are also measured to assess hormonal, inflammatory and AD biomarker changes. We present the protocol for LUCINDA and discuss trial innovations and challenges including changes necessitated by the covid-19 pandemic and study drug procurement issues.
Collapse
Affiliation(s)
- Tracy Butler
- Brain Health Imaging Institute, Department of Radiology, Weill Cornell Medicine, New York, NY 10021, USA.
| | - Judith D Goldberg
- Departments of Population Health and Environmental Medicine, New York University School of Medicine, New York, NY 10016, USA
| | - James E Galvin
- Comprehensive Center for Brain Health, Departments of Neurology and Psychiatry, University of Miami, Miller School of Medicine, Boca Raton, FL 33433, USA
| | - Thomas Maloney
- Brain Health Imaging Institute, Department of Radiology, Weill Cornell Medicine, New York, NY 10021, USA
| | - Lisa Ravdin
- Department of Neurology, Weill Cornell Medicine, New York, NY 10021, USA
| | - Lidia Glodzik
- Brain Health Imaging Institute, Department of Radiology, Weill Cornell Medicine, New York, NY 10021, USA
| | - Mony J de Leon
- Brain Health Imaging Institute, Department of Radiology, Weill Cornell Medicine, New York, NY 10021, USA
| | - Tsivia Hochman
- Departments of Population Health and Environmental Medicine, New York University School of Medicine, New York, NY 10016, USA
| | | | - Craig S Atwood
- Division of Geriatrics and Gerontology, Department of Medicine, University of Wisconsin School of Medicine and Public Health, and Geriatric Research, Education and Clinical Center, Veterans Administration Hospital, Madison, WI 53705, USA
| |
Collapse
|
11
|
Przybył BJ, Szlis M, Wójcik-Gładysz A. Brain-derived neurotrophic factor (BDNF) affects the activity of the gonadotrophic axis in sheep. Horm Behav 2021; 131:104980. [PMID: 33872927 DOI: 10.1016/j.yhbeh.2021.104980] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/20/2020] [Revised: 03/31/2021] [Accepted: 04/01/2021] [Indexed: 11/18/2022]
Abstract
This study aimed to examine the hypothesis that BDNF modulates the activity of the gonadotrophic axis in sheep. Central infusions of BDNF were administered to sexually mature Polish Merino sheep. The sheep were randomly divided into three groups: the control group received intracerebroventricular (ICV) infusions of the vehicle, the BDNF 10 group received ICV infusions of BDNF at 10 μg/480 μL/day, and the BDNF 60 group was infused with BDNF at 60 μg/480 μL/day. A series of four infusions on three consecutive days was performed. Blood samples were collected on days 0 and 3 of the infusions. Immediately after the experiment, all the sheep were slaughtered, and selected structures of the hypothalamus and pituitaries were collected for Real Time RT-qPCR analysis. The collected plasma samples, as well as parts of pituitaries were stored for radioimmunoassay analysis of LH and FSH. Central treatment with exogenous BDNF stimulated GnRH mRNA expression in the preoptic area, as well as GnRH-R mRNA in the pituitary. Furthermore, substantial changes in the KNDy mRNA expression in the mediobasal hypothalamus were observed after the ICV BDNF administration. Additionally, central BDNF infusion caused a decrease in LH concentration and a simultaneous increase in FSH concentration in peripheral blood. Neither pulse amplitude nor pulse frequency for any gonadotrophin was affected in both groups of sheep that received BDNF infusion. Our results revealed that exogenous BDNF affects GnRH and KNDy gene expression and changes in the LH and FSH pituitary cell secretory activities. These findings suggest that BDNF may participate in the mechanism modulating the activity of the gonadotrophic axis at the central level in female sheep.
Collapse
Affiliation(s)
- Bartosz Jarosław Przybył
- Department of Animal Physiology, The Kielanowski Institute of Animal Physiology and Nutrition, Polish Academy of Sciences, 05-110 Jabłonna, Poland
| | - Michał Szlis
- Department of Animal Physiology, The Kielanowski Institute of Animal Physiology and Nutrition, Polish Academy of Sciences, 05-110 Jabłonna, Poland.
| | - Anna Wójcik-Gładysz
- Department of Animal Physiology, The Kielanowski Institute of Animal Physiology and Nutrition, Polish Academy of Sciences, 05-110 Jabłonna, Poland
| |
Collapse
|
12
|
Tomczyk M, Tomaszewska-Zaremba D, Bochenek J, Herman A, Herman AP. Anandamide Influences Interleukin-1β Synthesis and IL-1 System Gene Expressions in the Ovine Hypothalamus during Endo-Toxin-Induced Inflammation. Animals (Basel) 2021; 11:ani11020484. [PMID: 33673103 PMCID: PMC7918765 DOI: 10.3390/ani11020484] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2021] [Revised: 02/09/2021] [Accepted: 02/10/2021] [Indexed: 11/16/2022] Open
Abstract
Simple Summary Pro-inflammatory cytokines are considered to be one of the most important mediators affecting the function of central nervous system during an immune/inflammatory challenge. It was found that in acting on different hypothalamic nuclei, pro-inflammatory cytokines influence the centrally regulated processes including reproduction. Recently, it has been shown that the endocannabinoid system and endogenous cannabinoids may attenuate the inflammatory response. Therefore, in our study we examined the influence of anandamide, one of the earliest known endocannabinoids, on the synthesis of interleukin (IL)-1β and IL-1 system gene expressions in the hypothalamic structures involved in gonadotropin-releasing hormone (GnRH)-ergic activity, and thus the central control of reproduction, during immune stress induced by endotoxin injection. It was found that anandamide inhibited lipopolysaccharide (LPS)-stimulated synthesis of IL-1β in the hypothalamus, likely affecting posttranscriptional levels of this cytokine synthesis. Anti-inflammatory effect of anandamide at the level of central nervous system might also result from its stimulating action on IL-1 antagonist and IL-1 type II receptor gene expression. This study suggests the potential of endocannabinoids and/or their metabolites in the inhibition of inflammatory process at the level of the central nervous system, as well as their usefulness in the therapy of inflammation-induced neuroendocrine disorders, but further detailed research is required to investigate this issue. Abstract This study evaluated the effect of anandamide (AEA) on interleukin (IL)-1β synthesis and gene expression of IL-1β, its type I (IL-1R1) and II (IL-1R2) receptors, and IL-1 receptor antagonist (IL-1RN) in the hypothalamic structures, involved in the central control of reproduction, during inflammation. Animals were intravenously (i.v.) injected with bacterial endotoxin-lipopolysaccharide (LPS) (400 ng/kg) or saline, and two hours after LPS administration., a third group received i.v. injection of AEA (10 μg/kg). Ewes were euthanized one hour later. AEA injection (p < 0.05) suppressed LPS-induced expression of IL-1β protein in the hypothalamus. The gene expression of IL-1β, IL-1RN, and IL-1R2 in the hypothalamic structures was higher (p < 0.05) in animals treated with both LPS and AEA in comparison to other experimental groups. AEA administration did not influence LPS-stimulated IL-1R1 gene expression. Our study shows that AEA suppressed IL-1β synthesis in the hypothalamus, likely affecting posttranscriptional levels of this cytokine synthesis. However, anti-inflammatory effect of AEA might also result from its stimulating action on IL-1RN and IL-1R2 gene expression. These results indicate the potential of endocannabinoids and/or their metabolites in the inhibition of inflammatory process at the level of central nervous system, and therefore their usefulness in the therapy of inflammation-induced neuroendocrine disorders.
Collapse
Affiliation(s)
- Monika Tomczyk
- Department of Genetic Engineering, The Kielanowski Institute of Animal Physiology and Nutrition, Polish Academy of Sciences, 05-110 Jabłonna, Poland; (M.T.); (J.B.)
| | - Dorota Tomaszewska-Zaremba
- Department of Animal Physiology, The Kielanowski Institute of Animal Physiology and Nutrition, Polish Academy of Sciences, 05-110 Jabłonna, Poland;
| | - Joanna Bochenek
- Department of Genetic Engineering, The Kielanowski Institute of Animal Physiology and Nutrition, Polish Academy of Sciences, 05-110 Jabłonna, Poland; (M.T.); (J.B.)
| | - Anna Herman
- Faculty of Health Sciences, Warsaw School of Engineering and Health, 02-366 Warsaw, Poland;
| | - Andrzej P. Herman
- Department of Genetic Engineering, The Kielanowski Institute of Animal Physiology and Nutrition, Polish Academy of Sciences, 05-110 Jabłonna, Poland; (M.T.); (J.B.)
