1
|
Tahmasbi Sohi M, Cali M, Forster JE, Kiseljak-Vassiliades K, Wierman ME. Short term effects of intraarticular triamcinolone acetonide injection on serum testosterone, luteinizing hormone, and follicle stimulating hormone levels in male veterans: A prospective pilot study. PM R 2024; 16:6-13. [PMID: 37229562 DOI: 10.1002/pmrj.13001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2022] [Revised: 04/18/2023] [Accepted: 05/05/2023] [Indexed: 05/27/2023]
Abstract
BACKGROUND Despite the common practice of intraarticular corticosteroid injections (ICSIs) for peripheral joint disease, little is known about their systemic effects on the hypothalamic-pituitary-gonadal axis. OBJECTIVE To assess the short-term effects of ICSIs on serum testosterone (T), luteinizing hormone (LH), and follicle stimulating hormone (FSH) levels together with changes in Shoulder Pain and Disability Index (SPADI) scores in a veteran population. DESIGN Prospective pilot study. SETTING Outpatient musculoskeletal clinic. PARTICIPANTS Thirty male veterans, median age 50 (range 30-69) years. INTERVENTIONS Ultrasound-guided glenohumeral joint injection using 3 mL of 1% lidocaine HCl and 1 mL of 40 mg triamcinolone acetonide (Kenalog). OUTCOME MEASURE(S) Serum T, FSH, and LH levels, Quantitative Androgen Deficiency in the Aging Male (qADAM), and SPADI questionnaires at baseline, 1, and 4 week(s) post procedure. RESULTS At 1 week post injection, serum T levels decreased by 56.8 ng/dL (95% confidence interval (CI): 91.8, 21.7, p = .002) compared with baseline. Between 1 and 4 weeks post injection, serum T levels increased by 63.9 ng/dL (95% CI: 26.5, 101.2, p = .001), recovering to near baseline levels. SPADI scores were reduced at 1 week (-18.3, 95% CI: -24.4, -12.1, p < .001) and 4 weeks (-14.5, 95% CI -21.1, -7.9, p < .001). CONCLUSIONS A single ICSI can temporarily suppress the male gonadal axis. Future studies are needed to evaluate for long-term effects of multiple injections at a single setting and/or higher corticosteroid doses on male reproductive axis function.
Collapse
Affiliation(s)
- Maryam Tahmasbi Sohi
- Department of Physical Medicine and Rehabilitation Services at Rocky Mountain Regional, Veterans Affair Medical Center, Washington, DC, USA
- Department of Physical Medicine and Rehabilitation, University of Colorado School of Medicine at Colorado Anschutz Medical Center, Aurora, Colorado, USA
| | - Malia Cali
- Department of Physical Medicine and Rehabilitation, University of Colorado School of Medicine at Colorado Anschutz Medical Center, Aurora, Colorado, USA
| | - Jeri E Forster
- Department of Physical Medicine and Rehabilitation, University of Colorado School of Medicine at Colorado Anschutz Medical Center, Aurora, Colorado, USA
| | - Katja Kiseljak-Vassiliades
- Division of Endocrinology, Metabolism and Diabetes, Department of Medicine, University of Colorado School of Medicine, Aurora, Colorado, USA
- Division of Endocrinology, Metabolism and Diabetes at Rocky Mountain Regional Veterans Affair Medical Center, Washington, DC, USA
| | - Margaret E Wierman
- Division of Endocrinology, Metabolism and Diabetes, Department of Medicine, University of Colorado School of Medicine, Aurora, Colorado, USA
- Division of Endocrinology, Metabolism and Diabetes at Rocky Mountain Regional Veterans Affair Medical Center, Washington, DC, USA
| |
Collapse
|
2
|
Liu L, Wen Y, Ni Q, Chen L, Wang H. Prenatal ethanol exposure and changes in fetal neuroendocrine metabolic programming. Biol Res 2023; 56:61. [PMID: 37978540 PMCID: PMC10656939 DOI: 10.1186/s40659-023-00473-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2023] [Accepted: 11/08/2023] [Indexed: 11/19/2023] Open
Abstract
Prenatal ethanol exposure (PEE) (mainly through maternal alcohol consumption) has become widespread. However, studies suggest that it can cause intrauterine growth retardation (IUGR) and multi-organ developmental toxicity in offspring, and susceptibility to various chronic diseases (such as neuropsychiatric diseases, metabolic syndrome, and related diseases) in adults. Through ethanol's direct effects and its indirect effects mediated by maternal-derived glucocorticoids, PEE alters epigenetic modifications and organ developmental programming during fetal development, which damages the offspring health and increases susceptibility to various chronic diseases after birth. Ethanol directly leads to the developmental toxicity of multiple tissues and organs in many ways. Regarding maternal-derived glucocorticoid-mediated IUGR, developmental programming, and susceptibility to multiple conditions after birth, ethanol induces programmed changes in the neuroendocrine axes of offspring, such as the hypothalamus-pituitary-adrenal (HPA) and glucocorticoid-insulin-like growth factor 1 (GC-IGF1) axes. In addition, the differences in ethanol metabolic enzymes, placental glucocorticoid barrier function, and the sensitivity to glucocorticoids in various tissues and organs mediate the severity and sex differences in the developmental toxicity of ethanol exposure during pregnancy. Offspring exposed to ethanol during pregnancy have a "thrifty phenotype" in the fetal period, and show "catch-up growth" in the case of abundant nutrition after birth; when encountering adverse environments, these offspring are more likely to develop diseases. Here, we review the developmental toxicity, functional alterations in multiple organs, and neuroendocrine metabolic programming mechanisms induced by PEE based on our research and that of other investigators. This should provide new perspectives for the effective prevention and treatment of ethanol developmental toxicity and the early prevention of related fetal-originated diseases.
Collapse
Affiliation(s)
- Liang Liu
- Department of Orthopedic Surgery, Joint Disease Research Center of Wuhan University, Zhongnan Hospital of Wuhan University, Wuhan, 430071, China
- Hubei Provincial Key Laboratory of Developmentally Originated Disease, Wuhan, 430071, China
| | - Yinxian Wen
- Department of Orthopedic Surgery, Joint Disease Research Center of Wuhan University, Zhongnan Hospital of Wuhan University, Wuhan, 430071, China
- Hubei Provincial Key Laboratory of Developmentally Originated Disease, Wuhan, 430071, China
| | - Qubo Ni
- Department of Orthopedic Surgery, Joint Disease Research Center of Wuhan University, Zhongnan Hospital of Wuhan University, Wuhan, 430071, China
- Hubei Provincial Key Laboratory of Developmentally Originated Disease, Wuhan, 430071, China
| | - Liaobin Chen
- Department of Orthopedic Surgery, Joint Disease Research Center of Wuhan University, Zhongnan Hospital of Wuhan University, Wuhan, 430071, China.
- Hubei Provincial Key Laboratory of Developmentally Originated Disease, Wuhan, 430071, China.
| | - Hui Wang
- Hubei Provincial Key Laboratory of Developmentally Originated Disease, Wuhan, 430071, China.
- Department of Pharmacology, Wuhan University School of Basic Medical Sciences, Wuhan, 430071, China.
| |
Collapse
|
3
|
Angove J, Willson NL, Barekatain R, Rosenzweig D, Forder R. In ovo corticosterone exposure does not influence yolk steroid hormone relative abundance or skeletal muscle development in the embryonic chicken. Poult Sci 2023; 102:102735. [PMID: 37209653 DOI: 10.1016/j.psj.2023.102735] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2023] [Revised: 04/11/2023] [Accepted: 04/14/2023] [Indexed: 05/22/2023] Open
Abstract
In ovo corticosterone (CORT) exposure reportedly reduces growth and alters body composition traits in meat-type chickens. However, the mechanisms governing alterations in growth and body composition remain unclear but could involve myogenic stem cell commitment, and/or the presence of yolk steroid hormones. This study investigated whether in ovo CORT exposure influenced yolk steroid hormone content, as well as embryonic myogenic development in meat-type chickens. Fertile eggs were randomly divided at embryonic day (ED) 11 and administered either a control (CON; 100 µL of 10 mM PBS) or CORT solution (100 µL of 10 mM PBS containing 1 µg CORT) into the chorioallantoic membrane. Yolk samples were collected at ED 0 and ED 5. At ED 15 and hatch, embryos were humanely killed, and yolk and breast muscle (BM) samples were collected. The relative abundance of 15 steroid hormones, along with total lipid content was measured in yolk samples collected at ED 0, ED 5, ED 15, and ED 21. Muscle fiber number, cross-sectional area, and fascicle area occupied by muscle fibers were measured in BM samples collected at hatch. Relative expression of MyoD, MyoG, Pax7, PPARγ, and CEBP/β, and the sex steroid receptors were measured in BM samples collected at hatch. The administration of CORT had a limited effect on yolk steroid hormones. In ovo CORT significantly reduced fascicle area occupied by muscle fibers and CEBP/β expression was increased in CORT exposed birds at hatch. In addition, the quantity of yolk lipid was significantly reduced in CORT-treated birds. In conclusion, in ovo exposure to CORT does not appear to influence early muscle development through yolk steroid hormones in embryonic meat-type chickens however, the results provide a comprehensive analysis of the composition of yolk steroid hormones in ovo at different developmental time points. The findings may suggest increased mesenchymal stem cell commitment to the adipogenic lineage during differentiation and requires further investigation.
