1
|
Hazir B, Ceylan A, Bagariack EÜ, Dayanir D, Araz M, Ceylan BT, Oruklu N, Sahin MM. Effects of intranasal neural stem cells transplantation on olfactory epithelium regeneration in an anosmia-induced mouse model. Sci Rep 2025; 15:17015. [PMID: 40379695 PMCID: PMC12084376 DOI: 10.1038/s41598-025-01358-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2024] [Accepted: 05/06/2025] [Indexed: 05/19/2025] Open
Abstract
This study aims to investigate the efficacy of intranasally transplanted neural stem cells (NSCs) in anosmia-induced mice. Twenty-four male mice were included in the study. A food-finding test (FFT) was performed beforehand to confirm that all mice had normal olfactory functions. The mice were then randomly divided into two groups (Groups 1 and 2) and anosmia was induced by 3-methylindole (3-MI). In the first week following the 3-MI injection (week 1), mice in Group 1 received intranasal saline, while mice in Group 2 received intranasal NSCs. The NSCs were prepared from green fluorescent protein (GFP)-transgenic mice. Olfactory function was evaluated through weekly FFTs. One week after NSC or saline administration (week 2), half of the mice in each group were randomly selected and sacrificed for histological examination. The remaining mice were sacrificed for histological examination in week 4. At week 4, the olfactory epithelium of all mice was also examined by polymerase chain reaction (PCR) to detect GFP + cells. The NSC group showed significantly shorter FFT times compared to the saline group. Epithelial damage scores, indicating greater injury, were higher in the saline group, whereas the NSC group exhibited greater epithelial thickness. Immunohistochemical analysis revealed a significantly higher number of olfactory marker protein-expressing cells in the NSC group. GFP + cells were observed in olfactory bulb (OB) and olfactory epithelium (OE) in the NSC group. PCR confirmed the presence of the GFP gene in the OE of NSC-transplanted mice. Intranasal NSCs promoted functional recovery and GFP + cell integration, supporting further research into their therapeutic potential for olfactory dysfunction.
Collapse
Affiliation(s)
- Burak Hazir
- Department of Otorhinolaryngology/Head and Neck Surgery, Ankara City Hospital, Ankara, Turkey.
| | - Alper Ceylan
- Faculty of Medicine, Department of Otorhinolaryngology/Head and Neck Surgery, Gazi University, Ankara, Turkey
| | - Emin Ümit Bagariack
- Faculty of Medicine, Department of Immunology, Gazi University, Ankara, Turkey
| | - Duygu Dayanir
- Faculty of Medicine, Department of Histology and Embryology, Gazi University, Ankara, Turkey
| | - Milat Araz
- Faculty of Medicine, Department of Immunology, Gazi University, Ankara, Turkey
| | - Banu Tijen Ceylan
- Faculty of Medicine, Department of Otorhinolaryngology/Head and Neck Surgery, Gazi University, Ankara, Turkey
| | - Nihan Oruklu
- Faculty of Medicine, Department of Immunology, Gazi University, Ankara, Turkey
| | - Muammer Melih Sahin
- Faculty of Medicine, Department of Otorhinolaryngology/Head and Neck Surgery, Gazi University, Ankara, Turkey
| |
Collapse
|
2
|
Davidson M, Rashidi N, Sinnayah P, Ahmadi AH, Apostolopoulos V, Nurgali K. Improving behavioral test data collection and analysis in animal models with an image processing program. Behav Brain Res 2023; 452:114544. [PMID: 37321312 DOI: 10.1016/j.bbr.2023.114544] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2023] [Revised: 05/31/2023] [Accepted: 06/12/2023] [Indexed: 06/17/2023]
Abstract
Behavioral studies are commonly used as a standard procedure to evaluate anxiety and depression in animal models. Recently, different methods have been developed to improve data collection and analysis of the behavioral tests. Currently available methods, including manual analysis and commercially available products, are either time-consuming or costly. The objective of this study was to improve the collection and analysis of behavioral test data in animal models by developing an image processing program. Eleven behavioral parameters were evaluated by three different methods, including (i) manual detection, (ii) commercially available TopScan software (CleverSys Inc, USA), and (iii) In-housed-developed Advanced Move Tracker (AMT) software. Results obtained from different methods were compared to validate the accuracy and efficiency of AMT. Results showed that AMT software provides highly accurate and reliable data analysis compared to other methods. Less than 5% tolerance was reported between results obtained from AMT compared to TopScan. In addition, the analysis processing time was remarkably reduced (68.3%) by using AMT compared to manual detection. Overall, the findings confirmed that AMT is an efficient program for automated data analysis, significantly enhancing research outcomes through accurate analysis of behavioral test data in animal models.