- Correspondence: ; Tel.: +45-22-7653300
| |
Collapse
|
13
|
Ying S, Qin J, Dai Z, An H, Zhu H, Chen R, Yang X, Wu W, Shi Z. Effects of LPS on the Secretion of Gonadotrophin Hormones and Expression of Genes in the Hypothalamus-Pituitary-Ovary (HPG) Axis in Laying Yangzhou Geese. Animals (Basel) 2020; 10:ani10122259. [PMID: 33266293 PMCID: PMC7760895 DOI: 10.3390/ani10122259] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2020] [Revised: 11/24/2020] [Accepted: 11/27/2020] [Indexed: 12/24/2022] Open
Abstract
Simple Summary Lipopolysaccharide (LPS), an endotoxin from E. coli, has been proven to impair follicle development and steroidogenesis, secretion of pituitary and hypothalamus reproductive hormones in mammals. However, the effects of LPS on the avian reproductive axis remain elusive. Pathogenic bacterial infection due to the particular mating behavior on the water containing pathogens was reported to decrease the laying rate and cause economic loss in goose production. In this study, we showed that LPS infection disturbed the plasma pituitary gonadotrophin hormone concentrations and the gene expression of the reproductive axis in Yangzhou geese. Notably, for the first time we proved that both the expression of gonadotrophin-releasing hormone (GnRH) and gonadotropin-inhibiting hormone (GnIH), two important reproductive genes from the hypothalamus, were altered after LPS treatment in birds. Our results can explain the decreased laying rate in goose after bacterial infection, and also provide new insights into reproductive dysfunction caused by LPS and the immune challenge in birds. Abstract Lipopolysaccharide (LPS) from gram-negative bacteria was found to be involved in the decrease in laying performance in goose flocks with high stocking density during summer months. LPS injection delayed the increase in the laying rate and altered hierarchical follicle morphology. While there is evidence that LPS exerts suppressive effects on goose reproduction, the time course effects of LPS on the hypothalamus-pituitary-ovary (HPG) axis remain elusive. In this study, we investigated the expression of genes in the HPG axis and the plasma gonadotrophin hormone concentrations in breeding geese at 0, 6, 12, 24, and 36 h after intravenous injection with LPS. The results showed that LPS treatment enhanced and suppressed expression of hypothalamic gonadotropin-inhibiting hormone (GnIH) and gonadotrophin-releasing hormone (GnRH) mRNA, respectively, and similar effects were observed on the mRNA expression of their receptors, GnIHR and GnRHR, in the pituitary. LPS treatment transiently increased follicle FSHβ mRNA expression at 12 h and exerted no significant effect on LHβ mRNA expression in the pituitary. Regardless of the expression of FSHβ and LHβ, plasma follicle stimulating hormone (FSH) and luteinizing hormone (LH) concentrations were significantly increased during 24–36 h after LPS treatment. In the ovary, StAR and Cyp11a1 were mainly expressed in the granulosa layer (GL) of hierarchical follicles, while Cyp17a1 and Cyp19a1 were mainly expressed in white follicles (WFs) and yellowish follicles (YFs), and to a lesser extent in the theca layer (TL). After LPS treatment, the mRNA levels of Cyp11a1 in the GLs, Cyp17a1 in the WFs and TL, and Cyp19a1 in the WFs, YFs, and TL were significantly decreased. However, LPS treatment transiently upregulated StAR expression at 12 h. These results indicate that the exposure of laying geese to LPS may impair the HPG axis and disturb ovarian steroidogenesis. Our research provides new insights into reproductive dysfunction caused by LPS and the immune challenge in birds.
Collapse
Affiliation(s)
- Shijia Ying
- Jiangsu Key Laboratory for Food Quality and Safety-State Key Laboratory Cultivation Base of Ministry of Science and Technology, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China; (H.Z.); (R.C.)
- Institute of Animal Science, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China;
- Correspondence: (S.Y.); (Z.S.)
| | - Jialin Qin
- College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, China; (J.Q.); (H.A.); (X.Y.); (W.W.)
| | - Zichun Dai
- Institute of Animal Science, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China;
| | - Hao An
- College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, China; (J.Q.); (H.A.); (X.Y.); (W.W.)
| | - Huanxi Zhu
- Jiangsu Key Laboratory for Food Quality and Safety-State Key Laboratory Cultivation Base of Ministry of Science and Technology, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China; (H.Z.); (R.C.)
- Institute of Animal Science, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China;
| | - Rong Chen
- Jiangsu Key Laboratory for Food Quality and Safety-State Key Laboratory Cultivation Base of Ministry of Science and Technology, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China; (H.Z.); (R.C.)
- Institute of Animal Science, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China;
| | - Xiaojin Yang
- College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, China; (J.Q.); (H.A.); (X.Y.); (W.W.)
| | - Wenda Wu
- College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, China; (J.Q.); (H.A.); (X.Y.); (W.W.)
| | - Zhendan Shi
- Jiangsu Key Laboratory for Food Quality and Safety-State Key Laboratory Cultivation Base of Ministry of Science and Technology, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China; (H.Z.); (R.C.)
- Institute of Animal Science, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China;
- Correspondence: (S.Y.); (Z.S.)
| |
Collapse
|
14
|
Wojtulewicz K, Krawczyńska A, Tomaszewska-Zaremba D, Wójcik M, Herman AP. Effect of Acute and Prolonged Inflammation on the Gene Expression of Proinflammatory Cytokines and Their Receptors in the Anterior Pituitary Gland of Ewes. Int J Mol Sci 2020; 21:E6939. [PMID: 32967383 PMCID: PMC7554822 DOI: 10.3390/ijms21186939] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2020] [Revised: 09/19/2020] [Accepted: 09/20/2020] [Indexed: 01/01/2023] Open
Abstract
An acute and prolonged inflammation inhibits the reproduction process by the disruption of the neurohormonal activity of the hypothalamic-pituitary-gonadal axis. It is thought that these changes may be caused by proinflammatory cytokines, i.e., interleukin (IL) -1β, IL-6 and tumor necrosis factor (TNF) α. The aim of this study was to determine the effect of an acute and prolonged inflammation on the expression of genes encoding cytokine and their receptors, gonadotropin releasing hormone receptor (GnRHR), beta subunits of luteinizing hormone (LHβ) and follicle-stimulating (FSHβ) in the anterior pituitary (AP). Moreover, the circulating concentration of LH and FSH was also assayed. Two experiments were carried out on adult ewes which were divided into two control groups and treated with lipopolysaccharide (LPS; 400 ng / kg). Acute inflammation was caused by a single injection of LPS into the external jugular vein, while the chronic inflammation was induced by seven times LPS injection (one a day). In both experiments, animals were euthanized 3h after the last LPS / NaCl injection and the blood samples collected 15 min before euthanasia. An acute inflammation stimulates the expression of the IL-1β, IL-6 and TNFα genes and their receptors in the AP of sheep. Prolonged inflammation increased TNFα gene expression and both types of TNFα and IL-6 receptors. Both an acute and prolonged inflammation inhibited LHβ gene expression in the AP and reduced LH level in blood. A sevenfold LPS injection raises FSH concentration. The gene expression of GnRHR was reduced in the ovine AP only after a single injection of endotoxin. Our results suggest that there are important differences in the way how an acute and prolonged inflammation influence proinflammatory cytokines and their receptors gene expression in the AP of anestrous ewes, which could be reflected by differences in the AP secretory activity during these states.
Collapse
Affiliation(s)
- Karolina Wojtulewicz
- The Kielanowski Institute of Animal Physiology and Nutrition, Polish Academy of Sciences, Instytucka 3, 03-105 Jabłonna, Poland; (A.K.); (D.T.-Z.); (M.W.); (A.P.H.)
| | | | | | | | | |
Collapse
|
15
|
Tomaszewska-Zaremba D, Wojtulewicz K, Paczesna K, Tomczyk M, Biernacka K, Bochenek J, Herman AP. The Influence of Anandamide on the Anterior Pituitary Hormone Secretion in Ewes-Ex Vivo Study. Animals (Basel) 2020; 10:ani10040706. [PMID: 32316539 PMCID: PMC7222813 DOI: 10.3390/ani10040706] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2020] [Revised: 03/25/2020] [Accepted: 04/07/2020] [Indexed: 11/16/2022] Open
Abstract
Cannabinoids (CBs) are involved in the neuroendocrine control of reproductive processes by affecting GnRH and gonadotropins secretion. The presence of cannabinoid receptors (CBR) in the pituitary raises a presumption that anandamide (AEA), the endogenous cannabinoid, may act on gonadotrophic hormones secretion directly at the level of the anterior pituitary (AP). Thus, the aim of the study was to investigate the influence of AEA on gonadotropins secretions from AP explants taken from anestrous ewes. It was demonstrated that AEA inhibited GnRH stimulated luteinizing hormone (LH) and follicle stimulating hormone (FSH) secretion from the AP explants. Anandamide influences both LH and FSH gene expressions as well as their release. AEA also affected gonadoliberin receptor (GnRHR) synthesis and expression. The presence of CB1R transcript in AP explants were also demonstrated. It could be suggested that some known negative effects of cannabinoids on the hypothalamic-pituitary-gonadal axis activity may be caused by the direct action of these compounds at the pituitary level.