Collapse
Affiliation(s)
- J Angove
- School of Animal and Veterinary Sciences, the University of Adelaide, Roseworthy, SA, Australia
| | - N-L Willson
- School of Animal and Veterinary Sciences, the University of Adelaide, Roseworthy, SA, Australia
| | - R Barekatain
- South Australian Research and Development Institute, Roseworthy, SA, Australia
| | - D Rosenzweig
- School of Animal and Veterinary Sciences, the University of Adelaide, Roseworthy, SA, Australia
| | - R Forder
- School of Animal and Veterinary Sciences, the University of Adelaide, Roseworthy, SA, Australia.
| |
Collapse
|
4
|
Yu L, Zheng YC, Li ZX, Wang AL, Feng WD, Rao KQ. Comparative study on the gene expression of corticosterone metabolic enzymes in embryonic tissues between Tibetan and broiler chickens. Comp Biochem Physiol A Mol Integr Physiol 2023; 280:111396. [PMID: 36754112 DOI: 10.1016/j.cbpa.2023.111396] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2022] [Revised: 02/02/2023] [Accepted: 02/03/2023] [Indexed: 02/09/2023]
Abstract
Glucocorticoids (GCs) are an essential mediator hormone that can regulate animal growth, behavior, the phenotype of offspring, and so on, while GCs in poultry are predominantly corticosterones. The biological activity of GCs is mainly regulated by the intracellular metabolic enzymes, including 11β-hydroxysteroid dehydrogenases 1 (11β-HSD1), 11β-hydroxysteroid dehydrogenases 2 (11β-HSD2), and 20-hydroxysteroid dehydrogenase (20-HSD). To investigate the embryonic mechanisms of phenotypic differences between breeds, we compared the expression of corticosterone metabolic enzyme genes in the yolk-sac membrane and chorioallantoic membrane (CAM). We described the tissue distribution and ontogenic patterns of corticosterone metabolic enzymes during embryonic incubation between Tibetan and broiler chickens. Forty fertilized eggs from Tibetan and broiler chickens were incubated under hypoxic and normoxic conditions, respectively. Real-time fluorescence quantitative PCR was used to examine the expression of 11β-HSD1/2, and 20-HSD mRNA in embryonic tissues. The results showed that the expression levels of yolk-sac membrane mRNA of 11β-HSD2 and 20-HSD in Tibetan chickens on E14 (embryonic day of 14) were significantly lower than those of broiler chickens (P < 0.05), and these genes expression of CAM in Tibetan chickens were higher than those of broiler chickens (P < 0.05). In addition, the three genes in the yolk-sac membrane and CAM were followed by a down-regulation on E18 (embryonic day of 18). The 11β-HSD1 and 11β-HSD2 genes followed a similar tissue-specific pattern: the expression level was more abundantly in the liver, kidney, and intestine, with relatively lower abundance in the hypothalamus and muscle, and the expression level of 20-HSD genes in all tissues tested was higher. In the liver, 20-HSD of both Tibetan and broiler chickens showed different ontogeny development patterns, and hepatic mRNA expression of 20-HSD in broiler chickens was significantly higher than that of Tibetan chickens of the same age from E14 to E18 (P < 0.05). This study preliminarily revealed the expression levels of cortisol metabolic genes in different tissues during the development process of Tibetan and broiler chicken embryos. It provided essential information for in-depth research of the internal mechanism of maternal GCs programming on offspring.
Collapse
Affiliation(s)
- Lei Yu
- College of Animal and Veterinary Sciences, Southwest Minzu University, Chengdu 610041, China; Haidu College·Qingdao Agricultural University, Laiyang 265200, China
| | - Yu-Cai Zheng
- College of Animal and Veterinary Sciences, Southwest Minzu University, Chengdu 610041, China
| | - Zhi-Xiong Li
- College of Animal and Veterinary Sciences, Southwest Minzu University, Chengdu 610041, China
| | - Ai-Lin Wang
- College of Animal and Veterinary Sciences, Southwest Minzu University, Chengdu 610041, China
| | - Wei-Dong Feng
- Ganzi Prefectural Livestock Research Institute, Kangding 626000, China
| | - Kai-Qing Rao
- College of Animal and Veterinary Sciences, Southwest Minzu University, Chengdu 610041, China.
| |
Collapse
|
5
|
Vaccaro LA, Porter TE, Ellestad LE. Effects of genetic selection on activity of corticotropic and thyrotropic axes in modern broiler chickens. Domest Anim Endocrinol 2022; 78:106649. [PMID: 34418578 DOI: 10.1016/j.domaniend.2021.106649] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/17/2021] [Revised: 07/06/2021] [Accepted: 07/07/2021] [Indexed: 11/24/2022]
Abstract
Commercial selection for meat-type (broiler) chickens has produced economically valuable birds with fast growth rates, enhanced muscle mass, and highly efficient feed utilization. The physiological changes that account for this improvement and unintended consequences associated with them remain largely unexplored, despite their potential to guide further advancements in broiler production efficiency. To identify effects of genetic selection on hormonal signaling in the adrenocorticotropic and thyrotropic axes, gene expression in muscle and liver and post-hatch circulating hormone concentrations were measured in legacy [Athens Canadian Random Bred (ACRB)] and modern (Ross 308) male broilers between embryonic days (e) 10 and e18 and post-hatch days (d) 10 and d40. No interactive effects or main effects of line were observed for adrenocorticotropic gene expression during either developmental period, although age effects appeared for corticosteroid-binding globulin in liver during embryogenesis and post-hatch and glucocorticoid receptor in both tissues post-hatch. There was a main line effect for circulating corticosterone, with levels in ACRB greater than those in Ross. Several thyrotropic genes exhibited line-by-age interactions during embryonic or post-hatch development. In liver, embryonic expression of thyroid hormone receptor beta was greater in ACRB on e12, and deiodinase 3 (DIO3) levels were greater in Ross on e14 and e16. In juvenile liver, deiodinase 2 (DIO2) expression was greater in ACRB on d10 but greater in Ross on d20, while DIO3 was higher in ACRB on d30 and d40. Levels of thyroid hormone receptor alpha mRNA exhibited a main line effect, with levels greater in ACRB juvenile breast muscle. Several thyrotropic genes exhibited main age effects, including DIO2 and DIO3 in embryonic breast muscle, thyroid hormone receptor alpha and thyroid hormone receptor beta in post-hatch liver, and DIO2 in post-hatch breast muscle. Circulating triiodothyronine displayed a main line effect, with levels in Ross significantly reduced as compared to ACRB. These findings suggest that in modern broilers, a decrease in levels of hormones that control basal metabolism triiodothyronine and the stress response circulating corticosterone, as well as altered expression of genes regulating thyroid hormone activity, could contribute to lower heat production, reduced stress response, and altered nutrient partitioning, leading to more efficient feed utilization and faster, more productive growth.
Collapse
Affiliation(s)
- L A Vaccaro
- Department of Poultry Science, University of Georgia, Athens, GA 30602
| | - T E Porter
- Department of Animal and Avian Sciences, University of Maryland, College Park, MD 20742
| | - L E Ellestad
- Department of Poultry Science, University of Georgia, Athens, GA 30602.
| |
Collapse
|
6
|
Transcriptomic Analysis of Laying Hens Revealed the Role of Aging-Related Genes during Forced Molting. Genes (Basel) 2021; 12:genes12111767. [PMID: 34828373 PMCID: PMC8621152 DOI: 10.3390/genes12111767] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2021] [Revised: 10/30/2021] [Accepted: 11/04/2021] [Indexed: 12/03/2022] Open
Abstract
Molting in birds provides us with an ideal genetic model for understanding aging and rejuvenation since birds present younger characteristics for reproduction and appearance after molting. Forced molting (FM) by fasting in chickens causes aging of their reproductive system and then promotes cell redevelopment by providing water and feed again. To reveal the genetic mechanism of rejuvenation, we detected blood hormone indexes and gene expression levels in the hypothalamus and ovary of hens from five different periods during FM. Three hormones were identified as participating in FM. Furthermore, the variation trends of gene expression levels in the hypothalamus and ovary at five different stages were found to be basically similar using transcriptome analysis. Among them, 45 genes were found to regulate cell aging during fasting stress and 12 genes were found to promote cell development during the recovery period in the hypothalamus. In addition, five hub genes (INO80D, HELZ, AGO4, ROCK2, and RFX7) were identified by WGCNA. FM can restart the reproductive function of aged hens by regulating expression levels of genes associated with aging and development. Our study not only enriches the theoretical basis of FM but also provides insights for the study of antiaging in humans and the conception mechanism in elderly women.
