1
|
Fujisawa T, Nakamura Y, Bando H, Morizane C, Ikeda M, Nonomura N, Matsubara N, Iwata H, Naito Y, Okano S, Aoki D, Harano K, Yamazaki N, Namikawa K, Ueno M, Kadowaki S, Oki E, Kato K, Komatsu Y, Satoh T, Esaki T, Denda T, Hamaguchi T, Yamazaki K, Matsuhashi N, Yasui H, Satake H, Nishina T, Takahashi N, Goto M, Sunakawa Y, Kato T, Otsuka T, Abutani H, Tukachinsky H, Lee JK, Oxnard GR, Kuramoto N, Horasawa S, Sakamoto Y, Taniguchi H, Yoshino T. Benefits of Combining Circulating Tumor DNA With Tissue and Longitudinal Circulating Tumor DNA Genotyping in Advanced Solid Tumors: SCRUM-Japan MONSTAR-SCREEN-1 Study. JCO Precis Oncol 2025; 9:e2400283. [PMID: 40209142 PMCID: PMC12005867 DOI: 10.1200/po.24.00283] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2024] [Revised: 12/23/2024] [Accepted: 02/21/2025] [Indexed: 04/12/2025] Open
Abstract
PURPOSE The utility of capturing heterogeneity by circulating tumor DNA (ctDNA) genotyping combined with tissue analysis or applying it in a sequential manner remains uncertain. METHODS We assessed the clinical value of ctDNA genotyping using data from 2,187 patients with advanced solid tumors enrolled in SCRUM-Japan MONSTAR-SCREEN-1, a nationwide cancer genome screening project, which examined ctDNA from longitudinally collected blood samples and tumor tissue samples (UMIN 000036749). RESULTS Among 667 patients with both baseline ctDNA and tissue genotyping results, 51 (7.6%) had actionable biomarkers identified exclusively through ctDNA genotyping. The most frequent targets of genotype-matched therapy guided by solely ctDNA were immune checkpoint, estrogen receptor, and poly(ADP-ribose) polymerase (PARP). Comparison of objective response rates (ORRs) and progression-free survival (PFS) between patients treated based on tissue versus ctDNA alone showed no significant difference, with ORRs of 34.0% versus 23.1% (P = .54) and a median PFS of 11.5 versus 13.8 months (hazard ratio [HR], 1.4 [95% CI, 0.72 to 2.80]), respectively. Among 924 patients undergoing sequential ctDNA genotyping, the detection of actionable biomarkers increased from 63.2% to 72.5% following subsequent ctDNA. Targets for genotype-matched therapy guided by subsequent ctDNA alone commonly included PARP, immune checkpoint, and BRAF. The ORR was 23.2% and 26.7% (P = .75), and the median PFS was 5.2 and. 3.7 months (HR, 1.5 [95% CI, 0.79 to 2.80]) for genotype-matched therapy based on initial versus subsequent ctDNA alone, respectively. CONCLUSION Combining ctDNA with tissue analysis, followed by sequential ctDNA assessments, effectively enhances the identification of actionable biomarkers. This strategy facilitates clinically beneficial, genetically informed therapies, underscoring its significant value in precision oncology.
