1
|
Cordeiro GA, Faria JA, Pavan L, Garcia IJP, Neves EPFI, Lima GFDF, Campos HM, Ferreira PY, Ghedini PC, Kawamoto EM, Lima MC, Villar JAFP, Orellana AMM, Barbosa LA, Scavone C, Leite JA, Santos HL. Evaluation of the neuroprotective potential of benzylidene digoxin 15 against oxidative stress in a neuroinflammation models induced by lipopolysaccharide and on neuronal differentiation of hippocampal neural precursor cells. Front Pharmacol 2025; 16:1537720. [PMID: 40160463 PMCID: PMC11949953 DOI: 10.3389/fphar.2025.1537720] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2024] [Accepted: 02/12/2025] [Indexed: 04/02/2025] Open
Abstract
Neuroinflammation, often driven by the overproduction of reactive oxygen species (ROS), plays a crucial role in the pathogenesis of neurodegenerative diseases such as Alzheimer's and Parkinson's diseases. The susceptibility of the brain to oxidative stress is attributed to its high metabolic activity and limited antioxidant defense. This study aimed to evaluate the neuroprotective potential of Benzylidene Digoxin 15 (BD-15) following treatment and pretreatment in a lipopolysaccharide (LPS)-induced neuroinflammation model. Additionally, we examined whether BD-15 enhances the generation of neurons from neural progenitor cells (NPCs).Male Wistar rats were used for acute treatment studies and divided into four groups: control (saline), BD-15 (100 μg/kg), LPS (250 μg/kg), and LPS + BD-15 (250 μg/kg + 100 μg/kg). Swiss albino mice were used for chronic pretreatment studies and divided into the following groups: control (saline), BD-15 (0.56 mg/kg), LPS (1 mg/kg), and LPS + BD-15 (1 mg/kg + 0.56 mg/kg). Behavioral changes were assessed using the open field test, and brain tissues were analyzed for oxidative stress markers, including malondialdehyde (MDA), reduced glutathione (GSH), protein carbonylation, catalase (CAT), superoxide dismutase (SOD), and glutathione S-transferase (GST). To assess neurogenesis, primary NPC cultures derived from the hippocampus of newborn Wistar rats were used, which led to reduced locomotor activity and increased oxidative stress, particularly in the cortex, as indicated by elevated MDA levels and reduced GSH levels. BD-15 treatment reversed these effects, notably by restoring GSH levels and reducing protein carbonylation in the cerebellum. Chronic BD-15 treatment in Swiss mice improved oxidative stress markers including MDA, SOD, CAT, and GST. Furthermore, BD-15 exhibits neuroprotective properties by alleviating oxidative stress and motor dysfunction, suggesting its potential as a therapeutic agent for neuroinflammatory disorders. However, BD-15 did not affect NPC cell proliferation, indicating that this cardiotonic steroid did not alter the cell cycle of these progenitor cells.
Collapse
Affiliation(s)
- Gilvânia A. Cordeiro
- Laboratório de Bioquímica Celular, UFSJ, Universidade Federal de São João del-Rei, Divinópolis, Minas Gerais, Brazil
| | - Jessica A. Faria
- Laboratório de Bioquímica Celular, UFSJ, Universidade Federal de São João del-Rei, Divinópolis, Minas Gerais, Brazil
| | | | - Israel J. P. Garcia
- Laboratório de Bioquímica Celular, UFSJ, Universidade Federal de São João del-Rei, Divinópolis, Minas Gerais, Brazil
| | - Eduarda P. F. I. Neves
- Instituto de Ciências Biológicas, UFG, Universidade Federal de Goiás, Goiânia, Goiás, Brazil
| | | | - Hericles M. Campos
- Instituto de Ciências Biológicas, UFG, Universidade Federal de Goiás, Goiânia, Goiás, Brazil
| | - Pâmela Y. Ferreira
- Instituto de Ciências Biológicas, UFG, Universidade Federal de Goiás, Goiânia, Goiás, Brazil
| | - Paulo C. Ghedini
- Instituto de Ciências Biológicas, UFG, Universidade Federal de Goiás, Goiânia, Goiás, Brazil
| | | | - Maira C. Lima
- Laboratório de Bioquímica Celular, UFSJ, Universidade Federal de São João del-Rei, Divinópolis, Minas Gerais, Brazil
| | - José A. F. P. Villar
- Laboratório de Bioquímica Celular, UFSJ, Universidade Federal de São João del-Rei, Divinópolis, Minas Gerais, Brazil
- Laboratório de Síntese Orgânica e Nanoestruturas, UFSJ, Universidade Federal de São João del-Rei, Divinópolis, Minas Gerais, Brazil
| | | | - Leandro A. Barbosa
- Laboratório de Bioquímica Celular, UFSJ, Universidade Federal de São João del-Rei, Divinópolis, Minas Gerais, Brazil
| | | | - Jacqueline A. Leite
- Instituto de Ciências Biológicas, UFG, Universidade Federal de Goiás, Goiânia, Goiás, Brazil
| | - Hérica L. Santos
- Laboratório de Bioquímica Celular, UFSJ, Universidade Federal de São João del-Rei, Divinópolis, Minas Gerais, Brazil
| |
Collapse
|
2
|
Guo M, Zhang J, Li M, Zhang X, Wu Y. NLRC3 negatively regulates Pasteurella multocida-induced NF-κB signaling in rabbits. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2024; 150:105078. [PMID: 37820760 DOI: 10.1016/j.dci.2023.105078] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/05/2023] [Revised: 10/08/2023] [Accepted: 10/08/2023] [Indexed: 10/13/2023]
Abstract
Pasteurella multocida (P. multocida) is a significant zoonotic pathogen that has the ability to infect various animals. The inflammatory response caused by P. multocida and the negative regulatory mechanism are not completely understood. NOD-like receptor family CARD-containing 3 (NLRC3), an intracellular member of the NLR family, has been reported as a negative regulator in human. In this study, we aimed to explore the role of rabbit NLRC3 (rNLRC3) in P. multocida infection. Our findings revealed a negative correlation between the expression of rNLRC3 and inflammatory cytokines during P. multocida infection. The expression of rNLRC3 was reduced at the initial stage of P. multocida infection and then recovered. Furthermore, rNLRC3 significantly inhibited the activation of NF-κB by reducing phosphorylation and nuclear import of p65 in response to P. multocida infection. Additionally, overexpression of rNLRC3 attenuated the expression of pro-inflammatory cytokines IL-1β, IL-6, IL-8, and TNF-α. Moreover, we demonstrated that rNLRC3 diminished NF-κB activation by interacting with rTRAF4 and rTRAF6. Overexpression of rNLRC3 promoted P. multocida proliferation, while P. multocida proliferation decreased after knockdown of rNLRC3. We also found that the NACHT-LRR domain is a functional domain of rNLRC3 that regulates the NF-κB pathway. Our study suggests that rNLRC3 negatively regulates P. multocida-induced NF-κB signaling in rabbits. It can serve as a checkpoint to prevent dysfunctional inflammation.
