1
|
Zouiouich S, Wan Y, Vogtmann E, Porras C, Abnet CC, Shi J, Sinha R. Sample Size Estimations Based on Human Microbiome Temporal Stability Over 6 Months: A Shallow Shotgun Metagenome Sequencing Analysis. Cancer Epidemiol Biomarkers Prev 2025; 34:588-597. [PMID: 39927868 DOI: 10.1158/1055-9965.epi-24-0839] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2024] [Revised: 12/04/2024] [Accepted: 02/06/2025] [Indexed: 02/11/2025] Open
Abstract
BACKGROUND Biological factors affect the human microbiome, highlighting the need for reasonably estimating sample sizes in future population studies. METHODS We assessed the temporal stability of fecal microbiome diversity, species composition, and genes and functional pathways through shallow shotgun metagenome sequencing. Using intraclass correlation coefficients (ICC), we measured biological variability over 6 months. We estimated case numbers for 1:1 or 1:3 matched case-control studies, considering significance levels of 0.05 and 0.001 with 80% power, based on the collected fecal specimens per participant. RESULTS The fecal microbiome's temporal stability over 6 months varied (ICC < 0.6) for most alpha and beta diversity metrics. Heterogeneity was seen in species, genes, and pathways stability (ICC, 0.0-0.9). Detecting an OR of 1.5 per SD required 1,000 to 5,000 cases (0.05 significance for alpha and beta; 0.001 for species, genes, and pathways) with equal cases and controls. Low-prevalence species needed 15,102 cases, and high-prevalence species required 3,527. Similar needs applied to genes and pathways. In a 1:3 matched case-control study with one fecal specimen, 10,068 cases were needed for low-prevalence species and 2,351 for high-prevalence species. For ORs of 1.5 with multiple specimens, cases needed for low-prevalence species were 15,102 (one specimen), 8,267 (two specimens), and 5,989 (three specimens). CONCLUSIONS Detecting disease associations requires a large number of cases. Repeating prediagnostic samples and matching cases to more controls could decrease the needed number of cases for such detections. IMPACT Our results will help future epidemiologic study designs and implement well-powered microbiome studies.
Collapse
Affiliation(s)
- Semi Zouiouich
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, Bethesda, Maryland
| | - Yunhu Wan
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, Bethesda, Maryland
| | - Emily Vogtmann
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, Bethesda, Maryland
| | - Carolina Porras
- Costa Rican Agency for Biomedical Research-INCIENSA Foundation, San José, Costa Rica
| | - Christian C Abnet
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, Bethesda, Maryland
| | - Jianxin Shi
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, Bethesda, Maryland
| | - Rashmi Sinha
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, Bethesda, Maryland
| |
Collapse
|
2
|
Zugman M, Wong M, Jaime-Casas S, Pal SK. The gut microbiome and dietary metabolites in the treatment of renal cell carcinoma. Urol Oncol 2025; 43:244-253. [PMID: 39095306 DOI: 10.1016/j.urolonc.2024.07.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2024] [Revised: 06/13/2024] [Accepted: 07/02/2024] [Indexed: 08/04/2024]
Abstract
The gut microbiome is interlinked with renal cell carcinoma (RCC) and its response to systemic treatment. Mounting data suggests that certain elements of the gut microbiome may correlate with improved outcomes. New generation sequencing techniques and advanced bioinformatic data curation are accelerating the investigation of specific markers and metabolites that could predict treatment response. A variety of new therapeutic strategies, such as fecal microbiota transplantation, probiotic supplements, and dietary interventions, are currently being developed to modify the gut microbiome and improve anticancer therapies in patients with RCC. This review discusses the preliminary evidence indicating the role of the microbiome in cancer treatment, the techniques and tools necessary for its proper study and some of the current forms with which the microbiome can be modulated to improve patient outcomes.
Collapse
Affiliation(s)
- Miguel Zugman
- Department of Medical Oncology and Therapeutics, City of Hope Comprehensive Cancer Center, Duarte, CA; Centro de Oncologia e Hematologia Família Dayan-Daycoval Einstein, Hospital Israelita Albert, São Paulo, São Paulo, Brazil
| | - Megan Wong
- Department of Medical Oncology and Therapeutics, City of Hope Comprehensive Cancer Center, Duarte, CA
| | - Salvador Jaime-Casas
- Department of Medical Oncology and Therapeutics, City of Hope Comprehensive Cancer Center, Duarte, CA
| | - Sumanta K Pal
- Department of Medical Oncology and Therapeutics, City of Hope Comprehensive Cancer Center, Duarte, CA.
| |
Collapse
|
3
|
Joos R, Boucher K, Lavelle A, Arumugam M, Blaser MJ, Claesson MJ, Clarke G, Cotter PD, De Sordi L, Dominguez-Bello MG, Dutilh BE, Ehrlich SD, Ghosh TS, Hill C, Junot C, Lahti L, Lawley TD, Licht TR, Maguin E, Makhalanyane TP, Marchesi JR, Matthijnssens J, Raes J, Ravel J, Salonen A, Scanlan PD, Shkoporov A, Stanton C, Thiele I, Tolstoy I, Walter J, Yang B, Yutin N, Zhernakova A, Zwart H, Doré J, Ross RP. Examining the healthy human microbiome concept. Nat Rev Microbiol 2025; 23:192-205. [PMID: 39443812 DOI: 10.1038/s41579-024-01107-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/04/2024] [Indexed: 10/25/2024]
Abstract
Human microbiomes are essential to health throughout the lifespan and are increasingly recognized and studied for their roles in metabolic, immunological and neurological processes. Although the full complexity of these microbial communities is not fully understood, their clinical and industrial exploitation is well advanced and expanding, needing greater oversight guided by a consensus from the research community. One of the most controversial issues in microbiome research is the definition of a 'healthy' human microbiome. This concept is complicated by the microbial variability over different spatial and temporal scales along with the challenge of applying a unified definition to the spectrum of healthy microbiome configurations. In this Perspective, we examine the progress made and the key gaps that remain to be addressed to fully harness the benefits of the human microbiome. We propose a road map to expand our knowledge of the microbiome-health relationship, incorporating epidemiological approaches informed by the unique ecological characteristics of these communities.
Collapse
Affiliation(s)
- Raphaela Joos
- APC Microbiome Ireland, University College Cork, Cork, Ireland
- School of Microbiology, University College Cork, Cork, Ireland
| | - Katy Boucher
- APC Microbiome Ireland, University College Cork, Cork, Ireland
| | - Aonghus Lavelle
- APC Microbiome Ireland, University College Cork, Cork, Ireland
- Department of Anatomy and Neuroscience, University College Cork, Cork, Ireland
| | - Manimozhiyan Arumugam
- Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Martin J Blaser
- Center for Advanced Biotechnology and Medicine, Rutgers University, Piscataway, NJ, USA
| | - Marcus J Claesson
- APC Microbiome Ireland, University College Cork, Cork, Ireland
- School of Microbiology, University College Cork, Cork, Ireland
| | - Gerard Clarke
- APC Microbiome Ireland, University College Cork, Cork, Ireland
- Department of Psychiatry and Neurobehavioural Science, University College Cork, Cork, Ireland
| | - Paul D Cotter
- APC Microbiome Ireland, University College Cork, Cork, Ireland
- Teagasc Food Research Centre and VistaMilk SFI Research Centre, Moorepark, Fermoy, Moorepark, Ireland
| | - Luisa De Sordi
- Centre de Recherche Saint Antoine, Sorbonne Université, INSERM, Paris, France
| | | | - Bas E Dutilh
- Institute of Biodiversity, Faculty of Biological Sciences, Cluster of Excellence Balance of the Microverse, Friedrich Schiller University Jena, Jena, Germany
- Theoretical Biology and Bioinformatics, Department of Biology, Science for Life, Utrecht University, Utrecht, The Netherlands
| | - Stanislav D Ehrlich
- Université Paris-Saclay, INRAE, MetaGenoPolis (MGP), Jouy-en-Josas, France
- Department of Clinical and Movement Neurosciences, University College London, London, UK
| | - Tarini Shankar Ghosh
- Department of Computational Biology, Indraprastha Institute of Information Technology Delhi (IIIT-Delhi), New Delhi, India
| | - Colin Hill
- APC Microbiome Ireland, University College Cork, Cork, Ireland
- School of Microbiology, University College Cork, Cork, Ireland
| | - Christophe Junot
- Département Médicaments et Technologies pour La Santé (DMTS), Université Paris-Saclay, CEA, INRAE, MetaboHUB, Gif-sur-Yvette, France
| | - Leo Lahti
- Department of Computing, University of Turku, Turku, Finland
| | - Trevor D Lawley
- Host-Microbiota Interactions Laboratory, Wellcome Sanger Institute, Hinxton, UK
| | - Tine R Licht
- National Food Institute, Technical University of Denmark, Kgs. Lyngby, Denmark
| | - Emmanuelle Maguin
- Université Paris-Saclay, INRAE, AgroParisTech, MICALIS, Jouy-en-Josas, France
| | - Thulani P Makhalanyane
- Department of Microbiology, Faculty of Science, Stellenbosch University, Stellenbosch, South Africa
| | - Julian R Marchesi
- Division of Digestive Diseases, Department of Metabolism, Digestion and Reproduction, Imperial College London, London, UK
| | - Jelle Matthijnssens
- KU Leuven, Department of Microbiology, Immunology and Transplantation, Rega Institute, Leuven, Belgium
| | - Jeroen Raes
- KU Leuven, Department of Microbiology, Immunology and Transplantation, Rega Institute, Leuven, Belgium
- Vlaams Instituut voor Biotechnologie (VIB) Center for Microbiology, Leuven, Belgium
| | - Jacques Ravel
- Institute for Genome Sciences, University of Maryland School of Medicine, Baltimore, MD, USA
- Department of Microbiology and Immunology, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Anne Salonen
- Human Microbiome Research Program, Faculty of Medicine, University of Helsinki, Helsinki, Finland
| | - Pauline D Scanlan
- APC Microbiome Ireland, University College Cork, Cork, Ireland
- School of Microbiology, University College Cork, Cork, Ireland
| | - Andrey Shkoporov
- APC Microbiome Ireland, University College Cork, Cork, Ireland
- School of Microbiology, University College Cork, Cork, Ireland
| | - Catherine Stanton
- APC Microbiome Ireland, University College Cork, Cork, Ireland
- Teagasc Food Research Centre and VistaMilk SFI Research Centre, Moorepark, Fermoy, Moorepark, Ireland
| | - Ines Thiele
- APC Microbiome Ireland, University College Cork, Cork, Ireland
- School of Medicine, University of Ireland, Galway, Ireland
| | - Igor Tolstoy
- National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, Bethesda, MD, USA
| | - Jens Walter
- APC Microbiome Ireland, University College Cork, Cork, Ireland
- School of Microbiology, University College Cork, Cork, Ireland
- Department of Medicine, University College Cork, Cork, Ireland
| | - Bo Yang
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi, China
- School of Food Science and Technology, Jiangnan University, Wuxi, China
| | - Natalia Yutin
- National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, Bethesda, MD, USA
| | - Alexandra Zhernakova
- Department of Genetics, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | - Hub Zwart
- Erasmus School of Philosophy, Erasmus University Rotterdam, Rotterdam, The Netherlands
| | - Joël Doré
- Université Paris-Saclay, INRAE, MetaGenoPolis (MGP), Jouy-en-Josas, France
- Université Paris-Saclay, INRAE, AgroParisTech, MICALIS, Jouy-en-Josas, France
| | - R Paul Ross
- APC Microbiome Ireland, University College Cork, Cork, Ireland.
- School of Microbiology, University College Cork, Cork, Ireland.
| |
Collapse
|
4
|
Regueira-Iglesias A, Suárez-Rodríguez B, Blanco-Pintos T, Relvas M, Alonso-Sampedro M, Balsa-Castro C, Tomás I. The salivary microbiome as a diagnostic biomarker of periodontitis: a 16S multi-batch study before and after the removal of batch effects. Front Cell Infect Microbiol 2024; 14:1405699. [PMID: 39071165 PMCID: PMC11272481 DOI: 10.3389/fcimb.2024.1405699] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2024] [Accepted: 06/17/2024] [Indexed: 07/30/2024] Open
Abstract
Introduction Microbiome-based clinical applications that improve diagnosis related to oral health are of great interest to precision dentistry. Predictive studies on the salivary microbiome are scarce and of low methodological quality (low sample sizes, lack of biological heterogeneity, and absence of a validation process). None of them evaluates the impact of confounding factors as batch effects (BEs). This is the first 16S multi-batch study to analyze the salivary microbiome at the amplicon sequence variant (ASV) level in terms of differential abundance and machine learning models. This is done in periodontally healthy and periodontitis patients before and after removing BEs. Methods Saliva was collected from 124 patients (50 healthy, 74 periodontitis) in our setting. Sequencing of the V3-V4 16S rRNA gene region was performed in Illumina MiSeq. In parallel, searches were conducted on four databases to identify previous Illumina V3-V4 sequencing studies on the salivary microbiome. Investigations that met predefined criteria were included in the analysis, and the own and external sequences were processed using the same bioinformatics protocol. The statistical analysis was performed in the R-Bioconductor environment. Results The elimination of BEs reduced the number of ASVs with differential abundance between the groups by approximately one-third (Before=265; After=190). Before removing BEs, the model constructed using all study samples (796) comprised 16 ASVs (0.16%) and had an area under the curve (AUC) of 0.944, sensitivity of 90.73%, and specificity of 87.16%. The model built using two-thirds of the specimens (training=531) comprised 35 ASVs (0.36%) and had an AUC of 0.955, sensitivity of 86.54%, and specificity of 90.06% after being validated in the remaining one-third (test=265). After removing BEs, the models required more ASVs (all samples=200-2.03%; training=100-1.01%) to obtain slightly lower AUC (all=0.935; test=0.947), lower sensitivity (all=81.79%; test=78.85%), and similar specificity (all=91.51%; test=90.68%). Conclusions The removal of BEs controls false positive ASVs in the differential abundance analysis. However, their elimination implies a significantly larger number of predictor taxa to achieve optimal performance, creating less robust classifiers. As all the provided models can accurately discriminate health from periodontitis, implying good/excellent sensitivities/specificities, the salivary microbiome demonstrates potential clinical applicability as a precision diagnostic tool for periodontitis.
