1
|
Lowe AM, Kleemann DO, Kelly JM, Thompson AN, Krog J, van Wettere WHEJ, Weaver AC. Does Melatonin Enhance Twin Lamb Survival in Commercial Merino Flocks in Australia? Animals (Basel) 2025; 15:946. [PMID: 40218340 PMCID: PMC11987878 DOI: 10.3390/ani15070946] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2025] [Revised: 03/16/2025] [Accepted: 03/18/2025] [Indexed: 04/14/2025] Open
Abstract
In research flocks, supplementing pregnant ewes with melatonin has been shown to be a novel approach to ameliorate parturient neurological damage and improve twin lamb survival. This study investigated the commercial applicability of melatonin supplementation for Merino flocks managed under extensive grazing conditions. Multiparous twin-bearing ewes were implanted with one melatonin implant (18 mg, Regulin®) each on two properties in South Australia and one in Western Australia (n = 585) at a median 79 days of gestation, with control ewes not implanted (n = 586). Ewes were managed as per standard protocols for each property. Lambs and ewes were counted at tail docking and weaning, and the lambs were weighed at weaning. Lamb survival was not influenced by melatonin treatment at either tail docking (p = 0.327) or weaning (p = 0.546). Across all sites, lamb survival at weaning for control and melatonin treatments was 74.7% and 74.0%, respectively, with lamb weaning weight of 27.2 ± 0.1 kg and 26.8 ± 0.1 kg (p = 0.020). These results indicate that supplementing twin-bearing Merino ewes with melatonin during mid-gestation was not a practical strategy to increase either lamb survival or weaning weight on commercial farms.
Collapse
Affiliation(s)
- Alyce M. Lowe
- Turretfield Research Centre, South Australian Research and Development Institute, Department of Primary Industries Regions South Australia, Livestock Innovation and Welfare, Rosedale, SA 5350, Australia; (D.O.K.); (J.M.K.); (A.C.W.)
| | - David O. Kleemann
- Turretfield Research Centre, South Australian Research and Development Institute, Department of Primary Industries Regions South Australia, Livestock Innovation and Welfare, Rosedale, SA 5350, Australia; (D.O.K.); (J.M.K.); (A.C.W.)
| | - Jennifer M. Kelly
- Turretfield Research Centre, South Australian Research and Development Institute, Department of Primary Industries Regions South Australia, Livestock Innovation and Welfare, Rosedale, SA 5350, Australia; (D.O.K.); (J.M.K.); (A.C.W.)
| | - Andrew N. Thompson
- Centre for Animal Production and Health, Food Futures Institute, Murdoch University, Murdoch, WA 6150, Australia; (A.N.T.); (J.K.)
| | - Jarryd Krog
- Centre for Animal Production and Health, Food Futures Institute, Murdoch University, Murdoch, WA 6150, Australia; (A.N.T.); (J.K.)
| | - William H. E. J. van Wettere
- Davies Livestock Research Centre, School of Animal and Veterinary Sciences, The University of Adelaide, Adelaide, SA 5001, Australia;
| | - Alice C. Weaver
- Turretfield Research Centre, South Australian Research and Development Institute, Department of Primary Industries Regions South Australia, Livestock Innovation and Welfare, Rosedale, SA 5350, Australia; (D.O.K.); (J.M.K.); (A.C.W.)
| |
Collapse
|
2
|
El-Sherbiny HR, Samir H, Youssef FS, Mohamed GG, Ismail SH, El-Shahat KH, Aboelmaaty AM, Mahrous KF, Al Syaad KM, Ahmed AE, Al-Saeed FA, Abduallah AM, Abdelnaby EA. Maternal supplementation of curcumin-olive oil nanocomposite improves uteroplacental blood flow, placental growth and antioxidant capacity in goats. J Anim Physiol Anim Nutr (Berl) 2024; 108:839-853. [PMID: 38323934 DOI: 10.1111/jpn.13933] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2023] [Revised: 12/05/2023] [Accepted: 01/19/2024] [Indexed: 02/08/2024]
Abstract
This experiment was designed to investigate the impact of curcumin-olive oil nanocomposite (CONC) supplementation on uteroplacental hemodynamics and ultrasonographic measurements as well as maternal oxidative status in midgestating goats. Twelve synchronized pregnant goats (85.58 ± 1.08 days of gestation; mean ± SD) were uniformly assigned to two groups (n = 6/group); the first group received daily oral supplementation of CONC (3 mg/kg body weight; nanocurcumin [NC] group) for 32 days, and the second group was offered physiological saline (control) following the NC group timeline. The goats of both groups were examined at 3-day intervals for middle uterine (MUA) and umbilical (UMA) arteries hemodynamics (pulsatility index [PI], resistive index [RI], systole/diastole [S/D] and blood flow rate [BFR]) and diameters, uteroplacental thickness (UPT), placentomes' diameter (PD) and echogenicity, steroid hormones (progesterone and estradiol 17β), oxidative biomarkers (total antioxidant capacity [TAC], catalase [CAT], malondialdehyde [MDA]), nitric oxide (NO) and blood cells DNA integrity. The UPT (p = 0.012) and PD (p = 0.021) values were higher in the NC group than in their counterparts' control group (D11-32). There were increases in diameter (p = 0.021 and p = 0.012) and decreases (p = 0.021, p = 0.016 and p = 0.041 [MUA]; p = 0.015, p = 0.023 and p = 0.011 [UMA] respectively) in Doppler indices (PI, RI and S/D) of the MUA and UMA in the NC group compared to the control group (D14-32). On D20-32 (MUA) and D14-32 (UMA), the NC goats had higher BFR than the control group (p = 0.021, 0.018 respectively). The means of blood cells with fragmented DNA were lower (p = 0.022) in the NC group than in the control group on Days 8 and 21 postsupplementation. There were increases in CAT and NO (D20-32; p = 0.022 and p = 0.004 respectively), and TAC (D17-32; p = 0.007) levels in the NC goats compared to the control ones. The NC group had lower (p = 0.029) concentrations of MDA than the control group on Day 20 postsupplementation onward. In conclusion, oral supplementation of CONC improved uteroplacental blood flow and the antioxidant capacity of midgestating goats.