Collapse
|
7
|
Lv F, Fan G, Wan Y, Chen Y, Ni Y, Huang J, Xu D, Zhang W, Wang H. Intrauterine endogenous high glucocorticoids program ovarian dysfunction in female offspring secondary to prenatal caffeine exposure. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 789:147691. [PMID: 34082199 DOI: 10.1016/j.scitotenv.2021.147691] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/11/2021] [Revised: 04/27/2021] [Accepted: 05/07/2021] [Indexed: 06/12/2023]
Abstract
Ovarian dysfunction has an intrauterine origin, and prenatal caffeine exposure (PCE) could lead to abnormal follicle counts in offspring after birth. However, the effect of PCE on offspring ovarian function and its mechanism of intrauterine programming have not been reported thus far. In this study, pregnant Wistar rats were intragastrically administered caffeine (30 and 120 mg/kg·d) at gestational days 9-20 (GD9-20). Certain tests were performed on the blood, ovaries and hypothalamus of female offspring at different time points. PCE female offspring had ovarian dysfunction in adulthood compared with the control. Further results showed that in utero ovarian morphological development and estradiol synthesis were inhibited but rapidly increased during puberty in the PCE group. The histone 3 lysine 27 acetylation (H3K27ac) level of the insulin-like growth factor 1 (IGF1) promoter region and its expression were decreased in the ovary, which was due to exposure to high levels of fetal blood corticosterone, and the H3K27ac level of IGF1 and its expression shifted to increase after birth with a decrease in serum corticosterone levels. Chronic stress led to increased serum corticosterone levels in adult offspring, whereas ovarian morphological development, the H3K27ac level of IGF1 and its expression, and estradiol synthesis were significantly inhibited. Moreover, the activity of the hypothalamic-pituitary-ovarian (HPO) axis was increased in the early postnatal period of PCE offspring, and chronic stress reversed these changes. In the KGN cell line, it was found that cortisol could promote the translocation of the glucocorticoid receptor (GR) into the nucleus and upregulate histone deacetylase 10 (HDAC10) to inhibit the H3K27ac level of IGF1 and its expression and estradiol synthesis. In summary, PCE is associated with ovarian dysfunction in female adult offspring, and the potential mechanism is related to intrauterine high glucocorticoid exposure by activating the GR and recruiting HDAC10 to affect ovarian glucocorticoid-IGF1 axis programming and to inhibit estradiol synthesis.
Collapse
Affiliation(s)
- Feng Lv
- Department of Pharmacology, Basic Medical School of Wuhan University, Wuhan 430071, China
| | - Guanlan Fan
- Department of Pharmacology, Basic Medical School of Wuhan University, Wuhan 430071, China; Department of Gynaecology and Obstetrics, Zhongnan Hospital of Wuhan University, Wuhan 430071, China
| | - Yang Wan
- Department of Pharmacology, Basic Medical School of Wuhan University, Wuhan 430071, China
| | - Yunxi Chen
- Department of Pharmacology, Basic Medical School of Wuhan University, Wuhan 430071, China
| | - Yuan Ni
- Department of Pharmacology, Basic Medical School of Wuhan University, Wuhan 430071, China
| | - Jing Huang
- Department of Pharmacology, Basic Medical School of Wuhan University, Wuhan 430071, China
| | - Dan Xu
- Department of Pharmacology, Basic Medical School of Wuhan University, Wuhan 430071, China; Hubei Provincial Key Laboratory of Developmentally Originated Disease, Wuhan 430071, China
| | - Wei Zhang
- Department of Gynaecology and Obstetrics, Zhongnan Hospital of Wuhan University, Wuhan 430071, China; Hubei Provincial Key Laboratory of Developmentally Originated Disease, Wuhan 430071, China.
| | - Hui Wang
- Department of Pharmacology, Basic Medical School of Wuhan University, Wuhan 430071, China; Department of Gynaecology and Obstetrics, Zhongnan Hospital of Wuhan University, Wuhan 430071, China; Hubei Provincial Key Laboratory of Developmentally Originated Disease, Wuhan 430071, China.
| |
Collapse
|
8
|
Hanlon C, Takeshima K, Bédécarrats GY. Changes in the Control of the Hypothalamic-Pituitary Gonadal Axis Across Three Differentially Selected Strains of Laying Hens ( Gallus gallus domesticus). Front Physiol 2021; 12:651491. [PMID: 33841186 PMCID: PMC8027345 DOI: 10.3389/fphys.2021.651491] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2021] [Accepted: 03/05/2021] [Indexed: 11/13/2022] Open
Abstract
Genetic selection for earlier sexual maturation and extended production cycles in laying hens has significantly improved reproductive efficiency. While limited emphasis has been placed on the underlying physiological changes, we hypothesize that modifications in the control of the hypothalamic-pituitary gonadal (HPG) axis have occurred. Thus, three strains of White leghorn derivatives were followed from hatch to 100 weeks of age (woa), including Lohmann LSL-lite (n = 120) as current commercial hens, heritage Shaver White leghorns (n = 100) as 2000s commercial equivalents, and Smoky Joe hens (n = 68) as 1960s commercial equivalents. Body weight (BW) and egg production were monitored, and blood samples were collected throughout to monitor estradiol (E2) concentrations. Tissue samples were collected at 12, 17, 20, 25, 45, 60, 75, and 100 woa to capture changes in mRNA levels of key genes involved in the HPG axis and monitor ovarian follicular pools. All hens, regardless of strain, age or photoperiod laid their first egg within a 64-gram BW window and, as E2 levels increased prior to photostimulation (PS) in Lohmann and Shaver hens, a metabolic trigger likely induced sexual maturation. However, increased levels of Opsin 5 (OPN5) were observed during the maturation period. Although an elevation in gonadotrophin-releasing hormone I (GnRH-I) mRNA levels was associated with early maturation, no changes in gonadotrophin-inhibitory hormone (GnIH) mRNA levels were observed. Nonetheless, a significant shift in pituitary sensitivity to GnRH was associated with maturation. Throughout the trial, Lohmann, Shaver, and Smoky Joe hens laid 515, 417, and 257 eggs, respectively (p < 0.0001). Results show that the extended laying persistency in Lohmann hens was supported by sustained pituitary sensitivity to GnRH-I, recurrent elevations in follicle-stimulating hormone (FSH) mRNA levels, and five cyclical elevations in E2 levels. This was also associated with a consistently higher pool of small white ovarian follicles. In summary, our results demonstrate first that, regardless of photoperiodic cues, meeting a specific narrow body weight threshold is sufficient to initiate sexual maturation in Leghorn chicken derivatives. Furthermore, recurrent increases in E2 and FSH may be the key to sustain extended laying period, allowing modern layers to double their reproductive capacity compared to their 1960s-counterparts.
Collapse
Affiliation(s)
- Charlene Hanlon
- Department of Animal Biosciences, University of Guelph, Guelph, ON, Canada
| | - Kayo Takeshima
- Department of Animal Biosciences, University of Guelph, Guelph, ON, Canada
| | | |
Collapse
|
9
|
Angove JL, Willson NL, Cadogan DJ, Forder REA. In ovo corticosterone administration alters body composition irrespective of arginine supplementation in 35-day-old female chicken meat birds. ANIMAL PRODUCTION SCIENCE 2021. [DOI: 10.1071/an20254] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Context
Exposure to maternal hormones can permanently alter an embryo’s developmental trajectory. Maternal mediated effects have significant potential in the chicken meat industry, as breeder hens are feed restricted in a bid to improve performance. Evidence suggests breeder hens are chronically stressed, resulting from periods of prolonged hunger. However, evidence linking embryonic exposure to early-life stress and altered offspring phenotype in meat chickens is lacking. Additionally, methods to alleviate the phenotypic consequences of early-life stress have not been comprehensively explored. Nutritional supplementation with amino acids, such as arginine (Arg), may provide one such option, as Arg reportedly enhances performance characteristics in chicken meat birds.