Collapse
Affiliation(s)
- Majid Davidson
- Institute for Health and Sport, Victoria University, Melbourne, Australia
| | - Niloufar Rashidi
- Institute for Health and Sport, Victoria University, Melbourne, Australia
| | - Puspha Sinnayah
- Institute for Health and Sport, Victoria University, Melbourne, Australia
| | - Amir Hossein Ahmadi
- Department of Mechanical Engineering, K. N. Toosi University of Technology, Tehran, Iran
| | - Vasso Apostolopoulos
- Institute for Health and Sport, Victoria University, Melbourne, Australia; Immunology Program, Australian Institute of Musculoskeletal Science (AIMSS), Melbourne, Victoria, Australia.
| | - Kulmira Nurgali
- Institute for Health and Sport, Victoria University, Melbourne, Australia; Department of Medicine Western Health, Faculty of Medicine, Dentistry and Health Sciences, University of Melbourne, Melbourne, Australia; Regenerative Medicine and Stem Cells Program, Australian Institute of Musculoskeletal Science (AIMSS), Melbourne, Victoria, Australia.
| |
Collapse
|
3
|
Duan Y, Wang S, Yuan Q, Shi Y, Jiang N, Jiang D, Song J, Wang P, Zhuang L. Long-Term Flexible Neural Interface for Synchronous Recording of Cross-Regional Sensory Processing along the Olfactory Pathway. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2023:e2205768. [PMID: 37035943 DOI: 10.1002/smll.202205768] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/18/2022] [Revised: 02/04/2023] [Indexed: 06/19/2023]
Abstract
Humans perceive the world through five senses, of which olfaction is the oldest evolutionary sense that enables the detection of chemicals in the external environment. Recent progress in bioinspired electronics has boosted the development of artificial sensory systems. Here, a biohybrid olfactory system is proposed by integrating living mammals with implantable flexible neural electrodes, to employ the outstanding properties of mammalian olfactory system. In olfactory perception, the peripheral organ-olfactory epithelium (OE) projects axons into the olfactory relay station-olfactory bulb (OB). The olfactory information encoded in the neural activity is recorded from both OE and OB simultaneously using flexible neural electrodes. Results reveal that spontaneous slow oscillations (<12 Hz) in both OE and OB closely follow respiration. This respiration-locked rhythm modulates the amplitude of fast oscillations (>20 Hz), which are associated with odor perception. Further, by extracting the characteristics of odor-evoked oscillatory signals, responses of different odors are identified and classified with 80% accuracy. This study demonstrates for the first time that the flexible electrode enables chronic stable electrophysiological recordings of the peripheral and central olfactory system in vivo. Overall, the method provides a novel neural interface for olfactory biosensing and cognitive processing.
Collapse
Affiliation(s)
- Yan Duan
- Biosensor National Special Laboratory, Key Laboratory for Biomedical Engineering of Education Ministry, Department of Biomedical Engineering, Zhejiang University, Hangzhou, 310027, China
- The MOE Frontier Science Center for Brain Science and Brain-Machine Integration, Zhejiang University, Hangzhou, 310027, China
| | - Suhao Wang
- Department of Engineering Mechanics, Soft Matter Research Center, Key Laboratory of Soft Machines and Smart Devices of Zhejiang Province, Zhejiang University, Hangzhou, 310027, China
| | - Qunchen Yuan
- Biosensor National Special Laboratory, Key Laboratory for Biomedical Engineering of Education Ministry, Department of Biomedical Engineering, Zhejiang University, Hangzhou, 310027, China
- Innovation Center for Smart Medical Technologies & Devices, Binjiang Institute of Zhejiang University, Hangzhou, 310027, China
| | - Yingqian Shi
- Biosensor National Special Laboratory, Key Laboratory for Biomedical Engineering of Education Ministry, Department of Biomedical Engineering, Zhejiang University, Hangzhou, 310027, China
| | - Nan Jiang
- Biosensor National Special Laboratory, Key Laboratory for Biomedical Engineering of Education Ministry, Department of Biomedical Engineering, Zhejiang University, Hangzhou, 310027, China
| | - Deming Jiang
- Biosensor National Special Laboratory, Key Laboratory for Biomedical Engineering of Education Ministry, Department of Biomedical Engineering, Zhejiang University, Hangzhou, 310027, China
- Innovation Center for Smart Medical Technologies & Devices, Binjiang Institute of Zhejiang University, Hangzhou, 310027, China
| | - Jizhou Song
- Department of Engineering Mechanics, Soft Matter Research Center, Key Laboratory of Soft Machines and Smart Devices of Zhejiang Province, Zhejiang University, Hangzhou, 310027, China
- State Key Laboratory of Fluid Power and Mechatronic Systems, Zhejiang University, Hangzhou, 310027, China
- Department of Rehabilitation Medicine, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310012, China
| | - Ping Wang
- Biosensor National Special Laboratory, Key Laboratory for Biomedical Engineering of Education Ministry, Department of Biomedical Engineering, Zhejiang University, Hangzhou, 310027, China