Collapse
Affiliation(s)
- Takao Fujisawa
- Translational Research Support Office, National Cancer Center Hospital East, Kashiwa, Japan
- Department of Head and Neck Medical Oncology, National Cancer Center Hospital East, Kashiwa, Japan
- Course of Advanced Clinical Research of Cancer, Juntendo University Graduate School of Medicine, Tokyo, Japan
| | - Yoshiaki Nakamura
- Translational Research Support Office, National Cancer Center Hospital East, Kashiwa, Japan
- Department of Gastroenterology and Gastrointestinal Oncology, National Cancer Center Hospital East, Kashiwa, Japan
- International Research Promotion Office, National Cancer Center Hospital East, Kashiwa, Japan
| | - Hideaki Bando
- Translational Research Support Office, National Cancer Center Hospital East, Kashiwa, Japan
- Department of Gastroenterology and Gastrointestinal Oncology, National Cancer Center Hospital East, Kashiwa, Japan
| | - Chigusa Morizane
- Department of Hepatobiliary and Pancreatic Oncology, National Cancer Center Hospital, Tokyo, Japan
| | - Masafumi Ikeda
- Department of Hepatobiliary and Pancreatic Oncology, National Cancer Center Hospital East, Kashiwa, Japan
| | - Norio Nonomura
- Department of Urology, Osaka University Graduate School of Medicine, Suita, Japan
| | - Nobuaki Matsubara
- Department of Medical Oncology, National Cancer Center Hospital East, Chiba, Japan
| | - Hiroji Iwata
- Department of Breast Oncology, Aichi Cancer Center Hospital, Nagoya, Japan
| | - Yoichi Naito
- Department of Medical Oncology, National Cancer Center Hospital East, Chiba, Japan
- Department of General Internal Medicine, National Cancer Center Hospital East, Chiba, Japan
- Department of Experimental Therapeutics, National Cancer Center Hospital East, Chiba, Japan
| | - Susumu Okano
- Department of Head and Neck Medical Oncology, National Cancer Center Hospital East, Kashiwa, Japan
| | - Daisuke Aoki
- Department of Obstetrics and Gynecology, Keio University School of Medicine, Tokyo, Japan
| | - Kenichi Harano
- Department of Medical Oncology, National Cancer Center Hospital East, Chiba, Japan
- Department of Experimental Therapeutics, National Cancer Center Hospital East, Chiba, Japan
| | - Naoya Yamazaki
- Department of Dermatologic Oncology, National Cancer Center Hospital, Tokyo, Japan
| | - Kenjiro Namikawa
- Department of Dermatologic Oncology, National Cancer Center Hospital, Tokyo, Japan
| | - Makoto Ueno
- Department of Gastroenterology, Kanagawa Cancer Center, Yokohama, Japan
| | - Shigenori Kadowaki
- Department of Clinical Oncology, Aichi Cancer Center Hospital, Nagoya, Japan
| | - Eiji Oki
- Department of Surgery and Science, Kyushu University, Fukuoka, Japan
| | - Ken Kato
- Department of Head and Neck, Esophageal Oncology, National Cancer Center Hospital, Tokyo, Japan
| | - Yoshito Komatsu
- Department of Cancer Center, Hokkaido University Hospital, Sapporo, Japan
| | - Taroh Satoh
- Center for Cancer Genomics and Precision Medicine, Osaka University Hospital, Suita, Japan
| | - Taito Esaki
- Department of Gastrointestinal and Medical Oncology, National Hospital Organization Kyushu Cancer Center, Fukuoka, Japan
| | - Tadamichi Denda
- Division of Gastroenterology, Chiba Cancer Center, Chiba, Japan
| | - Tetsuya Hamaguchi
- Department of Gastroenterological Oncology, Saitama Medical University International Medical Center, Hidaka, Japan
| | - Kentaro Yamazaki
- Division of Gastrointestinal Oncology, Shizuoka Cancer Center, Shunto-gun, Japan
| | - Nobuhisa Matsuhashi
- Department of Gastroenterological Surgery and Pediatric Surgery, Center for One Medicine Innovative Translational Research, Gifu University Graduate School of Medicine, Gifu, Japan
| | - Hisateru Yasui
- Department of Medical Oncology, Kobe City Medical Center General Hospital, Kobe, Japan
| | - Hironaga Satake
- Cancer Center, Kansai Medical University Hospital, Hirakata, Japan
- Department of Medical Oncology, Kochi Medical School, Kochi, Japan
| | - Tomohiro Nishina
- Department of Gastrointestinal Medical Oncology, National Hospital Organization Shikoku Cancer Center, Matsuyama, Japan
| | - Naoki Takahashi
- Department of Gastroenterology, Saitama Cancer Center, Kitaadachi-gun, Japan