Aims
An in ovo study was conducted to investigate whether exposure to in ovo stress altered offspring performance in meat chickens. Additionally, Arg was supplemented post-hatch to alleviate reductions in performance, hypothesised to occur as a result of exposure to corticosterone.
Method
A total of 400 eggs were divided into two groups and administered a corticosterone (CORT) or control (CON) solution at embryonic Day 11. At hatch, birds were separated into four groups based on in ovo and dietary treatments: CORT-Control, CORT-Arg, CON-Arg and CON-Control. Birds fed supplementary Arg diets received an Arg:lysine inclusion of 125%. Bodyweight (bwt) and feed conversion were recorded weekly. Birds were euthanised at embryonic Day 15, Day 0, 7, 21 (n = 40 birds/time point), 28 and 35 (n = 48 birds/time point) for organ collection. A total of 12 additional female birds were euthanised and subjected to a dual-energy X-ray absorptiometry scan for body composition at Day 35.
Results
Neither in ovo nor diet treatments influenced bwt, bwt gain, feed conversion or plasma corticosterone at any time point, nor did any in ovo by diet interaction exist. Female birds exposed to CORT exhibited significantly greater fat mass (%bwt; P = 0.007) and reduced lean mass (%bwt; P = 0.026) compared with CON females at Day 35. Supplementary Arg did not influence bird body composition.
Conclusions
These findings suggest in ovo exposure to CORT may negatively influence body composition of female birds.
Implications
Understanding the effects of the maternal/in ovo environment may provide a novel approach to further improve carcass quality and flock uniformity.
Collapse
|
10
|
Peixoto MRLV, Karrow NA, Newman A, Head J, Widowski TM. Effects of acute stressors experienced by five strains of layer breeders on measures of stress and fear in their offspring. Physiol Behav 2021; 228:113185. [PMID: 32980386 DOI: 10.1016/j.physbeh.2020.113185] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2020] [Revised: 09/03/2020] [Accepted: 09/23/2020] [Indexed: 10/23/2022]
Abstract
Stressors experienced by layer breeders during egg production can lead to changes in the egg hormone content, potentially impacting their offspring, the commercial layers. Genetic differences might also affect the offspring's susceptibility to maternal experiences. In this study, we tested if maternal stress affects measures of stress and fear in five strains of layer breeders: commercial brown 1 & 2, commercial white 1 & 2 and a pure line White Leghorn. Each strain was equally separated into two groups: "Maternal Stress" (MS), where hens were subjected to a series of 8 consecutive days of acute psychological stressors, and "Control," which received routine husbandry. Additional eggs from Control were injected either with corticosterone diluted in a vehicle solution ("CORT") or just "Vehicle." Stress- and fear-responses of the offspring were measured in a plasma corticosterone test and a combined human approach and novel object test. While the stress treatments did not affect the measured endpoints in the offspring, significant strain differences were found. The offspring of the white strains showed a higher physiological response compared to brown strains and the White 2 offspring was the least fearful strain in the human approach test. Our study found that neither the acute psychological stressors experienced by layer breeders nor the egg injections of corticosterone affected the parameters tested in their offspring. Post hoc power analyses suggest that the lack of treatment effects might be due to a small sample size (type II error). Although studies on larger flocks of layers are still needed, our results provide an initial understanding of an important subject, as in poultry production, layer breeders are often subjected to short-term stressors. In addition, our results suggest the dissociation between the physiological and behavioural parameters of stress response in laying hens, showing that increased concentrations of plasma corticosterone in response to stress might not be directly associated with high levels of fear.
Collapse
Affiliation(s)
| | - Niel A Karrow
- Department of Animal Biosciences, University of Guelph, Guelph, ON, N1G 2W1
| | - Amy Newman
- Department of Integrative Biology, University of Guelph, Guelph, ON, N1G 2W1
| | - Jessica Head
- Department of Natural Resource Sciences, McGill University, Ste. Anne de Bellevue, QC, H9X 3V9
| | - Tina M Widowski
- Department of Animal Biosciences, University of Guelph, Guelph, ON, N1G 2W1.
| |
Collapse
|
11
|
Abstract
AbstractEvolution of adaptation requires predictability and recurrence of functional contexts. Yet organisms live in multifaceted environments that are dynamic and ever changing, making it difficult to understand how complex adaptations evolve. This problem is particularly apparent in the evolution of adaptive maternal effects, which are often assumed to require reliable and discrete cues that predict conditions in the offspring environment. One resolution to this problem is if adaptive maternal effects evolve through preexisting, generalized maternal pathways that respond to many cues and also influence offspring development. Here, we assess whether an adaptive maternal effect in western bluebirds is influenced by maternal stress pathways across multiple challenging environments. Combining 18 years of hormone sampling across diverse environmental contexts with an experimental manipulation of the competitive environment, we show that multiple environmental factors influenced maternal corticosterone levels, which, in turn, influenced a maternal effect on aggression of sons in adulthood. Together, these results support the idea that multiple stressors can induce a known maternal effect in this system. More generally, they suggest that activation of general pathways, such as the hypothalamic-pituitary-adrenal axis, may simplify and facilitate the evolution of adaptive maternal effects by integrating variable environmental conditions into preexisting maternal physiological systems.
Collapse
|
12
|
Evaluation of the Relationship between Adipose Metabolism Patterns and Secretion of Appetite-Related Endocrines on Chicken. Animals (Basel) 2020; 10:ani10081282. [PMID: 32727133 PMCID: PMC7460314 DOI: 10.3390/ani10081282] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2020] [Revised: 07/23/2020] [Accepted: 07/24/2020] [Indexed: 12/22/2022] Open
Abstract
Simple Summary The weight of an animal conforms to a certain growth pattern. Among others, feed, environment, and body composition, in addition to genetics, affect the animal’s feed consumption and body weight. Under normal circumstances, the body weight of an animal is mainly affected by feed intake, and body composition may significantly influence feed intake. Therefore, this report sets out the effects of fat accumulation on lipid metabolism and appetite, and finally introduces the effects of feeding patterns on animal feed intake. Abstract In addition to the influence of genes, the quality of poultry products is mainly controlled by the rearing environment or feed composition during rearing, and has to meet human use and economical needs. As the only source of energy for poultry, feed considerably affects the metabolic pattern of poultry and further affects the regulation of appetite-related endocrine secretion in poultry. Under normal circumstances, the accumulation of lipid in adipose reduces feed intake in poultry and increases the rate of adipose metabolism. When the adipose content in cells decreases, endocrines that promote food intake are secreted and increase nutrient concentrations in serum and cells. By regulating the balance between appetite and adipose metabolism, the poultry’s growth and posture can maintain a balanced state. In addition, increasing fiber composition in feed can effectively increase poultry welfare, body weight, lean composition and antioxidant levels in poultry. According to this, the concept that proper fiber content should be added to feed should be considered for better economic benefits, poultry welfare and meat productivity.
Collapse
|
13
|
Peixoto MRLV, Karrow NA, Newman A, Widowski TM. Effects of Maternal Stress on Measures of Anxiety and Fearfulness in Different Strains of Laying Hens. Front Vet Sci 2020; 7:128. [PMID: 32292791 PMCID: PMC7118700 DOI: 10.3389/fvets.2020.00128] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2019] [Accepted: 02/20/2020] [Indexed: 01/21/2023] Open
Abstract
Maternal stress can affect the offspring of birds, possibly due to hormone deposition in the egg. Additionally, phenotypic diversity resulting from domestication and selection for productivity has created a variety of poultry lines that may cope with stress differently. In this study, we investigated the effects of maternal stress on the behavior of different strains of laying hens and the role of corticosterone as its mediator. For this, fertilized eggs of five genetic lines-two brown (Brown 1 and 2), two white (White 1 and 2), and one pure line White Leghorn-were reared identically as four flocks of 27 birds (24F: 3M) per strain. Each strain was equally separated into two groups: Maternal Stress ("MS"), where hens were subjected to a series of daily acute psychological stressors for 8 days before egg collection, and "Control," which received routine husbandry. Fertile eggs from both treatments were collected at three different ages forming different offspring groups that were treated as replicates; additional eggs from Control were injected either with corticosterone diluted in a vehicle solution ("CORT") or just "Vehicle." Eggs from each replicate were incubated and hatched, and offspring (N = 1,919) were brooded under identical conditions. To measure the effects of maternal stress on anxiety and fear-like behavior, offspring were subjected to a social isolation test (SI) between 5 and 10 days of age and a tonic immobility test (TI) at 9 weeks of age. Compared to Control, MS decreased the number of distress vocalizations emitted by White 2 in SI. No effects of MS were observed in TI, and no effects of CORT were observed in any tests. Overall, brown lines vocalized more in SI and remained in TI for a longer duration than white strains, suggesting genetic differences in fear behavior. Females vocalized more than males in TI and showed a trend toward significance for the same trait in SI. Overall, results suggest that the effects of maternal stress on fearfulness are not directly mediated by corticosterone. Moreover, it highlights behavioral differences across various strains of laying hens, suggesting that fear responses are highly dependent on genotype.