Collapse
Affiliation(s)
- Alba Regueira-Iglesias
- Oral Sciences Research Group, Special Needs Unit, Department of Surgery and Medical-Surgical Specialties, School of Medicine and Dentistry, Instituto de Investigación Sanitaria de Santiago (IDIS), Universidade de Santiago de Compostela, Santiago de Compostela, Spain
| | - Berta Suárez-Rodríguez
- Oral Sciences Research Group, Special Needs Unit, Department of Surgery and Medical-Surgical Specialties, School of Medicine and Dentistry, Instituto de Investigación Sanitaria de Santiago (IDIS), Universidade de Santiago de Compostela, Santiago de Compostela, Spain
| | - Triana Blanco-Pintos
- Oral Sciences Research Group, Special Needs Unit, Department of Surgery and Medical-Surgical Specialties, School of Medicine and Dentistry, Instituto de Investigación Sanitaria de Santiago (IDIS), Universidade de Santiago de Compostela, Santiago de Compostela, Spain
| | - Marta Relvas
- Instituto Universitário de Ciências da Saúde, Cooperativa de Ensino Superior Politécnico e Universitário (IUCS-CESPU), Unidade de Investigação em Patologia e Reabilitação Oral (UNIPRO), Gandra, Portugal
| | - Manuela Alonso-Sampedro
- Department of Internal Medicine and Clinical Epidemiology, Instituto de Investigación Sanitaria de Santiago (IDIS), Complejo Hospitalario Universitario, Santiago de Compostela, Spain
| | - Carlos Balsa-Castro
- Oral Sciences Research Group, Special Needs Unit, Department of Surgery and Medical-Surgical Specialties, School of Medicine and Dentistry, Instituto de Investigación Sanitaria de Santiago (IDIS), Universidade de Santiago de Compostela, Santiago de Compostela, Spain
| | - Inmaculada Tomás
- Oral Sciences Research Group, Special Needs Unit, Department of Surgery and Medical-Surgical Specialties, School of Medicine and Dentistry, Instituto de Investigación Sanitaria de Santiago (IDIS), Universidade de Santiago de Compostela, Santiago de Compostela, Spain
| |
Collapse
|
5
|
Waetjen LE, Crawford SL, Gajer P, Brooks MM, Gold EB, Reed BD, Hess R, Ravel J. Relationships between the vaginal microbiota and genitourinary syndrome of menopause symptoms in postmenopausal women: the Study of Women's Health Across the Nation. Menopause 2023; 30:1073-1084. [PMID: 37788422 PMCID: PMC10615695 DOI: 10.1097/gme.0000000000002263] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/05/2023]
Abstract
OBJECTIVE To describe vaginal microbiota classified by community state types (CST) in a diverse cohort of postmenopausal women and evaluate relationships among genitourinary syndrome of menopause (GSM) symptoms (vaginal dryness, vulvovaginal irritation, sexual pain, dysuria, urinary urgency), CSTs, estrogen, vaginal maturation index (VMI), and vaginal pH. METHODS In the Study of Women's Health Across the Nation, 1,320 women aged 60.4 to 72.5 years self-collected (2015-2017) vaginal samples analyzed for microbiota composition and structure (CSTs) using 16S rRNA gene amplicon sequencing, VMI, and pH. GSM symptoms were collected with self-administered questionnaires; interviewers elicited estrogen use and measured body mass index. Serum E2 and E1 were measured using high-performance liquid chromatography. We analyzed data using Pearson χ2 tests, analysis of variance, Kruskal-Wallis tests, and binomial logistic regression. RESULTS The most frequently occurring CST was low Lactobacillus species IV-C (49.8%); 36.4% of women had CSTs dominated by Lactobacillus species. More than half of the women with vaginal atrophy biomarkers (VMI <50 and pH >5) had CST IV-C0, whereas women using estrogen or with higher E1 and E2 levels had a higher prevalence of Lactobacillus crispatus -dominated CST I ( P values < 0.001). Sexual pain was associated with atrophy biomarkers and independently associated with Streptococcus species-dominated CST IV-C1 (odds ratio, 2.26; 95% confidence intervals, 1.20-4.23). For all other GSM symptoms, we found no consistent associations with E1 or E2 levels, atrophy biomarkers, or any CST. CONCLUSIONS Although close relationships exist among estrogen, CSTs, VMI, and pH, sexual pain was the only GSM symptom associated with the structure of vaginal microbiota and atrophy biomarkers.
Collapse
Affiliation(s)
- L Elaine Waetjen
- From the University of California Davis, School of Medicine, Sacramento, CA
| | - Sybil L Crawford
- Tan Chingfen Graduate School of Nursing, UMass Chan Medical School, Worcester, MA
| | - Pawel Gajer
- Institute for Genome Sciences, University of Maryland School of Medicine, Baltimore, MD
| | - Maria M Brooks
- Department of Statistics, University of Pittsburgh, Pittsburgh, PA
| | - Ellen B Gold
- From the University of California Davis, School of Medicine, Sacramento, CA
| | - Barbara D Reed
- School of Medicine, University of Michigan, Ann Arbor, MI
| | - Rachel Hess
- University of Utah, School of Medicine, Salt Lake City, UT
| | - Jacques Ravel
- Institute for Genome Sciences, University of Maryland School of Medicine, Baltimore, MD
| |
Collapse
|
6
|
Regueira-Iglesias A, Balsa-Castro C, Blanco-Pintos T, Tomás I. Critical review of 16S rRNA gene sequencing workflow in microbiome studies: From primer selection to advanced data analysis. Mol Oral Microbiol 2023; 38:347-399. [PMID: 37804481 DOI: 10.1111/omi.12434] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2023] [Revised: 09/01/2023] [Accepted: 09/14/2023] [Indexed: 10/09/2023]
Abstract
The multi-batch reanalysis approach of jointly reevaluating gene/genome sequences from different works has gained particular relevance in the literature in recent years. The large amount of 16S ribosomal ribonucleic acid (rRNA) gene sequence data stored in public repositories and information in taxonomic databases of the same gene far exceeds that related to complete genomes. This review is intended to guide researchers new to studying microbiota, particularly the oral microbiota, using 16S rRNA gene sequencing and those who want to expand and update their knowledge to optimise their decision-making and improve their research results. First, we describe the advantages and disadvantages of using the 16S rRNA gene as a phylogenetic marker and the latest findings on the impact of primer pair selection on diversity and taxonomic assignment outcomes in oral microbiome studies. Strategies for primer selection based on these results are introduced. Second, we identified the key factors to consider in selecting the sequencing technology and platform. The process and particularities of the main steps for processing 16S rRNA gene-derived data are described in detail to enable researchers to choose the most appropriate bioinformatics pipeline and analysis methods based on the available evidence. We then produce an overview of the different types of advanced analyses, both the most widely used in the literature and the most recent approaches. Several indices, metrics and software for studying microbial communities are included, highlighting their advantages and disadvantages. Considering the principles of clinical metagenomics, we conclude that future research should focus on rigorous analytical approaches, such as developing predictive models to identify microbiome-based biomarkers to classify health and disease states. Finally, we address the batch effect concept and the microbiome-specific methods for accounting for or correcting them.
Collapse
Affiliation(s)
- Alba Regueira-Iglesias
- Oral Sciences Research Group, Special Needs Unit, Department of Surgery and Medical-Surgical Specialties, School of Medicine and Dentistry, Universidade de Santiago de Compostela, Health Research Institute of Santiago de Compostela (IDIS), Santiago de Compostela, A Coruña, Spain
| | - Carlos Balsa-Castro
- Oral Sciences Research Group, Special Needs Unit, Department of Surgery and Medical-Surgical Specialties, School of Medicine and Dentistry, Universidade de Santiago de Compostela, Health Research Institute of Santiago de Compostela (IDIS), Santiago de Compostela, A Coruña, Spain
| | - Triana Blanco-Pintos
- Oral Sciences Research Group, Special Needs Unit, Department of Surgery and Medical-Surgical Specialties, School of Medicine and Dentistry, Universidade de Santiago de Compostela, Health Research Institute of Santiago de Compostela (IDIS), Santiago de Compostela, A Coruña, Spain
| | - Inmaculada Tomás
- Oral Sciences Research Group, Special Needs Unit, Department of Surgery and Medical-Surgical Specialties, School of Medicine and Dentistry, Universidade de Santiago de Compostela, Health Research Institute of Santiago de Compostela (IDIS), Santiago de Compostela, A Coruña, Spain
| |
Collapse
|
7
|
Doroftei B, Ilie OD, Armeanu T, Stoian IL, Anton N, Babici RG, Ilea C. A Narrative Review Discussing the Obstetric Repercussions Due to Alterations of Personalized Bacterial Sites Developed within the Vagina, Cervix, and Endometrium. J Clin Med 2023; 12:5069. [PMID: 37568471 PMCID: PMC10419759 DOI: 10.3390/jcm12155069] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Revised: 07/19/2023] [Accepted: 07/25/2023] [Indexed: 08/13/2023] Open
Abstract
BACKGROUND The reproductive tract microbiota that evolved as an integrative component has been studied intensively in the last decade. As a result, novel research, clinical opportunities, and perspectives have been derived following the close investigation of this microecological environment. This has paved the way for an update to and improvement of the management strategies and therapeutic approaches. However, obscurities, contradictions, and controversies arise regarding the ascension route from the vagina to the endometrium via the cervix, with finality in adverse obstetric outcomes. METHODS Starting from these considerations, we aimed to gather all existing data and information from four major academic databases (PubMed, ISI Web of Knowledge, Scopus, and ScienceDirect) published in the last 13 years (2010-2023) using a controlled vocabulary and dedicated terminology to enhance the coverage, identification, and sorting of potentially eligible studies. RESULTS Despite the high number of returned entries (n = 804), only a slight percentage (2.73%) of all manuscripts were deemed eligible following two rounds of evaluation. Cumulatively, a low level of Lactobacillus spp. and of other core microbiota members is mandatory, with a possible eubiosis-to-dysbiosis transition leading to an impairment of metabolic and endocrine network homeostasis. This transposes into a change in the pro-inflammatory landscape and activation of signaling pathways due to activity exerted by the bacterial lipopolysaccharides (LPSs)/endotoxins that further reflect a high risk of miscarriage in various stages. While the presence of some pathogenic entities may be suggestive of an adverse obstetric predisposition, there are still pros and cons of the role of specific strains, as only the vagina and cervix have been targeted as opposed to the endometrium, which recently started to be viewed as the key player in the vagina-cervix-endometrium route. Consequently, based on an individual's profile, diet, and regime, antibiotics and probiotics might be practical or not. CONCLUSIONS Resident bacteria have a dual facet and are beneficial for women's health, but, at the same time, relaying on the abundance, richness, and evenness that are definitory indexes standing as intermediaries of a miscarriage.
Collapse
Affiliation(s)
- Bogdan Doroftei
- Faculty of Medicine, University of Medicine and Pharmacy “Grigore T. Popa”, University Street No. 16, 700115 Iasi, Romania
- Clinical Hospital of Obstetrics and Gynecology “Cuza Voda”, Cuza Voda Street No. 34, 700038 Iasi, Romania
- Origyn Fertility Center, Palace Street No. 3C, 700032 Iasi, Romania
| | | | - Theodora Armeanu
- Faculty of Medicine, University of Medicine and Pharmacy “Grigore T. Popa”, University Street No. 16, 700115 Iasi, Romania
- Clinical Hospital of Obstetrics and Gynecology “Cuza Voda”, Cuza Voda Street No. 34, 700038 Iasi, Romania
- Origyn Fertility Center, Palace Street No. 3C, 700032 Iasi, Romania
| | - Irina-Liviana Stoian
- Faculty of Medicine, University of Medicine and Pharmacy “Grigore T. Popa”, University Street No. 16, 700115 Iasi, Romania
| | - Nicoleta Anton
- Faculty of Medicine, University of Medicine and Pharmacy “Grigore T. Popa”, University Street No. 16, 700115 Iasi, Romania
| | - Ramona-Geanina Babici
- Department of Genetics, University of Medicine and Pharmacy “Grigore T. Popa”, University Street No. 16, 700115 Iasi, Romania
| | - Ciprian Ilea
- Faculty of Medicine, University of Medicine and Pharmacy “Grigore T. Popa”, University Street No. 16, 700115 Iasi, Romania
- Clinical Hospital of Obstetrics and Gynecology “Cuza Voda”, Cuza Voda Street No. 34, 700038 Iasi, Romania
| |
Collapse
|
8
|
Regueira-Iglesias A, Vázquez-González L, Balsa-Castro C, Vila-Blanco N, Blanco-Pintos T, Tamames J, Carreira MJ, Tomás I. In silico evaluation and selection of the best 16S rRNA gene primers for use in next-generation sequencing to detect oral bacteria and archaea. MICROBIOME 2023; 11:58. [PMID: 36949474 PMCID: PMC10035280 DOI: 10.1186/s40168-023-01481-6] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/10/2021] [Accepted: 01/30/2023] [Indexed: 06/18/2023]
Abstract
BACKGROUND Sequencing has been widely used to study the composition of the oral microbiome present in various health conditions. The extent of the coverage of the 16S rRNA gene primers employed for this purpose has not, however, been evaluated in silico using oral-specific databases. This paper analyses these primers using two databases containing 16S rRNA sequences from bacteria and archaea found in the human mouth and describes some of the best primers for each domain. RESULTS A total of 369 distinct individual primers were identified from sequencing studies of the oral microbiome and other ecosystems. These were evaluated against a database reported in the literature of 16S rRNA sequences obtained from oral bacteria, which was modified by our group, and a self-created oral archaea database. Both databases contained the genomic variants detected for each included species. Primers were evaluated at the variant and species levels, and those with a species coverage (SC) ≥75.00% were selected for the pair analyses. All possible combinations of the forward and reverse primers were identified, with the resulting 4638 primer pairs also evaluated using the two databases. The best bacteria-specific pairs targeted the 3-4, 4-7, and 3-7 16S rRNA gene regions, with SC levels of 98.83-97.14%; meanwhile, the optimum archaea-specific primer pairs amplified regions 5-6, 3-6, and 3-6, with SC estimates of 95.88%. Finally, the best pairs for detecting both domains targeted regions 4-5, 3-5, and 5-9, and produced SC values of 95.71-94.54% and 99.48-96.91% for bacteria and archaea, respectively. CONCLUSIONS Given the three amplicon length categories (100-300, 301-600, and >600 base pairs), the primer pairs with the best coverage values for detecting oral bacteria were as follows: KP_F048-OP_R043 (region 3-4; primer pair position for Escherichia coli J01859.1: 342-529), KP_F051-OP_R030 (4-7; 514-1079), and KP_F048-OP_R030 (3-7; 342-1079). For detecting oral archaea, these were as follows: OP_F066-KP_R013 (5-6; 784-undefined), KP_F020-KP_R013 (3-6; 518-undefined), and OP_F114-KP_R013 (3-6; 340-undefined). Lastly, for detecting both domains jointly they were KP_F020-KP_R032 (4-5; 518-801), OP_F114-KP_R031 (3-5; 340-801), and OP_F066-OP_R121 (5-9; 784-1405). The primer pairs with the best coverage identified herein are not among those described most widely in the oral microbiome literature. Video Abstract.