- The MOE Frontier Science Center for Brain Science and Brain-Machine Integration, Zhejiang University, Hangzhou, 310027, China
- Innovation Center for Smart Medical Technologies & Devices, Binjiang Institute of Zhejiang University, Hangzhou, 310027, China
- State Key Laboratory of Transducer Technology, Chinese Academy of Sciences, Shanghai, 200050, China
| | - Liujing Zhuang
- Biosensor National Special Laboratory, Key Laboratory for Biomedical Engineering of Education Ministry, Department of Biomedical Engineering, Zhejiang University, Hangzhou, 310027, China
- The MOE Frontier Science Center for Brain Science and Brain-Machine Integration, Zhejiang University, Hangzhou, 310027, China
- State Key Laboratory of Transducer Technology, Chinese Academy of Sciences, Shanghai, 200050, China
| |
Collapse
|
4
|
Hu C, Wang Z, Liu B, Huang H, Zhang N, Xu Y. Validation of a system for automatic quantitative analysis of laboratory mice behavior based on locomotor pose. Comput Biol Med 2022; 150:105960. [PMID: 36122441 DOI: 10.1016/j.compbiomed.2022.105960] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2022] [Revised: 07/28/2022] [Accepted: 08/06/2022] [Indexed: 11/17/2022]
Abstract
Automatic recognition and accurate quantitative analysis of rodent behavior play an important role in brain neuroscience, pharmacological and toxicological. Currently, most behavior recognition systems used in experiments mainly focus on the indirect measurements of animal movement trajectories, while neglecting the changes of animal body pose that can indicate more psychological factors. Thus, this paper developed and validated an hourglass network-based behavioral quantification system (HNBQ), which uses a combination of body pose and movement parameters to quantify the activity of mice in an enclosed experimental chamber. In addition, The HNBQ was employed to record behavioral abnormalities of head scanning in the presence of food gradients in open field test (OFT). The results proved that the HNBQ in the new object recognition (NOR) experiment was highly correlated with the scores of manual observers during the latent exploration period and the cumulative exploration time. Moreover, in the OFT, HNBQ was able to capture the subtle differences in head scanning behavior of mice in the gradient experimental groups. Satisfactory results support that the combination of body pose and motor parameters can regard as a new alternative approach for quantification of animal behavior in laboratory.
Collapse
Affiliation(s)
- Chunhai Hu
- School of Electrical Engineering, Yanshan University, Qinhuangdao, 066044, China
| | - Zhongjian Wang
- School of Electrical Engineering, Yanshan University, Qinhuangdao, 066044, China
| | - Bin Liu
- School of Electrical Engineering, Yanshan University, Qinhuangdao, 066044, China.
| | - Hong Huang
- Centre for Pharmacological and Toxicological Research, Institute of Medicinal Plants, Beijing, 100193, China
| | - Ning Zhang
- School of Electrical Engineering, Yanshan University, Qinhuangdao, 066044, China
| | - Yanguang Xu
- School of Electrical Engineering, Yanshan University, Qinhuangdao, 066044, China
| |
Collapse
|
5
|
Chen AD, Cao JX, Chen HC, Du HL, Xi XX, Sun J, Yin J, Jing YH, Gao LP. Rotenone aggravates PD-like pathology in A53T mutant human α-synuclein transgenic mice in an age-dependent manner. Front Aging Neurosci 2022; 14:842380. [PMID: 36004003 PMCID: PMC9393581 DOI: 10.3389/fnagi.2022.842380] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2021] [Accepted: 07/12/2022] [Indexed: 11/26/2022] Open
Abstract
Multiple factors such as genes, environment, and age are involved in developing Parkinson’s disease (PD) pathology. However, how various factors interact to cause PD remains unclear. Here, 3-month and 9-month-old hα-syn+/− mice were treated with low-dose rotenone for 2 months to explore the mechanisms that underline the environment–gene–age interaction in the occurrence of PD. We have examined the behavior of mice and the PD-like pathologies of the brain and gut. The present results showed that impairments of the motor function and olfactory function were more serious in old hα-syn+/– mice with rotenone than that in young mice. The dopaminergic neuron loss in the SNc is more in old hα-syn+/– mice with rotenone than in young mice. Expression of hα-syn+/– is increased in the SNc of hα-syn+/– mice following rotenone treatment for 2 months. Furthermore, the number of activated microglia cells increased in SNc and accompanied the high expression of inflammatory cytokines, namely, TNF-α and IL-18 in the midbrain of old hα-syn+/– mice treated with rotenone. Meanwhile, we found that after treatment with rotenone, hα-syn positive particles deposited in the intestinal wall, intestinal microflora, and T lymphocyte subtypes of Peyer’s patches changed, and intestinal mucosal permeability increased. Moreover, these phenomena were age-dependent. These findings suggested that rotenone aggravated the PD-like pathologies and affected the brain and gut of human α-syn+/– transgenic mice in an age-dependent manner.