Collapse
|
16
|
Szlis M, Wójcik-Gładysz A, Przybył BJ. Central obestatin administration affect the LH and FSH secretory activity in peripubertal sheep. Theriogenology 2020; 145:10-17. [PMID: 31982689 DOI: 10.1016/j.theriogenology.2020.01.032] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2019] [Revised: 01/14/2020] [Accepted: 01/14/2020] [Indexed: 02/06/2023]
Abstract
Obestatin - a 23 amino acid peptide is synthesized as another product of the ghrl gene and its synthesis occurs mainly in gastric mucosa cells. This hormone is involved in complex gut-brain neurohormonal networks, thereby can participates in the modulation of gonadotrophic axis activity. The aim of this study was to investigate the consequence of intracerebroventricular infusions of obestatin on LH and FSH pituitary cells secretory activity in peripubertal female sheep. Animals were randomly divided into two groups: the control group (n = 14) received intracerebroventricular infusions of Ringer-Lock solution (120 μL h-1), and the obestatin group (n = 14) was infused with obestatin (25 μg/120 μL h-1) diluted in Ringer-Lock solution. A series of four infusions was performed on three consecutive days. Blood samples were collected on day 0 and day 3. The sheep were slaughtered immediately after the end of the experiment. For molecular biological analysis, pituitaries from 7 sheep from each group (n = 7 + 7) were prepared and frozen in liquid nitrogen immediately after collection and then stored at -80 °C until Real Time RT-qPCR and RIA analyzes. For immunohistochemical analysis, pituitary tissues from the remaining animals (n = 7 + 7) was fixed in situ for further examination. Real-Time qPCR and immunohistochemistry analyses revealed substantial changes in the LH and FSH pituitary cells secretory activity in obestatin-infused sheep. Exogenous obestatin administration reduced LHβ mRNA expression and increased the accumulation of immunoreactive LH in gonadotrophic cells of the adenohypophysis. These changes were accompanied by a decrease in the mean LH concentration in the peripheral blood resulting from the lower LH pulse amplitude. Moreover, an increase in both FSHβ mRNA expression and FSH immunoreactivity and amount in pituitary cells were noted, while mean blood FSH concentration remained unchanged after obestatin treatment. The obtained results showed that exogenous obestatin affected LH secretory activity at the level of protein synthesis, accumulation and release as well as obestatin increase FSHβ mRNA expression and accumulation of this hormone but at the same time have no effect on FSH release to blood. Thus, obestatin can participate in the neuroendocrine network, which modulates gonadotrophic axis activity in sheep.
Collapse
Affiliation(s)
- Michał Szlis
- Department of Animal Physiology, The Kielanowski Institute of Animal Physiology and Nutrition, Polish Academy of Sciences, Instytucka 3, 05-110, Jabłonna, Poland
| | - Anna Wójcik-Gładysz
- Department of Animal Physiology, The Kielanowski Institute of Animal Physiology and Nutrition, Polish Academy of Sciences, Instytucka 3, 05-110, Jabłonna, Poland.
| | - Bartosz Jarosław Przybył
- Department of Animal Physiology, The Kielanowski Institute of Animal Physiology and Nutrition, Polish Academy of Sciences, Instytucka 3, 05-110, Jabłonna, Poland
| |
Collapse
|
17
|
Barabás K, Szabó-Meleg E, Ábrahám IM. Effect of Inflammation on Female Gonadotropin-Releasing Hormone (GnRH) Neurons: Mechanisms and Consequences. Int J Mol Sci 2020; 21:ijms21020529. [PMID: 31947687 PMCID: PMC7014424 DOI: 10.3390/ijms21020529] [Citation(s) in RCA: 50] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2019] [Revised: 01/06/2020] [Accepted: 01/08/2020] [Indexed: 02/06/2023] Open
Abstract
: Inflammation has a well-known suppressive effect on fertility. The function of gonadotropin-releasing hormone (GnRH) neurons, the central regulator of fertility is substantially altered during inflammation in females. In our review we discuss the latest results on how the function of GnRH neurons is modified by inflammation in females. We first address the various effects of inflammation on GnRH neurons and their functional consequences. Second, we survey the possible mechanisms underlying the inflammation-induced actions on GnRH neurons. The role of several factors will be discerned in transmitting inflammatory signals to the GnRH neurons: cytokines, kisspeptin, RFamide-related peptides, estradiol and the anti-inflammatory cholinergic pathway. Since aging and obesity are both characterized by reproductive decline our review also focuses on the mechanisms and pathophysiological consequences of the impact of inflammation on GnRH neurons in aging and obesity.
Collapse
Affiliation(s)
- Klaudia Barabás
- Molecular Neuroendocrinology Research Group, Institute of Physiology, Medical School, Centre for Neuroscience, Szentágothai Research Institute, University of Pécs, H-7624 Pécs, Hungary;
| | - Edina Szabó-Meleg
- Departement of Biophysics, Medical School, University of Pécs, H-7624 Pécs, Hungary;
| | - István M. Ábrahám
- Molecular Neuroendocrinology Research Group, Institute of Physiology, Medical School, Centre for Neuroscience, Szentágothai Research Institute, University of Pécs, H-7624 Pécs, Hungary;
- Correspondence:
| |
Collapse
|
18
|
Herman AP, Skipor J, Krawczyńska A, Bochenek J, Wojtulewicz K, Pawlina B, Antushevich H, Herman A, Tomaszewska-Zaremba D. Effect of Central Injection of Neostigmine on the Bacterial Endotoxin Induced Suppression of GnRH/LH Secretion in Ewes during the Follicular Phase of the Estrous Cycle. Int J Mol Sci 2019; 20:ijms20184598. [PMID: 31533319 PMCID: PMC6769544 DOI: 10.3390/ijms20184598] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2019] [Revised: 09/10/2019] [Accepted: 09/16/2019] [Indexed: 12/29/2022] Open
Abstract
Induced by a bacterial infection, an immune/inflammatory challenge is a potent negative regulator of the reproduction process in females. The reduction of the synthesis of pro-inflammatory cytokine is considered as an effective strategy in the treatment of inflammatory induced neuroendocrine disorders. Therefore, the effect of direct administration of acetylcholinesterase inhibitor—neostigmine—into the third ventricle of the brain on the gonadotropin-releasing hormone (GnRH) and luteinizing hormone (LH) secretions under basal and immune stress conditions was evaluated in this study. In the study, 24 adult, 2-years-old Blackhead ewes during the follicular phase of their estrous cycle were used. Immune stress was induced by the intravenous injection of LPS Escherichia coli in a dose of 400 ng/kg. Animals received an intracerebroventricular injection of neostigmine (1 mg/animal) 0.5 h before LPS/saline treatment. It was shown that central administration of neostigmine might prevent the inflammatory-dependent decrease of GnRH/LH secretion in ewes and it had a stimulatory effect on LH release. This central action of neostigmine is connected with its inhibitory action on local pro-inflammatory cytokines, such as interleukin (IL)-1β, IL-6, and tumor necrosis factor (TNF)α synthesis in the hypothalamus, which indicates the importance of this mediator in the inhibition of GnRH secretion during acute inflammation.
Collapse
Affiliation(s)
- Andrzej Przemysław Herman
- The Kielanowski Institute of Animal Physiology and Nutrition, Polish Academy of Sciences, 05-100 Jabłonna, Poland; (A.K.); (J.B.); (K.W.); (B.P.); (H.A.); (D.T.-Z.)