Collapse
Affiliation(s)
- Alba Regueira-Iglesias
- Oral Sciences Research Group, Department of Surgery and Medical-Surgical Specialties, School of Medicine and Dentistry, Universidade de Santiago de Compostela, Health Research Institute Foundation of Santiago (FIDIS), C/ Entrerrios s/n, 15872 Santiago de Compostela, Spain
| | - Lara Vázquez-González
- Centro Singular de Investigación en Tecnoloxías Intelixentes and Departamento de Electrónica e Computación, Universidade de Santiago de Compostela, Health Research Institute Foundation of Santiago (FIDIS), Rúa de Jenaro de la Fuente, s/n, 15705 Santiago de Compostela, Spain
| | - Carlos Balsa-Castro
- Oral Sciences Research Group, Department of Surgery and Medical-Surgical Specialties, School of Medicine and Dentistry, Universidade de Santiago de Compostela, Health Research Institute Foundation of Santiago (FIDIS), C/ Entrerrios s/n, 15872 Santiago de Compostela, Spain
| | - Nicolás Vila-Blanco
- Centro Singular de Investigación en Tecnoloxías Intelixentes and Departamento de Electrónica e Computación, Universidade de Santiago de Compostela, Health Research Institute Foundation of Santiago (FIDIS), Rúa de Jenaro de la Fuente, s/n, 15705 Santiago de Compostela, Spain
| | - Triana Blanco-Pintos
- Oral Sciences Research Group, Department of Surgery and Medical-Surgical Specialties, School of Medicine and Dentistry, Universidade de Santiago de Compostela, Health Research Institute Foundation of Santiago (FIDIS), C/ Entrerrios s/n, 15872 Santiago de Compostela, Spain
| | - Javier Tamames
- Microbiome Analysis Laboratory, Systems Biology Department, Centro Nacional de Biotecnología (CNB)-CSIC, Madrid, Spain
| | - Maria José Carreira
- Centro Singular de Investigación en Tecnoloxías Intelixentes and Departamento de Electrónica e Computación, Universidade de Santiago de Compostela, Health Research Institute Foundation of Santiago (FIDIS), Rúa de Jenaro de la Fuente, s/n, 15705 Santiago de Compostela, Spain
| | - Inmaculada Tomás
- Oral Sciences Research Group, Department of Surgery and Medical-Surgical Specialties, School of Medicine and Dentistry, Universidade de Santiago de Compostela, Health Research Institute Foundation of Santiago (FIDIS), C/ Entrerrios s/n, 15872 Santiago de Compostela, Spain
| |
Collapse
|
9
|
Zouiouich S, Byrd DA, Hua X, Karwa S, Wan Y, Shi J, Humphrey GC, Ackermann GL, Knight R, Abnet CC, Vogtmann E, Sinha R. Stability of the Fecal and Oral Microbiome over 2 Years at -80°C for Multiple Collection Methods. Cancer Epidemiol Biomarkers Prev 2023; 32:444-451. [PMID: 36649143 PMCID: PMC10498478 DOI: 10.1158/1055-9965.epi-22-0883] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2022] [Revised: 11/18/2022] [Accepted: 01/11/2023] [Indexed: 01/18/2023] Open
Abstract
BACKGROUND In prospective cohorts, biological samples are generally stored over long periods before an adequate number of cases have accrued. We investigated the impact of sample storage at -80°C for 2 years on the stability of the V4 region of the 16S rRNA gene across seven different collection methods (i.e., no additive, 95% ethanol, RNAlater stabilization solution, fecal occult blood test cards, and fecal immunochemical test tubes for feces; OMNIgene ORAL tubes and Scope mouthwash for saliva) among 51 healthy volunteers. METHODS Intraclass correlation coefficients (ICC) were calculated for the relative abundance of the top three phyla, the 20 most abundant genera, three alpha-diversity metrics, and the first principal coordinates of three beta-diversity matrices. RESULTS The subject variability was much higher than the variability introduced by the sample collection type, and storage time. For fecal samples, microbial stability over 2 years was high across collection methods (range, ICCs = 0.70-0.99), except for the samples collected with no additive (range, ICCs = 0.23-0.83). For oral samples, most microbiome diversity measures were stable over time with ICCs above 0.74; however, ICCs for the samples collected with Scope mouthwash were lower for two alpha-diversity measures, Faith's phylogenetic diversity (0.23) and the observed number of operational taxonomic units (0.23). CONCLUSIONS Fecal and oral samples in most used collection methods are stable for microbiome analyses after 2 years at -80°C, except for fecal samples with no additive. IMPACT This study provides evidence that samples stored for an extended period from prospective studies are useful for microbiome analyses.
Collapse
Affiliation(s)
- Semi Zouiouich
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, Bethesda, Maryland
| | - Doratha A Byrd
- Department of Cancer Epidemiology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, Florida
| | - Xing Hua
- Fred Hutchinson Cancer Research Center, Seattle, Washington
| | - Smriti Karwa
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, Bethesda, Maryland
| | - Yunhu Wan
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, Bethesda, Maryland
| | - Jianxin Shi
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, Bethesda, Maryland
| | - Gregory C Humphrey
- Department of Pediatrics, University of California, San Diego, California
| | - Gail L Ackermann
- Department of Pediatrics, University of California, San Diego, California
| | - Rob Knight
- Department of Pediatrics, University of California, San Diego, California
| | - Christian C Abnet
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, Bethesda, Maryland
| | - Emily Vogtmann
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, Bethesda, Maryland
| | - Rashmi Sinha
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, Bethesda, Maryland
| |
Collapse
|
10
|
Temel HY, Kaymak Ö, Kaplan S, Bahcivanci B, Gkoutos GV, Acharjee A. Role of microbiota and microbiota-derived short-chain fatty acids in PDAC. Cancer Med 2023; 12:5661-5675. [PMID: 36205023 PMCID: PMC10028056 DOI: 10.1002/cam4.5323] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2022] [Revised: 09/08/2022] [Accepted: 09/23/2022] [Indexed: 02/05/2023] Open
Abstract
Pancreatic ductal adenocarcinoma (PDAC) is one of the most aggressive lethal diseases among other cancer types. Gut microbiome and its metabolic regulation play a crucial role in PDAC. Metabolic regulation in the gut is a complex process that involves microbiome and microbiome-derived short-chain fatty acids (SCFAs). SCFAs regulate inflammation, as well as lipid and glucose metabolism, through different pathways. This review aims to summarize recent developments in PDAC in the context of gut and oral microbiota and their associations with short-chain fatty acid (SCFA). In addition to this, we discuss possible therapeutic applications using microbiota in PDAC.
Collapse
Affiliation(s)
- Hülya Yılmaz Temel
- Department of Bioengineering, Faculty of EngineeringEge UniversityIzmirTurkey
| | - Öznur Kaymak
- Department of Bioengineering, Faculty of EngineeringEge UniversityIzmirTurkey
| | - Seren Kaplan
- Department of Bioengineering, Faculty of EngineeringEge UniversityIzmirTurkey
| | - Basak Bahcivanci
- Institute of Cancer and Genomic Sciences, University of BirminghamBirminghamUK
| | - Georgios V. Gkoutos
- Institute of Cancer and Genomic Sciences, University of BirminghamBirminghamUK
- National Institute for Health Research Surgical Reconstruction, Queen Elizabeth Hospital BirminghamBirminghamUK
- MRC Health Data Research UK (HDR UK)BirminghamUK
| | - Animesh Acharjee
- Institute of Cancer and Genomic Sciences, University of BirminghamBirminghamUK
- National Institute for Health Research Surgical Reconstruction, Queen Elizabeth Hospital BirminghamBirminghamUK
- MRC Health Data Research UK (HDR UK)BirminghamUK
| |
Collapse
|
11
|
Chen S, Xue X, Zhang Y, Zhang H, Huang X, Chen X, Deng G, Luo S, Gao J. Vaginal Atopobium is Associated with Spontaneous Abortion in the First Trimester: a Prospective Cohort Study in China. Microbiol Spectr 2022; 10:e0203921. [PMID: 35311570 PMCID: PMC9045190 DOI: 10.1128/spectrum.02039-21] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2021] [Accepted: 01/14/2022] [Indexed: 11/20/2022] Open
Abstract
Spontaneous abortion (SA) has received more and more attention in light of its increasing incidence. However, the causes and pathogenesis of SA remain largely unknown, especially for those without any pathological features. In this study, we characterized the vaginal microbiota diversity and composition of pregnant women in their first trimester and evaluated the association between the vaginal microbiota and SA before 12 weeks of gestation. Participants' bacterial profiles were analyzed by 16S rRNA gene sequencing in the V3-V4 regions at 5-8 weeks of gestation. A total of 48 patients with SA at 12 weeks of gestation were included as the study group, while 116 women with normal pregnancies (NPs) were included as a control group. The results indicated that the richness of the vaginal microbiome in SA patients was higher (Chao1, P < 0.05) and different in composition relative to that of women with NPs (unweighted UniFrac, R = 0.15, P < 0.01; binary Jaccard, R = 0.15, P < 0.01). Furthermore, the genus Apotobium was significantly enriched in SA patients. An extreme gradient-boosting (XGBoost) analysis was able to classify Atopobium-induced SA more reliably (area under the receiver operating characteristic curve, 0.69; threshold, 0.01%). Moreover, after adjusting for potential confounders, the results showed a robust association between Apotobium and SA (as a categorical variable [<0.01%]; adjusted odds ratio, 2.9; 95% confidence interval, 1.3 to 6.5; P = 0.01). In conclusion, higher vaginal Apotobium levels were associated with SA in the first trimester. IMPORTANCE Spontaneous abortion (SA) is the most common adverse pregnancy outcome in the first trimester. The causal drivers of SA have become a substantial challenge to reveal and overcome. We hypothesize that vaginal microbial dysbiosis is associated with SA, as it was related to several female reproductive disorders in previous studies. In our study, we characterized the vaginal microbiota of patients with SA at 12 weeks of gestation as the study group, and women with normal pregnancies were enrolled as a control group. Generally, significant differences were discovered in the vaginal microbiota between the two groups. Our study also revealed that Apotobium may play an important role in the pathogenesis of SA. To our knowledge, this study is the first detailed elaboration of the vaginal microbiota composition and vaginal Apotobium in association with SA. We believe that our findings will inspire more researchers to consider dynamic changes in the vaginal microbiota as critical features for further studies of nosogenesis not only for SA but also other reproductive diseases.
Collapse
Affiliation(s)
- Si Chen
- The First Clinical College, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, China
- Lingnan Medical Research Center of Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, China
| | - Xiaomeng Xue
- The First Clinical College, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, China
- Lingnan Medical Research Center of Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, China
| | - Yingxuan Zhang
- The First Clinical College, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, China
- Lingnan Medical Research Center of Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, China
| | - Huimin Zhang
- The First Clinical College, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, China
- Lingnan Medical Research Center of Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, China
| | - Xuge Huang
- The First Clinical College, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, China
- Lingnan Medical Research Center of Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, China
| | - Xiaofeng Chen
- The First Clinical College, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, China
- Lingnan Medical Research Center of Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, China
| | - Gaopi Deng
- Department of Gynecology, The First Affiliated Hospital of Guangzhou University of Chinese, Guangzhou, Guangdong China
| | - Songping Luo
- Department of Gynecology, The First Affiliated Hospital of Guangzhou University of Chinese, Guangzhou, Guangdong China
| | - Jie Gao
- Department of Gynecology, The First Affiliated Hospital of Guangzhou University of Chinese, Guangzhou, Guangdong China
| |
Collapse
|
12
|
Practical Opportunities for Microbiome Analyses and Bioinformatics in Poultry Processing. Poult Sci 2022; 101:101787. [PMID: 35346493 PMCID: PMC9079351 DOI: 10.1016/j.psj.2022.101787] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2022] [Accepted: 02/05/2022] [Indexed: 11/21/2022] Open
|
13
|
Zhang Y, Chen S, Chen X, Zhang H, Huang X, Xue X, Guo Y, Ruan X, Liu X, Deng G, Luo S, Gao J. Association Between Vaginal Gardnerella and Tubal Pregnancy in Women With Symptomatic Early Pregnancies in China: A Nested Case-Control Study. Front Cell Infect Microbiol 2022; 11:761153. [PMID: 35111691 PMCID: PMC8801712 DOI: 10.3389/fcimb.2021.761153] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2021] [Accepted: 10/20/2021] [Indexed: 12/01/2022] Open
Abstract
The early diagnosis and treatment of ectopic pregnancy (EP) remains a major challenge. Despite a known link between vaginal microbiota and female reproductive health, few studies have focused on the association between vaginal microbiota and pregnancy location. This nested case-control study aimed to characterize the vaginal microbiota in tubal pregnancy (TP) among symptomatic women in early pregnancy. Women with symptomatic early pregnancy of unknown location (PUL) were included in this study. 16S rDNA gene sequencing was performed to assess vaginal microbial diversity and relative abundance. Machine learning and multivariate logistic regression were also used to evaluate the association between Gardnerella and TP. The results indicate that the vaginal microbiome in TP was more diverse (Shannon, p < 0.05) and was different in composition to that of women with intrauterine pregnancy (IUP) (weighted Unifrac, R = 0.08, p = 0.01). The genus Gardnerella was significantly enriched in TP. The XGBoost analysis was able to classify Gardnerella-induced TP more reliably (AUC = 0.621). Moreover, after adjusting potential confounders, our results indicate a robust association between Gardnerella and TP (as a continuous variable, adjusted OR: 12.0, 95% CI: 2.1–67.4, p < 0.01; as a categorical variable (≥0.85%), and adjusted OR: 4.2, 95% CI: 2.0–8.8, p < 0.01). In conclusion, we found that higher virginal Gardnerella levels were associated with TP in women with symptomatic early pregnancy.