Collapse
Affiliation(s)
- An-Di Chen
- Institute of Anatomy and Histology & Embryology, Neuroscience, School of Basic Medical Sciences, Lanzhou University, Lanzhou, China
- Institute of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Lanzhou University, Lanzhou, China
| | - Jia-Xin Cao
- Institute of Anatomy and Histology & Embryology, Neuroscience, School of Basic Medical Sciences, Lanzhou University, Lanzhou, China
| | - Hai-Chao Chen
- Institute of Anatomy and Histology & Embryology, Neuroscience, School of Basic Medical Sciences, Lanzhou University, Lanzhou, China
| | - Hong-Li Du
- Institute of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Lanzhou University, Lanzhou, China
| | - Xiao-Xia Xi
- Center of Experimental Animal, School of Basic Medical Sciences, Lanzhou University, Lanzhou, China
| | - Jing Sun
- Center of Experimental Animal, School of Basic Medical Sciences, Lanzhou University, Lanzhou, China
| | - Jie Yin
- Institute of Anatomy and Histology & Embryology, Neuroscience, School of Basic Medical Sciences, Lanzhou University, Lanzhou, China
| | - Yu-Hong Jing
- Institute of Anatomy and Histology & Embryology, Neuroscience, School of Basic Medical Sciences, Lanzhou University, Lanzhou, China
- Key Laboratory of Preclinical Study for New Drugs of Gansu Province, School of Basic Medical Sciences, Lanzhou University, Lanzhou, China
- *Correspondence: Yu-Hong Jing,
| | - Li-Ping Gao
- Institute of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Lanzhou University, Lanzhou, China
- Li-Ping Gao,
| |
Collapse
|
6
|
Rørvang MV, Nicova K, Yngvesson J. Horse odor exploration behavior is influenced by pregnancy and age. Front Behav Neurosci 2022; 16:941517. [PMID: 35967896 PMCID: PMC9366077 DOI: 10.3389/fnbeh.2022.941517] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2022] [Accepted: 06/30/2022] [Indexed: 11/13/2022] Open
Abstract
In spite of a highly developed olfactory apparatus of horses, implying a high adaptive value, research on equine olfaction is sparse. Our limited knowledge on equine olfaction poses a risk that horse behavior does not match human expectations, as horses might react fearful when exposed to certain odors, which humans do not consider as frightening. The benefit of acquiring more knowledge of equine olfaction is therefore twofold; (1) it can aid the understanding of horse behavior and hence reduce the risk of dangerous situations, and (2) there may be unexplored potential of using odors in several practical situations where humans interact with horses. This study investigated behavior and olfactory sensitivity of 35 Icelandic horses who were presented with four odors: peppermint, orange, lavender and cedar wood in a Habituation/Dishabituation paradigm. The response variables were sniffing duration per presentation and behavioral reaction (licking, biting, snorting, and backing), and data were analyzed for potential effects of age, sex and pregnancy. Results showed that habituation occurred between successive odor presentations (1st vs. 2nd and 2nd vs. 3rd presentations: P < 0.001), and dishabituation occurred when a new odor was presented (1st vs. 3rd presentations: P < 0.001). Horses were thus able to detect and distinguish between all four odors, but expressed significantly longer sniffing duration when exposed to peppermint (peppermint vs. orange, lavender and cedar wood: P < 0.001). More horses expressed licking when presented to peppermint compared to cedar wood and lavender (P = 0.0068). Pregnant mares sniffed odors less than non-pregnant mares (P = 0.030), young horses (age 0-5 years) sniffed cedar wood for longer than old horses (P = 0.030), whereas sex had no effect (P > 0.050). The results show that horses’ odor exploration behavior and interest in odors varies with age and pregnancy and that horses naïve to the taste of a substrate, may be able to link smell with taste, which has not been described before. These results can aid our understanding of horses’ behavioral reactions to odors, and in the future, it may be possible to relate these to the physiology and health of horses.
Collapse
Affiliation(s)
- Maria Vilain Rørvang
- Department Biosystems and Technology, Swedish University of Agricultural Sciences, Lomma, Sweden
- *Correspondence: Maria Vilain Rørvang,
| | - Klára Nicova
- Department of Ethology, Institute of Animal Science, Prague, Czechia
| | - Jenny Yngvesson
- Department Biosystems and Technology, Swedish University of Agricultural Sciences, Lomma, Sweden
| |
Collapse
|
7
|
Bayesian Multi-Targets Strategy to Track Apis mellifera Movements at Colony Level. INSECTS 2022; 13:insects13020181. [PMID: 35206754 PMCID: PMC8875577 DOI: 10.3390/insects13020181] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/08/2021] [Revised: 02/02/2022] [Accepted: 02/06/2022] [Indexed: 11/17/2022]
Abstract
Simple Summary The number of honey bee, Apis mellifera L., colonies has reduced around the globe, and one potential cause is their unintended exposure to sublethal stressors such as agricultural pesticides. The quantification of such effects at colony level is a very complex task due to the innumerable collective activities done by the individual within colonies. Here, we present a Bayesian and computational approach capable of tracking the movements of bees within colonies, which allows the comparison of the collective activities of colonies that received bees previously exposed to uncontaminated diets or to diets containing sublethal concentrations of an agricultural pesticide (a commercial formulation containing the synthetic fungicides thiophanate-methyl and chlorothalonil). Our Bayesian tracking technique proved successful and superior to comparable algorithms, allowing the estimation of dynamical parameters such as entropy and kinetic energy. Our efforts demonstrated that fungicide-contaminated colonies behaved differently from uncontaminated colonies, as the former exhibited anticipated collective activities in peripheral hive areas and had reduced swarm entropy and kinetic energies. Such findings may facilitate the electronic monitoring of potential unintended effects in social pollinators, at colony level, mediated by environmental stressors (e.g., pesticides, electromagnetic fields, noise, and light intensities) alone or in combination. Abstract Interactive movements of bees facilitate the division and organization of collective tasks, notably when they need to face internal or external environmental challenges. Here, we present a Bayesian and computational approach to track the movement of several honey bee, Apis mellifera, workers at colony level. We applied algorithms that combined tracking and Kernel Density Estimation (KDE), allowing measurements of entropy and Probability Distribution Function (PDF) of the motion of tracked organisms. We placed approximately 200 recently emerged and labeled bees inside an experimental colony, which consists of a mated queen, approximately 1000 bees, and a naturally occurring beehive background. Before release, labeled bees were fed for one hour with uncontaminated diets or diets containing a commercial mixture of synthetic fungicides (thiophanate-methyl and chlorothalonil). The colonies were filmed (12 min) at the 1st hour, 5th and 10th days after the bees’ release. Our results revealed that the algorithm tracked the labeled bees with great accuracy. Pesticide-contaminated colonies showed anticipated collective activities in peripheral hive areas, far from the brood area, and exhibited reduced swarm entropy and energy values when compared to uncontaminated colonies. Collectively, our approach opens novel possibilities to quantify and predict potential alterations mediated by pollutants (e.g., pesticides) at the bee colony-level.