Collapse
Affiliation(s)
- Hossam R El-Sherbiny
- Theriogenology Department, Faculty of Veterinary Medicine, Cairo University, Giza, Egypt
| | - Haney Samir
- Theriogenology Department, Faculty of Veterinary Medicine, Cairo University, Giza, Egypt
| | - Fady Sayed Youssef
- Pharmacology Department, Faculty of Veterinary Medicine, Cairo University, Giza, Egypt
| | - Gehad G Mohamed
- Inorganic and Analytical Chemistry Department, Faculty of Science, Cairo University, Giza, Egypt
| | - Sameh H Ismail
- Faculty of Nanotechnology for Postgraduate, Cairo University, Sheikh Zayed Branch Campus, Sheikh Zayed City, Egypt
| | - Khaled H El-Shahat
- Theriogenology Department, Faculty of Veterinary Medicine, Cairo University, Giza, Egypt
| | - Amal M Aboelmaaty
- Animal Reproduction and Artificial Insemination Department, National Research Centre, Veterinary Research Institute, Dokki, Egypt
| | - Karima F Mahrous
- Cell Biology Department, National Research Centre, Biotechnology Research Institute, Cairo, Egypt
| | - Khalid M Al Syaad
- Department of Biology, College of Science, King Khalid University, Abha, Saudi Arabia
| | - Ahmed Ezzat Ahmed
- Department of Biology, College of Science, King Khalid University, Abha, Saudi Arabia
| | - Fatimah A Al-Saeed
- Department of Biology, College of Science, King Khalid University, Abha, Saudi Arabia
| | | | - Elshymaa A Abdelnaby
- Theriogenology Department, Faculty of Veterinary Medicine, Cairo University, Giza, Egypt
- Department of Clinical Sciences, King Faisal University, Alahsa, Saudi Arabia
| |
Collapse
|
3
|
Davenport BN, Wilson RL, Jones HN. Interventions for placental insufficiency and fetal growth restriction. Placenta 2022; 125:4-9. [PMID: 35414477 PMCID: PMC10947607 DOI: 10.1016/j.placenta.2022.03.127] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/31/2021] [Revised: 03/09/2022] [Accepted: 03/28/2022] [Indexed: 01/16/2023]
Abstract
Pregnancy complications adversely impact both mother and/or fetus throughout the lifespan. Fetal growth restriction (FGR) occurs when a fetus fails to reach their intrauterine potential for growth, it is the second highest leading cause of infant mortality, and leads to increased risk of developing non-communicable diseases in later life due 'fetal programming'. Abnormal placental development, growth and/or function underlies approximately 75% of FGR cases and there is currently no treatment save delivery, often prematurely. We previously demonstrated in a murine model of FGR that nanoparticle mediated, intra-placental human IGF-1 gene therapy maintains normal fetal growth. Multiple models of FGR currently exist reflecting the etiologies of human FGR and have been used by us and others to investigate the development of in utero therapeutics as discussed here. In addition to the in vivo models discussed herein, utilizing human models including in vitro (Choriocarcinoma cell lines and primary trophoblasts) and ex vivo (term villous fragments and placenta cotyledon perfusion) we have demonstrated robust nanoparticle uptake, transgene expression, nutrient transporter regulation without transfer to the fetus. For translational gene therapy application in the human placenta, there are multiple avenues that require investigation including syncytial uptake from the maternal circulation, transgene expression, functionality and longevity of treatment, impact of treatment on the mother and developing fetus. The potential impact of treating the placenta during gestation is high, wide-ranging across pregnancy complications, and may offer reduced risk of developing associated cardio-metabolic diseases in later life impacting at both an individual and societal level.
Collapse
Affiliation(s)
- Baylea N Davenport
- Center for Research in Perinatal Outcomes, University of Florida College of Medicine, United States
| | - Rebecca L Wilson
- Center for Research in Perinatal Outcomes, University of Florida College of Medicine, United States
| | - Helen N Jones
- Center for Research in Perinatal Outcomes, University of Florida College of Medicine, United States.
| |
Collapse
|
4
|
Reid DS, Burnett DD, Contreras-Correa ZE, Lemley CO. Differences in bovine placentome blood vessel density and transcriptomics in a mid to late-gestating maternal nutrient restriction model. Placenta 2021; 117:122-130. [PMID: 34883456 DOI: 10.1016/j.placenta.2021.12.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/08/2021] [Accepted: 12/01/2021] [Indexed: 11/28/2022]
Abstract
INTRODUCTION Prenatal development is reliant on a functioning placenta, which can be influenced by maternal nutrition. Moreover, the variation in cotyledonary capacity within an animal has not been fully examined to date. Therefore, the purpose of this study was to determine the effect of (1) placentome size and (2) maternal nutrient restriction on molecular, microscopic, and macroscopic features of bovine placentomes during late gestation. METHODS Pregnant cows (n = 6) were placed into one of 2 treatments: CON (100% NRC) vs RES (60% of NRC) from day 140 until slaughter at day 240 of gestation. Placentomes of various sizes were perfused to assess macroscopic blood vessel density of the cotyledon. Microscopic imaging and RNA extraction for sequencing was performed. RESULTS Macroscopic blood vessel density relative to placentome weight was not different (P = 0.42) among small, medium, or large placentomes. Cotyledonary microscopic blood vessel number, area, and perimeter was increased (P < 0.005) in high versus low blood perfusion areas. Differential expressed gene (DEG) analysis showed 209 upregulations and 168 downregulations in the RES group (P ≤ 0.0001). Gene Ontology (GO) analysis showed that downregulated enriched terms were involved in blood vessel and mesenchymal stem cells development, whereas upregulated enriched terms were involved with translation and ribosomal function. DISCUSSION This study demonstrates that placentome function is uniform across various placentome sizes within an animal. However, microscopic heterogeneity exists within each placentome. Maternal nutrient constraints alter placental transcriptomics which may yield compensatory mechanisms involved in nutrient transport including increased perimeter.