- Correspondence: ; Tel.: +48-22-765-33-02; Fax: +48-22-765-33-03
| | - Janina Skipor
- Institute of Animal Reproduction and Food Research, Polish Academy of Sciences, 10-748 Olsztyn, Poland;
| | - Agata Krawczyńska
- The Kielanowski Institute of Animal Physiology and Nutrition, Polish Academy of Sciences, 05-100 Jabłonna, Poland; (A.K.); (J.B.); (K.W.); (B.P.); (H.A.); (D.T.-Z.)
| | - Joanna Bochenek
- The Kielanowski Institute of Animal Physiology and Nutrition, Polish Academy of Sciences, 05-100 Jabłonna, Poland; (A.K.); (J.B.); (K.W.); (B.P.); (H.A.); (D.T.-Z.)
| | - Karolina Wojtulewicz
- The Kielanowski Institute of Animal Physiology and Nutrition, Polish Academy of Sciences, 05-100 Jabłonna, Poland; (A.K.); (J.B.); (K.W.); (B.P.); (H.A.); (D.T.-Z.)
| | - Bartosz Pawlina
- The Kielanowski Institute of Animal Physiology and Nutrition, Polish Academy of Sciences, 05-100 Jabłonna, Poland; (A.K.); (J.B.); (K.W.); (B.P.); (H.A.); (D.T.-Z.)
| | - Hanna Antushevich
- The Kielanowski Institute of Animal Physiology and Nutrition, Polish Academy of Sciences, 05-100 Jabłonna, Poland; (A.K.); (J.B.); (K.W.); (B.P.); (H.A.); (D.T.-Z.)
| | - Anna Herman
- Faculty of Health Sciences, Warsaw School of Engineering and Health, 02-366 Warsaw, Poland;
| | - Dorota Tomaszewska-Zaremba
- The Kielanowski Institute of Animal Physiology and Nutrition, Polish Academy of Sciences, 05-100 Jabłonna, Poland; (A.K.); (J.B.); (K.W.); (B.P.); (H.A.); (D.T.-Z.)
| |
Collapse
|
19
|
Zheng J, Wang Z, Yang H, Yao X, Yang P, Ren C, Wang F, Zhang Y. Pituitary Transcriptomic Study Reveals the Differential Regulation of lncRNAs and mRNAs Related to Prolificacy in Different FecB Genotyping Sheep. Genes (Basel) 2019; 10:genes10020157. [PMID: 30781725 PMCID: PMC6410156 DOI: 10.3390/genes10020157] [Citation(s) in RCA: 43] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2018] [Revised: 02/13/2019] [Accepted: 02/14/2019] [Indexed: 12/22/2022] Open
Abstract
Long non-coding RNA (LncRNA) have been identified as important regulators in the hypothalamic-pituitary-ovarian axis associated with sheep prolificacy. However, their expression pattern and potential roles in the pituitary are yet unclear. To explore the potential mRNAs and lncRNAs that regulate the expression of the genes involved in sheep prolificacy, we used stranded specific RNA-seq to profile the pituitary transcriptome (lncRNA and mRNA) in high prolificacy (genotype FecB BB, litter size = 3; H) and low prolificacy sheep (genotype FecB B+; litter size = 1; L). Our results showed that 57 differentially expressed (DE) lncRNAs and 298 DE mRNAs were found in the pituitary between the two groups. The qRT-PCR results correlated well with the RNA-seq results. Moreover, functional annotation analysis showed that the target genes of the DE lncRNAs were significantly enriched in pituitary function, hormone-related pathways as well as response to stimulus and some other terms related to reproduction. Furthermore, a co-expression network of lncRNAs and target genes was constructed and reproduction related genes such as SMAD2, NMB and EFNB3 were included. Lastly, the interaction of candidate lncRNA MSTRG.259847.2 and its target gene SMAD2 were validated in vitro of sheep pituitary cells. These differential mRNA and lncRNA expression profiles provide a valuable resource for understanding the molecular mechanisms underlying Hu sheep prolificacy.
Collapse
Affiliation(s)
- Jian Zheng
- Jiangsu Engineering Technology Research Center of Mutton Sheep and Goat Industry, Nanjing Agricultural University, Nanjing 210095, China.
- Jiangsu Livestock Embryo Engineering Laboratory, Nanjing Agricultural University, Nanjing 210095, China.
| | - Zhibo Wang
- Jiangsu Engineering Technology Research Center of Mutton Sheep and Goat Industry, Nanjing Agricultural University, Nanjing 210095, China.
- Jiangsu Livestock Embryo Engineering Laboratory, Nanjing Agricultural University, Nanjing 210095, China.
| | - Hua Yang
- Jiangsu Engineering Technology Research Center of Mutton Sheep and Goat Industry, Nanjing Agricultural University, Nanjing 210095, China.
- Jiangsu Livestock Embryo Engineering Laboratory, Nanjing Agricultural University, Nanjing 210095, China.
| | - Xiaolei Yao
- Jiangsu Engineering Technology Research Center of Mutton Sheep and Goat Industry, Nanjing Agricultural University, Nanjing 210095, China.
- Jiangsu Livestock Embryo Engineering Laboratory, Nanjing Agricultural University, Nanjing 210095, China.
| | - Pengcheng Yang
- National Experimental Teaching Demonstration Center of Animal Science, Nanjing Agricultural University, Nanjing 210095, China.
| | - CaiFang Ren
- Jiangsu Engineering Technology Research Center of Mutton Sheep and Goat Industry, Nanjing Agricultural University, Nanjing 210095, China.
- Jiangsu Livestock Embryo Engineering Laboratory, Nanjing Agricultural University, Nanjing 210095, China.
| | - Feng Wang
- Jiangsu Engineering Technology Research Center of Mutton Sheep and Goat Industry, Nanjing Agricultural University, Nanjing 210095, China.
- Jiangsu Livestock Embryo Engineering Laboratory, Nanjing Agricultural University, Nanjing 210095, China.
| | - YanLi Zhang
- Jiangsu Engineering Technology Research Center of Mutton Sheep and Goat Industry, Nanjing Agricultural University, Nanjing 210095, China.
- Jiangsu Livestock Embryo Engineering Laboratory, Nanjing Agricultural University, Nanjing 210095, China.
| |
Collapse
|
20
|
Wojtulewicz K, Tomaszewska-Zaremba D, Krawczyńska A, Tomczyk M, Przemysław Herman A. The effect of inflammation on the synthesis of luteinizing hormone and gonadotropin-releasing hormone receptor expression in the pars tuberalis of ewe during different photoperiodic conditions. CANADIAN JOURNAL OF ANIMAL SCIENCE 2018. [DOI: 10.1139/cjas-2017-0121] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The study was designed to determine the effect of endotoxin-induced inflammation on luteinizing hormone (LH) synthesis and gonadotropin-releasing hormone (GnRH) receptor expression in the pars tuberalis (PT) of ewes during anestrous season and follicular phase taking into account the time of the day. Moreover, the effect of inflammation on the release of melatonin and its type I receptor gene expression in the PT was also determined. Lipopolysaccharide administration reduced nocturnal release of melatonin only during anestrous season, but it did not influence the gene expression of melatonin type I receptor in the PT. Inflammation inhibited nocturnal increase in the gene and protein expression of LH in the PT during the follicular phase. Since in day-active species nocturnal accumulation of LH protein in the pituitary precedes the LH surge, this lowering of LH content may delay or disturb the surge occurrence. Suppression of LH secretion could have resulted from the decreased sensitivity of the PT on the action of GnRH because inflammation reduced GnRH receptor expression. The study suggests that the ability of endotoxin to suppress LH synthesis in the PT may be another mechanism by which inflammation disturbs reproductive neuroendocrine axis in seasonal breeders.