Collapse
|
8
|
Liu Z, Ye Q, Wang F, Guo Y, Cui R, Wang J, Wang D. Protective effect of thioredoxin reductase 1 in Parkinson's disease. Neurosci Lett 2020; 741:135457. [PMID: 33171211 DOI: 10.1016/j.neulet.2020.135457] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2020] [Revised: 10/15/2020] [Accepted: 10/17/2020] [Indexed: 11/18/2022]
Abstract
Parkinson's disease (PD) is a neurodegenerative disease characterized by the loss of dopaminergic neurons in the substantia nigra (SN). Many factors can explain the mechanism. However, the precise mechanism that contributes to the decreased number of dopaminergic neurons is unknown. Our study shows that oxidative stress is increased in models of PD compared with WT mice; Thioredoxin reductase 1(TR1) has emerged as an important antioxidant agent in dopaminergic neurons. In summary, our findings demonstrate that the overexpression of TR1 could be developed into a novel neuroprotective strategy for PD and that the reduction of the expression of GSK-3β and NF-κB could also be promising therapeutic strategies for PD. This research suggests a new direction in the treatment of PD.
Collapse
Affiliation(s)
- Zihua Liu
- Department of Zoology and Biomedical Science, School of Life Sciences, Gansu Key Laboratory of Biomonitoring and Bioremediation for Environmental Pollution, Lanzhou University, Lanzhou, 730000, Gansu, China
| | - Qiang Ye
- Department of Anatomy and Histology, Lanzhou University, School of Basic Medical Sciences, Lanzhou, China
| | - Fang Wang
- Gynecology with Integrated Traditional Chinese and Western Medicine of gansu Provincial Maternity and Child Care Hospital, Lanzhou, 730050, Gansu, China
| | - Yanan Guo
- Department of Anatomy and Histology, Lanzhou University, School of Basic Medical Sciences, Lanzhou, China
| | - Rong Cui
- Department of Anatomy and Histology, Lanzhou University, School of Basic Medical Sciences, Lanzhou, China
| | - Jianlin Wang
- Department of Zoology and Biomedical Science, School of Life Sciences, Gansu Key Laboratory of Biomonitoring and Bioremediation for Environmental Pollution, Lanzhou University, Lanzhou, 730000, Gansu, China.
| | - Degui Wang
- Department of Anatomy and Histology, Lanzhou University, School of Basic Medical Sciences, Lanzhou, China.
| |
Collapse
|
9
|
Age-specific effects of P2X7 receptors on olfactory function in mice. Neuroreport 2020; 30:1055-1061. [PMID: 31425346 DOI: 10.1097/wnr.0000000000001295] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
This study aimed to explore the age-specific effects of P2X7 receptor (P2X7R) knockout on olfactory function in mice. In this study, we analyzed olfactory functions of 2-month-old, 10-month-old and 18-month-old female P2X7R KO mice and age-matched female C57BL/6 wildtype mice (WT mice) by buried food seeking test and olfactory avoidance test. The structure of mitochondria and synapses in olfactory bulb were observed by electron microscopy. The content of interleukin-1 (IL-1β) in olfactory bulb and transforming growth factor beta 1 (TGF-β1) in olfactory epithelium were analyzed by ELISA. The results indicated that middle and old-aged P2X7R KO mice showed better olfactory function than middle and old-aged WT mice. Mitochondrial structures were complete and more spine synapses were observed in middle and old-aged P2X7R KO mice. Compared with middle and old-aged WT mice, IL-1β content in olfactory bulb was decreased in middle and old-aged P2X7R KO mice, and there was no significant difference in TGF-β1 content in olfactory epithelium. However, worse olfactory function was observed in young-aged P2X7R KO mice compared with young-aged WT mice. Abnormal mitochondrial structure and less synapses in olfactory bulb were observed. TGF-β1 content in olfactory epithelium was significantly higher in P2X7R KO mice compared with young-aged WT mice. There was no significant difference in IL-1β content in olfactory bulb of young-aged mice. In conclusion, P2X7R knockout can improve the olfactory function of middle and old-aged mice, while it may cause damage to young-aged mice, suggesting that P2X7R plays age-specific role on olfactory functions in mice.