Collapse
Affiliation(s)
- Dana S Reid
- Department of Animal and Dairy Sciences, Mississippi State University, Mississippi State, MS, 39762, USA
| | - Derris D Burnett
- Department of Animal and Dairy Sciences, Mississippi State University, Mississippi State, MS, 39762, USA
| | - Zully E Contreras-Correa
- Department of Animal and Dairy Sciences, Mississippi State University, Mississippi State, MS, 39762, USA
| | - Caleb O Lemley
- Department of Animal and Dairy Sciences, Mississippi State University, Mississippi State, MS, 39762, USA.
| |
Collapse
|
5
|
Hicks ZM, Yates DT. Going Up Inflame: Reviewing the Underexplored Role of Inflammatory Programming in Stress-Induced Intrauterine Growth Restricted Livestock. FRONTIERS IN ANIMAL SCIENCE 2021; 2. [PMID: 34825243 PMCID: PMC8612632 DOI: 10.3389/fanim.2021.761421] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023] Open
Abstract
The impact of intrauterine growth restriction (IUGR) on health in humans is well-recognized. It is the second leading cause of perinatal mortality worldwide, and it is associated with deficits in metabolism and muscle growth that increase lifelong risk for hypertension, obesity, hyperlipidemia, and type 2 diabetes. Comparatively, the barrier that IUGR imposes on livestock production is less recognized by the industry. Meat animals born with low birthweight due to IUGR are beset with greater early death loss, inefficient growth, and reduced carcass merit. These animals exhibit poor feed-to-gain ratios, less lean mass, and greater fat deposition, which increase production costs and decrease value. Ultimately, this reduces the amount of meat produced by each animal and threatens the economic sustainability of livestock industries. Intrauterine growth restriction is most commonly the result of fetal programming responses to placental insufficiency, but the exact mechanisms by which this occurs are not well-understood. In uncompromised pregnancies, inflammatory cytokines are produced at modest rates by placental and fetal tissues and play an important role in fetal development. However, unfavorable intrauterine conditions can cause cytokine activity to be excessive during critical windows of fetal development. Our recent evidence indicates that this impacts developmental programming of muscle growth and metabolism and contributes to the IUGR phenotype. In this review, we outline the role of inflammatory cytokine activity in the development of normal and IUGR phenotypes. We also highlight the contributions of sheep and other animal models in identifying mechanisms for IUGR pathologies.
Collapse
Affiliation(s)
- Zena M Hicks
- Stress Physiology Laboratory, Department of Animal Science, University of Nebraska-Lincoln, Lincoln, NE, United States
| | - Dustin T Yates
- Stress Physiology Laboratory, Department of Animal Science, University of Nebraska-Lincoln, Lincoln, NE, United States
| |
Collapse
|
6
|
Peng X, Cai X, Li J, Huang Y, Liu H, He J, Fang Z, Feng B, Tang J, Lin Y, Jiang X, Hu L, Xu S, Zhuo Y, Che L, Wu D. Effects of Melatonin Supplementation during Pregnancy on Reproductive Performance, Maternal-Placental-Fetal Redox Status, and Placental Mitochondrial Function in a Sow Model. Antioxidants (Basel) 2021; 10:1867. [PMID: 34942970 PMCID: PMC8698367 DOI: 10.3390/antiox10121867] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2021] [Revised: 11/09/2021] [Accepted: 11/18/2021] [Indexed: 12/25/2022] Open
Abstract
Melatonin (MT) is a bio-antioxidant that has been widely used to prevent pregnancy complications, such as pre-eclampsia and IUGR during gestation. This experiment evaluated the impacts of dietary MT supplementation during pregnancy on reproductive performance, maternal-placental-fetal redox status, placental inflammatory response, and mitochondrial function, and sought a possible underlying mechanism in the placenta. Sixteen fifth parity sows were divided into two groups and fed each day of the gestation period either a control diet or a diet that was the same but for 36 mg of MT. The results showed that dietary supplementation with MT increased placental weight, while the percentage of piglets born with weight < 900 g decreased. Meanwhile, serum and placental MT levels, maternal-placental-fetal redox status, and placental inflammatory response were increased by MT. In addition, dietary MT markedly increased the mRNA levels of nutrient transporters and antioxidant-related genes involved in the Nrf2/ARE pathway in the placenta. Furthermore, dietary MT significantly increased ATP and NAD+ levels, relative mtDNA content, and the protein expression of Sirt1 in the placenta. These results suggested that MT supplementation during gestation could improve maternal-placental-fetal redox status and reproductive performance by ameliorating placental antioxidant status, inflammatory response, and mitochondrial dysfunction.
Collapse
Affiliation(s)
- Xie Peng
- Key Laboratory for Animal Disease Resistant Nutrition of the Ministry of Education, Animal Nutrition Institute, Sichuan Agricultural University, Chengdu 611130, China; (X.P.); (X.C.); (J.L.); (Y.H.); (H.L.); (J.H.); (Z.F.); (B.F.); (J.T.); (Y.L.); (X.J.); (S.X.); (Y.Z.); (L.C.)
| | - Xuelin Cai
- Key Laboratory for Animal Disease Resistant Nutrition of the Ministry of Education, Animal Nutrition Institute, Sichuan Agricultural University, Chengdu 611130, China; (X.P.); (X.C.); (J.L.); (Y.H.); (H.L.); (J.H.); (Z.F.); (B.F.); (J.T.); (Y.L.); (X.J.); (S.X.); (Y.Z.); (L.C.)
| | - Jian Li
- Key Laboratory for Animal Disease Resistant Nutrition of the Ministry of Education, Animal Nutrition Institute, Sichuan Agricultural University, Chengdu 611130, China; (X.P.); (X.C.); (J.L.); (Y.H.); (H.L.); (J.H.); (Z.F.); (B.F.); (J.T.); (Y.L.); (X.J.); (S.X.); (Y.Z.); (L.C.)
| | - Yingyan Huang
- Key Laboratory for Animal Disease Resistant Nutrition of the Ministry of Education, Animal Nutrition Institute, Sichuan Agricultural University, Chengdu 611130, China; (X.P.); (X.C.); (J.L.); (Y.H.); (H.L.); (J.H.); (Z.F.); (B.F.); (J.T.); (Y.L.); (X.J.); (S.X.); (Y.Z.); (L.C.)
| | - Hao Liu
- Key Laboratory for Animal Disease Resistant Nutrition of the Ministry of Education, Animal Nutrition Institute, Sichuan Agricultural University, Chengdu 611130, China; (X.P.); (X.C.); (J.L.); (Y.H.); (H.L.); (J.H.); (Z.F.); (B.F.); (J.T.); (Y.L.); (X.J.); (S.X.); (Y.Z.); (L.C.)
| | - Jiaqi He
- Key Laboratory for Animal Disease Resistant Nutrition of the Ministry of Education, Animal Nutrition Institute, Sichuan Agricultural University, Chengdu 611130, China; (X.P.); (X.C.); (J.L.); (Y.H.); (H.L.); (J.H.); (Z.F.); (B.F.); (J.T.); (Y.L.); (X.J.); (S.X.); (Y.Z.); (L.C.)