Collapse
Affiliation(s)
- Mengjiao Guo
- Jiangsu Co-Innovation Center for Prevention of Animal Infectious Diseases and Zoonoses, College of Veterinary Medicine, Yangzhou University, Yangzhou, 225009, China
| | - Jiaqi Zhang
- Jiangsu Co-Innovation Center for Prevention of Animal Infectious Diseases and Zoonoses, College of Veterinary Medicine, Yangzhou University, Yangzhou, 225009, China
| | - Mingtao Li
- Jiangsu Co-Innovation Center for Prevention of Animal Infectious Diseases and Zoonoses, College of Veterinary Medicine, Yangzhou University, Yangzhou, 225009, China
| | - Xiaorong Zhang
- Jiangsu Co-Innovation Center for Prevention of Animal Infectious Diseases and Zoonoses, College of Veterinary Medicine, Yangzhou University, Yangzhou, 225009, China.
| | - Yantao Wu
- Jiangsu Co-Innovation Center for Prevention of Animal Infectious Diseases and Zoonoses, College of Veterinary Medicine, Yangzhou University, Yangzhou, 225009, China; Joint International Research Laboratory of Agriculture & Agri-Product Safety, Yangzhou University (JIRLAAPS), Yangzhou, 225009, China.
| |
Collapse
|
3
|
Du Y, Zeng Y, Li S, Wang Z, Su C, Zhang S, Ren Y, Song T, Zhang M. Mild infection induced by low-dose LPS does not impair follicular development and is beneficial to pregnancy in mice. Front Vet Sci 2022; 9:1051433. [PMID: 36910123 PMCID: PMC9997723 DOI: 10.3389/fvets.2022.1051433] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2022] [Accepted: 12/28/2022] [Indexed: 02/25/2023] Open
Abstract
The reproductive tract is susceptible to infection by a variety of bacteria, which can impair ovarian and uterine function. However, there is little known about whether mild infection can harm follicle development and embryo implantation. Here our results showed that the immune response to a mild infection simulated by low-dose LPS induced inflammatory factor IL-1b expression and decreased MMP2 expression involved in embryo implantation. LPS treatment also inhibited the ovulation process and reduced litter weight. Despite the immune response and the disturbed ovulation induced by treatment with low-dose LPS, the overall result was beneficial to mouse pregnancy. This research provides the necessary foundation for exploring the effects of mild bacterial infection on ovarian and uterine function in mammals.
Collapse
Affiliation(s)
- Yazhuo Du
- College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, China
| | - Yutian Zeng
- College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, China
| | - Shuo Li
- College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, China
| | - Zhicheng Wang
- College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, China
| | - Changqi Su
- College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, China
| | - Shilin Zhang
- College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, China
| | - Yan Ren
- College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, China
| | - Tianzeng Song
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Ya'an, China.,Institute of Animal Science, Tibet Academy of Agricultural and Animal Husbandry Science, Lhasa, China
| | - Ming Zhang
- College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, China.,Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Ya'an, China
| |
Collapse
|
4
|
Bleeser T, Van Der Veeken L, Devroe S, Vergote S, Emam D, van der Merwe J, Ghijsens E, Joyeux L, Basurto D, Van de Velde M, Deprest J, Rex S. Effects of Maternal Abdominal Surgery on Fetal Brain Development in the Rabbit Model. Fetal Diagn Ther 2021; 48:189-200. [PMID: 33631746 PMCID: PMC7613467 DOI: 10.1159/000512489] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2020] [Accepted: 10/22/2020] [Indexed: 11/19/2022]
Abstract
INTRODUCTION Anesthesia during pregnancy can impair fetal neurodevelopment, but effects of surgery remain unknown. The aim is to investigate effects of abdominal surgery on fetal brain development. Hypothesis is that surgery impairs outcome. METHODS Pregnant rabbits were randomized at 28 days of gestation to 2 h of general anesthesia (sevoflurane group, n = 6) or to anesthesia plus laparoscopic appendectomy (surgery group, n = 13). On postnatal day 1, neurobehavior of pups was assessed and brains harvested. Primary outcome was neuron density in the frontal cortex, and secondary outcomes included neurobehavioral assessment and other histological parameters. RESULTS Fetal survival was lower in the surgery group: 54 versus 100% litters alive at birth (p = 0.0442). In alive litters, pup survival until harvesting was 50 versus 69% (p = 0.0352). No differences were observed for primary outcome (p = 0.5114) for surviving pups. Neuron densities were significantly lower in the surgery group in the caudate nucleus (p = 0.0180), but not different in other regions. No differences were observed for secondary outcomes. Conclusions did not change after adjustment for mortality. CONCLUSION Abdominal surgery in pregnant rabbits at a gestational age corresponding to the end of human second trimester results in limited neurohistological changes but not in neurobehavioral impairments. High intrauterine mortality limits translation to clinical scenario, where fetal mortality is close to zero.