Collapse
|
10
|
Kim BY, Park JY, Kim E. Differences in Mechanisms of Steroid Therapy and Olfactory Training for Olfactory Loss in Mice. Am J Rhinol Allergy 2020; 34:810-821. [DOI: 10.1177/1945892420930945] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Objective Steroid therapy and olfactory training are common treatments for olfactory loss. Systemic steroid treatment is the most effective approach for treating sinonasal olfactory loss. Olfactory training is typically effective for treating sensorineural olfactory loss. However, the differences in mechanisms of steroid therapy and olfactory training for olfactory dysfunction are unclear. The aim of this study was thus to evaluate the differences in mechanisms of olfactory training and steroid therapy. Subjects and Methods Mice in each group were administered 3-methylindole at a dose of 300 mg/kg. Olfactory function was evaluated with a food-finding test once a week. The olfactory neuroepithelium was harvested for histologic examination and protein analysis. Subsequently, data analysis, gene ontology and pathway analysis, quantitative real-time polymerase chain reaction of mRNA, and western blot analysis were conducted. Results Mice were divided into four groups according to treatment. Control, anosmia, training, and steroid groups resumed food-finding. MMP27, CCL22 and IL18rap mRNA expression were significantly increased in the training group compared to that in the steroid group. IL1R2 mRNA expression was significantly higher in the olfactory neuroepithelium of steroid-treated mice than in that of the training group mice. Conclusions Steroid therapy improved olfactory function via anti-inflammatory effects, unlike olfactory training which involved cell regeneration and tissue remodeling. Protein and gene analyses revealed that steroid therapy and olfactory training are underpinned by distinct mechanisms. Selection of the most appropriate treatment will be dependent on the cause of olfactory loss.
Collapse
Affiliation(s)
- Boo-Young Kim
- Department of Otorhinolaryngology-Head and Neck Surgery, Ewha Womans University Medical Center, Seoul, Korea
| | - Ju Yeon Park
- Department of Clinical Laboratory, Uijeongbu St. Mary’s Hospital, College of Medicine, The Catholic University of Korea, Uijeongbu, Korea
| | - EuiJin Kim
- Department of Clinical Laboratory, Uijeongbu St. Mary’s Hospital, College of Medicine, The Catholic University of Korea, Uijeongbu, Korea
| |
Collapse
|
11
|
Kim BY, Park J, Kim E, Kim B. Olfactory Ensheathing Cells Mediate Neuroplastic Mechanisms After Olfactory Training in Mouse Model. Am J Rhinol Allergy 2019; 34:217-229. [PMID: 31680531 DOI: 10.1177/1945892419885036] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Background Several studies have reported beneficial effects of olfactory training (OT) on the olfactory nervous system. However, the mechanisms underlying the regeneration of the olfactory system induced by OT are still under investigation. Objectives To determine the key mechanisms involved in the olfactory system recovery and to assess the neuroplastic effects of OT. Methods Thirty healthy female C57BL/6 mice were randomly allocated to 4 groups: control, n = 6; anosmia (no treatment), n = 8; OT, n = 8; and steroid treatment; n = 8. Except for the control group, mice were administered 3-methylindole. Anosmia was assessed using a food-finding test (FFT). The olfactory neuroepithelium was for histological examinations, gene ontology with pathway analyses, RNA, and protein studies. Results FFT was significantly reduced at 3 weeks in the OT mice versus steroids (78.27 s vs 156.83 s, P < .008) and controls (78.27 s vs 13.14 s, P < .003), although final outcome in the FFT was similar in these groups. Expression of olfactory and neurogenesis marker was higher in the olfactory neuroepithelium of the OT group than in the anosmia group without treatment. The mechanisms underlying olfactory regeneration might be related to early olfactory receptor stimulation, followed by neurotrophic factor stimulation of neuronal plasticity. Conclusion OT can improve olfactory function and accelerate olfactory recovery. The mechanisms underlying olfactory regeneration might be related to an initial stimulation of olfactory receptors followed by neurogenesis. Olfactory ensheathing cells might play an important role in olfactory regeneration following OT, based on the observed changes in messenger ribonucleic acid (mRNA) and protein expression, as well as the findings of the gene analysis.