| | - Zhengfeng Fang
- Key Laboratory for Animal Disease Resistant Nutrition of the Ministry of Education, Animal Nutrition Institute, Sichuan Agricultural University, Chengdu 611130, China; (X.P.); (X.C.); (J.L.); (Y.H.); (H.L.); (J.H.); (Z.F.); (B.F.); (J.T.); (Y.L.); (X.J.); (S.X.); (Y.Z.); (L.C.)
| | - Bin Feng
- Key Laboratory for Animal Disease Resistant Nutrition of the Ministry of Education, Animal Nutrition Institute, Sichuan Agricultural University, Chengdu 611130, China; (X.P.); (X.C.); (J.L.); (Y.H.); (H.L.); (J.H.); (Z.F.); (B.F.); (J.T.); (Y.L.); (X.J.); (S.X.); (Y.Z.); (L.C.)
| | - Jiayong Tang
- Key Laboratory for Animal Disease Resistant Nutrition of the Ministry of Education, Animal Nutrition Institute, Sichuan Agricultural University, Chengdu 611130, China; (X.P.); (X.C.); (J.L.); (Y.H.); (H.L.); (J.H.); (Z.F.); (B.F.); (J.T.); (Y.L.); (X.J.); (S.X.); (Y.Z.); (L.C.)
| | - Yan Lin
- Key Laboratory for Animal Disease Resistant Nutrition of the Ministry of Education, Animal Nutrition Institute, Sichuan Agricultural University, Chengdu 611130, China; (X.P.); (X.C.); (J.L.); (Y.H.); (H.L.); (J.H.); (Z.F.); (B.F.); (J.T.); (Y.L.); (X.J.); (S.X.); (Y.Z.); (L.C.)
| | - Xuemei Jiang
- Key Laboratory for Animal Disease Resistant Nutrition of the Ministry of Education, Animal Nutrition Institute, Sichuan Agricultural University, Chengdu 611130, China; (X.P.); (X.C.); (J.L.); (Y.H.); (H.L.); (J.H.); (Z.F.); (B.F.); (J.T.); (Y.L.); (X.J.); (S.X.); (Y.Z.); (L.C.)
| | - Liang Hu
- College of Food Science, Sichuan Agricultural University, Ya’an 625014, China;
| | - Shengyu Xu
- Key Laboratory for Animal Disease Resistant Nutrition of the Ministry of Education, Animal Nutrition Institute, Sichuan Agricultural University, Chengdu 611130, China; (X.P.); (X.C.); (J.L.); (Y.H.); (H.L.); (J.H.); (Z.F.); (B.F.); (J.T.); (Y.L.); (X.J.); (S.X.); (Y.Z.); (L.C.)
| | - Yong Zhuo
- Key Laboratory for Animal Disease Resistant Nutrition of the Ministry of Education, Animal Nutrition Institute, Sichuan Agricultural University, Chengdu 611130, China; (X.P.); (X.C.); (J.L.); (Y.H.); (H.L.); (J.H.); (Z.F.); (B.F.); (J.T.); (Y.L.); (X.J.); (S.X.); (Y.Z.); (L.C.)
| | - Lianqiang Che
- Key Laboratory for Animal Disease Resistant Nutrition of the Ministry of Education, Animal Nutrition Institute, Sichuan Agricultural University, Chengdu 611130, China; (X.P.); (X.C.); (J.L.); (Y.H.); (H.L.); (J.H.); (Z.F.); (B.F.); (J.T.); (Y.L.); (X.J.); (S.X.); (Y.Z.); (L.C.)
| | - De Wu
- Key Laboratory for Animal Disease Resistant Nutrition of the Ministry of Education, Animal Nutrition Institute, Sichuan Agricultural University, Chengdu 611130, China; (X.P.); (X.C.); (J.L.); (Y.H.); (H.L.); (J.H.); (Z.F.); (B.F.); (J.T.); (Y.L.); (X.J.); (S.X.); (Y.Z.); (L.C.)
| |
Collapse
|
7
|
Flinn T, Kleemann DO, Swinbourne AM, Kelly JM, Weaver AC, Walker SK, Gatford KL, Kind KL, van Wettere WHEJ. Neonatal lamb mortality: major risk factors and the potential ameliorative role of melatonin. J Anim Sci Biotechnol 2020; 11:107. [PMID: 33292527 PMCID: PMC7643391 DOI: 10.1186/s40104-020-00510-w] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2020] [Accepted: 09/07/2020] [Indexed: 12/19/2022] Open
Abstract
High incidences of pre-weaning mortality continue to limit global sheep production, constituting a major economic and welfare concern. Despite significant advances in genetics, nutrition, and management, the proportion of lamb deaths has remained stable at 15–20% over the past four decades. There is mounting evidence that melatonin can improve outcomes in compromised ovine pregnancies via enhanced uterine bloodflow and neonatal neuroprotection. This review provides an overview of the major risk factors and underlying mechanisms involved in perinatal lamb mortality and discusses the potential of melatonin treatment as a remedial strategy. Supplementing pregnant ewes with melatonin enhances uterine bloodflow and fetal oxygenation, and potentially birthweight and neonatal thermogenic capacity. Melatonin freely crosses the ovine placenta and blood-brain barrier and provides neuroprotection to the fetal lamb during periods of chronic and acute hypoxia throughout gestation, with improved behavioural outcomes in hypoxic neonates. The current literature provides strong evidence that maternal melatonin treatment improves outcomes for lambs which experience compromised in utero development or prolonged parturition, though to date this has not been investigated in livestock production systems. As such there is a clear basis for continued research into the effects of maternal melatonin supplementation during gestation on pre-weaning survival under extensive production conditions.