Collapse
Affiliation(s)
- Yingxuan Zhang
- The First Clinical College, Guangzhou University of Chinese Medicine, Guangzhou, China
- Lingnan Medical Research Center, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Si Chen
- The First Clinical College, Guangzhou University of Chinese Medicine, Guangzhou, China
- Lingnan Medical Research Center, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Xiaofeng Chen
- The First Clinical College, Guangzhou University of Chinese Medicine, Guangzhou, China
- Lingnan Medical Research Center, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Huimin Zhang
- The First Clinical College, Guangzhou University of Chinese Medicine, Guangzhou, China
- Lingnan Medical Research Center, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Xuge Huang
- The First Clinical College, Guangzhou University of Chinese Medicine, Guangzhou, China
- Lingnan Medical Research Center, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Xiaomeng Xue
- The First Clinical College, Guangzhou University of Chinese Medicine, Guangzhou, China
- Lingnan Medical Research Center, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Yinan Guo
- The First Clinical College, Guangzhou University of Chinese Medicine, Guangzhou, China
- Lingnan Medical Research Center, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Xiaofeng Ruan
- The First Clinical College, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Xiaorong Liu
- The First Clinical College, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Gaopi Deng
- Department of Gynecology, The First Affiliated Hospital of Guangzhou University of Chinese, Guangzhou, China
| | - Songping Luo
- Department of Gynecology, The First Affiliated Hospital of Guangzhou University of Chinese, Guangzhou, China
- *Correspondence: Songping Luom, ; Jie Gao,
| | - Jie Gao
- Department of Gynecology, The First Affiliated Hospital of Guangzhou University of Chinese, Guangzhou, China
- *Correspondence: Songping Luom, ; Jie Gao,
| |
Collapse
|
14
|
Ruan XF, Zhang YX, Chen S, Liu XR, Zhu FF, Huang YX, Liu XJ, Luo SP, Deng GP, Gao J. Non- Lactobacillus-Dominated Vaginal Microbiota Is Associated With a Tubal Pregnancy in Symptomatic Chinese Women in the Early Stage of Pregnancy: A Nested Case-Control Study. Front Cell Infect Microbiol 2021; 11:659505. [PMID: 34307190 PMCID: PMC8294389 DOI: 10.3389/fcimb.2021.659505] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2021] [Accepted: 05/04/2021] [Indexed: 12/02/2022] Open
Abstract
The features of the vaginal microbiota (VM) community can reflect health status, and they could become new biomarkers for disease diagnosis. During pregnancy, domination of bacteria of the genus Lactobacillus in the VM community is regarded as a keystone because they stabilize the VM by producing antimicrobial compounds and competing adhesion. An altered VM composition provides a marker for adverse pregnancy outcomes. This nested case–control study aimed to characterize the VM in women with a tubal pregnancy (TP) presenting with pain and/or uterine bleeding in early pregnancy. Chinese women with a symptomatic early pregnancy of unknown location were the study cohort. 16S rDNA gene-sequencing of V3–V4 variable regions was done to assess the diversity, structures, taxonomic biomarkers, and classification of the VM community. The primary outcome was the location of the early pregnancy. The VM community in women with a TP showed higher diversity (PD-whole-tree, median: 8.26 vs. 7.08, P = 0.047; Shannon Diversity Index, median: 1.43 vs 0.99, P = 0.03) and showed different structures to those in women with an intrauterine pregnancy (IUP) (R = 0.23, P < 0.01). Bacteria of the genus Lactobacillus were significantly enriched in the IUP group, whereas bacteria of the genera Gardnerella and Prevotella were significantly enriched in the TP group. Lactobacillus abundance could be used to classify the pregnancy location (AUC = 0.81). Non-Lactobacillus-dominated microbiota (≤ 0.85% Lactobacillus) was significantly associated with a TP (adjusted odds ratio: 4.42, 95% confidence interval: 1.33 to 14.71, P = 0.02). In conclusion, among women with a symptomatic early pregnancy, a higher diversity and lower abundance of Lactobacillus in the VM is associated with a TP.
Collapse
Affiliation(s)
- Xiao-Feng Ruan
- First Clinical Medical College, Guangzhou University of Chinese Medicine, Guangzhou, China.,Department of Gynecology, Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Ying-Xuan Zhang
- First Clinical Medical College, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Si Chen
- First Clinical Medical College, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Xiao-Rong Liu
- First Clinical Medical College, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Fang-Fang Zhu
- First Clinical Medical College, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Yan-Xi Huang
- Department of Gynecology, First Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Xiao-Jing Liu
- Department of Gynecology, First Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Song-Ping Luo
- Department of Gynecology, First Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Gao-Pi Deng
- Department of Gynecology, First Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Jie Gao
- Department of Gynecology, First Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China
| |
Collapse
|
15
|
Relvas M, Regueira-Iglesias A, Balsa-Castro C, Salazar F, Pacheco JJ, Cabral C, Henriques C, Tomás I. Relationship between dental and periodontal health status and the salivary microbiome: bacterial diversity, co-occurrence networks and predictive models. Sci Rep 2021; 11:929. [PMID: 33441710 PMCID: PMC7806737 DOI: 10.1038/s41598-020-79875-x] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2020] [Accepted: 12/08/2020] [Indexed: 12/13/2022] Open
Abstract
The present study used 16S rRNA gene amplicon sequencing to assess the impact on salivary microbiome of different grades of dental and periodontal disease and the combination of both (hereinafter referred to as oral disease), in terms of bacterial diversity, co-occurrence network patterns and predictive models. Our scale of overall oral health was used to produce a convenience sample of 81 patients from 270 who were initially recruited. Saliva samples were collected from each participant. Sequencing was performed in Illumina MiSeq with 2 × 300 bp reads, while the raw reads were processed according to the Mothur pipeline. The statistical analysis of the 16S rDNA sequencing data at the species level was conducted using the phyloseq, DESeq2, Microbiome, SpiecEasi, igraph, MixOmics packages. The simultaneous presence of dental and periodontal pathology has a potentiating effect on the richness and diversity of the salivary microbiota. The structure of the bacterial community in oral health differs from that present in dental, periodontal or oral disease, especially in high grades. Supragingival dental parameters influence the microbiota’s abundance more than subgingival periodontal parameters, with the former making a greater contribution to the impact that oral health has on the salivary microbiome. The possible keystone OTUs are different in the oral health and disease, and even these vary between dental and periodontal disease: half of them belongs to the core microbiome and are independent of the abundance parameters. The salivary microbiome, involving a considerable number of OTUs, shows an excellent discriminatory potential for distinguishing different grades of dental, periodontal or oral disease; considering the number of predictive OTUs, the best model is that which predicts the combined dental and periodontal status.
Collapse
Affiliation(s)
- M Relvas
- Institute of Research and Advanced Training in Health Sciences and Tecnologies (IINFACTS), IUCS-Cespu-Instituto Universitário de Ciencias da Saúde, Gandra, Paredes, Portugal
| | - A Regueira-Iglesias
- Oral Sciences Research Group, Special Needs Unit, Department of Surgery and Medical-Surgical Specialties, School of Medicine and Dentistry, Health Research Institute of Santiago (IDIS), Universidade de Santiago de Compostela, Galicia, 15872, Santiago de Compostela, Spain
| | - C Balsa-Castro
- Oral Sciences Research Group, Special Needs Unit, Department of Surgery and Medical-Surgical Specialties, School of Medicine and Dentistry, Health Research Institute of Santiago (IDIS), Universidade de Santiago de Compostela, Galicia, 15872, Santiago de Compostela, Spain
| | - F Salazar
- Institute of Research and Advanced Training in Health Sciences and Tecnologies (IINFACTS), IUCS-Cespu-Instituto Universitário de Ciencias da Saúde, Gandra, Paredes, Portugal
| | - J J Pacheco
- Institute of Research and Advanced Training in Health Sciences and Tecnologies (IINFACTS), IUCS-Cespu-Instituto Universitário de Ciencias da Saúde, Gandra, Paredes, Portugal
| | - C Cabral
- Institute of Research and Advanced Training in Health Sciences and Tecnologies (IINFACTS), IUCS-Cespu-Instituto Universitário de Ciencias da Saúde, Gandra, Paredes, Portugal
| | - C Henriques
- Institute of Research and Advanced Training in Health Sciences and Tecnologies (IINFACTS), IUCS-Cespu-Instituto Universitário de Ciencias da Saúde, Gandra, Paredes, Portugal
| | - I Tomás
- Oral Sciences Research Group, Special Needs Unit, Department of Surgery and Medical-Surgical Specialties, School of Medicine and Dentistry, Health Research Institute of Santiago (IDIS), Universidade de Santiago de Compostela, Galicia, 15872, Santiago de Compostela, Spain.
| |
Collapse
|
16
|
Abstract
Evidence on the role of the oral microbiome in health and disease is changing the way we understand, diagnose, and treat ailments. Numerous studies on diseases affecting the oral cavity have revealed a large amount of data that is invaluable for the advancements in diagnosing and treating these diseases. However, the clinical translation of most of these exploratory data is stalled by variable methodology between studies and non-uniform reporting of the data.Understanding the key areas that are gateways to bias in microbiome studies is imperative to overcome this challenge faced by oral microbiome research. Bias can be multifactorial and may be introduced in a microbiome research study during the formulation of the study design, sample collection and storage, or the sample processing protocols before sequencing. This chapter summarizes the recommendations from literature to eliminate bias in the microbiome research studies and to ensure the reproducibility of the microbiome research data.
Collapse
Affiliation(s)
- Divya Gopinath
- Oral Diagnostic & Surgical Sciences Department, School of Dentistry, International Medical University, Kuala Lumpur, Malaysia.
| | - Rohit Kunnath Menon
- Clinical Dentistry (Prosthodontics), School of Dentistry, International Medical University, Kuala Lumpur, Malaysia
| |
Collapse
|
17
|
Byrd DA, Sinha R, Hoffman KL, Chen J, Hua X, Shi J, Chia N, Petrosino J, Vogtmann E. Comparison of Methods To Collect Fecal Samples for Microbiome Studies Using Whole-Genome Shotgun Metagenomic Sequencing. mSphere 2020; 5:e00827-19. [PMID: 32250964 PMCID: PMC7045388 DOI: 10.1128/msphere.00827-19] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2019] [Accepted: 02/12/2020] [Indexed: 12/16/2022] Open
Abstract
Few previous studies have assessed stability and "gold-standard" concordance of fecal sample collection methods for whole-genome shotgun metagenomic sequencing (WGSS), an increasingly popular method for studying the gut microbiome. We used WGSS data to investigate ambient temperature stability and putative gold-standard concordance of microbial profiles in fecal samples collected and stored using fecal occult blood test (FOBT) cards, fecal immunochemical test (FIT) tubes, 95% ethanol, or RNAlater. Among 15 Mayo Clinic employees, for each collection method, we calculated intraclass correlation coefficients (ICCs) to estimate stability of fecal microbial profiles after storage for 4 days at ambient temperature and concordance with immediately frozen, no-solution samples (i.e., the putative gold standard). ICCs were estimated for multiple metrics, including relative abundances of select phyla, species, KEGG k-genes (representing any coding sequence that had >70% identity and >70% query coverage with respect to a known KEGG ortholog), KEGG modules, and KEGG pathways; species and k-gene alpha diversity; and Bray-Curtis and Jaccard species beta diversity. ICCs for microbial profile stability were excellent (≥90%) for fecal samples collected via most of the collection methods, except those preserved in 95% ethanol. Concordance with the immediately frozen, no-solution samples varied for all collection methods, but the number of observed species and the beta diversity metrics tended to have higher concordance than other metrics. Our findings, taken together with previous studies and feasibility considerations, indicated that FOBT cards, FIT tubes, and RNAlater are acceptable choices for fecal sample collection methods in future WGSS studies.IMPORTANCE A major direction for future microbiome research is implementation of fecal sample collections in large-scale, prospective epidemiologic studies. Studying microbiome-disease associations likely requires microbial data to be pooled from multiple studies. Our findings suggest collection methods that are most optimal to be used standardly across future WGSS microbiome studies.