Collapse
Affiliation(s)
- Tom Bleeser
- Department of Anesthesiology, UZ Leuven, Leuven, Belgium
- Department of Cardiovascular Sciences, Group Biomedical Sciences, KU Leuven, Leuven, Belgium
- Department of Development and Regeneration, My FetUZ Fetal Research Center, KU Leuven, Leuven, Belgium
| | - Lennart Van Der Veeken
- Department of Development and Regeneration, My FetUZ Fetal Research Center, KU Leuven, Leuven, Belgium
- Center for Surgical Technologies, Faculty of Medicine, KU Leuven, Leuven, Belgium
- Department of Obstetrics and Gynecology, UZ Leuven, Leuven, Belgium
| | - Sarah Devroe
- Department of Anesthesiology, UZ Leuven, Leuven, Belgium
- Department of Cardiovascular Sciences, Group Biomedical Sciences, KU Leuven, Leuven, Belgium
- Department of Development and Regeneration, My FetUZ Fetal Research Center, KU Leuven, Leuven, Belgium
| | - Simen Vergote
- Department of Development and Regeneration, My FetUZ Fetal Research Center, KU Leuven, Leuven, Belgium
- Center for Surgical Technologies, Faculty of Medicine, KU Leuven, Leuven, Belgium
- Department of Obstetrics and Gynecology, UZ Leuven, Leuven, Belgium
| | - Doaa Emam
- Department of Development and Regeneration, My FetUZ Fetal Research Center, KU Leuven, Leuven, Belgium
- Center for Surgical Technologies, Faculty of Medicine, KU Leuven, Leuven, Belgium
- Department of Obstetrics and Gynecology, UZ Leuven, Leuven, Belgium
- Department Obstetrics and Gynecology, University Hospitals Tanta, Tanta, Egypt
| | - Johannes van der Merwe
- Department of Development and Regeneration, My FetUZ Fetal Research Center, KU Leuven, Leuven, Belgium
- Center for Surgical Technologies, Faculty of Medicine, KU Leuven, Leuven, Belgium
- Department of Obstetrics and Gynecology, UZ Leuven, Leuven, Belgium
| | - Elina Ghijsens
- Center for Surgical Technologies, Faculty of Medicine, KU Leuven, Leuven, Belgium
| | - Luc Joyeux
- Department of Development and Regeneration, My FetUZ Fetal Research Center, KU Leuven, Leuven, Belgium
- Center for Surgical Technologies, Faculty of Medicine, KU Leuven, Leuven, Belgium
- Department of Obstetrics and Gynecology, UZ Leuven, Leuven, Belgium
- Department of Pediatric Surgery, Great Ormond Street Hospital, University College London Hospitals, London, United Kingdom
| | - David Basurto
- Department of Development and Regeneration, My FetUZ Fetal Research Center, KU Leuven, Leuven, Belgium
- Center for Surgical Technologies, Faculty of Medicine, KU Leuven, Leuven, Belgium
- Department of Obstetrics and Gynecology, UZ Leuven, Leuven, Belgium
| | - Marc Van de Velde
- Department of Anesthesiology, UZ Leuven, Leuven, Belgium
- Department of Cardiovascular Sciences, Group Biomedical Sciences, KU Leuven, Leuven, Belgium
| | - Jan Deprest
- Department of Development and Regeneration, My FetUZ Fetal Research Center, KU Leuven, Leuven, Belgium
- Center for Surgical Technologies, Faculty of Medicine, KU Leuven, Leuven, Belgium
- Department of Obstetrics and Gynecology, UZ Leuven, Leuven, Belgium
- Institute for Women's Health, University College London, London, United Kingdom
| | - Steffen Rex
- Department of Anesthesiology, UZ Leuven, Leuven, Belgium,
- Department of Cardiovascular Sciences, Group Biomedical Sciences, KU Leuven, Leuven, Belgium,
| |
Collapse
|
5
|
Guo M, Zhang C, Zhang C, Zhang X, Wu Y. Functional characterization of NLRX1 in rabbit during enterohemorrhagic Escherichia coli infection. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2020; 106:103612. [PMID: 31962226 DOI: 10.1016/j.dci.2020.103612] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/30/2019] [Revised: 01/09/2020] [Accepted: 01/09/2020] [Indexed: 06/10/2023]
Abstract
Nucleotide oligomerization domain (NOD) like receptor X1 (NLRX1) is a member of pattern recognition receptor, which has been linked to viral response, cancer, and inflammatory diseases. In this study, rabbit NLRX1 (rNLRX1) was firstly cloned from RK-13 cells, which protein contained a NACHT domain and seven LRRs. rNLRX1 was widely expressed in tissues of rabbits, and highly increased in liver, spleen, kidney, and colon after infected with enterohemorrhagic Escherichia coli (EHEC). Overexpression of rNLRX1 negatively regulated NF-κB signaling, and impaired the expression of pro-inflammatory cytokines and defensins. Moreover, deficient of rNLRX1 in RK-13 cells was performed to investigate the possible roles of rNLRX1. Upon EHEC stimulation, knockdown of rNLRX1 markedly enhanced NF-κB activation and downstream responsive cytokines (IL1β and TNFα) and β-defensins (DEFB114, DEFB124, and DEFB125). Furthermore, overexpression of rNLRX1 promoted the proliferation of EHEC, whereas knockdown of rNLRX1 inhibited its growth. Our study identified that rNLRX1 acts as a negative regulatory in anti-microbial responses after EHEC infection.