Collapse
Affiliation(s)
- Boo-Young Kim
- Department of Otorhinolaryngology-Head and Neck Surgery, Uijeongbu St. Mary's Hospital, College of Medicine, The Catholic University of Korea, Uijeongbu, Korea
| | - JuYeon Park
- Department of Clinical Laboratory, Uijeongbu St. Mary's Hospital, College of Medicine, The Catholic University of Korea, Uijeongbu, Korea
| | - EuiJin Kim
- Department of Clinical Laboratory, Uijeongbu St. Mary's Hospital, College of Medicine, The Catholic University of Korea, Uijeongbu, Korea
| | - ByungGuk Kim
- Department of Otorhinolaryngology-Head and Neck Surgery, St. Paul Hospital, College of Medicine, The Catholic University of Korea, Seoul, Korea
| |
Collapse
|
12
|
Kim KH, Cho Y, Lee J, Jeong H, Lee Y, Kim SI, Kim CH, Lee HW, Nam KT. Sexually dimorphic leanness and hypermobility in p16 Ink4a/CDKN2A-deficient mice coincides with phenotypic changes in the cerebellum. Sci Rep 2019; 9:11167. [PMID: 31371816 PMCID: PMC6671985 DOI: 10.1038/s41598-019-47676-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2018] [Accepted: 07/22/2019] [Indexed: 12/31/2022] Open
Abstract
p16Ink4a/CDKN2A is a tumor suppressor that critically regulates the cell cycle. Indeed, p16Ink4a deficiency promotes tumor formation in various tissues. We now report that p16Ink4a deficiency in female mice, but not male mice, induces leanness especially in old age, as indicated by lower body weight and smaller white adipose tissue, although other major organs are unaffected. Unexpectedly, the integrity, number, and sizes of adipocytes in white adipose tissue were unaffected, as was macrophage infiltration. Hence, hypermobility appeared to be accountable for the phenotype, since food consumption was not altered. Histological analysis of the cerebellum and deep cerebellar nuclei, a vital sensorimotor control center, revealed increased proliferation of neuronal cells and improved cerebellum integrity. Expression of estrogen receptor β (ERβ) and PCNA also increased in deep cerebellar nuclei, implying crosstalk between p16Ink4a and ERβ. Furthermore, p16Ink4a deficiency expands LC3B+ cells and GFAP+ astrocytes in response to estrogen. Collectively, the data suggest that loss of p16INK4a induces sexually dimorphic leanness in female mice, which appears to be due to protection against cerebellar senescence by promoting neuronal proliferation and homeostasis via ERβ.
Collapse
Affiliation(s)
- Kwang H Kim
- Severance Biomedical Science Institute, Brain Korea 21 PLUS Project for Medical Science, Yonsei University College of Medicine, Seoul, 03722, Republic of Korea
| | - Yejin Cho
- Severance Biomedical Science Institute, Brain Korea 21 PLUS Project for Medical Science, Yonsei University College of Medicine, Seoul, 03722, Republic of Korea
| | - Jaehoon Lee
- Department of Biochemistry, College of Life Science and Biotechnology and Yonsei Laboratory Animal Research Center, Yonsei University, Seoul, 03722, Republic of Korea
| | - Haengdueng Jeong
- Severance Biomedical Science Institute, Brain Korea 21 PLUS Project for Medical Science, Yonsei University College of Medicine, Seoul, 03722, Republic of Korea
| | - Yura Lee
- Severance Biomedical Science Institute, Brain Korea 21 PLUS Project for Medical Science, Yonsei University College of Medicine, Seoul, 03722, Republic of Korea
| | - Soo In Kim
- Department of Otorhinolaryngology, Korea Mouse Sensory Phenotyping Center, Yonsei University College of Medicine, Seoul, 03722, Republic of Korea
| | - Chang-Hoon Kim
- Department of Otorhinolaryngology, Korea Mouse Sensory Phenotyping Center, Yonsei University College of Medicine, Seoul, 03722, Republic of Korea
| | - Han-Woong Lee
- Department of Biochemistry, College of Life Science and Biotechnology and Yonsei Laboratory Animal Research Center, Yonsei University, Seoul, 03722, Republic of Korea
| | - Ki Taek Nam
- Severance Biomedical Science Institute, Brain Korea 21 PLUS Project for Medical Science, Yonsei University College of Medicine, Seoul, 03722, Republic of Korea.
| |
Collapse
|
13
|
Kum J, Kim JW, Braubach O, Ha JG, Cho HJ, Kim CH, Han HB, Choi JH, Yoon JH. Neural Dynamics of Olfactory Perception: Low- and High-Frequency Modulations of Local Field Potential Spectra in Mice Revealed by an Oddball Stimulus. Front Neurosci 2019; 13:478. [PMID: 31191212 PMCID: PMC6546879 DOI: 10.3389/fnins.2019.00478] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2019] [Accepted: 04/26/2019] [Indexed: 11/13/2022] Open
Abstract
Recent brain connectome studies have evidenced distinct and overlapping brain regions involved in processing olfactory perception. However, neural correlates of hypo- or anosmia in olfactory disorder patients are poorly known. Furthermore, the bottom-up and top-down processing of olfactory perception have not been well-documented, resulting in difficulty in locating the disease foci of olfactory disorder patients. The primary aim of this study is to characterize the bottom-up process of the neural dynamics across peripheral and central brain regions in anesthetized mice. We particularly focused on the neural oscillations of local field potential (LFP) in olfactory epithelium (OE), olfactory blub (OB), prefrontal cortex (PFC), and hippocampus (HC) during an olfactory oddball paradigm in urethane anesthetized mice. Odorant presentations evoked neural oscillations across slow and fast frequency bands including delta (1-4 Hz), theta (6-10 Hz), beta (15-30 Hz), low gamma (30-50 Hz), and high gamma (70-100 Hz) in both peripheral and central nervous systems, and the increases were more prominent in the infrequently presented odorant. During 5 s odorant exposures, the oscillatory responses in power were persistent in OE, OB, and PFC, whereas neural oscillations of HC increased only for short time at stimulus onset. These oscillatory responses in power were insignificant in both peripheral and central regions of the ZnSO4-treated anosmia model. These results suggest that olfactory stimulation induce LFP oscillations both in the peripheral and central nervous systems and suggest the possibility of linkage of LFP oscillations in the brain to the oscillations in the peripheral olfactory system.