Collapse
Affiliation(s)
- Doratha A Byrd
- Metabolic Epidemiology Branch, Division of Cancer Epidemiology & Genetics, National Cancer Institute, National Institutes of Health, Bethesda, Maryland, USA
| | - Rashmi Sinha
- Metabolic Epidemiology Branch, Division of Cancer Epidemiology & Genetics, National Cancer Institute, National Institutes of Health, Bethesda, Maryland, USA
| | - Kristi L Hoffman
- Alkek Center for Metagenomics and Microbiome Research, Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, Texas, USA
| | - Jun Chen
- Microbiome Program, Center for Individualized Medicine, Mayo Clinic, Rochester, Minnesota, USA
- Health Sciences Research, Mayo Clinic, Rochester, Minnesota, USA
| | - Xing Hua
- Biostatistics Branch, Division of Cancer Epidemiology & Genetics, National Cancer Institute, Bethesda, Maryland, USA
| | - Jianxin Shi
- Biostatistics Branch, Division of Cancer Epidemiology & Genetics, National Cancer Institute, Bethesda, Maryland, USA
| | - Nicholas Chia
- Microbiome Program, Center for Individualized Medicine, Mayo Clinic, Rochester, Minnesota, USA
- Health Sciences Research, Mayo Clinic, Rochester, Minnesota, USA
- Department of Surgery, Mayo Clinic, Rochester, Minnesota, USA
- Biomedical Engineering and Physiology, Mayo Clinic, Rochester, Minnesota, USA
| | - Joseph Petrosino
- Alkek Center for Metagenomics and Microbiome Research, Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, Texas, USA
- Human Genome Sequencing Center, Baylor College of Medicine, Houston, Texas, USA
| | - Emily Vogtmann
- Metabolic Epidemiology Branch, Division of Cancer Epidemiology & Genetics, National Cancer Institute, National Institutes of Health, Bethesda, Maryland, USA
| |
Collapse
|
18
|
Feye KM, Thompson DR, Rothrock MJ, Kogut MH, Ricke SC. Poultry processing and the application of microbiome mapping. Poult Sci 2020; 99:678-688. [PMID: 32029154 PMCID: PMC7587767 DOI: 10.1016/j.psj.2019.12.019] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2019] [Indexed: 01/28/2023] Open
Abstract
Chicken is globally one of the most popular food animals. However, it is also one of the major reservoirs for foodborne pathogens, annually resulting in continued morbidity and mortality incidences worldwide. In an effort to reduce the threat of foodborne disease, the poultry industry has implemented a multifaceted antimicrobial program that incorporates not only chemical compounds, but also extensive amounts of water application and pathogen monitoring. Unfortunately, the pathogen detection methods currently used by the poultry industry lack speed, relying on microbiological plate methods and molecular detection systems that take time and lack precision. In many cases, the time to data acquisition can take 12 to 24 h. This is problematic if shorter-term answers are required which is becoming more likely as the public demand for chicken meat is only increasing, leading to new pressures to increase line speed. Therefore, new innovations in detection methods must occur to mitigate the risk of foodborne pathogens that could result from faster slaughter and processing speeds. Future technology will have 2 tracks: rapid methods that are meant to detect pathogens and indicator organisms within a few hours, and long-term methods that use microbiome mapping to evaluate sanitation and antimicrobial efficacy. Together, these methods will provide rapid, comprehensive data capable of being applied in both risk-assessment algorithms and used by management to safeguard the public.
Collapse
Affiliation(s)
- K M Feye
- Southern Plains Agricultural Research Center, USDA-ARS, Athens, TX 30605
| | - D R Thompson
- Department of Computer Science and Engineering, University of Arkansas, Fayetteville, AR 72704
| | - M J Rothrock
- US National Poultry Research Center, Egg Safety and Quality Research, USDA-ARS, Athens, GA 30605
| | - M H Kogut
- Southern Plains Agricultural Research Center, USDA-ARS, Athens, TX 30605
| | - S C Ricke
- Center for Food Safety, Department of Food Science, University of Arkansas, Fayetteville, AR 72704.
| |
Collapse
|
19
|
Bains M, Laney C, Wolfe AE, Orr M, Waschek JA, Ericsson AC, Dorsam GP. Vasoactive Intestinal Peptide Deficiency Is Associated With Altered Gut Microbiota Communities in Male and Female C57BL/6 Mice. Front Microbiol 2019; 10:2689. [PMID: 31849864 PMCID: PMC6900961 DOI: 10.3389/fmicb.2019.02689] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2019] [Accepted: 11/06/2019] [Indexed: 12/13/2022] Open
Abstract
Vasoactive intestinal peptide (VIP) is crucial for gastrointestinal tract (GIT) health. VIP sustains GIT homeostasis through maintenance of the intestinal epithelial barrier and acts as a potent anti-inflammatory mediator that contributes to gut bacterial tolerance. Based on these biological functions by VIP, we hypothesized that its deficiency would alter gut microbial ecology. To this end, fecal samples from male and female VIP+/+, VIP+/-, and VIP-/- littermates (n = 47) were collected and 16S rRNA sequencing was conducted. Our data revealed significant changes in bacterial composition, biodiversity, and weight loss from VIP-/- mice compared to VIP+/+ and VIP+/- littermates, irrespective of sex. The gut bacteria compositional changes observed in VIP-/- mice was consistent with gut microbial structure changes reported for certain inflammatory and autoimmune disorders. Moreover, predicted functional changes by PICRUSt software suggested an energy surplus within the altered microbiota from VIP-/- mice. These data support that VIP plays an important role in maintaining microbiota balance, biodiversity, and GIT function, and its genetic removal results in significant gut microbiota restructuring and weight loss.
Collapse
Affiliation(s)
- Manpreet Bains
- Department of Microbiological Sciences, College of Agriculture, Food Systems and Natural Resources, North Dakota State University, Fargo, ND, United States
| | - Caleb Laney
- Department of Microbiological Sciences, College of Agriculture, Food Systems and Natural Resources, North Dakota State University, Fargo, ND, United States
| | - Annie E. Wolfe
- Metagenomics Center, Department of Veterinary Pathobiology, College of Veterinary Medicine, University of Missouri, Columbia, MO, United States
| | - Megan Orr
- Department of Statistics, College of Science and Math, North Dakota State University, Fargo, ND, United States
| | - James A. Waschek
- Intellectual and Developmental Disabilities Research Center, Department of Psychiatry and Biobehavioral Sciences, Semel Institute for Neuroscience and Human Behavior/Neuropsychiatric Institute, University of California, Los Angeles, Los Angeles, CA, United States
| | - Aaron C. Ericsson
- Metagenomics Center, Department of Veterinary Pathobiology, College of Veterinary Medicine, University of Missouri, Columbia, MO, United States
| | - Glenn P. Dorsam
- Department of Microbiological Sciences, College of Agriculture, Food Systems and Natural Resources, North Dakota State University, Fargo, ND, United States
| |
Collapse
|
20
|
Renson A, Herd P, Dowd JB. Sick Individuals and Sick (Microbial) Populations: Challenges in Epidemiology and the Microbiome. Annu Rev Public Health 2019; 41:63-80. [PMID: 31635533 DOI: 10.1146/annurev-publhealth-040119-094423] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
The human microbiome represents a new frontier in understanding the biology of human health. While epidemiology in this area is still in its infancy, its scope will likely expand dramatically over the coming years. To rise to the challenge, we argue that epidemiology should capitalize on its population perspective as a critical complement to molecular microbiome research, allowing for the illumination of contextual mechanisms that may vary more across populations rather than among individuals. We first briefly review current research on social context and the gut microbiome, focusing specifically on socioeconomic status (SES) and race/ethnicity. Next, we reflect on the current state of microbiome epidemiology through the lens of one specific area, the association of the gut microbiome and metabolic disorders. We identify key methodological shortcomings of current epidemiological research in this area, including extensive selection bias, the use of noncompositionally robust measures, and a lack of attention to social factors as confounders or effect modifiers.
Collapse
Affiliation(s)
- Audrey Renson
- Department of Epidemiology, Gillings School of Global Public Health, University of North Carolina, Chapel Hill, North Carolina 27599, USA;
| | - Pamela Herd
- McCourt School of Public Policy, Georgetown University, Washington, DC 20057, USA;
| | - Jennifer B Dowd
- Department of Global Health and Social Medicine, King's College London, London WC2B 4BG, United Kingdom; .,Current affiliation: Leverhulme Center for Demographic Science, University of Oxford, Oxford OX1 1JD, United Kingdom;
| |
Collapse
|
21
|
Gordon JH, LaMonte MJ, Genco RJ, Zhao J, Li L, Hovey KM, Tsompana M, Buck MJ, Andrews CA, Mcskimming DI, Zheng W, Sun Y, Wactawski-Wende J. Is the Oral Microbiome Associated with Blood Pressure in Older Women? High Blood Press Cardiovasc Prev 2019; 26:217-225. [PMID: 31236901 DOI: 10.1007/s40292-019-00322-8] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2019] [Accepted: 06/14/2019] [Indexed: 12/14/2022] Open
Abstract
INTRODUCTION A possible role of the oral microbiome, specifically oral nitrate reducing flora, in blood pressure (BP) homeostasis, if proven etiologic in nature, could lead to novel mechanism-based therapy to improve hypertension prevention and control. AIM This cross-sectional study characterized and compared the oral microbiome between four study groups based on BP status among 446 postmenopausal women aged 53-82 years. METHODS Three study groups were not taking hypertension medication and were separated based on BP, as follows: normal BP (systolic < 120 and diastolic < 80; N = 179), elevated BP/Stage I hypertension (systolic 120-139 or diastolic 80-90; N = 106), Stage II hypertension (systolic > 140 or diastolic > 90; N = 42). The forth group consisted of anyone taking hypertension medications, regardless of BP (N = 119). Subgingival microbiome composition was determined using 16S rRNA sequencing with the Illumina MiSeq platform. Kruskal-Wallis tests were used to compare species-level relative abundance of bacterial operational taxonomic units across the four groups. RESULTS Sixty-five bacterial species demonstrated significant differences in relative abundance in women with elevated BP or using hypertension medication as compared to those with normal BP. After correction for multiple testing, two species, Prevotella oral (species 317) and Streptococcus oralis, remained significant and were lower in abundance among women taking antihypertension medications compared to those with normal BP (corrected P < 0.05). CONCLUSIONS These data provide novel description of oral subgingival bacteria grouped according to BP status. Additional larger studies including functional analysis and prospective designs will help further assess the potential role of the oral microbiome in BP regulation and hypertension.
Collapse
Affiliation(s)
- Joshua H Gordon
- Department of Epidemiology and Environmental Health, School of Public Health and Health Professions, University at Buffalo, 273 Farber Hall, 3435 Main Street, Buffalo, NY, 14214, USA
| | - Michael J LaMonte
- Department of Epidemiology and Environmental Health, School of Public Health and Health Professions, University at Buffalo, 273 Farber Hall, 3435 Main Street, Buffalo, NY, 14214, USA.
| | - Robert J Genco
- Department of Oral Biology, School of Dental Medicine, UB Microbiome Center, University at Buffalo, Buffalo, NY, USA
| | - Jiwei Zhao
- Department of Biostatistics, School of Public Health and Health Professions, University at Buffalo, Buffalo, USA
| | - Lu Li
- Department of Computer and Engineering Science, NY State Center of Excellence in Bioinformatics and Life Sciences, University at Buffalo, Buffalo, NY, USA
| | - Kathleen M Hovey
- Department of Epidemiology and Environmental Health, School of Public Health and Health Professions, University at Buffalo, 273 Farber Hall, 3435 Main Street, Buffalo, NY, 14214, USA
| | - Maria Tsompana
- Department of Biochemistry, NY State Center of Excellence in Bioinformatics and Life Sciences, University at Buffalo, Buffalo, NY, USA
| | - Michael J Buck
- Department of Biochemistry, NY State Center of Excellence in Bioinformatics and Life Sciences, University at Buffalo, Buffalo, NY, USA
| | - Christopher A Andrews
- Department of Ophthalmology, University of Michigan Medical School, Ann Arbor, MI, USA
| | - Daniel I Mcskimming
- Genome Environment, and Microbiome Center of Excellence, University at Buffalo, Buffalo, NY, USA
| | - Wei Zheng
- Department of Computer and Engineering Science, NY State Center of Excellence in Bioinformatics and Life Sciences, University at Buffalo, Buffalo, NY, USA
| | - Yijun Sun
- Department of Computer and Engineering Science, NY State Center of Excellence in Bioinformatics and Life Sciences, University at Buffalo, Buffalo, NY, USA
| | - Jean Wactawski-Wende
- Department of Epidemiology and Environmental Health, School of Public Health and Health Professions, University at Buffalo, 273 Farber Hall, 3435 Main Street, Buffalo, NY, 14214, USA
| |
Collapse
|
22
|
Micciche AC, Foley SL, Pavlidis HO, McIntyre DR, Ricke SC. A Review of Prebiotics Against Salmonella in Poultry: Current and Future Potential for Microbiome Research Applications. Front Vet Sci 2018; 5:191. [PMID: 30159318 PMCID: PMC6104193 DOI: 10.3389/fvets.2018.00191] [Citation(s) in RCA: 63] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2018] [Accepted: 07/25/2018] [Indexed: 12/13/2022] Open
Abstract
Prebiotics are typically fermentable feed additives that can directly or indirectly support a healthy intestinal microbiota. Prebiotics have gained increasing attention in the poultry industry as wariness toward antibiotic use has grown in the face of foodborne pathogen drug resistance. Their potential as feed additives to improve growth, promote beneficial gastrointestinal microbiota, and reduce human-associated pathogens, has been well documented. However, their mechanisms remain relatively unknown. Prebiotics increasing short chain fatty acid (SCFA) production in the cecum have long since been considered a potential source for pathogen reduction. It has been previously concluded that prebiotics can improve the safety of poultry products by promoting the overall health and well-being of the bird as well as provide for an intestinal environment that is unfavorable for foodborne pathogens such as Salmonella. To better understand the precise benefit conferred by several prebiotics, "omic" technologies have been suggested and utilized. The data acquired from emerging technologies of microbiomics and metabolomics may be able to generate a more comprehensive detailed understanding of the microbiota and metabolome in the poultry gastrointestinal tract. This understanding, in turn, may allow for improved administration and optimization of prebiotics to prevent foodborne illness as well as elucidate unknown mechanisms of prebiotic actions. This review explores the use of prebiotics in poultry, their impact on gut Salmonella populations, and how utilization of next-generation technologies can elucidate the underlying mechanisms of prebiotics as feed additives.