Collapse
Affiliation(s)
- Karolina Wojtulewicz
- The Kielanowski Institute of Animal Physiology and Nutrition, Polish Academy of Sciences, Instytucka 3 Street, Jabłonna 05-110, Poland
- The Kielanowski Institute of Animal Physiology and Nutrition, Polish Academy of Sciences, Instytucka 3 Street, Jabłonna 05-110, Poland
| | - Dorota Tomaszewska-Zaremba
- The Kielanowski Institute of Animal Physiology and Nutrition, Polish Academy of Sciences, Instytucka 3 Street, Jabłonna 05-110, Poland
- The Kielanowski Institute of Animal Physiology and Nutrition, Polish Academy of Sciences, Instytucka 3 Street, Jabłonna 05-110, Poland
| | - Agata Krawczyńska
- The Kielanowski Institute of Animal Physiology and Nutrition, Polish Academy of Sciences, Instytucka 3 Street, Jabłonna 05-110, Poland
- The Kielanowski Institute of Animal Physiology and Nutrition, Polish Academy of Sciences, Instytucka 3 Street, Jabłonna 05-110, Poland
| | - Monika Tomczyk
- The Kielanowski Institute of Animal Physiology and Nutrition, Polish Academy of Sciences, Instytucka 3 Street, Jabłonna 05-110, Poland
- The Kielanowski Institute of Animal Physiology and Nutrition, Polish Academy of Sciences, Instytucka 3 Street, Jabłonna 05-110, Poland
| | - Andrzej Przemysław Herman
- The Kielanowski Institute of Animal Physiology and Nutrition, Polish Academy of Sciences, Instytucka 3 Street, Jabłonna 05-110, Poland
- The Kielanowski Institute of Animal Physiology and Nutrition, Polish Academy of Sciences, Instytucka 3 Street, Jabłonna 05-110, Poland
| |
Collapse
|
21
|
Herman AP, Tomaszewska-Zaremba D, Kowalewska M, Szczepkowska A, Oleszkiewicz M, Krawczyńska A, Wójcik M, Antushevich H, Skipor J. Neostigmine Attenuates Proinflammatory Cytokine Expression in Preoptic Area but Not Choroid Plexus during Lipopolysaccharide-Induced Systemic Inflammation. Mediators Inflamm 2018; 2018:9150207. [PMID: 30402044 PMCID: PMC6198615 DOI: 10.1155/2018/9150207] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2018] [Revised: 09/04/2018] [Accepted: 09/17/2018] [Indexed: 12/03/2022] Open
Abstract
The study was designed to examine whether the administration of neostigmine (0.5 mg/animal), a peripheral inhibitor of acetylcholinesterase (AChE), during an immune/inflammatory challenge provoked by intravenous injection of bacterial endotoxin-lipopolysaccharide (LPS; 400 ng/kg)-attenuates the synthesis of proinflammatory cytokines in the ovine preoptic area (POA), the hypothalamic structure playing an essential role in the control of the reproduction process, and in the choroid plexus (CP), a multifunctional organ sited at the interface between the blood and cerebrospinal fluid in the ewe. Neostigmine suppressed (p < 0.05) LPS-stimulated synthesis of cytokines such as interleukin- (IL-) 1β, IL-6, and tumor necrosis factor (TNF) α in the POA, and this effect was similar to that induced by the treatment with systemic AChE inhibitor-donepezil (2.5 mg/animal). On the other hand, both AChE inhibitors did not influence the gene expression of these cytokines and their corresponding receptors in the CP. It was found that this structure seems to not express the neuronal acetylcholine (ACh) receptor subunit alpha-7, required for anti-inflammatory action of ACh. The mechanism of action involves inhibition of the proinflammatory cytokine synthesis on the periphery as well as inhibition of their de novo synthesis rather in brain microvessels and not in the CP. In conclusion, it is suggested that the AChE inhibitors incapable of reaching brain parenchyma might be used in the treatment of neuroinflammatory processes induced by peripheral inflammation.
Collapse
Affiliation(s)
- Andrzej P. Herman
- The Kielanowski Institute of Animal Physiology and Nutrition, Polish Academy of Sciences, 05-110 Jabłonna, Poland
| | - Dorota Tomaszewska-Zaremba
- The Kielanowski Institute of Animal Physiology and Nutrition, Polish Academy of Sciences, 05-110 Jabłonna, Poland
| | - Marta Kowalewska
- Institute of Animal Reproduction and Food Research, Polish Academy of Sciences, 10-748 Olsztyn, Poland
| | - Aleksandra Szczepkowska
- Institute of Animal Reproduction and Food Research, Polish Academy of Sciences, 10-748 Olsztyn, Poland
| | - Małgorzata Oleszkiewicz
- Institute of Animal Reproduction and Food Research, Polish Academy of Sciences, 10-748 Olsztyn, Poland
| | - Agata Krawczyńska
- The Kielanowski Institute of Animal Physiology and Nutrition, Polish Academy of Sciences, 05-110 Jabłonna, Poland
| | - Maciej Wójcik
- The Kielanowski Institute of Animal Physiology and Nutrition, Polish Academy of Sciences, 05-110 Jabłonna, Poland
| | - Hanna Antushevich
- The Kielanowski Institute of Animal Physiology and Nutrition, Polish Academy of Sciences, 05-110 Jabłonna, Poland
| | - Janina Skipor
- Institute of Animal Reproduction and Food Research, Polish Academy of Sciences, 10-748 Olsztyn, Poland
| |
Collapse
|
22
|
Inflammation and LPS-Binding Protein Enable the Stimulatory Effect of Endotoxin on Prolactin Secretion in the Ovine Anterior Pituitary: Ex Vivo Study. Mediators Inflamm 2018; 2018:5427089. [PMID: 30186037 PMCID: PMC6112077 DOI: 10.1155/2018/5427089] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2018] [Accepted: 08/05/2018] [Indexed: 12/21/2022] Open
Abstract
Prolactin is a hormone that plays an important role in the regulation of many physiological processes including lactation, reproduction, fat metabolism, and immune response. The secretion of prolactin could be disturbed by an immune stress commonly accompanying infection. This study was designed to determine the influence of bacterial endotoxin—lipopolysaccharide (LPS)—on prolactin gene (PRL) expression and prolactin release from the ovine anterior pituitary (AP) explants collected from saline- and LPS-treated ewes in the follicular phase. The expressions of toll-like receptor 4 (TLR4) and proinflammatory cytokines interleukin- (IL-) 1β, IL-6, and tumor necrosis factor- (TNF-) α genes were also assayed. The results of the study showed that LPS stimulates prolactin secretion and IL-6 gene expression in the AP explants, but its action on lactotrophs depends on the immunological status of animal. It was demonstrated that an important role in enhancing the effect of LPS on the pituitary in the saline-treated ewes is played by LPS-binding protein (LBP)- “adapter molecule” for LPS binding to the cell surface receptor CD14 and then to TLR4. Also, it was found that bacterial endotoxin acting on the anterior pituitary cells may enhance prolactin secretion, and this effect of LPS could be mediated by IL-6 which is known as prolactin-releasing factor. Identification of the neuroendocrine and immune interactions in the regulation of prolactin secretion could be helpful in developing newer and more effective treatments for dysfunctions connected with disorders in this hormone secretion.
Collapse
|
23
|
Haziak K, Herman AP, Wojtulewicz K, Pawlina B, Paczesna K, Bochenek J, Tomaszewska-Zaremba D. Effect of CD14/TLR4 antagonist on GnRH/LH secretion in ewe during central inflammation induced by intracerebroventricular administration of LPS. J Anim Sci Biotechnol 2018; 9:52. [PMID: 30026944 PMCID: PMC6047126 DOI: 10.1186/s40104-018-0267-8] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2017] [Accepted: 05/17/2018] [Indexed: 12/29/2022] Open
Abstract
BACKGROUND Immune stress induced by lipopolysaccharide (LPS) influences the gonadotropin-releasing hormone (GnRH)/luteinizing hormone (LH) secretion. Presence of LPS interacting Toll-like receptor (TLR) 4 in the hypothalamus may enable the direct action of LPS on the GnRH/LH secretion. So, the aim of the study was to investigate the influence of intracerebroventricular (icv) injection of TLR4 antagonist on GnRH/LH secretion in anestrous ewes during LPS-induced central inflammation. Animals were divided into three groups icv-treated with: Ringer-Locke solution, LPS and TLR4 antagonist followed by LPS. RESULTS It was demonstrated that TLR4 antagonist reduced LPS-dependent suppression of GnRH gene expression in the preoptic area and in the medial basal hypothalamus, and suppression of receptor for GnRH gene expression in the anterior pituitary gland. It was also shown that TLR4 antagonist reduced suppression of LH release caused by icv injection of LPS. Central administration of LPS stimulated TLR4 gene expression in the medial basal hypothalamus. CONCLUSIONS It was indicated that blockade of TLR4 prevents the inhibitory effect of centrally acting LPS on the GnRH/LH secretion. This suggests that some negative effects of bacterial infection on the hypothalamic-pituitary-gonadal axis activity at the hypothalamic level may be caused by central action of LPS acting through TLR4.