Collapse
Affiliation(s)
- Mengjiao Guo
- Jiangsu Co-Innovation Center for Prevention of Animal Infectious Diseases and Zoonoses, College of Veterinary Medicine, Yangzhou University, Yangzhou, Jiangsu, China
| | - Congyue Zhang
- Jiangsu Co-Innovation Center for Prevention of Animal Infectious Diseases and Zoonoses, College of Veterinary Medicine, Yangzhou University, Yangzhou, Jiangsu, China
| | - Chengcheng Zhang
- Jiangsu Co-Innovation Center for Prevention of Animal Infectious Diseases and Zoonoses, College of Veterinary Medicine, Yangzhou University, Yangzhou, Jiangsu, China
| | - Xiaorong Zhang
- Jiangsu Co-Innovation Center for Prevention of Animal Infectious Diseases and Zoonoses, College of Veterinary Medicine, Yangzhou University, Yangzhou, Jiangsu, China
| | - Yantao Wu
- Jiangsu Co-Innovation Center for Prevention of Animal Infectious Diseases and Zoonoses, College of Veterinary Medicine, Yangzhou University, Yangzhou, Jiangsu, China; Joint International Research Laboratory of Agriculture & Agri-Product Safety, Yangzhou University (JIRLAAPS), Yangzhou, Jiangsu, China.
| |
Collapse
|
6
|
Song T, Shi Y, Wang Y, Qazi IH, Angel C, Zhang M. Implication of Polyhistidine, a Novel Apoptosis Inhibitor, in Inhibiting Lipopolysaccharide-Induced Apoptosis in Boar Sperm. Animals (Basel) 2019; 9:ani9100719. [PMID: 31554281 PMCID: PMC6827019 DOI: 10.3390/ani9100719] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2019] [Revised: 09/19/2019] [Accepted: 09/20/2019] [Indexed: 01/27/2023] Open
Abstract
Simple Summary Gram-negative bacteria are the main pathogenic microorganisms found in human and animal semen. Lipopolysaccharide (LPS), a component of the cell wall of Gram-negative bacteria, has been linked to inducing apoptosis in human and rat sperm; however, little is known regarding LPS-induced apoptosis in boar sperm. This detrimental effect of LPS is potentially mediated via competitive bidding with toll-like receptor (TLR) 4 on the cytoplasmic membrane. Therefore, it is reasonable to elucidate the potential mechanisms by which the binding of LPS and TLR4 could be prevented. Polyhistidine is widely used for the delivery of nucleic acids and antibodies into the cell cytoplasm, and it is a novel TLR4 agonist. In the current study, we envisaged that pHis might also serve as an effective tool for inhibiting LPS-induced apoptosis in boar sperm. The new finding of our present study is that pHis could inhibit, to some extent, LPS-induced boar sperm apoptosis, and it could ameliorate the overall sperm quality parameters under liquid storage or at 37 °C incubation conditions. However, further investigation should be continued to fully elucidate the mechanistic basis of these ameliorative effects of pHis. Abstract Lipopolysaccharide (LPS) released from Gram-negative bacteria binds to toll-like receptor 4 (TLR4) and induces boar sperm apoptosis. Similarly, polyhistidine (pHis), a TLR4 agonist, can also bind to TLR4. We hypothesized that pHis could inhibit LPS-induced sperm apoptosis by competitively binding to TLR4 to then improve sperm quality. Therefore, the objective of this study was to examine whether pHis can inhibit LPS-induced sperm apoptosis and affect sperm quality. The results showed that the concentrations of bacterial colonies were significantly increased from 36 to 120 h under liquid storage conditions (p < 0.05); however, concentrations of LPS in boar semen showed a relatively constant trend (4.98 ± 1.55 EU/mL) following 120 h storage. The addition of 100 μg/mL pHis in the BTS extender significantly improved boar sperm motility and viability at 37 °C, and it significantly (p < 0.05) inhibited boar sperm apoptosis under liquid storage (17 °C) and at 37 °C incubation conditions. The co-treatment of LPS and pHis further confirmed that pHis played its role in inhibiting LPS-induced sperm apoptosis. In conclusion, our preliminary findings provide reasonable evidence that pHis could act as an inhibitor of LPS-induced apoptosis in boar sperm stored for longer periods of time. pHis might inhibit LPS-induced sperm apoptosis by competitively binding to TLR4. Nevertheless, further mechanistic studies are awaited to fully elucidate its potential implication in inhibiting LSP-induced apoptosis.
Collapse
Affiliation(s)
- Tianzeng Song
- College of Animal Science & Technology, Sichuan Agricultural University, Chengdu 611130, China; (S.T.); (Y.S.); (Y.W.); (I.H.Q.)
- Institute of Animal Science, Tibet Academy of Agricultural and Animal Husbandry Science, Lhasa 850009, China
| | - Yi Shi
- College of Animal Science & Technology, Sichuan Agricultural University, Chengdu 611130, China; (S.T.); (Y.S.); (Y.W.); (I.H.Q.)
| | - Yangang Wang
- College of Animal Science & Technology, Sichuan Agricultural University, Chengdu 611130, China; (S.T.); (Y.S.); (Y.W.); (I.H.Q.)
| | - Izhar Hyder Qazi
- College of Animal Science & Technology, Sichuan Agricultural University, Chengdu 611130, China; (S.T.); (Y.S.); (Y.W.); (I.H.Q.)
- Department of Veterinary Anatomy & Histology, Shaheed Benazir Bhutto University of Veterinary and Animal Sciences, Sakrand 67210, Pakistan
| | - Christiana Angel
- Department of Veterinary Parasitology, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, China;
- Department of Veterinary Parasitology, Faculty of Veterinary Sciences, Shaheed Benazir Bhutto University of Veterinary and Animal Sciences, Sakrand 67210, Pakistan
| | - Ming Zhang
- College of Animal Science & Technology, Sichuan Agricultural University, Chengdu 611130, China; (S.T.); (Y.S.); (Y.W.); (I.H.Q.)