Collapse
Affiliation(s)
| | - Niel A. Karrow
- Department of Animal Biosciences, University of Guelph, Guelph, ON, Canada
| | - Amy Newman
- Department of Integrative Biology, University of Guelph, Guelph, ON, Canada
| | - Tina M. Widowski
- Department of Animal Biosciences, University of Guelph, Guelph, ON, Canada
| |
Collapse
|
14
|
Peixoto MRLV, Karrow NA, Widowski TM. Effects of prenatal stress and genetics on embryonic survival and offspring growth of laying hens. Poult Sci 2020; 99:1618-1627. [PMID: 32111329 PMCID: PMC7587848 DOI: 10.1016/j.psj.2019.10.018] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2019] [Revised: 10/01/2019] [Accepted: 10/07/2019] [Indexed: 12/27/2022] Open
Abstract
Early-life exposure to stressors can shape the phenotype of the offspring resulting in changes that may affect their prehatch and posthatch development. This can be modeled indirectly through maternal exposure to stressors (natural model) or by offspring exposure to stress hormones (pharmacological model). In this study, both models were used to investigate the effects of genetic line on hatchability, late embryonic mortality, sex ratio, and body weight until 17 wk of age. To form the parent stock, fertilized eggs of 4 commercial genetic lines — two brown (brown 1 and 2), two white (white 1 and 2), and a pure line White Leghorn — were incubated, hatched, and housed identically in 4 flocks of 27 birds (24 females and 3 males) per strain. Each strain was equally separated into 2 groups: “maternal stress,” where hens were subjected to a series of acute psychological stressors (e.g., physical restraint, transportation) for 8 D before egg collection, and “control,” where hens received routine husbandry. At 3 maternal ages, fertile eggs from both treatments were collected, and additional eggs from the control group were injected with corticosterone (10 ng/mL egg content) (“CORT”). A “vehicle” treatment was included to account for effects of egg manipulation. Each maternal age comprised a replicate over time. Eggs were incubated and hatched, and the offspring (N = 1,919) were brooded until 17 wk under identical conditions. The results show that prenatal stress interacted with strain to decrease embryonic survival and growth. Among all strains, brown 2 was consistently the most affected line in both prehatch and posthatch development. Our study shows that embryonic survival and offspring growth are mostly affected by the pharmacological model and that strain differences may increase susceptibility to prenatal stress. Moreover, it suggests that the natural stressor model may be useful for quantifying the response of the mother to stressors, whereas the pharmacological model may be useful for quantifying the response of the embryo to increased levels of corticosterone.
Collapse
Affiliation(s)
| | - Niel A Karrow
- Department of Animal Biosciences, University of Guelph, Guelph, ON, N1G 2W1
| | - Tina M Widowski
- Department of Animal Biosciences, University of Guelph, Guelph, ON, N1G 2W1.
| |
Collapse
|
15
|
Della Costa NS, Navarro JL, Bernad L, Marin RH, Martella MB. Effect of maternal environment on yolk immunoreactive corticosterone and its influence on adrenocortical and behavioral activity in chicks of Greater Rhea (Rhea americana). Horm Behav 2019; 114:104534. [PMID: 31129284 DOI: 10.1016/j.yhbeh.2019.05.003] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/24/2019] [Revised: 05/02/2019] [Accepted: 05/18/2019] [Indexed: 11/30/2022]
Abstract
Maternal corticosterone in avian eggs may modify offspring phenotype in order to increase survival in poor environments. In the Greater Rhea (Rhea americana), we previously found that yolk immunoreactive corticosterone is influenced by the quality of the maternal environment: eggs laid by females of the intensive rearing system (IRS), living in poor captive conditions, had higher yolk immunoreactive corticosterone than those produced by females of the semi-extensive rearing system (SRS), living in better conditions. Here, we evaluate if these different hormone levels are associated with the production of different phenotypes. We collected eggs from the IRS and SRS for hormonal quantification and artificial incubation. Then, half of the chicks selected from each environment were exposed to a capture and restraint protocol, and the rest remained undisturbed and were used as controls. In the IRS, we found that higher yolk immunoreactive corticosterone was associated with the production of chicks that had reduced hatchability, lower hatchling mass and higher baseline fecal glucocorticoid metabolites (FGM) than those produced by SRS females. Moreover, after capture and restraint, IRS chicks did not modify their FGM nor their behaviors compared to their controls, while SRS chicks increased their FGM and spent more time ambulating and less time pecking, compared to their controls. These results indicate that yolk immunoreactive corticosterone could modify offspring phenotype. Although future studies are needed to elucidate their implications for fitness, our results suggest that yolk corticosterone could be mediating an adaptive maternal effect that allows individuals to better cope with poor conditions.
Collapse
Affiliation(s)
- Natalia S Della Costa
- Universidad Nacional de Córdoba, Facultad de Ciencias Exactas, Físicas y Naturales, Centro de Zoología Aplicada, Rondeau 798, 5000 Córdoba, Argentina; Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Instituto de Diversidad y Ecología Animal (IDEA), Av. Vélez Sarsfield 299, 5000 Córdoba, Argentina
| | - Joaquín L Navarro
- Universidad Nacional de Córdoba, Facultad de Ciencias Exactas, Físicas y Naturales, Centro de Zoología Aplicada, Rondeau 798, 5000 Córdoba, Argentina; Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Instituto de Diversidad y Ecología Animal (IDEA), Av. Vélez Sarsfield 299, 5000 Córdoba, Argentina; Universidad Nacional de Córdoba, Facultad de Ciencias Exactas, Físicas y Naturales, Departamento de Diversidad Biológica y Ecología, Cátedra de Problemática Ambiental, Av. Vélez Sarsfield 299, 5000 Córdoba, Argentina
| | - Lucía Bernad
- Estación Experimental Agropecuaria Balcarce - Instituto Nacional de Tecnología Agropecuaria (INTA), Ruta 226 km 73 1/2, CC 276, 7620 Balcarce, Buenos Aires, Argentina
| | - Raúl H Marin
- Universidad Nacional de Córdoba, Facultad de Ciencias Exactas, Físicas y Naturales, Instituto de Ciencia y Tecnología de los Alimentos (ICTA) y Cátedra de Química Biológica, Av. Vélez Sarsfield 1611, 5016 Córdoba, Argentina; Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Instituto de Investigaciones Biológicas y Tecnológicas (IIBYT), Av. Vélez Sarsfield 1611, 5016 Córdoba, Argentina.
| | - Mónica B Martella
- Universidad Nacional de Córdoba, Facultad de Ciencias Exactas, Físicas y Naturales, Centro de Zoología Aplicada, Rondeau 798, 5000 Córdoba, Argentina; Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Instituto de Diversidad y Ecología Animal (IDEA), Av. Vélez Sarsfield 299, 5000 Córdoba, Argentina.