Collapse
Affiliation(s)
- Jeungeun Kum
- Brain Science Institute, Korea Institute of Science and Technology, Seoul, South Korea
- Division of Bio-Medical Science & Technology, Korea Institute of Science and Technology, University of Science and Technology, Seoul, South Korea
| | - Jin Won Kim
- Department of Otorhinolaryngology, Yonsei University College of Medicine, Seoul, South Korea
| | - Oliver Braubach
- Brain Science Institute, Korea Institute of Science and Technology, Seoul, South Korea
| | - Jong-Gyun Ha
- Department of Otorhinolaryngology, Yonsei University College of Medicine, Seoul, South Korea
| | - Hyung-Ju Cho
- Department of Otorhinolaryngology, Yonsei University College of Medicine, Seoul, South Korea
| | - Chang-Hoon Kim
- Department of Otorhinolaryngology, Yonsei University College of Medicine, Seoul, South Korea
- The Airway Mucus Institute, Yonsei University College of Medicine, Seoul, South Korea
- Korea Mouse Phenotyping Center (KMPC), Seoul, South Korea
| | - Hio-Been Han
- Brain Science Institute, Korea Institute of Science and Technology, Seoul, South Korea
- Department of Bio and Brain Engineering, Korea Advanced Institute of Science and Technology, Daejeon, South Korea
| | - Jee Hyun Choi
- Brain Science Institute, Korea Institute of Science and Technology, Seoul, South Korea
- Division of Bio-Medical Science & Technology, Korea Institute of Science and Technology, University of Science and Technology, Seoul, South Korea
| | - Joo-Heon Yoon
- Department of Otorhinolaryngology, Yonsei University College of Medicine, Seoul, South Korea
- The Airway Mucus Institute, Yonsei University College of Medicine, Seoul, South Korea
- Korea Mouse Phenotyping Center (KMPC), Seoul, South Korea
| |
Collapse
|
14
|
Kim BY, Park JY, Kim EJ, Kim BG, Kim SW, Kim SW. The neuroplastic effect of olfactory training to the recovery of olfactory system in mouse model. Int Forum Allergy Rhinol 2019; 9:715-723. [PMID: 30793525 PMCID: PMC6767412 DOI: 10.1002/alr.22320] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2018] [Revised: 01/08/2019] [Accepted: 01/28/2019] [Indexed: 11/21/2022]
Abstract
Background Several studies have reported the benefits of olfactory training (OT) in the olfactory nervous system of mouse models. Therefore, in this study we performed next‐generation sequencing to evaluate the effects of OT on mRNA sequencing in the olfactory area. Methods Mice in each group were administered 300 mg of 3‐methylindole per kilogram of mouse weight. The olfactory function was evaluated by a food‐finding test once a week. The olfactory neuroepithelium was harvested for histologic examination and protein analysis. Subsequently, data analysis, gene ontology and pathway analysis, quantitative real‐time polymerase chain reaction of mRNA, and Western blot analysis were conducted. Results Mice were divided into 4 groups according to treatment. Control, anosmia, training, and steroid group mice resumed food finding. Olfactory Maker Protein, olfr1507, ADCY3, and GNAL mRNA expression was higher in the olfactory neuroepithelium of OT than anosmia group mice. In total, 26,364 mRNAs were analyzed. Comparison of the results of OT vs anosmia revealed that ADCY8,10, GFAP, NGF, NGFR, GFAP, and BDNF mRNAs were upregulated in the gene ontology. Conclusion OT improved olfactory function, as indicated by the food‐finding test. OT improved the olfactory recovery time to stimulate olfactory nerve regeneration. OT may initially stimulate the olfactory receptor, followed by neurogenesis. Steroid therapy and OT operated under completely different mechanisms in the upregulated gene study. These results indicate that OT may be one of the future modalities for treating olfactory impairment.
Collapse
Affiliation(s)
- Boo-Young Kim
- Department of Otorhinolaryngology-Head and Neck Surgery, Uijeongbu St. Mary's Hospital, College of Medicine, The Catholic University of Korea, Seoul, Korea
| | - Ju Yeon Park
- Department of Clinical Laboratory, Uijeongbu St. Mary's Hospital, College of Medicine, The Catholic University of Korea, Seoul, Korea
| | - Eui Jin Kim
- Department of Clinical Laboratory, Uijeongbu St. Mary's Hospital, College of Medicine, The Catholic University of Korea, Seoul, Korea
| | - Byung Guk Kim
- Department of Otorhinolaryngology-Head and Neck Surgery, St. Paul Hospital, College of Medicine, The Catholic University of Korea, Seoul, Korea
| | - Sung Won Kim
- Department of Otorhinolaryngology-Head and Neck Surgery, Seoul St. Mary's Hospital, College of Medicine, The Catholic University of Korea, Seoul, Korea
| | - Soo Whan Kim
- Department of Otorhinolaryngology-Head and Neck Surgery, Seoul St. Mary's Hospital, College of Medicine, The Catholic University of Korea, Seoul, Korea
| |
Collapse
|