- Correspondence:
| |
Collapse
|
7
|
Zhang Y, Zong B, Wang X, Zhu Y, Hu L, Li P, Zhang A, Chen H, Liu M, Tan C. Fisetin Lowers Streptococcus suis serotype 2 Pathogenicity in Mice by Inhibiting the Hemolytic Activity of Suilysin. Front Microbiol 2018; 9:1723. [PMID: 30105012 PMCID: PMC6077255 DOI: 10.3389/fmicb.2018.01723] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2018] [Accepted: 07/10/2018] [Indexed: 12/20/2022] Open
Abstract
Streptococcus suis serotype 2 is a serious zoonotic pathogen and has attracted worldwide attention since the first human case was reported in Denmark in 1968. Some virulence factors have been reported to be involved in the pathogenesis of the infection caused by Streptococcus suis serotype 2, and then novel strategies to identify some anti-virulence compounds which can effectively inhibit the pathogenic bacterial infection have recently been reported. Suilysin is an essential virulence factor for Streptococcus suis serotype 2 since it creates pores in the target cells membranes, which aids bacterial colonization. The important role of suilysin in the virulence of Streptococcus suis serotype 2 renders it an ideal target for designing novel anti-virulence therapeutics. We find that fisetin, as a natural flavonoid, is a potent antagonist against suilysin-mediated hemolysis. The aim of this study is to evaluate the effect of fisetin on the hemolytic activity of suilysin from Streptococcus suis serotype 2. Fisetin is found to significantly inhibit the hemolytic activity of suilysin. Within the range of effective concentrations, fisetin does not influence the growth of Streptococcus suis serotype 2 and the expression of suilysin protein. In vitro, fisetin effectively inhibits the death of macrophages (J774A.1 and RAW264.7) infected with Streptococcus suis serotype 2 by weakening intracellular bacterial multiplication. Animal model experiment shows that fisetin effectively improves the survival rate of animals infected with Streptococcus suis serotype 2. Our findings suggest that fisetin could be used as an antitoxin against suilysin and be developed into a promising therapeutic candidate for treating Streptococcus suis serotype 2 infection.
Collapse
Affiliation(s)
- Yanyan Zhang
- Hubei Biopesticide Engineering Research Centre, Hubei Academy of Agricultural Sciences, Wuhan, China.,State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
| | - Bingbing Zong
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
| | - Xiangru Wang
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
| | - Yongwei Zhu
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
| | - Linlin Hu
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
| | - Pei Li
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
| | - Anding Zhang
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China.,Key Laboratory of Preventive Veterinary Medicine in Hubei Province, The Cooperative Innovation Center for Sustainable Pig Production, Wuhan, China.,Key Laboratory of Development of Veterinary Diagnostic Products, Ministry of Agriculture of the People's Republic of China, Wuhan, China.,International Research Center for Animal Disease, Ministry of Science and Technology of the People's Republic of China, Wuhan, China
| | - Huanchun Chen
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China.,Key Laboratory of Preventive Veterinary Medicine in Hubei Province, The Cooperative Innovation Center for Sustainable Pig Production, Wuhan, China.,Key Laboratory of Development of Veterinary Diagnostic Products, Ministry of Agriculture of the People's Republic of China, Wuhan, China.,International Research Center for Animal Disease, Ministry of Science and Technology of the People's Republic of China, Wuhan, China
| | - Manli Liu
- Hubei Biopesticide Engineering Research Centre, Hubei Academy of Agricultural Sciences, Wuhan, China
| | - Chen Tan
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China.,Key Laboratory of Preventive Veterinary Medicine in Hubei Province, The Cooperative Innovation Center for Sustainable Pig Production, Wuhan, China.,Key Laboratory of Development of Veterinary Diagnostic Products, Ministry of Agriculture of the People's Republic of China, Wuhan, China.,International Research Center for Animal Disease, Ministry of Science and Technology of the People's Republic of China, Wuhan, China
| |
Collapse
|
8
|
Guo M, Li R, Xiao Q, Fan X, Li N, Shang Y, Wei L, Chai T. Protective Role of Rabbit Nucleotide-Binding Oligomerization Domain-2 (NOD2)-Mediated Signaling Pathway in Resistance to Enterohemorrhagic Escherichia coli Infection. Front Cell Infect Microbiol 2018; 8:220. [PMID: 29998088 PMCID: PMC6031198 DOI: 10.3389/fcimb.2018.00220] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2017] [Accepted: 06/08/2018] [Indexed: 01/01/2023] Open
Abstract
Nucleotide-binding oligomerization domain 2 (NOD2), a member of the NOD-like receptors (NLRs) family that is well-known to play a key role in innate immune responses and is involved in innate antibacterial responses. In this study, rabbit NOD2 (rNOD2) was cloned from rabbit kidney (RK) cells. It was distributed in various tissues, and the highest level of rNod2 was detected in spleen. Moreover, the expression of rNod2 was significantly upregulated in the heart, liver, and spleen induced by enterohemorrhagic Escherichia coli (EHEC). Overexpression of rNOD2 induced the expression of pro-inflammatory cytokine, including Il1β, Il6, Ifn-γ, and Tnf, as well as defensins, including Defb124, Defb125, and Defb128 through the nuclear factor (NF)-κB signaling pathway. Furthermore, overexpression of rNOD2 inhibited the growth of EHEC, and knockdown of rNOD2 or inhibition of the NF-κB pathway promoted its replication. In addition, our results suggest that rNOD2 can significantly activate NF-κB signaling and trigger antibacterial defenses to increase the expression of pro-inflammatory cytokine and defensins after stimulation by EHEC. These findings are useful to further understanding the innate immune system of rabbits and providing a new perspective for the prevention of bacterial diseases in rabbits.