Collapse
Affiliation(s)
- Karolina Haziak
- The Kielanowski Institute of Animal Physiology and Nutrition, Polish Academy of Sciences, 05-110 Jabłonna, Poland
| | - Andrzej Przemysław Herman
- The Kielanowski Institute of Animal Physiology and Nutrition, Polish Academy of Sciences, 05-110 Jabłonna, Poland
| | - Karolina Wojtulewicz
- The Kielanowski Institute of Animal Physiology and Nutrition, Polish Academy of Sciences, 05-110 Jabłonna, Poland
| | - Bartosz Pawlina
- The Kielanowski Institute of Animal Physiology and Nutrition, Polish Academy of Sciences, 05-110 Jabłonna, Poland
| | - Kamila Paczesna
- The Kielanowski Institute of Animal Physiology and Nutrition, Polish Academy of Sciences, 05-110 Jabłonna, Poland
| | - Joanna Bochenek
- The Kielanowski Institute of Animal Physiology and Nutrition, Polish Academy of Sciences, 05-110 Jabłonna, Poland
| | - Dorota Tomaszewska-Zaremba
- The Kielanowski Institute of Animal Physiology and Nutrition, Polish Academy of Sciences, 05-110 Jabłonna, Poland
| |
Collapse
|
24
|
Wojtulewicz K, Tomaszewska-Zaremba D, Herman AP. Endotoxin-Induced Inflammation Suppresses the Effect of Melatonin on the Release of LH from the Ovine Pars Tuberalis Explants-Ex Vivo Study. Molecules 2017; 22:E1933. [PMID: 29125559 PMCID: PMC6150294 DOI: 10.3390/molecules22111933] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2017] [Revised: 11/03/2017] [Accepted: 11/07/2017] [Indexed: 11/27/2022] Open
Abstract
The secretion of the hormone melatonin reliably reflects environmental light conditions. Among numerous actions, in seasonal breeders, melatonin may regulate the secretion of the gonadotropins acting via its corresponding receptors occurring in the Pars Tuberalis (PT). However, it was previously found that the secretory activity of the pituitary may be dependent on the immune status of the animal. Therefore, this study was designed to determine the role of melatonin in the modulation of luteinizing hormone (LH) secretion from the PT explants collected from saline- and endotoxin-treated ewes in the follicular phase of the oestrous cycle. Twelve Blackhead ewes were sacrificed 3 h after injection with lipopolysaccharide (LPS; 400 ng/kg) or saline, and the PTs were collected. Each PT was cut into 4 explants, which were then divided into 4 groups: I, incubated with 'pure' medium 199; II, treated with gonadotropin-releasing hormone (GnRH) (100 pg/mL); III, treated with melatonin (10 nmol/mL); and IV, incubated with GnRH and melatonin. Melatonin reduced (p < 0.05) GnRH-induced secretion of LH only in the PT from saline-treated ewes. Explants collected from LPS-treated ewes were characterized by lower (p < 0.05) GnRH-dependent response in LH release. It was also found that inflammation reduced the gene expression of the GnRH receptor and the MT1 melatonin receptors in the PT. Therefore, it was shown that inflammation affects the melatonin action on LH secretion from the PT, which may be one of the mechanisms via which immune/inflammatory challenges disturb reproduction processes in animals.
Collapse
Affiliation(s)
- Karolina Wojtulewicz
- The Kielanowski Institute of Animal Physiology and Nutrition, Polish Academy of Sciences, Instytucka 3 Street, 05-110 Jabłonna, Poland.
| | - Dorota Tomaszewska-Zaremba
- The Kielanowski Institute of Animal Physiology and Nutrition, Polish Academy of Sciences, Instytucka 3 Street, 05-110 Jabłonna, Poland.
| | - Andrzej Przemysław Herman
- The Kielanowski Institute of Animal Physiology and Nutrition, Polish Academy of Sciences, Instytucka 3 Street, 05-110 Jabłonna, Poland.
| |
Collapse
|
25
|
Skipor J, Kowalewska M, Szczepkowska A, Majewska A, Misztal T, Jalynski M, Herman AP, Zabek K. Plasma and cerebrospinal fluid interleukin-1β during lipopolysaccharide-induced systemic inflammation in ewes implanted or not with slow-release melatonin. J Anim Sci Biotechnol 2017; 8:76. [PMID: 29026538 PMCID: PMC5623061 DOI: 10.1186/s40104-017-0206-0] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2017] [Accepted: 08/21/2017] [Indexed: 11/26/2022] Open
Abstract
Background Interleukin-1β (IL-1β) is important mediator of inflammatory-induced suppression of reproductive axis at the hypothalamic level. At the beginning of inflammation, the main source of cytokines in the cerebrospinal fluid (CSF) is peripheral circulation, while over time, cytokines produced in the brain are more important. Melatonin has been shown to decrease pro-inflammatory cytokines concentration in the brain. In ewes, melatonin is used to advance the onset of a breading season. Little is known about CSF concentration of IL-1β in ewes and its correlation with plasma during inflammation as well as melatonin action on the concentration of IL-1β in blood plasma and the CSF, and brain barriers permeability in early stage of lipopolysaccharide (LPS)-induced inflammation. Methods Systemic inflammation was induced through LPS administration in melatonin- and sham-implanted ewes. Blood and CSF samples were collected before and after LPS administration and IL-1β and albumin concentration were measured. To assess the functions of brain barriers albumin quotient (QAlb) was used. Expression of IL-1β (Il1B) and its receptor type I (Il1r1) and type II (Il1r2) and matrix metalloproteinase (Mmp) 3 and 9 was evaluated in the choroid plexus (CP). Results Before LPS administration, IL-1β was on the level of 62.0 ± 29.7 pg/mL and 66.4 ± 32.1 pg/mL in plasma and 26.2 ± 5.4 pg/mL and 21.3 ± 8.7 pg/mL in the CSF in sham- and melatonin-implanted group, respectively. Following LPS it increased to 159.3 ± 53.1 pg/mL and 197.8 ± 42.8 pg/mL in plasma and 129.8 ± 54.2 pg/mL and 139.6 ± 51.5 pg/mL in the CSF. No correlations was found between plasma and CSF IL-1β concentration after LPS in both groups. The QAlb calculated before LPS and 6 h after was similar in all groups. Melatonin did not affected mRNA expression of Il1B, Il1r1 and Il1r2 in the CP. The mRNA expression of Mmp3 and Mmp9 was not detected. Conclusions The lack of correlation between plasma and CSF IL-1β concentration indicates that at the beginning of inflammation the local synthesis of IL-1β in the CP is an important source of IL-1β in the CSF. Melatonin from slow-release implants does not affect IL-1β concentration in plasma and CSF in early stage of systemic inflammation.
Collapse
Affiliation(s)
- Janina Skipor
- Institute of Animal Reproduction and Food Research, Polish Academy of Sciences, Olsztyn, Poland
| | - Marta Kowalewska
- Institute of Animal Reproduction and Food Research, Polish Academy of Sciences, Olsztyn, Poland
| | - Aleksandra Szczepkowska
- Institute of Animal Reproduction and Food Research, Polish Academy of Sciences, Olsztyn, Poland
| | - Anna Majewska
- Institute of Animal Reproduction and Food Research, Polish Academy of Sciences, Olsztyn, Poland
| | - Tomasz Misztal
- The Kielanowski Institute of Animal Physiology and Nutrition, Polish Academy of Sciences, Jablonna n/Warsaw, Olsztyn, Poland
| | - Marek Jalynski
- Veterinary Medicine Faculty, University of Warmia and Mazury, Olsztyn, Poland
| | - Andrzej P Herman
- The Kielanowski Institute of Animal Physiology and Nutrition, Polish Academy of Sciences, Jablonna n/Warsaw, Olsztyn, Poland
| | - Katarzyna Zabek
- Department of Sheep and Goat Breeding, Animal Bioengineering Faculty, University of Warmia and Mazury in Olsztyn, Olsztyn, Poland
| |
Collapse
|
26
|
Peripheral Inhibitor of AChE, Neostigmine, Prevents the Inflammatory Dependent Suppression of GnRH/LH Secretion during the Follicular Phase of the Estrous Cycle. BIOMED RESEARCH INTERNATIONAL 2017; 2017:6823209. [PMID: 28894751 PMCID: PMC5574266 DOI: 10.1155/2017/6823209] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/03/2017] [Revised: 07/06/2017] [Accepted: 07/16/2017] [Indexed: 11/17/2022]
Abstract
The study was designed to test the hypothesis that the inhibition of acetylcholinesterase (AChE) activity at the periphery by Neostigmine (0.5 mg/animal) will be sufficient to prevent inflammatory dependent suppression of the gonadotropin-releasing hormone (GnRH)/luteinising hormone (LH) secretion in ewes in the follicular phase of the estrous cycle, and this effect will be comparable with the systemic AChE inhibitor, Donepezil (2.5 mg/animal). An immune/inflammatory challenge was induced by peripheral administration of lipopolysaccharide (LPS; 400 ng/kg). Peripheral treatment with Donepezil and Neostigmine prevented the LPS-induced decrease (P < 0.05) in LHβ gene expression in the anterior pituitary gland (AP) and in LH release. Moreover, Donepezil completely abolished (P < 0.05) the suppressory effect of inflammation on GnRH synthesis in the preoptic area, when pretreatment with Neostigmine reduced (P < 0.05) the decrease in GnRH content in this hypothalamic structure. Moreover, administration of both AChE inhibitors diminished (P < 0.05) the inhibitory effect of LPS treatment on the expression of GnRH receptor in the AP. Our study shows that inflammatory dependent changes in the GnRH/LH secretion may be eliminated or reduced by AChE inhibitors suppressing inflammatory reaction only at the periphery such as Neostigmine, without the need for interfering in the central nervous system.