Collapse
Affiliation(s)
- Tom Flinn
- Davies Livestock Research Centre, School of Animal and Veterinary Sciences, The University of Adelaide, Roseworthy, SA, Australia.
| | - David O Kleemann
- Turretfield Research Centre, South Australian Research and Development Institute, Rosedale, SA, Australia
| | - Alyce M Swinbourne
- Davies Livestock Research Centre, School of Animal and Veterinary Sciences, The University of Adelaide, Roseworthy, SA, Australia
| | - Jennifer M Kelly
- Turretfield Research Centre, South Australian Research and Development Institute, Rosedale, SA, Australia
| | - Alice C Weaver
- Turretfield Research Centre, South Australian Research and Development Institute, Rosedale, SA, Australia
| | - Simon K Walker
- Turretfield Research Centre, South Australian Research and Development Institute, Rosedale, SA, Australia
| | - Kathryn L Gatford
- Robinson Research Institute, Adelaide Medical School, The University of Adelaide, Adelaide, SA, Australia
| | - Karen L Kind
- Davies Livestock Research Centre, School of Animal and Veterinary Sciences, The University of Adelaide, Roseworthy, SA, Australia
| | - William H E J van Wettere
- Davies Livestock Research Centre, School of Animal and Veterinary Sciences, The University of Adelaide, Roseworthy, SA, Australia
| |
Collapse
|
8
|
Beede KA, Limesand SW, Petersen JL, Yates DT. Real supermodels wear wool: summarizing the impact of the pregnant sheep as an animal model for adaptive fetal programming. Anim Front 2019; 9:34-43. [PMID: 31608163 PMCID: PMC6777506 DOI: 10.1093/af/vfz018] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Affiliation(s)
- Kristin A Beede
- Department of Animal Science, University of Nebraska - Lincoln, Lincoln, NE
| | - Sean W Limesand
- School of Animal and Comparative Biomedical Sciences, The University of Arizona, Tucson, AZ
| | - Jessica L Petersen
- Department of Animal Science, University of Nebraska - Lincoln, Lincoln, NE
| | - Dustin T Yates
- Department of Animal Science, University of Nebraska - Lincoln, Lincoln, NE
| |
Collapse
|
9
|
Sales F, Peralta OA, Narbona E, McCoard S, González-Bulnes A, Parraguez VH. Rapid Communication: Maternal melatonin implants improve fetal oxygen supply and body weight at term in sheep pregnancies. J Anim Sci 2019; 97:839-845. [PMID: 30452689 DOI: 10.1093/jas/sky443] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2018] [Accepted: 11/15/2018] [Indexed: 12/20/2022] Open
Abstract
Fetal hypoxia, resulting in oxidative stress in pregnancies, contributes to reduced fetal growth. Melatonin, a potent antioxidant, has been associated with improved oxidative status. Maternal oral melatonin supplementation in sheep from day 50 of gestation ameliorates the consequences of fetal growth restriction in sheep. In rats, melatonin supplementation increases fetal weight via improved placental efficiency and reduction of oxidative stress. The objective of this study was to evaluate whether melatonin supplementation of single (S)- or twin-bearing (T) ewes using either 0 (0MEL), 1 (18-mg MEL), or 2 (36-mg MEL) slow release 18-mg melatonin implants (Regulin) from 100 to 140 d of pregnancy (n = 8 per group) influenced fetal oxygen supply and fetal weight. Fetal umbilical vein blood samples were collected at P140 and partial pressure of oxygen (PO2) and hemoglobin saturation by oxygen (SatHb) measured. The placenta from each fetus was excised and placentomes individually weighed and typed (A-D). Pregnancy rank, sex of the fetus, number of implants, and their interaction on fetal weight, blood gases, and placentome weight were analyzed using ANOVA. A 22% and 14% increase (P < 0.05) in body weight was obtained in 36- and 18-mg MEL compared with 0 MEL twin male fetuses, respectively, but no treatment effects were observed in singletons or females from twin pregnancies. Fetuses from ewes receiving 36-mg MEL had an 18% to 20% increase in cord PO2 (P < 0.05) compared with 18-mg MEL and 0MEL fetuses, which in turn did not differ. Fetal weight was positively correlated with PO2 (r = 0.37; P = 0.02), SatHb (r = 0.26; P = 0.03), and O2 content (r = 0.236; P = 0.048). No treatment effect on placentome average weight, total placentome weight per fetus or per ewe, nor total number of placentomes per fetus was observed. However, placentae from 36-mg MEL fetuses had a greater proportion of Type C (P < 0.05) than 0MEL and 18-mg MEL ewes, and tended to have a lower proportion of Type A (P = 0.1) and a greater proportion of Type D (P = 0.06) placentomes, compared with 0MEL ewes. These results indicate that maternal melatonin implants, independently of sex, improve oxygen supply to the fetus, which could potentially improve lamb vigor at birth. In addition, melatonin can increase fetal weight of twin males, by improving placental adaptation and fetal blood oxygenation.
Collapse
Affiliation(s)
| | - Oscar A Peralta
- Faculty of Veterinary Sciences, University of Chile, Santiago, Chile
| | - Eileen Narbona
- Faculty of Veterinary Sciences, University of Chile, Santiago, Chile
| | - Sue McCoard
- AgResearch Grasslands, Private Bag, Palmerston North, New Zealand
| | - Antonio González-Bulnes
- INIA-Madrid, Ciudad Universitaria s/n. 28040-Madrid, Spain.,Dpto. de Toxicología y Farmacología. Facultad de Veterinaria. Universidad Complutense de Madrid. Ciudad Universitaria s/n. 28040-Madrid, Spain
| | - Victor H Parraguez
- Faculty of Veterinary Sciences, University of Chile, Santiago, Chile.,Faculty of Agrarian Sciences, University of Chile, Santiago, Chile
| |
Collapse
|
10
|
Lemley CO, Hart CG, Lemire RL, King EH, Hopper RM, Park SB, Rude BJ, Burnett DD. Maternal nutrient restriction alters uterine artery hemodynamics and placentome vascular density in Bos indicus and Bos taurus. J Anim Sci 2019; 96:4823-4834. [PMID: 30107547 DOI: 10.1093/jas/sky329] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2018] [Accepted: 08/10/2018] [Indexed: 01/01/2023] Open
Abstract
The objective was to examine uterine artery blood flow (UBF) as well as macroscopic and microscopic placentome vascular density in nutrient-restricted Angus and Brahman heifers. Angus (n = 6) and Brahman (n = 6) heifers were bred to a single sire and pregnancy confirmed at 30-d postbreeding. Heifers were randomly assigned to 1 of 2 dietary treatments consisting of 100% (control-fed; CON; n = 6) or 60% (total nutrient-restricted; RES; n = 6) based from net energy requirements for gestating heifers. Nutritional treatments were imposed from days 50 to 180 of gestation. On day 175 of gestation, UBF was collected ipsilateral and contralateral to the conceptus via Doppler ultrasonography. Heifers underwent Cesarean sections for collection of 2 adjacent placentomes on day 180 of gestation. The primary cotyledonary artery of 1 placentome was perfused with Alexa Fluor 647 Con A conjugate to examine macroscopic cotyledonary vascular density via an in vivo imaging system. The second placentome was fixed for microscopic immunofluorescence labeling of capillaries and separated into maternal (caruncle) and fetal (cotyledon) components for determination of angiogenic factor mRNA expression. Main effects of nutritional treatment and breed are reported in the absence of a significant nutritional treatment by breed interaction. Ipsilateral UBF was decreased (P < 0.05) by 48% in RES vs. CON, whereas breed did not influence ipsilateral UBF. Contralateral UBF was not different between nutritional treatments; however, contralateral UBF was decreased (P < 0.05) by 63% in Brahman vs. Angus cattle. Macroscopic cotyledonary vascular density was increased (P < 0.05) by 36% in RES vs. CON and 82% in Brahman vs. Angus heifers. Percent capillary area and capillary perimeter were increased (P < 0.05) in RES vs. CON and increased (P < 0.05) in Brahman vs. Angus heifers. Dietary treatments did not alter angiogenic factor expression; however, transcript abundance of caruncle and cotyledon ANGP1, FLT1, and KDR was increased (P < 0.05) in Brahman vs. Angus heifers. In summary, these data indicate compensatory responses in macroscopic and microscopic placentome blood vessel density during maternal nutrient restriction-induced reductions in UBF. Moreover, a greater macroscopic density of cotyledonary blood vessels was observed in Brahman vs. Angus heifers.