Collapse
Affiliation(s)
- Mengjiao Guo
- Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, Sino-German Cooperative Research Centre for Zoonosis of Animal Origin of Shandong Province, Shandong Provincial Engineering Technology Research Center of Animal Disease Control and Prevention, College of Animal Science and Veterinary Medicine, Shandong Agricultural University, Tai'an, China.,Collaborative Innovation Center for the Origin and Control of Emerging Infectious Diseases, Taishan Medical University, Tai'an, China
| | - Rong Li
- Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, Sino-German Cooperative Research Centre for Zoonosis of Animal Origin of Shandong Province, Shandong Provincial Engineering Technology Research Center of Animal Disease Control and Prevention, College of Animal Science and Veterinary Medicine, Shandong Agricultural University, Tai'an, China.,Collaborative Innovation Center for the Origin and Control of Emerging Infectious Diseases, Taishan Medical University, Tai'an, China
| | - Qianqian Xiao
- Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, Sino-German Cooperative Research Centre for Zoonosis of Animal Origin of Shandong Province, Shandong Provincial Engineering Technology Research Center of Animal Disease Control and Prevention, College of Animal Science and Veterinary Medicine, Shandong Agricultural University, Tai'an, China
| | - Xiuxiu Fan
- Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, Sino-German Cooperative Research Centre for Zoonosis of Animal Origin of Shandong Province, Shandong Provincial Engineering Technology Research Center of Animal Disease Control and Prevention, College of Animal Science and Veterinary Medicine, Shandong Agricultural University, Tai'an, China
| | - Ning Li
- Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, Sino-German Cooperative Research Centre for Zoonosis of Animal Origin of Shandong Province, Shandong Provincial Engineering Technology Research Center of Animal Disease Control and Prevention, College of Animal Science and Veterinary Medicine, Shandong Agricultural University, Tai'an, China.,Collaborative Innovation Center for the Origin and Control of Emerging Infectious Diseases, Taishan Medical University, Tai'an, China
| | - Yingli Shang
- Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, Sino-German Cooperative Research Centre for Zoonosis of Animal Origin of Shandong Province, Shandong Provincial Engineering Technology Research Center of Animal Disease Control and Prevention, College of Animal Science and Veterinary Medicine, Shandong Agricultural University, Tai'an, China
| | - Liangmeng Wei
- Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, Sino-German Cooperative Research Centre for Zoonosis of Animal Origin of Shandong Province, Shandong Provincial Engineering Technology Research Center of Animal Disease Control and Prevention, College of Animal Science and Veterinary Medicine, Shandong Agricultural University, Tai'an, China.,Collaborative Innovation Center for the Origin and Control of Emerging Infectious Diseases, Taishan Medical University, Tai'an, China
| | - Tongjie Chai
- Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, Sino-German Cooperative Research Centre for Zoonosis of Animal Origin of Shandong Province, Shandong Provincial Engineering Technology Research Center of Animal Disease Control and Prevention, College of Animal Science and Veterinary Medicine, Shandong Agricultural University, Tai'an, China
| |
Collapse
|
9
|
Menchetti L, Barbato O, Filipescu IE, Traina G, Leonardi L, Polisca A, Troisi A, Guelfi G, Piro F, Brecchia G. Effects of local lipopolysaccharide administration on the expression of Toll-like receptor 4 and pro-inflammatory cytokines in uterus and oviduct of rabbit does. Theriogenology 2018; 107:162-174. [DOI: 10.1016/j.theriogenology.2017.10.046] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2017] [Revised: 10/22/2017] [Accepted: 10/30/2017] [Indexed: 12/22/2022]
|
10
|
Li H, Zhang Q, Jin X, Zou X, Wang Y, Hao D, Fu F, Jiao W, Zhang C, Lin H, Matsuzaki K, Zhao F. Dysifragilone A inhibits LPS‑induced RAW264.7 macrophage activation by blocking the p38 MAPK signaling pathway. Mol Med Rep 2017; 17:674-682. [PMID: 29115475 DOI: 10.3892/mmr.2017.7884] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2017] [Accepted: 08/22/2017] [Indexed: 11/06/2022] Open
Abstract
Dysifragilone A, a sesquiterpene aminoquinone based on a rearranged avarone skeleton, has been previously isolated and identified from the South China Sea sponge Dysidea fragilis. In the present study, anti‑inflammatory activity and the underlying molecular mechanism of dysifragilone A were studied using the classical inflammation model of lipopolysaccharide (LPS)‑activated RAW264.7 macrophage cells and an MTT assay, Griess method, ELISA and western blotting were used. The results revealed that dysifragilone A significantly reduced the release of inflammatory mediators and inflammatory cytokines in activated RAW264.7 cells, including nitric oxide (NO), prostaglandin E2,(PGE2) and interleukin‑6 (IL‑6). The protein expression levels of inducible nitric oxide synthase (iNOS), cyclooxygenase‑2 (COX‑2), and the enzymatic activity of iNOS and COX‑2 were also inhibited by dysifragilone A in a dose dependent manner. Further mechanistic investigations suggested that the anti‑inflammatory activity of dysifragilone A results from the suppression of p38 mitogen‑activated protein kinase (MAPK) activation in LPS‑activated macrophages; however, this was not associated with inhibition of the extracellular signal‑regulated kinase (ERK) or c‑Jun N‑terminal kinase (JNK) signaling pathways. Therefore, dysifragilone A and similar compounds may be anti‑inflammatories that have potential to be used in the clinic.