| |
Collapse
|
16
|
Cui YM, Wang J, Hai-Jun Z, Feng J, Wu SG, Qi GH. Effect of photoperiod on ovarian morphology, reproductive hormone secretion, and hormone receptor mRNA expression in layer ducks during the pullet phase. Poult Sci 2019; 98:2439-2447. [PMID: 30668853 DOI: 10.3382/ps/pey601] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2018] [Accepted: 12/21/2018] [Indexed: 02/04/2023] Open
Abstract
We evaluated the effect of photoperiod on ovarian morphology, reproductive hormone secretion, and hormone receptor mRNA expression in layer ducks during the pullet phase. A total of 480 71-d-old Jinding layer ducks were randomly divided into 5 groups that received 6L (hours of light):18D (hours of darkness), 8L:16D, 10L:14D, 12L:12D, or 14L:10D, respectively. Each group had 6 replicates with 16 birds each. The photoperiod feeding trial lasted 80 d until 150 d of age. The age at first egg (AFE), the total number, and weight of eggs increased linearly with increasing photoperiods (P < 0.05); lower values of AFE occurred with photoperiods ≥8 h, whereas a higher total number and weight of eggs occurred with photoperiods ≥10 h, compared with 6L:18D (P > 0.05). Oviduct weight, ovary percentage, and initial and bare stroma (weight and percentage) increased quadratically with increasing photoperiods (P < 0.05), and 10.24, 10.01, and 10.10 h were the optimal photoperiods for oviduct weight, bare stroma (follicles ≥2 mm in diameter removed) weight, and bare stroma percentage, respectively, as calculated from reliable regression equations (R2 ≥ 0.5791). Compared with 6L:18D, 10L:14D had a higher total large white follicle weight, small yellow follicle number, and weight (P < 0.05). In addition, higher serum levels of follicle-stimulating hormone, luteinizing hormone, and progesterone were observed with ≥10-h photoperiods (P < 0.05), as were levels of hormone receptor mRNA expression in ovarian follicles (P < 0.05), with the highest values for both measures at 10L:14D. In the hypothalamus, mRNA expression of gonadotropin-releasing hormone increased in ≥8-h photoperiods, with the highest value at 10L:14D. In contrast, gonadotropin-inhibitory hormone increased in photoperiods ≥12 h (P < 0.05). In conclusion, an appropriate photoperiod led to early sexual maturity and improved the development of reproductive organs and ovarian follicles through effects on reproductive hormones and their receptors; 10 to 10.24 h is an adequate photoperiod for layer ducks during the pullet phase.
Collapse
Affiliation(s)
- Yao-Ming Cui
- Key Laboratory of Feed Biotechnology of Ministry of Agriculture & Rural Affairs, and National Engineering Research Center of Biological Feed, Feed Research Institute, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Jing Wang
- Key Laboratory of Feed Biotechnology of Ministry of Agriculture & Rural Affairs, and National Engineering Research Center of Biological Feed, Feed Research Institute, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Zhang Hai-Jun
- Key Laboratory of Feed Biotechnology of Ministry of Agriculture & Rural Affairs, and National Engineering Research Center of Biological Feed, Feed Research Institute, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Jia Feng
- Key Laboratory of Feed Biotechnology of Ministry of Agriculture & Rural Affairs, and National Engineering Research Center of Biological Feed, Feed Research Institute, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Shu-Geng Wu
- Key Laboratory of Feed Biotechnology of Ministry of Agriculture & Rural Affairs, and National Engineering Research Center of Biological Feed, Feed Research Institute, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Guang-Hai Qi
- Key Laboratory of Feed Biotechnology of Ministry of Agriculture & Rural Affairs, and National Engineering Research Center of Biological Feed, Feed Research Institute, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| |
Collapse
|
17
|
Westneat DF, Potts LJ, Sasser KL, Shaffer JD. Causes and Consequences of Phenotypic Plasticity in Complex Environments. Trends Ecol Evol 2019; 34:555-568. [PMID: 30871734 DOI: 10.1016/j.tree.2019.02.010] [Citation(s) in RCA: 62] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2018] [Revised: 02/11/2019] [Accepted: 02/18/2019] [Indexed: 10/27/2022]
Abstract
Phenotypic plasticity is a ubiquitous and necessary adaptation of organisms to variable environments, but most environments have multiple dimensions that vary. Many studies have documented plasticity of a trait with respect to variation in multiple environmental factors. Such multidimensional phenotypic plasticity (MDPP) exists at all levels of organismal organization, from the whole organism to within cells. This complexity in plasticity cannot be explained solely by scaling up ideas from models of unidimensional plasticity. MDPP generates new questions about the mechanism and function of plasticity and its role in speciation and population persistence. Here we review empirical and theoretical approaches to plasticity in response to multidimensional environments and we outline new opportunities along with some difficulties facing future research.
Collapse
Affiliation(s)
- David F Westneat
- Department of Biology, 101 T.H. Morgan Building, University of Kentucky, Lexington, KY 40506-0225, USA.
| | - Leslie J Potts
- Department of Entomology, S-225 Agricultural Science Center North, University of Kentucky, Lexington, KY 40546-0091, USA
| | - Katherine L Sasser
- Department of Biology, 101 T.H. Morgan Building, University of Kentucky, Lexington, KY 40506-0225, USA
| | - James D Shaffer
- Department of Biology, 101 T.H. Morgan Building, University of Kentucky, Lexington, KY 40506-0225, USA
| |
Collapse
|
18
|
Ubuka T, Tsutsui K. Comparative and Evolutionary Aspects of Gonadotropin-Inhibitory Hormone and FMRFamide-Like Peptide Systems. Front Neurosci 2018; 12:747. [PMID: 30405335 PMCID: PMC6200920 DOI: 10.3389/fnins.2018.00747] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2018] [Accepted: 09/28/2018] [Indexed: 11/13/2022] Open
Abstract
Gonadotropin-inhibitory hormone (GnIH) is a hypothalamic neuropeptide that was found in the brain of Japanese quail when investigating the existence of RFamide peptides in birds. GnIH was named because it decreased gonadotropin release from cultured anterior pituitary, which was located in the hypothalamo-hypophysial system. GnIH and GnIH precursor gene related peptides have a characteristic C-terminal LPXRFamide (X = L or Q) motif that is conserved in jawed vertebrates. Orthologous peptides to GnIH are also named RFamide related peptide or LPXRFamide peptide from their structure. A G-protein coupled receptor GPR147 is the primary receptor for GnIH. Similarity-based clustering of neuropeptide precursors in metazoan species indicates that GnIH precursor of vertebrates is evolutionarily related to FMRFamide precursor of mollusk and nematode. FMRFamide peptide is the first RFamide peptide that was identified from the ganglia of the venus clam. In order to infer the evolutionary history of the GnIH-GnIH receptor system we investigate the structural similarities between GnIH and its receptor and well-studied nematode Caenorhabditis elegans (C. elegans) FMRFamide-like peptides (FLPs) and their receptors. We also compare the functions of FLPs of nematode with GnIH of chordates. A multiple sequence alignment and phylogenetic analyses of GnIH, neuropeptide FF (NPFF), a paralogous peptide of GnIH, and FLP precursors have shown that GnIH and NPFF precursors belong to different clades and some FLP precursors have structural similarities to either precursor. The peptide coding regions of FLP precursors in the same clade align well with those of GnIH or NPFF precursors. Alignment of GnIH (LPXRFa) peptides of chordates and FLPs of C. elegans grouped the peptides into five groups according to the last C-terminal amino acid sequences, which were MRFa, LRFa, VRFa, IRFa, and PQRFa. Phylogenetic analysis of receptors suggested that GPR147 has evolutionary relationships with FLP receptors, which regulate reproduction, aggression, locomotion, and feeding. GnIH and some FLPs mediate the effect of stress on reproduction and behavior, which may also be a conserved property of these peptide systems. Future studies are needed to investigate the mechanism of how neuropeptide precursor genes are mutated to evolve new neuropeptides and their inheritance.
Collapse
Affiliation(s)
- Takayoshi Ubuka
- Laboratory of Integrative Brain Sciences, Department of Biology and Center for Medical Life Science, Waseda University, Shinjuku, Japan
| | - Kazuyoshi Tsutsui
- Laboratory of Integrative Brain Sciences, Department of Biology and Center for Medical Life Science, Waseda University, Shinjuku, Japan
| |
Collapse
|
19
|
Bowling M, Forder R, Hughes RJ, Weaver S, Hynd PI. Effect of restricted feed intake in broiler breeder hens on their stress levels and the growth and immunology of their offspring. Transl Anim Sci 2018; 2:263-271. [PMID: 32704710 PMCID: PMC7200449 DOI: 10.1093/tas/txy064] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2018] [Accepted: 05/30/2018] [Indexed: 01/05/2023] Open
Abstract
The prenatal environment has been shown to have significant effects on the lifelong health of offspring in humans and other species. Such effects have not been studied extensively in avian species but could prove important, especially in the case of severe feed restriction imposed on broiler breeder hens to prevent obesity and reduce rate of lay. Feed restriction can potentially affect not only nutrient supply to the embryo but stress hormone levels within the hen. This study investigated the impact of nutrient restriction of the breeder hen on growth rate and immune responses in the progeny with the objective to measure the impact of feed restriction of broiler breeder hens on growth and immune response of the progeny. Broiler breeder hens were feed restricted from 24 wk of age and maintained at three bodyweights; 3.4, 3.6, and 4.0 kg until 43 wk of age and behavioral and physiological measures of stress recorded. Chicks were hatched from each hen treatment and at day 7 vaccinated for infectious bronchitis virus (IBV) and at 16, 18, and 20 d old given an immune challenge of lipopolysaccharide. Growth and immune responses of these birds were then recorded. Sex ratio was affected by hen bodyweight, with a significantly increased proportion of males hatched from heavy hens. Growth rate from 35 to 42 d of age was reduced in male progeny from low bodyweight hens. Female progeny from heavy hens responded to an immune challenge by reduced live weight and increased heterophil: lymphocyte ratio, suggesting a more robust immune response in these birds than in the progeny from lower bodyweight hens. Overall, progeny from heavy hens had increased antibodies at day 35 to the vaccination of IBV compared with progeny of low bodyweight hens, also suggesting an improved immune response in these birds. Breeder hens restricted to the lowest feed level showed behaviors indicative of increased stress (object pecking) and an increased heterophil: lymphocyte ratio. Feed restriction of broiler breeder hens increased indices of stress in hens and resulted in offspring that have reduced growth rate and immune response in a sex-dependent way.