Collapse
Affiliation(s)
- Caleb O Lemley
- Department of Animal and Dairy Sciences, Mississippi State University, Mississippi State, MS
| | - Caitlin G Hart
- Department of Animal and Dairy Sciences, Mississippi State University, Mississippi State, MS
| | - Racheal L Lemire
- Department of Animal and Dairy Sciences, Mississippi State University, Mississippi State, MS
| | - E Heath King
- Department of Pathobiology and Population Medicine, Mississippi State University College of Veterinary Medicine, Mississippi State, MS
| | - Richard M Hopper
- Department of Pathobiology and Population Medicine, Mississippi State University College of Veterinary Medicine, Mississippi State, MS
| | - Seong B Park
- Department of Animal and Dairy Sciences, Mississippi State University, Mississippi State, MS
| | - Brian J Rude
- Department of Animal and Dairy Sciences, Mississippi State University, Mississippi State, MS
| | - Derris D Burnett
- Department of Animal and Dairy Sciences, Mississippi State University, Mississippi State, MS
| |
Collapse
|
11
|
McCarty KJ, Owen MPT, Hart CG, Thompson RC, Burnett DD, King EH, Hopper RM, Lemley CO. Effect of chronic melatonin supplementation during mid to late gestation on maternal uterine artery blood flow and subsequent development of male offspring in beef cattle. J Anim Sci 2018; 96:5100-5111. [PMID: 30203092 PMCID: PMC6276587 DOI: 10.1093/jas/sky363] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2018] [Accepted: 09/05/2018] [Indexed: 12/23/2022] Open
Abstract
The objective of the current study was to examine the effects of supplemental melatonin implants on uterine artery blood flow from mid to late gestation in beef cattle and subsequent development of their male offspring. Commercial beef heifers (n = 32) and cows (n = 25) were bred via artificial insemination and assigned to 1 of 2 groups supplemented with melatonin implants (MEL) or without (CON) at day 180, 210, and 240 of gestation. Uterine artery blood flow was determined using color Doppler ultrasonography. A subset of 12 crossbred heifers (n = 6 MEL; n = 6 CON) underwent Cesarean sections on day 243 ± 2 of gestation to allow for placentome collection. Maternal and fetal serum were collected to analyze melatonin concentrations. The remaining cattle were allowed to calve and at weaning (195 ± 2 d of age), bull calves (n = 15) were castrated and testicular tissue harvested for seminiferous tubule analysis. Heifer uterine artery blood flow was increased (P = 0.009) at day 240 of gestation in MEL compared with CON heifers. Cow uterine artery blood flow was increased (P = 0.003) in MEL compared with CON cows irrespective of gestational day. Maternal and fetal concentrations of melatonin were increased (P < 0.05) in MEL compared with CON heifers. The percent of placentome capillary area per mm2 was decreased (P = 0.019) in MEL compared with CON heifers, while cotyledonary ANGPT1 mRNA tended to increase (P = 0.095) in MEL compared with CON heifers. At weaning, body weight of male offspring and their scrotal circumference were increased (P < 0.05) in calves born to MEL compared with CON dams, while seminiferous tubule diameter and area were not different (P > 0.40) between treatments. In summary, melatonin supplementation increased uterine artery blood flow in mid to late gestating cattle, but this was not accompanied by an increase in fetal weight. Alterations in postnatal development of bulls, including increased body weight and scrotal circumference, warrants future investigations related to attainment of puberty and subsequent fertility of offspring born to melatonin supplemented dams.
Collapse
Affiliation(s)
- Keelee J McCarty
- Department of Animal and Dairy Sciences, Mississippi State University, Mississippi State, MS
| | - Megan P T Owen
- Department of Animal and Dairy Sciences, Mississippi State University, Mississippi State, MS
| | - Caitlin G Hart
- Department of Animal and Dairy Sciences, Mississippi State University, Mississippi State, MS
| | - Robyn C Thompson
- Department of Animal and Dairy Sciences, Mississippi State University, Mississippi State, MS
| | - Derris D Burnett
- Department of Animal and Dairy Sciences, Mississippi State University, Mississippi State, MS
| | - E Heath King
- Department of Pathobiology and Population Medicine, Mississippi State University College of Veterinary Medicine, Mississippi State, MS
| | - Richard M Hopper
- Department of Pathobiology and Population Medicine, Mississippi State University College of Veterinary Medicine, Mississippi State, MS
| | - Caleb O Lemley
- Department of Animal and Dairy Sciences, Mississippi State University, Mississippi State, MS
| |
Collapse
|
12
|
Abstract
Epidemiological evidence links an individual's susceptibility to chronic disease in adult life to events during their intrauterine phase of development. Biologically this should not be unexpected, for organ systems are at their most plastic when progenitor cells are proliferating and differentiating. Influences operating at this time can permanently affect their structure and functional capacity, and the activity of enzyme systems and endocrine axes. It is now appreciated that such effects lay the foundations for a diverse array of diseases that become manifest many years later, often in response to secondary environmental stressors. Fetal development is underpinned by the placenta, the organ that forms the interface between the fetus and its mother. All nutrients and oxygen reaching the fetus must pass through this organ. The placenta also has major endocrine functions, orchestrating maternal adaptations to pregnancy and mobilizing resources for fetal use. In addition, it acts as a selective barrier, creating a protective milieu by minimizing exposure of the fetus to maternal hormones, such as glucocorticoids, xenobiotics, pathogens, and parasites. The placenta shows a remarkable capacity to adapt to adverse environmental cues and lessen their impact on the fetus. However, if placental function is impaired, or its capacity to adapt is exceeded, then fetal development may be compromised. Here, we explore the complex relationships between the placental phenotype and developmental programming of chronic disease in the offspring. Ensuring optimal placentation offers a new approach to the prevention of disorders such as cardiovascular disease, diabetes, and obesity, which are reaching epidemic proportions.