Collapse
Affiliation(s)
- Andrew C. Micciche
- Department of Food Science, Center for Food Safety, University of ArkansasFayetteville, AR, United States
| | - Steven L. Foley
- Division of Microbiology, National Center for Toxicological Research, U.S. Food and Drug AdministrationJefferson, AR, United States
| | | | | | - Steven C. Ricke
- Department of Food Science, Center for Food Safety, University of ArkansasFayetteville, AR, United States
| |
Collapse
|
23
|
Goux HJ, Chavan D, Crum M, Kourentzi K, Willson RC. Akkermansia muciniphila as a Model Case for the Development of an Improved Quantitative RPA Microbiome Assay. Front Cell Infect Microbiol 2018; 8:237. [PMID: 30050871 PMCID: PMC6052657 DOI: 10.3389/fcimb.2018.00237] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2017] [Accepted: 06/20/2018] [Indexed: 01/03/2023] Open
Abstract
Changes in the population levels of specific bacterial species within the gut microbiome have been linked to a variety of illnesses. Most assays that determine the relative abundance of specific taxa are based on amplification and sequencing of stable phylogenetic gene regions. Such lab-based analysis requires pre-analytical sample preservation and storage that have been shown to introduce biases in the characterization of microbial profiles. Recombinase polymerase amplification (RPA) is an isothermal nucleic acid amplification method that employs commercially available, easy-to-use freeze-dried enzyme pellets that can be used to analyze specimens rapidly in the field or clinic, using a portable fluorometer. Immediate analysis of diverse bacterial communities can lead to a more accurate quantification of relative bacterial abundance. In this study, we discovered that universal bacterial 16S ribosomal DNA primers give false-positive signals in RPA analysis because manufacturing host Escherichia coli DNA is present in the RPA reagents. The manufacturer of RPA reagents advises against developing an RPA assay that detects the presence of E. coli due to the presence of contaminating E. coli DNA in the reaction buffer (www.twistdx.co.uk/). We, therefore, explored four strategies to deplete or fragment extraneous DNA in RPA reagents while preserving enzyme activity: metal-chelate affinity chromatography, sonication, DNA cleavage using methylation-dependent restriction endonucleases, and DNA depletion using anti-DNA antibodies. Removing DNA with anti-DNA antibodies enabled the development of a quantitative RPA microbiome assay capable of determining the relative abundance of the physiologically-important bacterium Akkermansia muciniphila in human feces.
Collapse
Affiliation(s)
- Heather J Goux
- Department of Biology and Biochemistry, University of Houston, Houston, TX, United States
| | - Dimple Chavan
- Department of Biology and Biochemistry, University of Houston, Houston, TX, United States
| | - Mary Crum
- Department of Chemical and Biomolecular Engineering, University of Houston, Houston, TX, United States
| | - Katerina Kourentzi
- Department of Chemical and Biomolecular Engineering, University of Houston, Houston, TX, United States
| | - Richard C Willson
- Department of Biology and Biochemistry, University of Houston, Houston, TX, United States.,Department of Chemical and Biomolecular Engineering, University of Houston, Houston, TX, United States.,Tecnológico de Monterrey-ITESM Campus Monterrey, Monterrey, Mexico
| |
Collapse
|
24
|
Graspeuntner S, Loeper N, Künzel S, Baines JF, Rupp J. Selection of validated hypervariable regions is crucial in 16S-based microbiota studies of the female genital tract. Sci Rep 2018; 8:9678. [PMID: 29946153 PMCID: PMC6018735 DOI: 10.1038/s41598-018-27757-8] [Citation(s) in RCA: 91] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2017] [Accepted: 06/08/2018] [Indexed: 02/08/2023] Open
Abstract
Next-generation sequencing-based methods are extensively applied in studies of the human microbiota using partial 16 S rRNA gene amplicons. However, they carry drawbacks that are critical to consider when interpreting results, including differences in outcome based on the hypervariable region(s) used. Here, we show that primers spanning the V3/V4 region identify a greater number of taxa in the vaginal microbiota than those spanning the V1/V2 region. In particular, taxa such as Gardnerella vaginalis, Bifidobacterium bifidum and Chlamydia trachomatis, all species that influence vaginal health and disease, are not represented in V1/V2-based community profiles. Accordingly, missing or underestimating the frequency of these species overestimates the abundance of other taxa and fails to correctly assess the bacterial diversity in the urogenital tract. We elaborate that covering these taxa using the V3/V4 region leads to profound changes in the assignment of community state types. Altogether, we show that the choice of primers used for studying the vaginal microbiota has deep implications on the biological evaluation of the results.
Collapse
Affiliation(s)
- Simon Graspeuntner
- Department of Infectious Diseases and Microbiology, University of Luebeck, 23538, Luebeck, Germany
| | - Nathalie Loeper
- Department of Infectious Diseases and Microbiology, University of Luebeck, 23538, Luebeck, Germany
| | - Sven Künzel
- Max Planck Institute for Evolutionary Biology, 24306, Ploen, Germany
| | - John F Baines
- Max Planck Institute for Evolutionary Biology, 24306, Ploen, Germany.,Institute for Experimental Medicine, Christian-Albrechts-University of Kiel, 24105, Kiel, Germany
| | - Jan Rupp
- Department of Infectious Diseases and Microbiology, University of Luebeck, 23538, Luebeck, Germany. .,German Center for Infection Research (DZIF), partner site Hamburg-Luebeck-Borstel, Germany.
| |
Collapse
|
25
|
Brown EG, Tanner CM, Goldman SM. The Microbiome in Neurodegenerative Disease. CURRENT GERIATRICS REPORTS 2018. [DOI: 10.1007/s13670-018-0240-6] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
26
|
Chen L, Reeve J, Zhang L, Huang S, Wang X, Chen J. GMPR: A robust normalization method for zero-inflated count data with application to microbiome sequencing data. PeerJ 2018; 6:e4600. [PMID: 29629248 PMCID: PMC5885979 DOI: 10.7717/peerj.4600] [Citation(s) in RCA: 136] [Impact Index Per Article: 19.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2017] [Accepted: 03/21/2018] [Indexed: 12/21/2022] Open
Abstract
Normalization is the first critical step in microbiome sequencing data analysis used to account for variable library sizes. Current RNA-Seq based normalization methods that have been adapted for microbiome data fail to consider the unique characteristics of microbiome data, which contain a vast number of zeros due to the physical absence or under-sampling of the microbes. Normalization methods that specifically address the zero-inflation remain largely undeveloped. Here we propose geometric mean of pairwise ratios—a simple but effective normalization method—for zero-inflated sequencing data such as microbiome data. Simulation studies and real datasets analyses demonstrate that the proposed method is more robust than competing methods, leading to more powerful detection of differentially abundant taxa and higher reproducibility of the relative abundances of taxa.
Collapse
Affiliation(s)
- Li Chen
- Department of Health Outcomes Research and Policy, Harrison School of Pharmacy, Auburn University, Auburn, AL, USA
| | - James Reeve
- Bioinformatics and Computational Biology Program, University of Minnesota-Rochester, Rochester, MN, USA
| | - Lujun Zhang
- College of Environmental and Resource Sciences, Zhejiang University, Hangzhou, Zhejiang, China
| | - Shengbing Huang
- Bioinformatics and Computational Biology Program, University of Minnesota-Rochester, Rochester, MN, USA
| | - Xuefeng Wang
- Department of Biostatistics and Bioinformatics, Moffitt Cancer Center, Tampa, FL, USA
| | - Jun Chen
- Bioinformatics and Computational Biology Program, University of Minnesota-Rochester, Rochester, MN, USA.,Division of Biomedical Statistics and Informatics and Center for Individualized Medicine, Mayo Clinic, Rochester, MN, USA
| |
Collapse
|
27
|
Raju SC, Lagström S, Ellonen P, de Vos WM, Eriksson JG, Weiderpass E, Rounge TB. Reproducibility and repeatability of six high-throughput 16S rDNA sequencing protocols for microbiota profiling. J Microbiol Methods 2018; 147:76-86. [PMID: 29563060 DOI: 10.1016/j.mimet.2018.03.003] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2017] [Revised: 03/12/2018] [Accepted: 03/12/2018] [Indexed: 12/17/2022]
Abstract
Culture-independent molecular techniques and advances in next generation sequencing (NGS) technologies make large-scale epidemiological studies on microbiota feasible. A challenge using NGS is to obtain high reproducibility and repeatability, which is mostly attained through robust amplification. We aimed to assess the reproducibility of saliva microbiota by comparing triplicate samples. The microbiota was produced with simplified in-house 16S amplicon assays taking advantage of large number of barcodes. The assays included primers with Truseq (TS-tailed) or Nextera (NX-tailed) adapters and either with dual index or dual index plus a 6-nt internal index. All amplification protocols produced consistent microbial profiles for the same samples. Although, in our study, reproducibility was highest for the TS-tailed method. Five replicates of a single sample, prepared with the TS-tailed 1-step protocol without internal index sequenced on the HiSeq platform provided high alpha-diversity and low standard deviation (mean Shannon and Inverse Simpson diversity was 3.19 ± 0.097 and 13.56 ± 1.634 respectively). Large-scale profiling of microbiota can consistently be produced by all 16S amplicon assays. The TS-tailed-1S dual index protocol is preferred since it provides repeatable profiles on the HiSeq platform and are less labour intensive.
Collapse
Affiliation(s)
- Sajan C Raju
- Folkhälsan Research Center, Helsinki, Finland; Faculty of Medicine, University of Helsinki, Helsinki, Finland.
| | - Sonja Lagström
- Institute for Molecular Medicine Finland (FIMM), University of Helsinki, Helsinki, Finland.
| | - Pekka Ellonen
- Institute for Molecular Medicine Finland (FIMM), University of Helsinki, Helsinki, Finland.
| | - Willem M de Vos
- RPU Immunobiology, Department of Bacteriology and Immunology, University of Helsinki, Helsinki, Finland; Laboratory of Microbiology, Wageningen University, Wageningen, The Netherlands.
| | - Johan G Eriksson
- Folkhälsan Research Center, Helsinki, Finland; Department of General Practice and Primary Health Care, University of Helsinki, Helsinki University Hospital, Helsinki, Finland; Department of Chronic Disease Prevention, National Institute for Health and Welfare, Helsinki, Finland.
| | - Elisabete Weiderpass
- Folkhälsan Research Center, Helsinki, Finland; Faculty of Medicine, University of Helsinki, Helsinki, Finland; Department of Research, Cancer Registry of Norway, Oslo, Norway; Department of Medical Epidemiology and Biostatistics, Karolinska Institutet, Stockholm, Sweden; Department of Community Medicine, Faculty of Health Sciences, University of Tromsø, Tromsø, Norway.
| | - Trine B Rounge
- Folkhälsan Research Center, Helsinki, Finland; Faculty of Medicine, University of Helsinki, Helsinki, Finland; Department of Research, Cancer Registry of Norway, Oslo, Norway.
| |
Collapse
|
28
|
Loeper N, Graspeuntner S, Rupp J. Microbiota changes impact on sexually transmitted infections and the development of pelvic inflammatory disease. Microbes Infect 2018; 20:505-511. [PMID: 29452257 DOI: 10.1016/j.micinf.2018.02.003] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2018] [Revised: 02/01/2018] [Accepted: 02/02/2018] [Indexed: 02/06/2023]
Abstract
The integrity of the human urogenital microbiome is crucial for women's health and well-being. An imbalance of the urogenital microbiota increases the risk for sexually transmitted infections. In this review, we discuss the microbiota composition of the female urogenital tract and its role in protecting from sexually transmitted infections and the emergence of pelvic inflammatory disease.
Collapse
Affiliation(s)
- Nathalie Loeper
- Department of Infectious Diseases and Microbiology, University of Luebeck, 23538 Luebeck, Germany
| | - Simon Graspeuntner
- Department of Infectious Diseases and Microbiology, University of Luebeck, 23538 Luebeck, Germany
| | - Jan Rupp
- Department of Infectious Diseases and Microbiology, University of Luebeck, 23538 Luebeck, Germany.
| |
Collapse
|
29
|
Gloor GB, Macklaim JM, Pawlowsky-Glahn V, Egozcue JJ. Microbiome Datasets Are Compositional: And This Is Not Optional. Front Microbiol 2017; 8:2224. [PMID: 29187837 PMCID: PMC5695134 DOI: 10.3389/fmicb.2017.02224] [Citation(s) in RCA: 1438] [Impact Index Per Article: 179.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2017] [Accepted: 10/30/2017] [Indexed: 12/11/2022] Open
Abstract
Datasets collected by high-throughput sequencing (HTS) of 16S rRNA gene amplimers, metagenomes or metatranscriptomes are commonplace and being used to study human disease states, ecological differences between sites, and the built environment. There is increasing awareness that microbiome datasets generated by HTS are compositional because they have an arbitrary total imposed by the instrument. However, many investigators are either unaware of this or assume specific properties of the compositional data. The purpose of this review is to alert investigators to the dangers inherent in ignoring the compositional nature of the data, and point out that HTS datasets derived from microbiome studies can and should be treated as compositions at all stages of analysis. We briefly introduce compositional data, illustrate the pathologies that occur when compositional data are analyzed inappropriately, and finally give guidance and point to resources and examples for the analysis of microbiome datasets using compositional data analysis.
Collapse
Affiliation(s)
- Gregory B Gloor
- Department of Biochemistry, University of Western Ontario, London, ON, Canada
| | - Jean M Macklaim
- Department of Biochemistry, University of Western Ontario, London, ON, Canada
| | - Vera Pawlowsky-Glahn
- Departments of Computer Science, Applied Mathematics, and Statistics, Universitat de Girona, Girona, Spain
| | - Juan J Egozcue
- Department of Applied Mathematics, Universitat Politècnica de Catalunya, Barcelona, Spain
| |
Collapse
|
30
|
Sinha R, Abu-Ali G, Vogtmann E, Fodor AA, Ren B, Amir A, Schwager E, Crabtree J, Ma S, Abnet CC, Knight R, White O, Huttenhower C. Assessment of variation in microbial community amplicon sequencing by the Microbiome Quality Control (MBQC) project consortium. Nat Biotechnol 2017; 35:1077-1086. [PMID: 28967885 DOI: 10.1038/nbt.3981] [Citation(s) in RCA: 320] [Impact Index Per Article: 40.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2016] [Accepted: 09/11/2017] [Indexed: 12/14/2022]
Abstract
In order for human microbiome studies to translate into actionable outcomes for health, meta-analysis of reproducible data from population-scale cohorts is needed. Achieving sufficient reproducibility in microbiome research has proven challenging. We report a baseline investigation of variability in taxonomic profiling for the Microbiome Quality Control (MBQC) project baseline study (MBQC-base). Blinded specimen sets from human stool, chemostats, and artificial microbial communities were sequenced by 15 laboratories and analyzed using nine bioinformatics protocols. Variability depended most on biospecimen type and origin, followed by DNA extraction, sample handling environment, and bioinformatics. Analysis of artificial community specimens revealed differences in extraction efficiency and bioinformatic classification. These results may guide researchers in experimental design choices for gut microbiome studies.