Collapse
|
27
|
Herman AP, Wojtulewicz K, Bochenek J, Krawczyńska A, Antushevich H, Pawlina B, Zielińska-Górska M, Herman A, Romanowicz K, Tomaszewska-Zaremba D. Endotoxin-induced inflammation disturbs melatonin secretion in ewe. ASIAN-AUSTRALASIAN JOURNAL OF ANIMAL SCIENCES 2017; 30:1784-1795. [PMID: 28728370 PMCID: PMC5666183 DOI: 10.5713/ajas.17.0196] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/13/2017] [Revised: 04/19/2017] [Accepted: 06/05/2017] [Indexed: 01/02/2023]
Abstract
OBJECTIVE The study examined the effect of intravenous administration of bacterial endotoxin-lipopolysaccharide (LPS) -on the nocturnal secretion of melatonin and on the expression of enzymes of the melatonin biosynthetic pathway in the pineal gland of ewes, taking into account two different photoperiodic conditions: short-night (SN; n = 12) and long-night (LN; n = 12). METHODS In both experiments, animals (n = 12) were randomly divided into two groups: control (n = 6) and LPS-treated (n = 6) one. Two hours after sunset, animals received an injection of LPS or saline. Blood samples were collected starting one hour after sunset and continuing for 3 hours after the treatment. The ewes were euthanized 3 hours after LPS/saline treatment. The concentration of hormones in plasma was assayed by radioimmunoassay. In the pineal gland, the content of serotonin and its metabolite was determined by HPLC; whereas the expression of examined genes and protein was assayed using real-time polymerase chain reaction and Western Blot, respectively. RESULTS Endotoxin administration lowered (p<0.05) levels of circulating melatonin in animals from LN photoperiod only during the first hour after treatment, while in ewes from SN photoperiod only in the third hour after the injection. Inflammation more substantially suppressed biosynthesis of melatonin in ewes from SN photoperiod, which were also characterised by lower (p<0.05) cortisol concentrations after LPS treatment compared with animals from LN photoperiod. In the pineal gland of ewes subjected to SN photoperiod, LPS reduced (p<0.05) serotonin content and the expression of melatonin biosynthetic pathway enzymes, such as tryptophan hydroxylase and arylalkylamine-N-acetyltransferase. Pineal activity may be disturbed by circulating LPS and proinflammatory cytokines because the expression of mRNAs encoding their corresponding receptors was determined in this gland. CONCLUSION The present study showed that peripheral inflammation reduces the secretion of melatonin, but this effect may be influenced by the photoperiod.
Collapse
Affiliation(s)
- Andrzej Przemysław Herman
- The Kielanowski Institute of Animal Physiology and Nutrition, Polish Academy of Sciences, Jabłonna 05-110, Poland
| | - Karolina Wojtulewicz
- The Kielanowski Institute of Animal Physiology and Nutrition, Polish Academy of Sciences, Jabłonna 05-110, Poland
| | - Joanna Bochenek
- The Kielanowski Institute of Animal Physiology and Nutrition, Polish Academy of Sciences, Jabłonna 05-110, Poland
| | - Agata Krawczyńska
- The Kielanowski Institute of Animal Physiology and Nutrition, Polish Academy of Sciences, Jabłonna 05-110, Poland
| | - Hanna Antushevich
- The Kielanowski Institute of Animal Physiology and Nutrition, Polish Academy of Sciences, Jabłonna 05-110, Poland
| | - Bartosz Pawlina
- The Kielanowski Institute of Animal Physiology and Nutrition, Polish Academy of Sciences, Jabłonna 05-110, Poland
| | - Marlena Zielińska-Górska
- The Kielanowski Institute of Animal Physiology and Nutrition, Polish Academy of Sciences, Jabłonna 05-110, Poland
| | - Anna Herman
- Faculty of Cosmetology, The Academy of Cosmetics and Health Care, Warsaw 00-252, Poland
| | - Katarzyna Romanowicz
- The Kielanowski Institute of Animal Physiology and Nutrition, Polish Academy of Sciences, Jabłonna 05-110, Poland
| | - Dorota Tomaszewska-Zaremba
- The Kielanowski Institute of Animal Physiology and Nutrition, Polish Academy of Sciences, Jabłonna 05-110, Poland
| |
Collapse
|
28
|
Topaloglu AK, Lomniczi A, Kretzschmar D, Dissen GA, Kotan LD, McArdle CA, Koc AF, Hamel BC, Guclu M, Papatya ED, Eren E, Mengen E, Gurbuz F, Cook M, Castellano JM, Kekil MB, Mungan NO, Yuksel B, Ojeda SR. Loss-of-function mutations in PNPLA6 encoding neuropathy target esterase underlie pubertal failure and neurological deficits in Gordon Holmes syndrome. J Clin Endocrinol Metab 2014; 99:E2067-75. [PMID: 25033069 PMCID: PMC5393493 DOI: 10.1210/jc.2014-1836] [Citation(s) in RCA: 81] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
CONTEXT Gordon Holmes syndrome (GHS) is characterized by cerebellar ataxia/atrophy and normosmic hypogonadotropic hypogonadism (nHH). The underlying pathophysiology of this combined neurodegeneration and nHH remains unknown. OBJECTIVE We aimed to provide insight into the disease mechanism in GHS. METHODS We studied a cohort of 6 multiplex families with GHS through autozygosity mapping and whole-exome sequencing. RESULTS We identified 6 patients from 3 independent families carrying loss-of-function mutations in PNPLA6, which encodes neuropathy target esterase (NTE), a lysophospholipase that maintains intracellular phospholipid homeostasis by converting lysophosphatidylcholine to glycerophosphocholine. Wild-type PNPLA6, but not PNPLA6 bearing these mutations, rescued a well-established Drosophila neurodegenerative phenotype caused by the absence of sws, the fly ortholog of mammalian PNPLA6. Inhibition of NTE activity in the LβT2 gonadotrope cell line diminished LH response to GnRH by reducing GnRH-stimulated LH exocytosis, without affecting GnRH receptor signaling or LHβ synthesis. CONCLUSION These results suggest that NTE-dependent alteration of phospholipid homeostasis in GHS causes both neurodegeneration and impaired LH release from pituitary gonadotropes, leading to nHH.
Collapse
Affiliation(s)
- A Kemal Topaloglu
- Division of Pediatric Endocrinology (A.K.T., E.M., F.G., N.O.M., B.Y.) and Department of Neurology (A.F.K.), Faculty of Medicine, and Department of Biotechnology (A.K.T., L.D.K., M.B.K.), Institute of Sciences, Cukurova University, 01330 Adana, Turkey; Division of Neuroscience (A.L., G.A.D., S.R.O.), Oregon National Primate Research Centre, Beaverton, Oregon 97006; Oregon Institute of Occupational Health Sciences (D.K., M.C.), Oregon Health and Science University, Portland, Oregon 97239; Laboratories for Integrative Neuroscience and Endocrinology (C.A.M.), School of Clinical Sciences, University of Bristol, Bristol, United Kingdom BS1 3NY; Department of Human Genetics (B.C.H.), Nijmegen Medical Centre, Radboud University, Nijmegen, The Netherlands 6525 GA; Departments of Endocrinology and Metabolism (M.G.) and Pediatric Endocrinology and Metabolism (E.D.P., E.E.), School of Medicine, Uludag University, Bursa, Turkey 16110; and Department of Cell Biology, Physiology, and Immunology (J.M.C.), University of Cordoba, Cordoba, Spain 14071
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
29
|
Sheldon IM, Cronin JG, Healey GD, Gabler C, Heuwieser W, Streyl D, Bromfield JJ, Miyamoto A, Fergani C, Dobson H. Innate immunity and inflammation of the bovine female reproductive tract in health and disease. Reproduction 2014; 148:R41-51. [PMID: 24890752 DOI: 10.1530/rep-14-0163] [Citation(s) in RCA: 107] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Mammalian reproductive physiology and the development of viviparity co-evolved with inflammation and immunity over millennia. Many inflammatory mediators contribute to paracrine and endocrine signalling, and the maintenance of tissue homeostasis in the female reproductive tract. However, inflammation is also a feature of microbial infections of the reproductive tract. Bacteria and viruses commonly cause endometritis, perturb ovarian follicle development and suppress the endocrine activity of the hypothalamus and pituitary in cattle. Innate immunity is an evolutionary ancient system that orchestrates host cell inflammatory responses aimed at eliminating pathogens and repairing damaged tissue. Pattern recognition receptors on host cells bind pathogen-associated molecular patterns and damage-associated molecular patterns, leading to the activation of intracellular MAPK and NFκB signalling pathways and the release of inflammatory mediators. Inflammatory mediators typically include the interleukin cytokines IL1β and IL6, chemokines such as IL8, interferons and prostaglandins. This review outlines the mechanisms of inflammation and innate immunity in the bovine female reproductive tract during health and disease condition.