Collapse
Affiliation(s)
- Graham J Burton
- Centre for Trophoblast Research and Department of Physiology, Development and Neuroscience, University of Cambridge, Cambridge, United Kingdom; and Department of Medicine, Knight Cardiovascular Institute, and Moore Institute for Nutrition and Wellness, Oregon Health and Science University, Portland, Oregon
| | - Abigail L Fowden
- Centre for Trophoblast Research and Department of Physiology, Development and Neuroscience, University of Cambridge, Cambridge, United Kingdom; and Department of Medicine, Knight Cardiovascular Institute, and Moore Institute for Nutrition and Wellness, Oregon Health and Science University, Portland, Oregon
| | - Kent L Thornburg
- Centre for Trophoblast Research and Department of Physiology, Development and Neuroscience, University of Cambridge, Cambridge, United Kingdom; and Department of Medicine, Knight Cardiovascular Institute, and Moore Institute for Nutrition and Wellness, Oregon Health and Science University, Portland, Oregon
| |
Collapse
|
13
|
Carr DJ, David AL, Aitken RP, Milne JS, Borowicz PP, Wallace JM, Redmer DA. Placental vascularity and markers of angiogenesis in relation to prenatal growth status in overnourished adolescent ewes. Placenta 2016; 46:79-86. [PMID: 27697225 PMCID: PMC5063007 DOI: 10.1016/j.placenta.2016.08.076] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/14/2016] [Revised: 07/15/2016] [Accepted: 08/16/2016] [Indexed: 02/08/2023]
Abstract
Introduction Placental vascularity may be important in the development of fetal growth restriction (FGR). The overnourished adolescent ewe is a robust model of the condition, with ∼50% of offspring demonstrating FGR (birthweight >2 standard deviations below optimally-fed control mean). We studied whether placental vascularity, angiogenesis and glucose transport reflect FGR severity. Methods Singleton pregnancies were established in adolescent ewes either overnourished to putatively restrict fetoplacental growth (n = 27) or control-fed (n = 12). At 131d (term = 145d) pregnancies were interrupted and fetuses classified as FGR (n = 17, <4222 g, -2SD below control-fed mean) or non-FGR (n = 10). Placentome capillary area density (CAD), number density (CND), surface density (CSD), and area per capillary (APC) in the fetal cotyledon (COT) and maternal caruncle (CAR) were analysed using immunostaining. COT/CAR mRNA expression of angiogenic ligands/receptors and glucose transporters were measured by qRT-PCR. Results Fetal weight was reduced in FGR vs. Non-FGR/Control groups. Total placentome weight was Control > Non-FGR > FGR and fetal:placental weight ratios were higher in overnourished versus Control groups. COT vascular indices were Non-FGR > FGR > Control. COT-CAD, CSD and APC were significantly greater in Non-FGR overnourished versus Control and intermediate in FGR groups. CAR vascularity did not differ. CAR-VEGFA/FLT1/KDR/ANGPT1/ANGPT2/SLC2A1/SLC2A3 mRNA was lower and COT-ANGPT2 higher in overnourished versus Control groups. Discussion Relative to control-intake pregnancy, overnourished pregnancies are characterised by higher COT vascularity, potentially a compensatory response to reduced nutrient supply, reflected by higher fetal:placental weight ratios. Compared with overnourished pregnancies where fetal growth is relatively preserved, overnourished pregnancies culminating in marked FGR have less placental vascularity, suggesting incomplete adaptation to the prenatal insult. Overnourishment of adolescent sheep dams produces FGR in approximately 50% of cases. Cotyledonary vascularity is increased in overnourished vs. control-intake pregnancy. Cotyledonary vascularity is highest in non-FGR cases, suggesting greater adaptation. Changes in cotyledonary vascularity are mirrored by angiopoietin-2 mRNA expression. Caruncular angiogenic ligands are reduced in FGR without any changes in vascularity.
Collapse
Affiliation(s)
- David J Carr
- Rowett Institute of Nutrition and Health, University of Aberdeen, Greenburn Road, Bucksburn, Aberdeen, AB21 9SB, UK; UCL Institute for Women's Health, University College London, 86-96 Chenies Mews, London, WC1E 6HX, UK.