Collapse
Affiliation(s)
- Rashmi Sinha
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, Bethesda, Maryland, USA
| | - Galeb Abu-Ali
- Biostatistics, Harvard T.H. Chan School of Public Health, Boston, Massachusetts, USA.,Broad Institute of MIT and Harvard, Cambridge, Massachusetts, USA
| | - Emily Vogtmann
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, Bethesda, Maryland, USA
| | - Anthony A Fodor
- Bioinformatics and Genomics, University of North Carolina, Charlotte, Charlotte, North Carolina, USA
| | - Boyu Ren
- Biostatistics, Harvard T.H. Chan School of Public Health, Boston, Massachusetts, USA
| | - Amnon Amir
- Pediatrics, University of California, San Diego, La Jolla, California, USA
| | - Emma Schwager
- Biostatistics, Harvard T.H. Chan School of Public Health, Boston, Massachusetts, USA.,Broad Institute of MIT and Harvard, Cambridge, Massachusetts, USA
| | - Jonathan Crabtree
- Institute for Genome Sciences, University of Maryland School of Medicine, Baltimore, Maryland, USA
| | - Siyuan Ma
- Biostatistics, Harvard T.H. Chan School of Public Health, Boston, Massachusetts, USA.,Broad Institute of MIT and Harvard, Cambridge, Massachusetts, USA
| | | | - Christian C Abnet
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, Bethesda, Maryland, USA
| | - Rob Knight
- Pediatrics, University of California, San Diego, La Jolla, California, USA.,Computer Science and Engineering and Center for Microbiome Innovation, University of California, San Diego, La Jolla, California, USA
| | - Owen White
- Institute for Genome Sciences, University of Maryland School of Medicine, Baltimore, Maryland, USA
| | - Curtis Huttenhower
- Biostatistics, Harvard T.H. Chan School of Public Health, Boston, Massachusetts, USA.,Broad Institute of MIT and Harvard, Cambridge, Massachusetts, USA
| |
Collapse
|
31
|
Wall KM, Kilembe W, Vwalika B, Haddad LB, Hunter E, Lakhi S, Chavuma R, Htee Khu N, Brill I, Vwalika C, Mwananyanda L, Chomba E, Mulenga J, Tichacek A, Allen S. Risk of heterosexual HIV transmission attributable to sexually transmitted infections and non-specific genital inflammation in Zambian discordant couples, 1994-2012. Int J Epidemiol 2017; 46:1593-1606. [PMID: 28402442 PMCID: PMC5837621 DOI: 10.1093/ije/dyx045] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Revised: 02/24/2017] [Accepted: 03/01/2017] [Indexed: 12/13/2022] Open
Abstract
Background Studies have demonstrated the role of ulcerative and non-ulcerative sexually transmitted infections (STI) in HIV transmission/acquisition risk; less is understood about the role of non-specific inflammatory genital abnormalities. Methods HIV-discordant heterosexual Zambian couples were enrolled into longitudinal follow-up (1994-2012). Multivariable models estimated the effect of genital ulcers and inflammation in both partners on time-to-HIV transmission within the couple. Population-attributable fractions (PAFs) were calculated. Results A total of 207 linked infections in women occurred over 2756 couple-years (7.5/100 CY) and 171 in men over 3216 CY (5.3/100 CY). Incident HIV among women was associated with a woman's non-STI genital inflammation (adjusted hazard ratio (aHR) = 1.55; PAF = 8%), bilateral inguinal adenopathy (BIA; aHR = 2.33; PAF = 8%), genital ulceration (aHR = 2.08; PAF = 7%) and the man's STI genital inflammation (aHR = 3.33; PAF = 5%), BIA (aHR = 3.35; PAF = 33%) and genital ulceration (aHR = 1.49; PAF = 9%). Infection among men was associated with a man's BIA (aHR = 4.11; PAF = 22%) and genital ulceration (aHR = 3.44; PAF = 15%) as well as with the woman's non-STI genital inflammation (aHR = 1.92; PAF = 13%) and BIA (aHR = 2.76; PAF = 14%). In HIV-M+F- couples, the man being uncircumcised. with foreskin smegma. was associated with the woman's seroconversion (aHR = 3.16) relative to being circumcised. In F+M- couples, uncircumcised men with BIA had an increased hazard of seroconversion (aHR = 13.03 with smegma and 4.95 without) relative to being circumcised. Self-reporting of symptoms was low for ulcerative and non-ulcerative STIs. Conclusions Our findings confirm the role of STIs and highlight the contribution of non-specific genital inflammation to both male-to-female and female-to-male HIV transmission/acquisition risk. Studies are needed to characterize pathogenesis of non-specific inflammation including inguinal adenopathy. A better understanding of genital practices could inform interventions.
Collapse
Affiliation(s)
- Kristin M Wall
- Department of Pathology & Laboratory Medicine, School of Medicine, Emory University, Atlanta, GA, USA
- Department of Epidemiology, Rollins School of Public Health, Emory University, Atlanta, GA, USA
| | - William Kilembe
- Department of Pathology & Laboratory Medicine, School of Medicine, Emory University, Atlanta, GA, USA
| | - Bellington Vwalika
- Department of Pathology & Laboratory Medicine, School of Medicine, Emory University, Atlanta, GA, USA
- Departments of Gynecology and Obstetrics (B.V.), Internal Medicine (S.L.) and Surgery (R.C.), School of Medicine, University of Zambia, Lusaka, Zambia
| | - Lisa B Haddad
- Department of Pathology & Laboratory Medicine, School of Medicine, Emory University, Atlanta, GA, USA
- Department of Gynecology and Obstetrics, Emory University, School of Medicine, Atlanta, GA, USA
| | - Eric Hunter
- Department of Pathology & Laboratory Medicine, School of Medicine, Emory University, Atlanta, GA, USA
| | - Shabir Lakhi
- Department of Pathology & Laboratory Medicine, School of Medicine, Emory University, Atlanta, GA, USA
- Departments of Gynecology and Obstetrics (B.V.), Internal Medicine (S.L.) and Surgery (R.C.), School of Medicine, University of Zambia, Lusaka, Zambia
| | - Roy Chavuma
- Department of Pathology & Laboratory Medicine, School of Medicine, Emory University, Atlanta, GA, USA
- Departments of Gynecology and Obstetrics (B.V.), Internal Medicine (S.L.) and Surgery (R.C.), School of Medicine, University of Zambia, Lusaka, Zambia
| | - Naw Htee Khu
- Department of Pathology & Laboratory Medicine, School of Medicine, Emory University, Atlanta, GA, USA
| | - Ilene Brill
- Department of Pathology & Laboratory Medicine, School of Medicine, Emory University, Atlanta, GA, USA
- Department of Epidemiology, Ryals School of Public Health, University of Alabama at Birmingham, Birmingham, AL, USA and
| | - Cheswa Vwalika
- Department of Pathology & Laboratory Medicine, School of Medicine, Emory University, Atlanta, GA, USA
| | - Lawrence Mwananyanda
- Department of Pathology & Laboratory Medicine, School of Medicine, Emory University, Atlanta, GA, USA
| | - Elwyn Chomba
- Department of Pathology & Laboratory Medicine, School of Medicine, Emory University, Atlanta, GA, USA
- Ministry of Community Development, Mother and Child Health, Lusaka, Zambia
| | - Joseph Mulenga
- Department of Pathology & Laboratory Medicine, School of Medicine, Emory University, Atlanta, GA, USA
| | - Amanda Tichacek
- Department of Pathology & Laboratory Medicine, School of Medicine, Emory University, Atlanta, GA, USA
| | - Susan Allen
- Department of Pathology & Laboratory Medicine, School of Medicine, Emory University, Atlanta, GA, USA
| |
Collapse
|
32
|
Patel CJ, Kerr J, Thomas DC, Mukherjee B, Ritz B, Chatterjee N, Jankowska M, Madan J, Karagas MR, McAllister KA, Mechanic LE, Fallin MD, Ladd-Acosta C, Blair IA, Teitelbaum SL, Amos CI. Opportunities and Challenges for Environmental Exposure Assessment in Population-Based Studies. Cancer Epidemiol Biomarkers Prev 2017; 26:1370-1380. [PMID: 28710076 PMCID: PMC5581729 DOI: 10.1158/1055-9965.epi-17-0459] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2017] [Revised: 06/14/2017] [Accepted: 06/22/2017] [Indexed: 12/15/2022] Open
Abstract
A growing number and increasing diversity of factors are available for epidemiological studies. These measures provide new avenues for discovery and prevention, yet they also raise many challenges for adoption in epidemiological investigations. Here, we evaluate 1) designs to investigate diseases that consider heterogeneous and multidimensional indicators of exposure and behavior, 2) the implementation of numerous methods to capture indicators of exposure, and 3) the analytical methods required for discovery and validation. We find that case-control studies have provided insights into genetic susceptibility but are insufficient for characterizing complex effects of environmental factors on disease development. Prospective and two-phase designs are required but must balance extended data collection with follow-up of study participants. We discuss innovations in assessments including the microbiome; mass spectrometry and metabolomics; behavioral assessment; dietary, physical activity, and occupational exposure assessment; air pollution monitoring; and global positioning and individual sensors. We claim the the availability of extensive correlated data raises new challenges in disentangling specific exposures that influence cancer risk from among extensive and often correlated exposures. In conclusion, new high-dimensional exposure assessments offer many new opportunities for environmental assessment in cancer development. Cancer Epidemiol Biomarkers Prev; 26(9); 1370-80. ©2017 AACR.
Collapse
Affiliation(s)
- Chirag J Patel
- Department of Biomedical Informatics, Harvard Medical School, Boston, Massachusetts.
| | - Jacqueline Kerr
- Department of Family Medicine and Public Health, University of California San Diego, La Jolla, California
| | - Duncan C Thomas
- Department of Preventive Medicine, University of Southern California, Los Angeles, California
| | - Bhramar Mukherjee
- Department of Biostatistics, University of Michigan School of Public Health, Ann Arbor, Michigan
| | - Beate Ritz
- Department of Epidemiology, Fielding School of Public Health, University of California Los Angeles, Los Angeles, California
| | - Nilanjan Chatterjee
- Department of Biostatistics and Department of Oncology, Johns Hopkins University, Baltimore, Maryland
| | - Marta Jankowska
- Department of Family Medicine and Public Health, University of California San Diego, La Jolla, California
| | - Juliette Madan
- Division of Neonatology, Department of Pediatrics, Dartmouth-Hitchcock Medical Center, Lebanon, New Hampshire
| | - Margaret R Karagas
- Department of Epidemiology, Geisel School of Medicine, Dartmouth College, Lebanon, New Hampshire
| | - Kimberly A McAllister
- Susceptibility and Population Health Branch, National Institute of Environmental Health Sciences, NIH, Research Triangle Park, North Carolina
| | - Leah E Mechanic
- Epidemiology and Genomics Research Program, Division of Cancer Control and Population Sciences, National Cancer Institute, NIH, Bethesda, Maryland
| | - M Daniele Fallin
- Johns Hopkins University Bloomberg School of Public Health, Baltimore, Maryland
| | | | - Ian A Blair
- Center of Excellence in Environmental Toxicology and Penn SRP Center, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania
- Department of Systems Pharmacology and Translational Therapeutics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Susan L Teitelbaum
- Department of Preventive Medicine, Icahn School of Medicine at Mount Sinai, New York, New York
| | - Christopher I Amos
- Department of Biomedical Data Science, Geisel School of Medicine at Dartmouth College, Lebanon, New Hampshire.
| |
Collapse
|
33
|
Comparison of antibiotic supplementation versus a yeast-based prebiotic on the cecal microbiome of commercial broilers. PLoS One 2017; 12:e0182805. [PMID: 28837669 PMCID: PMC5570483 DOI: 10.1371/journal.pone.0182805] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2016] [Accepted: 07/25/2017] [Indexed: 11/20/2022] Open
Abstract
Prebiotics are defined as fermentable food ingredients that selectively stimulate beneficial bacteria in the lower gastrointestinal tract of the host. The purpose of this study was to assess growth performance of broilers and the cecal microbial populations of an antibiotic, BMD50, supplemented birds compared to broiler chickens fed the prebiotic, Biolex® MB40. Weight response data including feed conversion ratios (FCR), carcasses without giblets (WOG), wing, skin, white meat were collected during processing. Extracted DNA from cecal contents was utilized for microbiome analysis via an Illumina Miseq. In conclusion, white meat yield of Biolex® MB40 supplemented group exhibited significant improvement compared to both negative control (NC) and BMD50 supplemented groups. In addition, antibiotic significantly decreased level of Lactobacillus in 2 wk compared to other groups. A significantly higher percentage of Campylobacter was observed from the 4 wk old birds treated with antibiotic BMD50 compared to the NC and prebiotic group. Retention of broiler performance and improvement of white meat yield suggest that the prebiotic MB40 appears to be a potential alternative to replace the antibiotic growth promoter.
Collapse
|
34
|
Shankar J. Insights into study design and statistical analyses in translational microbiome studies. ANNALS OF TRANSLATIONAL MEDICINE 2017; 5:249. [PMID: 28706917 DOI: 10.21037/atm.2017.01.13] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Research questions in translational microbiome studies are substantially more complex than their counterparts in basic science. Robust study designs with appropriate statistical analysis frameworks are pivotal to the success of these translational studies. This review considers how study designs can account for heterogeneous phenotypes by adopting representative sampling schemes for recruiting the study population and making careful choices about the control population. Advantages and limitations of 16S profiling and whole-genome sequencing, the two primary techniques for measuring the microbiome, are discussed followed by an overview of bioinformatic processing of high-throughput sequencing data from these measurements. Practical insights into the downstream statistical analyses including data processing and integration, variable transformations, and data exploration are provided. The merits of regularization and ensemble modeling for analyzing microbiome data are discussed along with a recommendation for selecting modeling approaches based on data-driven simulations and objective evaluation. The review builds on several recent discussions of study design issues in microbiome research but with a stronger emphasis on the downstream and often-ignored aspects of statistical analyses that are crucial for bridging the gap between basic science and translation.