Collapse
Affiliation(s)
- I Martin Sheldon
- College of MedicineInstitute of Life Science, Swansea University, Singleton Park, Swansea SA2 8PP, UKInstitute of Veterinary BiochemistryClinic of Animal ReproductionFreie Universitaet Berlin, Berlin, GermanyClinic for Ruminants with Ambulatory and Herd Health ServicesCentre for Clinical Veterinary Medicine, Ludwig Maximilian University of Munich, Oberschleißheim, GermanyDepartment of Animal SciencesUniversity of Florida, Gainesville, Florida 32608, USAGraduate School for Animal and Food HygieneObihiro University of Agriculture and Veterinary Medicine, Obihiro 080-8555, JapanSchool of Veterinary ScienceUniversity of Liverpool, Leahurst, Neston CH64 7TE, UK
| | - James G Cronin
- College of MedicineInstitute of Life Science, Swansea University, Singleton Park, Swansea SA2 8PP, UKInstitute of Veterinary BiochemistryClinic of Animal ReproductionFreie Universitaet Berlin, Berlin, GermanyClinic for Ruminants with Ambulatory and Herd Health ServicesCentre for Clinical Veterinary Medicine, Ludwig Maximilian University of Munich, Oberschleißheim, GermanyDepartment of Animal SciencesUniversity of Florida, Gainesville, Florida 32608, USAGraduate School for Animal and Food HygieneObihiro University of Agriculture and Veterinary Medicine, Obihiro 080-8555, JapanSchool of Veterinary ScienceUniversity of Liverpool, Leahurst, Neston CH64 7TE, UK
| | - Gareth D Healey
- College of MedicineInstitute of Life Science, Swansea University, Singleton Park, Swansea SA2 8PP, UKInstitute of Veterinary BiochemistryClinic of Animal ReproductionFreie Universitaet Berlin, Berlin, GermanyClinic for Ruminants with Ambulatory and Herd Health ServicesCentre for Clinical Veterinary Medicine, Ludwig Maximilian University of Munich, Oberschleißheim, GermanyDepartment of Animal SciencesUniversity of Florida, Gainesville, Florida 32608, USAGraduate School for Animal and Food HygieneObihiro University of Agriculture and Veterinary Medicine, Obihiro 080-8555, JapanSchool of Veterinary ScienceUniversity of Liverpool, Leahurst, Neston CH64 7TE, UK
| | - Christoph Gabler
- College of MedicineInstitute of Life Science, Swansea University, Singleton Park, Swansea SA2 8PP, UKInstitute of Veterinary BiochemistryClinic of Animal ReproductionFreie Universitaet Berlin, Berlin, GermanyClinic for Ruminants with Ambulatory and Herd Health ServicesCentre for Clinical Veterinary Medicine, Ludwig Maximilian University of Munich, Oberschleißheim, GermanyDepartment of Animal SciencesUniversity of Florida, Gainesville, Florida 32608, USAGraduate School for Animal and Food HygieneObihiro University of Agriculture and Veterinary Medicine, Obihiro 080-8555, JapanSchool of Veterinary ScienceUniversity of Liverpool, Leahurst, Neston CH64 7TE, UK
| | - Wolfgang Heuwieser
- College of MedicineInstitute of Life Science, Swansea University, Singleton Park, Swansea SA2 8PP, UKInstitute of Veterinary BiochemistryClinic of Animal ReproductionFreie Universitaet Berlin, Berlin, GermanyClinic for Ruminants with Ambulatory and Herd Health ServicesCentre for Clinical Veterinary Medicine, Ludwig Maximilian University of Munich, Oberschleißheim, GermanyDepartment of Animal SciencesUniversity of Florida, Gainesville, Florida 32608, USAGraduate School for Animal and Food HygieneObihiro University of Agriculture and Veterinary Medicine, Obihiro 080-8555, JapanSchool of Veterinary ScienceUniversity of Liverpool, Leahurst, Neston CH64 7TE, UK
| | - Dominik Streyl
- College of MedicineInstitute of Life Science, Swansea University, Singleton Park, Swansea SA2 8PP, UKInstitute of Veterinary BiochemistryClinic of Animal ReproductionFreie Universitaet Berlin, Berlin, GermanyClinic for Ruminants with Ambulatory and Herd Health ServicesCentre for Clinical Veterinary Medicine, Ludwig Maximilian University of Munich, Oberschleißheim, GermanyDepartment of Animal SciencesUniversity of Florida, Gainesville, Florida 32608, USAGraduate School for Animal and Food HygieneObihiro University of Agriculture and Veterinary Medicine, Obihiro 080-8555, JapanSchool of Veterinary ScienceUniversity of Liverpool, Leahurst, Neston CH64 7TE, UK
| | - John J Bromfield
- College of MedicineInstitute of Life Science, Swansea University, Singleton Park, Swansea SA2 8PP, UKInstitute of Veterinary BiochemistryClinic of Animal ReproductionFreie Universitaet Berlin, Berlin, GermanyClinic for Ruminants with Ambulatory and Herd Health ServicesCentre for Clinical Veterinary Medicine, Ludwig Maximilian University of Munich, Oberschleißheim, GermanyDepartment of Animal SciencesUniversity of Florida, Gainesville, Florida 32608, USAGraduate School for Animal and Food HygieneObihiro University of Agriculture and Veterinary Medicine, Obihiro 080-8555, JapanSchool of Veterinary ScienceUniversity of Liverpool, Leahurst, Neston CH64 7TE, UK
| | - Akio Miyamoto
- College of MedicineInstitute of Life Science, Swansea University, Singleton Park, Swansea SA2 8PP, UKInstitute of Veterinary BiochemistryClinic of Animal ReproductionFreie Universitaet Berlin, Berlin, GermanyClinic for Ruminants with Ambulatory and Herd Health ServicesCentre for Clinical Veterinary Medicine, Ludwig Maximilian University of Munich, Oberschleißheim, GermanyDepartment of Animal SciencesUniversity of Florida, Gainesville, Florida 32608, USAGraduate School for Animal and Food HygieneObihiro University of Agriculture and Veterinary Medicine, Obihiro 080-8555, JapanSchool of Veterinary ScienceUniversity of Liverpool, Leahurst, Neston CH64 7TE, UK
| | - Chrys Fergani
- College of MedicineInstitute of Life Science, Swansea University, Singleton Park, Swansea SA2 8PP, UKInstitute of Veterinary BiochemistryClinic of Animal ReproductionFreie Universitaet Berlin, Berlin, GermanyClinic for Ruminants with Ambulatory and Herd Health ServicesCentre for Clinical Veterinary Medicine, Ludwig Maximilian University of Munich, Oberschleißheim, GermanyDepartment of Animal SciencesUniversity of Florida, Gainesville, Florida 32608, USAGraduate School for Animal and Food HygieneObihiro University of Agriculture and Veterinary Medicine, Obihiro 080-8555, JapanSchool of Veterinary ScienceUniversity of Liverpool, Leahurst, Neston CH64 7TE, UK
| | - Hilary Dobson
- College of MedicineInstitute of Life Science, Swansea University, Singleton Park, Swansea SA2 8PP, UKInstitute of Veterinary BiochemistryClinic of Animal ReproductionFreie Universitaet Berlin, Berlin, GermanyClinic for Ruminants with Ambulatory and Herd Health ServicesCentre for Clinical Veterinary Medicine, Ludwig Maximilian University of Munich, Oberschleißheim, GermanyDepartment of Animal SciencesUniversity of Florida, Gainesville, Florida 32608, USAGraduate School for Animal and Food HygieneObihiro University of Agriculture and Veterinary Medicine, Obihiro 080-8555, JapanSchool of Veterinary ScienceUniversity of Liverpool, Leahurst, Neston CH64 7TE, UK
| |
Collapse
|