| | - Anna L David
- UCL Institute for Women's Health, University College London, 86-96 Chenies Mews, London, WC1E 6HX, UK
| | - Raymond P Aitken
- Rowett Institute of Nutrition and Health, University of Aberdeen, Greenburn Road, Bucksburn, Aberdeen, AB21 9SB, UK
| | - John S Milne
- Rowett Institute of Nutrition and Health, University of Aberdeen, Greenburn Road, Bucksburn, Aberdeen, AB21 9SB, UK
| | - Pawel P Borowicz
- Department of Animal Sciences, North Dakota State University, Fargo, ND, 58108, USA
| | - Jacqueline M Wallace
- Rowett Institute of Nutrition and Health, University of Aberdeen, Greenburn Road, Bucksburn, Aberdeen, AB21 9SB, UK
| | - Dale A Redmer
- Department of Animal Sciences, North Dakota State University, Fargo, ND, 58108, USA
| |
Collapse
|
14
|
He YM, Deng HH, Shi MH, Bodinga BM, Chen HL, Han ZS, Jiang ZL, Li QW. Melatonin modulates the functions of porcine granulosa cells via its membrane receptor MT2 in vitro. Anim Reprod Sci 2016; 172:164-72. [PMID: 27477115 DOI: 10.1016/j.anireprosci.2016.07.015] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2016] [Revised: 07/11/2016] [Accepted: 07/24/2016] [Indexed: 12/15/2022]
Abstract
Melatonin (N-acetyl-5-methoxytryptamine) is documented as a hormone involved in the circadian regulation of physiological and neuroendocrine function in mammals. Herein, the effects of melatonin on the functions of porcine granulosa cells in vitro were investigated. Porcine granulosa cells were cultivated with variable concentrations of melatonin (0, 0.001, 0.01, 0.1, 1.0, and 10ng/mL) for 48h. Melatonin receptor agonist (IIK7) and antagonist (Luzindole, 4P-PDOT) were used to further examine the action of melatonin. The results showed optimum cell viability and colony-forming efficiency of porcine granulosa cells at 0.01ng/mL melatonin for 48-h incubation period. The percentage of apoptotic granulosa cells was significantly reduced by 0.01 and 0.1ng/mL melatonin within the 48-h incubation period as compared with the rest of the treatments. Estradiol biosynthesis was significantly stimulated by melatonin supplementation and suppressed for the progesterone secretion; the minimum ratio of progesterone to estradiol was 1.82 in 0.01ng/mL melatonin treatment after 48h of cultivation. Moreover, the expression of BCL-2, CYP17A1, CYP19A1, SOD1, and GPX4 were up-regulated by 0.01ng/mL melatonin or combined with IIK7, but decreased for the mRNA levels of BAX, P53, and CASPASE-3, as compared with control or groups treated with Luzindole or 4P-PDOT in the presence of melatonin. In conclusion, the study demonstrated that melatonin mediated proliferation, apoptosis, and steroidogenesis in porcine granulosa cells predominantly through the activation of melatonin receptor MT2 in vitro, which provided evidence of the beneficial role of melatonin as well as its functional mechanism in porcine granulosa cells in vitro.
Collapse
Affiliation(s)
- Ya-Mei He
- College of Animal Science and Technology, Northwest A&F University, Yangling 712100, Shaanxi, PR China
| | - Hong-Hui Deng
- College of Animal Science and Technology, Northwest A&F University, Yangling 712100, Shaanxi, PR China
| | - Mei-Hong Shi
- College of Animal Science and Technology, Northwest A&F University, Yangling 712100, Shaanxi, PR China
| | - Bello Musa Bodinga
- College of Animal Science and Technology, Northwest A&F University, Yangling 712100, Shaanxi, PR China
| | - Hua-Li Chen
- College of Animal Science and Technology, Northwest A&F University, Yangling 712100, Shaanxi, PR China
| | - Zeng-Sheng Han
- College of Environment and Chemistry Engineering, Yanshan University, Qinhuangdao 066004, Hebei, PR China
| | - Zhong-Liang Jiang
- College of Animal Science and Technology, Northwest A&F University, Yangling 712100, Shaanxi, PR China
| | - Qing-Wang Li
- College of Animal Science and Technology, Northwest A&F University, Yangling 712100, Shaanxi, PR China; College of Environment and Chemistry Engineering, Yanshan University, Qinhuangdao 066004, Hebei, PR China.
| |
Collapse
|
15
|
He Y, Deng H, Jiang Z, Li Q, Shi M, Chen H, Han Z. Effects of melatonin on follicular atresia and granulosa cell apoptosis in the porcine. Mol Reprod Dev 2016; 83:692-700. [DOI: 10.1002/mrd.22676] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2016] [Accepted: 06/27/2016] [Indexed: 01/18/2023]
Affiliation(s)
- Yamei He
- College of Animal Science and Technology; Northwest A&F University; Yangling Shaanxi China
| | - Honghui Deng
- College of Animal Science and Technology; Northwest A&F University; Yangling Shaanxi China
| | - Zhongliang Jiang
- College of Animal Science and Technology; Northwest A&F University; Yangling Shaanxi China
| | - Qingwang Li
- College of Animal Science and Technology; Northwest A&F University; Yangling Shaanxi China
- College of Environment and Chemistry Engineering; Yanshan University; Qinhuangdao Hebei China
| | - Meihong Shi
- College of Animal Science and Technology; Northwest A&F University; Yangling Shaanxi China
| | - Huali Chen
- College of Animal Science and Technology; Northwest A&F University; Yangling Shaanxi China
| | - Zengsheng Han
- College of Environment and Chemistry Engineering; Yanshan University; Qinhuangdao Hebei China
| |
Collapse
|
16
|
Vonnahme KA, Lemley CO, Caton JS, Meyer AM. Impacts of Maternal Nutrition on Vascularity of Nutrient Transferring Tissues during Gestation and Lactation. Nutrients 2015; 7:3497-523. [PMID: 25984740 PMCID: PMC4446764 DOI: 10.3390/nu7053497] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2014] [Revised: 03/28/2015] [Accepted: 04/03/2015] [Indexed: 12/21/2022] Open
Abstract
As the demand for food increases with exponential growth in the world population, it is imperative that we understand how to make livestock production as efficient as possible in the face of decreasing available natural resources. Moreover, it is important that livestock are able to meet their metabolic demands and supply adequate nutrition to developing offspring both during pregnancy and lactation. Specific nutrient supplementation programs that are designed to offset deficiencies, enhance efficiency, and improve nutrient supply during pregnancy can alter tissue vascular responses, fetal growth, and postnatal offspring outcomes. This review outlines how vascularity in nutrient transferring tissues, namely the maternal gastrointestinal tract, the utero-placental tissue, and the mammary gland, respond to differing nutritional planes and other specific nutrient supplementation regimes.
Collapse
Affiliation(s)
- Kimberly A Vonnahme
- Department of Animal Sciences, North Dakota State University, Fargo, ND 58102, USA.
| | - Caleb O Lemley
- Department of Animal and Dairy Sciences, Mississippi State University, Mississippi State, MS 39762, USA.
| | - Joel S Caton
- Department of Animal Sciences, North Dakota State University, Fargo, ND 58102, USA.
| | - Allison M Meyer
- Division of Animal Sciences, University of Missouri, Columbus, MO 65210, USA.
| |
Collapse
|