Collapse
Affiliation(s)
- Huixiang Li
- Key Laboratory of Molecular Pharmacology and Drug Evaluation, Ministry of Education, Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong, School of Pharmacy, Yantai University, Yantai, Shandong 264005, P.R. China
| | - Qian Zhang
- Key Laboratory of Molecular Pharmacology and Drug Evaluation, Ministry of Education, Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong, School of Pharmacy, Yantai University, Yantai, Shandong 264005, P.R. China
| | - Xin Jin
- Key Laboratory of Molecular Pharmacology and Drug Evaluation, Ministry of Education, Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong, School of Pharmacy, Yantai University, Yantai, Shandong 264005, P.R. China
| | - Xiaowen Zou
- Key Laboratory of Molecular Pharmacology and Drug Evaluation, Ministry of Education, Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong, School of Pharmacy, Yantai University, Yantai, Shandong 264005, P.R. China
| | - Yuexuan Wang
- Key Laboratory of Molecular Pharmacology and Drug Evaluation, Ministry of Education, Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong, School of Pharmacy, Yantai University, Yantai, Shandong 264005, P.R. China
| | - Dexiang Hao
- Key Laboratory of Molecular Pharmacology and Drug Evaluation, Ministry of Education, Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong, School of Pharmacy, Yantai University, Yantai, Shandong 264005, P.R. China
| | - Fenghua Fu
- Key Laboratory of Molecular Pharmacology and Drug Evaluation, Ministry of Education, Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong, School of Pharmacy, Yantai University, Yantai, Shandong 264005, P.R. China
| | - Weihua Jiao
- Research Center for Marine Drugs, State Key Laboratory of Oncogenes and Related Genes, Department of Pharmacy, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200127, P.R. China
| | - Cuixia Zhang
- Pharmaceutical Preparation Section, Xing Fu Hospital of Zhi Fu, Yantai, Shandong 264000, P.R. China
| | - Houwen Lin
- Research Center for Marine Drugs, State Key Laboratory of Oncogenes and Related Genes, Department of Pharmacy, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200127, P.R. China
| | - Keiichi Matsuzaki
- School of Pharmacy, Nihon University, Narashinodai, Funabashi, Chiba 274‑8555, Japan
| | - Feng Zhao
- Key Laboratory of Molecular Pharmacology and Drug Evaluation, Ministry of Education, Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong, School of Pharmacy, Yantai University, Yantai, Shandong 264005, P.R. China
| |
Collapse
|
11
|
Guo M, Wu F, Zhang Z, Hao G, Li R, Li N, Shang Y, Wei L, Chai T. Characterization of Rabbit Nucleotide-Binding Oligomerization Domain 1 (NOD1) and the Role of NOD1 Signaling Pathway during Bacterial Infection. Front Immunol 2017; 8:1278. [PMID: 29067026 PMCID: PMC5641294 DOI: 10.3389/fimmu.2017.01278] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2017] [Accepted: 09/25/2017] [Indexed: 12/19/2022] Open
Abstract
Nucleotide-binding oligomerization domain 1 (NOD1) is the most prominent of all NOD-like receptors, which in the mammalian innate immune system, serve as intracellular receptors for pathogens and endogenous molecules during tissue injury. From rabbit kidney cells, we cloned rabbit NOD1 (rNOD1) and identified an N-terminal caspase activation and recruitment domain, a central NACHT domain, and C-terminal leucine-rich repeat domains. rNOD1 was expressed in all tested tissues; infection with Escherichia coli induced significantly higher expression in the spleen, liver, and kidney compared to other tissues. The overexpression of rNOD1 induced the expression of proinflammatory cytokines Il1b, Il6, Il8, Ifn-γ, and Tnf and defensins, including Defb124, Defb125, Defb128, Defb135, and Np5 via activation of the nuclear factor (NF)-κB pathway. Overexpression of rNOD1 inhibited the growth of E. coli, whereas knockdown of rNOD1 or inhibition of the NF-κB pathway promoted the growth of E. coli. rNOD1 colocalized with LC3, upregulated autophagy pathway protein LC3-II, and increased autolysosome formation in RK-13 cells infected with E. coli. In summary, our results explain the primary signaling pathway and antibacterial ability of rNOD1, as well as the induction of autophagy that it mediates. Such findings suggest that NOD1 could contribute to therapeutic strategies such as targets of new vaccine adjuvants or drugs.
Collapse
Affiliation(s)
- Mengjiao Guo
- College of Animal Science and Veterinary Medicine, Sino-German Cooperative Research Centre for Zoonosis of Animal Origin of Shandong Province, Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, Shandong Provincial Engineering Technology Research Center of Animal Disease Control and Prevention, Shandong Agricultural University, Tai’an City, China
- Collaborative Innovation Center for the Origin and Control of Emerging Infectious Diseases, Taishan Medical University, Tai’an City, China
| | - Fahao Wu
- College of Animal Science and Veterinary Medicine, Sino-German Cooperative Research Centre for Zoonosis of Animal Origin of Shandong Province, Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, Shandong Provincial Engineering Technology Research Center of Animal Disease Control and Prevention, Shandong Agricultural University, Tai’an City, China
| | - Zhongfang Zhang
- College of Animal Science and Veterinary Medicine, Sino-German Cooperative Research Centre for Zoonosis of Animal Origin of Shandong Province, Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, Shandong Provincial Engineering Technology Research Center of Animal Disease Control and Prevention, Shandong Agricultural University, Tai’an City, China
| | - Guangen Hao
- College of Animal Science and Veterinary Medicine, Sino-German Cooperative Research Centre for Zoonosis of Animal Origin of Shandong Province, Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, Shandong Provincial Engineering Technology Research Center of Animal Disease Control and Prevention, Shandong Agricultural University, Tai’an City, China
| | - Rong Li
- College of Animal Science and Veterinary Medicine, Sino-German Cooperative Research Centre for Zoonosis of Animal Origin of Shandong Province, Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, Shandong Provincial Engineering Technology Research Center of Animal Disease Control and Prevention, Shandong Agricultural University, Tai’an City, China
| | - Ning Li