Collapse
Affiliation(s)
- Mandy Bowling
- Poultry CRC, University of New England, Armidale, NSW, Australia.,School of Animal and Veterinary Science, The University of Adelaide, Roseworthy Campus, Adelaide, SA, Australia
| | - Rebecca Forder
- School of Animal and Veterinary Science, The University of Adelaide, Roseworthy Campus, Adelaide, SA, Australia
| | - Robert J Hughes
- South Australian Research and Development Institute, Roseworthy Campus, South Australia, Australia
| | - Sarah Weaver
- School of Animal and Veterinary Science, The University of Adelaide, Roseworthy Campus, Adelaide, SA, Australia
| | - Philip Ian Hynd
- School of Animal and Veterinary Science, The University of Adelaide, Roseworthy Campus, Adelaide, SA, Australia
| |
Collapse
|
20
|
Podmokła E, Drobniak SM, Rutkowska J. Chicken or egg? Outcomes of experimental manipulations of maternally transmitted hormones depend on administration method - a meta-analysis. Biol Rev Camb Philos Soc 2018; 93:1499-1517. [PMID: 29573376 DOI: 10.1111/brv.12406] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2017] [Revised: 01/28/2018] [Accepted: 02/13/2018] [Indexed: 12/25/2022]
Abstract
Steroid hormones are important mediators of prenatal maternal effects in animals. Despite a growing number of studies involving experimental manipulation of these hormones, little is known about the impact of methodological differences among experiments on the final results expressed as offspring traits. Using a meta-analytical approach and a representative sample of experimental studies performed on birds, we tested the effect of two types of direct hormonal manipulations: manipulation of females (either by implantation of hormone pellets or injection of hormonal solutions) and manipulation of eggs by injection. In both types of manipulation we looked at the effects of two groups of hormones: corticosterone and androgens in the form of testosterone and androstenedione. We found that the average effect on offspring traits differed between the manipulation types, with a well-supported positive effect of egg manipulation and lack of a significant effect of maternal manipulation. The observed average positive effect for egg manipulation was driven mainly by androgen manipulations, while corticosterone manipulations exerted no overall effect, regardless of manipulation type. Detailed analyses revealed effects of varying size and direction depending on the specific offspring traits; e.g., egg manipulation positively affected physiology and behaviour (androgens), and negatively affected future reproduction (corticosterone). Effect size was negatively related to the dose of androgen injected into the eggs, but unrelated to timing of manipulation, offspring developmental stage at the time of measuring their traits, solvent type, the site of egg injection and maternal hormone delivery method. Despite the generally acknowledged importance of maternal hormones for offspring development in birds, the overall effect of their experimental elevation is rather weak, significantly heterogeneous and dependent on the hormone and type of manipulation. We conclude by providing general recommendations as to how hormonal manipulations should be performed in order to standardize their impact and the results achieved. We also emphasize the need for research on free-living birds with a focus on fitness-related and other long-term effects of maternal hormones.
Collapse
Affiliation(s)
- Edyta Podmokła
- Institute of Environmental Sciences, Jagiellonian University, Gronostajowa 7, 30-387, Kraków, Poland
| | - Szymon M Drobniak
- Institute of Environmental Sciences, Jagiellonian University, Gronostajowa 7, 30-387, Kraków, Poland
| | - Joanna Rutkowska
- Institute of Environmental Sciences, Jagiellonian University, Gronostajowa 7, 30-387, Kraków, Poland
| |
Collapse
|
21
|
Dietary betaine supplementation in hens modulates hypothalamic expression of cholesterol metabolic genes in F1 cockerels through modification of DNA methylation. Comp Biochem Physiol B Biochem Mol Biol 2018; 217:14-20. [DOI: 10.1016/j.cbpb.2017.12.001] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2017] [Revised: 11/28/2017] [Accepted: 12/05/2017] [Indexed: 11/20/2022]
|
22
|
Possenti CD, Parolini M, Romano A, Caprioli M, Rubolini D, Saino N. Effect of yolk corticosterone on begging in the yellow-legged gull. Horm Behav 2018; 97:121-127. [PMID: 29127025 DOI: 10.1016/j.yhbeh.2017.10.014] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/03/2017] [Revised: 10/25/2017] [Accepted: 10/27/2017] [Indexed: 01/31/2023]
Abstract
Behavioral lateralization is widespread across vertebrates. The development of lateralization is affected by both genetic and environmental factors. In birds, maternal substances in the egg can affect offspring lateralization via activational and/or organizational effects. Corticosterone affects the development of brain asymmetry, suggesting that variation in yolk corticosterone concentration may also influence post-natal behavioral lateralization, a hypothesis that has never been tested so far. In the yellow-legged gull (Larus michahellis), we increased yolk corticosterone concentration within physiological limits and analyzed the direction of lateralization of hatchlings in reverting from supine to prone position ('RTP' response) and in pecking at dummy parental bills to solicit food provisioning ('begging' response). We found that corticosterone treatment negatively affected the frequency of begging and it may cause a slight leftward lateralization. However, the direction of lateralization of the RTP response was not affected by corticosterone administration. Thus, our study shows a maternal effect mediated by corticosterone on a behavioral trait involved in parent-offspring communication during food provisioning events. The findings on lateralization are not conclusive due to the weak effect size but provide information for further ecological and evolutionary studies, investigating mechanisms underlying the development of lateralization.
Collapse
Affiliation(s)
- Cristina Daniela Possenti
- Department of Environmental Science and Policy, University of Milan, via Celoria 26, 20133 Milan, Italy.
| | - Marco Parolini
- Department of Environmental Science and Policy, University of Milan, via Celoria 26, 20133 Milan, Italy
| | - Andrea Romano
- Department of Environmental Science and Policy, University of Milan, via Celoria 26, 20133 Milan, Italy
| | - Manuela Caprioli
- Department of Environmental Science and Policy, University of Milan, via Celoria 26, 20133 Milan, Italy
| | - Diego Rubolini
- Department of Environmental Science and Policy, University of Milan, via Celoria 26, 20133 Milan, Italy
| | - Nicola Saino
- Department of Environmental Science and Policy, University of Milan, via Celoria 26, 20133 Milan, Italy
| |
Collapse
|
23
|
Lutyk D, Tagirov M, Drobniak S, Rutkowska J. Higher growth rate and gene expression in male zebra finch embryos are independent of manipulation of maternal steroids in the eggs. Gen Comp Endocrinol 2017; 254:1-7. [PMID: 28935580 DOI: 10.1016/j.ygcen.2017.09.004] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/30/2017] [Revised: 06/23/2017] [Accepted: 09/13/2017] [Indexed: 11/25/2022]
Abstract
Sexual dimorphism in prenatal development is widespread among vertebrates, including birds. Its mechanism remains unclear, although it has been attributed to the effect of maternal steroid hormones. The aim of this study was to investigate how increased levels of steroid hormones in the eggs influence early embryonic development of male and female offspring. We also asked whether maternal hormones take part in the control of sex-specific expression of the genes involved in prenatal development. We experimentally manipulated hormones' concentrations in the egg yolk by injecting zebra finch females prior to ovulation with testosterone or corticosterone. We assessed growth rate and expression levels of CDK7, FBP1 and GHR genes in 37h-old embryos. We found faster growth and higher expression of two studied genes in male compared to female embryos. Hormonal treatment, despite clearly differentiating egg steroid levels, had no effect on the sex-specific pattern of the embryonic gene expression, even though we confirmed expression of receptors of androgens and glucocorticoids at such an early stage of development. Thus, our study shows high stability of the early sex differences in the embryonic development before the onset of sexual differentiation and indicates their independence of maternal hormones in the egg.