Collapse
|
35
|
Maternal-Child Microbiome: Specimen Collection, Storage, and Implications for Research and Practice. Nurs Res 2017; 66:175-183. [PMID: 28252577 DOI: 10.1097/nnr.0000000000000201] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
BACKGROUND The maternal microbiome is a key contributor to the development and outcomes of pregnancy and the health status of both mother and infant. Significant advances are occurring in the science of the maternal and child microbiome and hold promise in improving outcomes related to pregnancy complications, child development, and chronic health conditions of mother and child. OBJECTIVES The purpose of this study was to review site-specific considerations in the collection and storage of maternal and child microbiome samples and its implications for nursing research and practice. APPROACH Microbiome sampling protocols were reviewed and synthesized. Precautions across sampling protocols were also noted. RESULTS Oral, vaginal, gut, placental, and breast milk are viable sources for sampling the maternal and/or child microbiome. Prior to sampling, special considerations need to be addressed related to various factors including current medications, health status, and hygiene practices. Proper storage of samples will avoid degradation of cellular and DNA structures vital for analysis. DISCUSSION Changes in the microbiome throughout the perinatal, postpartum, and childhood periods are dramatic and significant to outcomes of the pregnancy and the long-term health of mother and child. Proper sampling techniques are required to produce reliable results from which evidence-based practice recommendations will be built. Ethical and practical issues surrounding study design and protocol development must also be considered when researching vulnerable groups such as pregnant women and infants. Nurses hold the responsibility to both perform the research and to translate findings from microbiome investigations for clinical use.
Collapse
|
36
|
Kim D, Hofstaedter CE, Zhao C, Mattei L, Tanes C, Clarke E, Lauder A, Sherrill-Mix S, Chehoud C, Kelsen J, Conrad M, Collman RG, Baldassano R, Bushman FD, Bittinger K. Optimizing methods and dodging pitfalls in microbiome research. MICROBIOME 2017; 5:52. [PMID: 28476139 PMCID: PMC5420141 DOI: 10.1186/s40168-017-0267-5] [Citation(s) in RCA: 355] [Impact Index Per Article: 44.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/24/2016] [Accepted: 04/21/2017] [Indexed: 05/09/2023]
Abstract
Research on the human microbiome has yielded numerous insights into health and disease, but also has resulted in a wealth of experimental artifacts. Here, we present suggestions for optimizing experimental design and avoiding known pitfalls, organized in the typical order in which studies are carried out. We first review best practices in experimental design and introduce common confounders such as age, diet, antibiotic use, pet ownership, longitudinal instability, and microbial sharing during cohousing in animal studies. Typically, samples will need to be stored, so we provide data on best practices for several sample types. We then discuss design and analysis of positive and negative controls, which should always be run with experimental samples. We introduce a convenient set of non-biological DNA sequences that can be useful as positive controls for high-volume analysis. Careful analysis of negative and positive controls is particularly important in studies of samples with low microbial biomass, where contamination can comprise most or all of a sample. Lastly, we summarize approaches to enhancing experimental robustness by careful control of multiple comparisons and to comparing discovery and validation cohorts. We hope the experimental tactics summarized here will help researchers in this exciting field advance their studies efficiently while avoiding errors.
Collapse
Affiliation(s)
- Dorothy Kim
- Division of Gastroenterology, Hepatology, and Nutrition, The Children’s Hospital of Philadelphia, Philadelphia, Pennsylvania 19104 USA
| | - Casey E. Hofstaedter
- Division of Gastroenterology, Hepatology, and Nutrition, The Children’s Hospital of Philadelphia, Philadelphia, Pennsylvania 19104 USA
| | - Chunyu Zhao
- Division of Gastroenterology, Hepatology, and Nutrition, The Children’s Hospital of Philadelphia, Philadelphia, Pennsylvania 19104 USA
| | - Lisa Mattei
- Division of Gastroenterology, Hepatology, and Nutrition, The Children’s Hospital of Philadelphia, Philadelphia, Pennsylvania 19104 USA
| | - Ceylan Tanes
- Division of Gastroenterology, Hepatology, and Nutrition, The Children’s Hospital of Philadelphia, Philadelphia, Pennsylvania 19104 USA
| | - Erik Clarke
- Department of Microbiology, University of Pennsylvania, Philadelphia, Pennsylvania 19104 USA
| | - Abigail Lauder
- Department of Microbiology, University of Pennsylvania, Philadelphia, Pennsylvania 19104 USA
| | - Scott Sherrill-Mix
- Department of Microbiology, University of Pennsylvania, Philadelphia, Pennsylvania 19104 USA
| | - Christel Chehoud
- Department of Microbiology, University of Pennsylvania, Philadelphia, Pennsylvania 19104 USA
| | - Judith Kelsen
- Division of Gastroenterology, Hepatology, and Nutrition, The Children’s Hospital of Philadelphia, Philadelphia, Pennsylvania 19104 USA
| | - Máire Conrad
- Division of Gastroenterology, Hepatology, and Nutrition, The Children’s Hospital of Philadelphia, Philadelphia, Pennsylvania 19104 USA
| | - Ronald G. Collman
- Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104 USA
| | - Robert Baldassano
- Division of Gastroenterology, Hepatology, and Nutrition, The Children’s Hospital of Philadelphia, Philadelphia, Pennsylvania 19104 USA
| | - Frederic D. Bushman
- Department of Microbiology, University of Pennsylvania, Philadelphia, Pennsylvania 19104 USA
| | - Kyle Bittinger
- Division of Gastroenterology, Hepatology, and Nutrition, The Children’s Hospital of Philadelphia, Philadelphia, Pennsylvania 19104 USA
| |
Collapse
|
37
|
Kramer CD, Simas AM, He X, Ingalls RR, Weinberg EO, Genco CA. Distinct roles for dietary lipids and Porphyromonas gingivalis infection on atherosclerosis progression and the gut microbiota. Anaerobe 2017; 45:19-30. [PMID: 28442421 DOI: 10.1016/j.anaerobe.2017.04.011] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2017] [Revised: 04/19/2017] [Accepted: 04/20/2017] [Indexed: 02/08/2023]
Abstract
Mounting evidence in humans supports an etiological role for the microbiota in inflammatory atherosclerosis. Atherosclerosis is a progressive disease characterized by accumulation of inflammatory cells and lipids in vascular tissue. While retention of lipoprotein into the sub-endothelial vascular layer is believed to be the initiating stimulus leading to the development of atherosclerosis, activation of multiple pathways related to vascular inflammation and endothelial dysfunction sustain the process by stimulating recruitment of leukocytes and immune cells into the sub-endothelial layer. The Gram-negative oral pathogen Porphyromonas gingivalis has been associated with the development and acceleration of atherosclerosis in humans and these observations have been validated in animal models. It has been proposed that common mechanisms of immune signaling link stimulation by lipids and pathogens to vascular inflammation. Despite the common outcome of P. gingivalis and lipid feeding on atherosclerosis progression, we established that these pro-atherogenic stimuli induced distinct gene signatures in the ApoE-/- mouse model of atherosclerosis. In this study, we further defined the distinct roles of dietary lipids and P. gingivalis infection on atherosclerosis progression and the gut microbiota. We demonstrate that diet-induced lipid lowering resulted in less atherosclerotic plaque in ApoE-/- mice compared to ApoE-/- mice continuously fed a Western diet. However, the effect of diet-induced lipid lowering on plaque accumulation was blunted by P. gingivalis infection. Using principal component analysis and hierarchical clustering, we demonstrate that dietary intervention as well as P. gingivalis infection result in distinct bacterial communities in fecal and cecal samples of ApoE-/- mice as compared to ApoE-/- mice continuously fed either a Western diet or a normal chow diet. Collectively, we identified distinct microbiota changes accompanying atherosclerotic plaque, suggesting a future avenue for investigation on the impact of the gut microbiota, diet, and P. gingivalis infection on atherosclerosis.
Collapse
Affiliation(s)
- Carolyn D Kramer
- Department of Medicine, Section of Infectious Diseases, Boston University School of Medicine, 650 Albany Street, Boston, MA 02118, USA; Department of Integrative Physiology and Pathobiology, Tufts University School of Medicine, 136 Harrison Ave, M & V 701, Boston, MA 02111, USA.
| | - Alexandra M Simas
- Department of Integrative Physiology and Pathobiology, Tufts University School of Medicine, 136 Harrison Ave, M & V 701, Boston, MA 02111, USA; Graduate Program in Biochemical and Molecular Nutrition, Gerald J. and Dorothy R. Friedman School of Nutrition and Science Policy, Tufts University, Boston, MA 02111, USA.
| | - Xianbao He
- Department of Medicine, Section of Infectious Diseases, Boston University School of Medicine, 650 Albany Street, Boston, MA 02118, USA; Boston Medical Center, Evans Biomedical Research Center, 650 Albany Street, Boston, MA 02118, USA.
| | - Robin R Ingalls
- Department of Medicine, Section of Infectious Diseases, Boston University School of Medicine, 650 Albany Street, Boston, MA 02118, USA; Boston Medical Center, Evans Biomedical Research Center, 650 Albany Street, Boston, MA 02118, USA.
| | - Ellen O Weinberg
- Department of Medicine, Section of Infectious Diseases, Boston University School of Medicine, 650 Albany Street, Boston, MA 02118, USA; Department of Integrative Physiology and Pathobiology, Tufts University School of Medicine, 136 Harrison Ave, M & V 701, Boston, MA 02111, USA.
| | - Caroline Attardo Genco
- Department of Medicine, Section of Infectious Diseases, Boston University School of Medicine, 650 Albany Street, Boston, MA 02118, USA; Department of Integrative Physiology and Pathobiology, Tufts University School of Medicine, 136 Harrison Ave, M & V 701, Boston, MA 02111, USA; Graduate Program in Immunology, Sackler School of Graduate Biomedical Sciences, Tufts University School of Medicine, 136 Harrison Ave, M & V 701, Boston, MA 02111, USA; Graduate Program in Microbiology, Sackler School of Graduate Biomedical Sciences, Tufts University School of Medicine, 136 Harrison Ave, M & V 701, Boston, MA 02111, USA.
| |
Collapse
|
38
|
Kramer CD, Genco CA. Microbiota, Immune Subversion, and Chronic Inflammation. Front Immunol 2017; 8:255. [PMID: 28348558 PMCID: PMC5346547 DOI: 10.3389/fimmu.2017.00255] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2016] [Accepted: 02/21/2017] [Indexed: 12/12/2022] Open
Abstract
Several host-adapted pathogens and commensals have evolved mechanisms to evade the host innate immune system inducing a state of low-grade inflammation. Epidemiological studies have also documented the association of a subset of these microorganisms with chronic inflammatory disorders. In this review, we summarize recent studies demonstrating the role of the microbiota in chronic inflammatory diseases and discuss how specific microorganisms subvert or inhibit protective signaling normally induced by toll-like receptors (TLRs). We highlight our work on the oral pathogen Porphyromonas gingivalis and discuss the role of microbial modulation of lipid A structures in evasion of TLR4 signaling and resulting systemic immunopathology associated with atherosclerosis. P. gingivalis intrinsically expresses underacylated lipid A moieties and can modify the phosphorylation of lipid A, leading to altered TLR4 signaling. Using P. gingivalis mutant strains expressing distinct lipid A moieties, we demonstrated that expression of antagonist lipid A was associated with P. gingivalis-mediated systemic inflammation and immunopathology, whereas strains expressing agonist lipid A exhibited modest systemic inflammation. Likewise, mice deficient in TLR4 were more susceptible to vascular inflammation after oral infection with P. gingivalis wild-type strain compared to mice possessing functional TLR4. Collectively, our studies support a role for P. gingivalis-mediated dysregulation of innate and adaptive responses resulting in immunopathology and systemic inflammation. We propose that anti-TLR4 interventions must be designed with caution, given the balance between the protective and destructive roles of TLR signaling in response to microbiota and associated immunopathologies.
Collapse
Affiliation(s)
- Carolyn D Kramer
- Department of Integrative Physiology and Pathobiology, Tufts University School of Medicine , Boston, MA , USA
| | - Caroline Attardo Genco
- Department of Integrative Physiology and Pathobiology, Tufts University School of Medicine , Boston, MA , USA
| |
Collapse
|
39
|
Gloor GB, Macklaim JM, Pawlowsky-Glahn V, Egozcue JJ. Microbiome Datasets Are Compositional: And This Is Not Optional. Front Microbiol 2017. [PMID: 29187837 DOI: 10.1080/01904168209363016] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/15/2023] Open
Abstract
Datasets collected by high-throughput sequencing (HTS) of 16S rRNA gene amplimers, metagenomes or metatranscriptomes are commonplace and being used to study human disease states, ecological differences between sites, and the built environment. There is increasing awareness that microbiome datasets generated by HTS are compositional because they have an arbitrary total imposed by the instrument. However, many investigators are either unaware of this or assume specific properties of the compositional data. The purpose of this review is to alert investigators to the dangers inherent in ignoring the compositional nature of the data, and point out that HTS datasets derived from microbiome studies can and should be treated as compositions at all stages of analysis. We briefly introduce compositional data, illustrate the pathologies that occur when compositional data are analyzed inappropriately, and finally give guidance and point to resources and examples for the analysis of microbiome datasets using compositional data analysis.
Collapse
Affiliation(s)
- Gregory B Gloor
- Department of Biochemistry, University of Western Ontario, London, ON, Canada
| | - Jean M Macklaim
- Department of Biochemistry, University of Western Ontario, London, ON, Canada
| | - Vera Pawlowsky-Glahn
- Departments of Computer Science, Applied Mathematics, and Statistics, Universitat de Girona, Girona, Spain
| | - Juan J Egozcue
- Department of Applied Mathematics, Universitat Politècnica de Catalunya, Barcelona, Spain
| |
Collapse
|
40
|
Foxman B, Seitz SM, Rothenberg R. Epidemiology and the microbiome. Ann Epidemiol 2016; 26:386-7. [PMID: 27180115 PMCID: PMC10519180 DOI: 10.1016/j.annepidem.2016.04.007] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2016] [Accepted: 04/09/2016] [Indexed: 12/12/2022]
Affiliation(s)
- Betsy Foxman
- Department of Epidemiology, University of Michigan, Ann Arbor.
| | | | - Richard Rothenberg
- Division of Epidemiology and Biostatistics, Georgia State University, Atlanta
| |
Collapse
|