- College of Animal Science and Veterinary Medicine, Sino-German Cooperative Research Centre for Zoonosis of Animal Origin of Shandong Province, Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, Shandong Provincial Engineering Technology Research Center of Animal Disease Control and Prevention, Shandong Agricultural University, Tai’an City, China
| | - Yingli Shang
- College of Animal Science and Veterinary Medicine, Sino-German Cooperative Research Centre for Zoonosis of Animal Origin of Shandong Province, Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, Shandong Provincial Engineering Technology Research Center of Animal Disease Control and Prevention, Shandong Agricultural University, Tai’an City, China
| | - Liangmeng Wei
- College of Animal Science and Veterinary Medicine, Sino-German Cooperative Research Centre for Zoonosis of Animal Origin of Shandong Province, Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, Shandong Provincial Engineering Technology Research Center of Animal Disease Control and Prevention, Shandong Agricultural University, Tai’an City, China
- Collaborative Innovation Center for the Origin and Control of Emerging Infectious Diseases, Taishan Medical University, Tai’an City, China
| | - Tongjie Chai
- College of Animal Science and Veterinary Medicine, Sino-German Cooperative Research Centre for Zoonosis of Animal Origin of Shandong Province, Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, Shandong Provincial Engineering Technology Research Center of Animal Disease Control and Prevention, Shandong Agricultural University, Tai’an City, China
| |
Collapse
|
12
|
Colonization, mortality, and host cytokines response to enterohemorrhagic Escherichia coli in rabbits. Oncotarget 2017; 8:93426-93437. [PMID: 29212161 PMCID: PMC5706807 DOI: 10.18632/oncotarget.20966] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2017] [Accepted: 09/03/2017] [Indexed: 11/25/2022] Open
Abstract
The major virulence factor of enterohemorrhagic Escherichia coli in infections is its ability to cause attaching and effacing lesions in enterocytes, as well as to produce Shiga toxins. To clarify the pathogenic mechanism and host innate immune responses of enterohemorrhagic Escherichia coli in rabbits, experimental infections with TS and MY strains were conducted. Among the results, although the MY strain's pathogenicity was stronger than the TS, typical symptoms were observed in both groups of bacterial-infected rabbits. Pathological changes in the heart, liver, and spleen of rabbits infected with the MY strain were more severe than those infected with the TS strain, pro-inflammatory cytokines IL-1β, IL-6, IL-8, IFN-γ, and TNF-α were induced by both strains, and α- and β-defensin were significantly upregulated at 3 d postinfection. Moreover, in the spleen, the MY strain induced greater expressions of α- and β-defensins than did the TS strain. However, in the liver, the TS strain induced greater expressions of α- and β-defensins than did the MY strain. Most likely, different replications of the MY and TS strains in the liver and spleen induced different host immune responses. Altogether, the findings provide new insights into the occurrence and development of enterohemorrhagic Escherichia coli-mediated diseases in rabbits.
Collapse
|
13
|
Zhang Q, Huang J, Yu J, Xu Z, Liu L, Song Y, Sun X, Zhang A, Jin M. HP1330 Contributes to Streptococcus suis Virulence by Inducing Toll-Like Receptor 2- and ERK1/2-Dependent Pro-inflammatory Responses and Influencing In Vivo S. suis Loads. Front Immunol 2017; 8:869. [PMID: 28824616 PMCID: PMC5534446 DOI: 10.3389/fimmu.2017.00869] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2017] [Accepted: 07/10/2017] [Indexed: 11/17/2022] Open
Abstract
Streptococcus suis 2 (SS2) has evolved into a highly invasive pathogen responsible for two large-scale outbreaks of streptococcal toxic shock-like syndrome (STSLS) in China. Excessive inflammation stimulated by SS2 is considered a hallmark of STSLS, even it also plays important roles in other clinical symptoms of SS2-related disease, including meningitis, septicemia, and sudden death. However, the mechanism of SS2-caused excessive inflammation remains poorly understood. Here, a novel pro-inflammatory protein was identified (HP1330), which could induce robust expression of pro-inflammatory cytokines (TNF-α, MCP-1, and IL-1β) in RAW264.7 macrophages. To evaluate the role of HP1330 in SS2 virulence, an hp1330-deletion mutant (Δhp1330) was constructed. In vitro, hp1330 disruption led to a decreased pro-inflammatory ability of SS2 in RAW 264.7 macrophages. In vivo, Δhp1330 showed reduced lethality, pro-inflammatory activity, and bacterial loads in mice. To further elucidate the mechanism of HP1330-induced pro-inflammatory cytokine production, antibody blocking and gene-deletion experiments with macrophages were performed. The results revealed that the pro-inflammatory activity of HP1330 depended on the recognition of toll-like receptor 2 (TLR2). Furthermore, a specific inhibitor of the extracellular signal-regulated kinase 1/2 (ERK1/2) pathways could significantly decrease HP1330-induced pro-inflammatory cytokine production, and western blot analysis showed that HP1330 could induce activation of the ERK1/2 pathway. Taken together, our findings demonstrate that HP1330 contributes to SS2 virulence by inducing TLR2- and ERK1/2-dependent pro-inflammatory cytokine production and influencing in vivo bacterial loads, implying that HP1330 may be associated with STSLS caused by SS2.
Collapse
Affiliation(s)
- Qiang Zhang
- National Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, China
| | - Jingjing Huang
- National Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, China
| | - Junping Yu
- National Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, China
| | - Zhongmin Xu
- National Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, China
| | - Liang Liu
- National Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, China
| | - Yajing Song
- National Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, China
| | - Xiaomei Sun
- National Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, China
| | - Anding Zhang
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China.,Key Laboratory of Development of Veterinary Diagnostic Products, Ministry of Agriculture, Wuhan, China
| | - Meilin Jin
- National Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, China.,College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China.,Key Laboratory of Development of Veterinary Diagnostic Products, Ministry of Agriculture, Wuhan, China
| |
Collapse
|