Collapse
Affiliation(s)
- Dorota Lutyk
- Institute of Environmental Sciences, Jagiellonian University, Gronostajowa 7, 30-387 Kraków, Poland
| | - Makhsud Tagirov
- Poultry Research Institute, Ukrainian Academy of Agrarian Sciences, Lenin Street 20, Borky, Zmiiv District, Kharkiv Region 63421, Ukraine
| | - Szymon Drobniak
- Institute of Environmental Sciences, Jagiellonian University, Gronostajowa 7, 30-387 Kraków, Poland
| | - Joanna Rutkowska
- Institute of Environmental Sciences, Jagiellonian University, Gronostajowa 7, 30-387 Kraków, Poland.
| |
Collapse
|
24
|
Gebhardt-Henrich S, Toscano M, Würbel H. Perch use by broiler breeders and its implication on health and production. Poult Sci 2017; 96:3539-3549. [DOI: 10.3382/ps/pex189] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2017] [Accepted: 06/13/2017] [Indexed: 11/20/2022] Open
|
25
|
Sinkalu VO, Ayo JO, Adelaiye AB, Hambolu JO. Melatonin modulates tonic immobility and vigilance behavioural responses of broiler chickens to lighting regimens during the hot-dry season. Physiol Behav 2016; 165:195-201. [PMID: 27484699 DOI: 10.1016/j.physbeh.2016.07.019] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2016] [Revised: 07/26/2016] [Accepted: 07/27/2016] [Indexed: 11/24/2022]
Abstract
Experiments were conducted with the aim of determining the influence of melatonin administration on vigilance and tonic immobility (TI) responses of Marshall broiler chickens. The broiler chickens were reared on different lighting regimens and subjected to heat stress during the hot-dry season. Simple random sampling was used to assign 300 broiler chicks into three groups, comprising 100 broiler chicks each. Group I (12D:12L cycle) was raised under natural photoperiod of 12-h light and 12-h darkness, without melatonin supplementation. Group II (CL) was kept under 24-h continuous lighting, without melatonin administration. Group III (CL+MEL) was raised under 24-h continuous lighting; with melatonin supplementation at 0.5mg/kg per os, via drinking water using a syringe. Beginning from day-old, broiler chickens in group III were individually administered with melatonin once daily for 8weeks at 17:00h. TI was induced by manual restraint, and vigilance elicited at self-righting graded for three days, two weeks apart, in 15 labeled broiler chickens from each of the three groups; at 06:00h, 13:00h and 18:00h, starting from week 4-8. Each broiler chicken was laid on its back in a U-shaped cradle, covered with cloth. Thermal microenvironment parameters of dry bulb temperature (DBT) and relative humidity (RH) were recorded at the experimental site, concurrently during the vigilance and TI tests. Inside the broiler chickens' house, the weekly temperature-humidity index (THI) was lowest at week 4 of the study, with the value of 48.60±0.08°C. At week 4, the relationship between the THI and TI induction attempts was stronger in 12D:12L cycle (r=0.589, P<0.001) than CL (r=0.264, P>0.05) or CL+MEL (r=0.096, P>0.05) broiler chickens. This indicated that the broiler chickens on 12D:12L cycle were more active compared to their melatonin-treated counterparts, apparently due to adverse effects of high DBT and high RH on the broiler chickens during the hot-dry season. The highest numbers of TI induction trial attempts were recorded at 13:00h in 12D:12L cycle and CL groups (2.13±0.34 and 2.15±0.22, respectively), when the broiler chickens were at week 8. The overall mean values of induction trial attempts differed significantly (P<0.0001) between the groups; with the lowest mean values of 1.22±0.4 recorded in CL+MEL broiler chickens. At day 42, the lowest mean TI duration of 101.87±10.24s in the CL group, recorded at 06:00h rose (P<0.001) to 184.07±23.69s at 13:00h. The overall mean duration of TI differed significantly (P<0.0001) again between the groups; with the highest mean duration of 167.82±8.35s, recorded in CL+MEL broiler chickens administered with melatonin. The overall mean vigilance behavioural ranking values of 1.85+0.07 and 1.70+0.08, obtained in 12D:12L cycle and CL broiler chickens, respectively were higher (P<0.0001) than the value of 1.44+0.05 recorded in melatonin-treated broiler chickens. The results indicated that broiler chickens belonging to both 12D:12L cycle and CL groups were more emotional, fearful or anxious, compared to CL+MEL broiler chickens. It was concluded that melatonin administration elicits boldness and confidence by suppressing freezing behaviour in broiler chickens, and it may improve their welfare and productivity.
Collapse
Affiliation(s)
- Victor Olusegun Sinkalu
- Department of Physiology, Faculty of Veterinary Medicine, Ahmadu Bello University, Zaria, Nigeria.
| | - Joseph O Ayo
- Department of Physiology, Faculty of Veterinary Medicine, Ahmadu Bello University, Zaria, Nigeria.
| | - Alexander B Adelaiye
- Department of Human Physiology, Faculty of Medicine, Ahmadu Bello University, Zaria, Nigeria.
| | - Joseph O Hambolu
- Department of Anatomy, Faculty of Veterinary Medicine, Ahmadu Bello University, Zaria, Nigeria.
| |
Collapse
|
26
|
Ahmed AA, Musa HH, Sifaldin AZ. Prenatal corticosterone exposure programs growth, behavior, reproductive function and genes in the chicken. ASIAN PACIFIC JOURNAL OF REPRODUCTION 2016. [DOI: 10.1016/j.apjr.2016.06.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022] Open
|
27
|
Ahmed AA, Sifaldin AZ, Musa HH, Musa TH, Fedail JS. Prenatal corticosterone altered glucocorticoid receptor and glucocorticoid metabolic enzyme gene expression in chicken ovary. ASIAN PACIFIC JOURNAL OF REPRODUCTION 2016. [DOI: 10.1016/j.apjr.2016.04.007] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
|
28
|
Ubuka T, Son YL, Tsutsui K. Molecular, cellular, morphological, physiological and behavioral aspects of gonadotropin-inhibitory hormone. Gen Comp Endocrinol 2016; 227:27-50. [PMID: 26409890 DOI: 10.1016/j.ygcen.2015.09.009] [Citation(s) in RCA: 71] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/01/2015] [Revised: 09/09/2015] [Accepted: 09/11/2015] [Indexed: 12/15/2022]
Abstract
Gonadotropin-inhibitory hormone (GnIH) is a hypothalamic neuropeptide that was isolated from the brains of Japanese quail in 2000, which inhibited luteinizing hormone release from the anterior pituitary gland. Here, we summarize the following fifteen years of researches that investigated on the mechanism of GnIH actions at molecular, cellular, morphological, physiological, and behavioral levels. The unique molecular structure of GnIH peptide is in its LPXRFamide (X=L or Q) motif at its C-terminal. The primary receptor for GnIH is GPR147. The cell signaling pathway triggered by GnIH is initiated by inhibiting adenylate cyclase and decreasing cAMP production in the target cell. GnIH neurons regulate not only gonadotropin synthesis and release in the pituitary, but also regulate various neurons in the brain, such as GnRH1, GnRH2, dopamine, POMC, NPY, orexin, MCH, CRH, oxytocin, and kisspeptin neurons. GnIH and GPR147 are also expressed in gonads and they may regulate steroidogenesis and germ cell maturation in an autocrine/paracrine manner. GnIH regulates reproductive development and activity. In female mammals, GnIH may regulate estrous or menstrual cycle. GnIH is also involved in the regulation of seasonal reproduction, but GnIH may finely tune reproductive activities in the breeding seasons. It is involved in stress responses not only in the brain but also in gonads. GnIH may inhibit male socio-sexual behavior by stimulating the activity of cytochrome P450 aromatase in the brain and stimulates feeding behavior by modulating the activities of hypothalamic and central amygdala neurons.
Collapse
Affiliation(s)
- Takayoshi Ubuka
- Department of Biology, Waseda University, 2-2 Wakamatsu-cho, Shinjuku, Tokyo 162-8480, Japan; Brain Research Institute Monash Sunway (BRIMS) of the Jeffrey Cheah School of Medicine and Health Sciences, Monash University Malaysia, Petaling Jaya 46150, Malaysia.
| | - You Lee Son
- Department of Biology, Waseda University, 2-2 Wakamatsu-cho, Shinjuku, Tokyo 162-8480, Japan
| | - Kazuyoshi Tsutsui
- Department of Biology, Waseda University, 2-2 Wakamatsu-cho, Shinjuku, Tokyo 162-8480, Japan.
| |
Collapse
|