| | - Masahiro Goto
- Cancer Chemotherapy Center, Osaka Medical and Pharmaceutical University Hospital, Takatsuki, Japan
| | - Yu Sunakawa
- Department of Clinical Oncology, St Marianna University School of Medicine, Kawasaki, Japan
| | - Takeshi Kato
- Department of Surgery, National Hospital Organization Osaka National Hospital, Osaka, Japan
| | - Tomoyuki Otsuka
- Department of Medical Oncology, Osaka International Cancer Institute, Osaka, Japan
| | | | | | | | | | - Naomi Kuramoto
- Translational Research Support Office, National Cancer Center Hospital East, Kashiwa, Japan
| | - Satoshi Horasawa
- Translational Research Support Office, National Cancer Center Hospital East, Kashiwa, Japan
| | - Yasutoshi Sakamoto
- Translational Research Support Office, National Cancer Center Hospital East, Kashiwa, Japan
| | - Hiroya Taniguchi
- Department of Surgery and Science, Kyushu University, Fukuoka, Japan
| | - Takayuki Yoshino
- Department of Gastroenterology and Gastrointestinal Oncology, National Cancer Center Hospital East, Kashiwa, Japan
- Department of the Promotion of Drug and Diagnostic Development, National Cancer Center Hospital East, Kashiwa, Japan
| |
Collapse
|
2
|
Swalduz A, Schiffler C, Curcio H, Ambasager B, Le Moel G, Debieuvre D, Dot JM, Duruisseaux M, Fournel P, Odier L, Demolombe S, Bizieux-Thaminy A, Peytier A, Schott R, Hominal S, Tissot C, Bombaron P, Metzger S, Donnat M, Ortiz-Cuaran S, Rosenfeld N, Pipinikas C, Saintigny P, Pérol M. LIBELULE: A Randomized Phase III Study to Evaluate the Clinical Relevance of Early Liquid Biopsy in Patients With Suspicious Metastatic Lung Cancer. J Thorac Oncol 2025; 20:437-450. [PMID: 39694415 DOI: 10.1016/j.jtho.2024.12.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2024] [Revised: 10/12/2024] [Accepted: 12/08/2024] [Indexed: 12/20/2024]
Abstract
OBJECTIVES Genomic profiling is a major component for first-line treatment decisions in patients with NSCLC and the timeliness of biomarker testing is essential to improve time to treatment initiation (TTI) or avoid inappropriate treatment. METHODS The phase III LIquid Biopsy for the Early detection of LUng cancer Lesion trial (NCT03721120) included patients with radiological suspicion of advanced lung cancer. They were randomized (1:1), the control arm receiving diagnostic procedures according to each center's practice, and the liquid biopsy arm with additional testing performed at the first visit using the InVisionFirst-Lung assay. Treatment initiation and type were defined according to the European Society for Medical Oncology guidelines. Primary endpoint was the time from randomization to initiation of appropriate treatment on the basis of informative genomic and pathological results in the intention-to-treat population. RESULTS A total of 319 patients were enrolled (liquid biopsy [LB]: 161; control: 158). The median age was 68 years, 28.8% were non-smokers, 18.1% had a performance status of 2 or higher, and 56.7% had adenocarcinoma. In the LB arm, 81% of patients had circulating tumor DNA findings. The mean TTI was not significantly reduced (LB: 29.0 d; control 34 d (p = 0.26)). Sensitivity analyses found a shorter TTI in patients from the LB arm who received systemic treatment (LB: 29.1 d; control: 38.9 d, p = 0.01), in patients with advanced non-squamous NSCLC (LB: 29.5 d; control: 40.3 d, p = 0.01), and in patients with first-line targetable alterations (LB: 21d; control 37.4 d) (p = 0.004). Time to contributory genomic results was significantly reduced (LB: 17.9 d; control: 25.6 d, p < 0.001). CONCLUSION Early liquid biopsy testing did not significantly shorten the TTI in unselected patients referred for suspected advanced lung cancer. Nevertheless, it could reduce the TTI in patients eligible for systemic treatment, particularly for those with actionable alterations.
Collapse
Affiliation(s)
- Aurélie Swalduz
- Department of Medical Oncology, Centre Léon Bérard, Lyon, France; Univ Lyon, Claude Bernard Lyon 1 University, INSERM 1052, CNRS 5286, Centre Léon Bérard, Cancer Research Center of Lyon, Lyon, France.
| | - Camille Schiffler
- Department of Clinical Research and Innovation, Centre Léon Bérard, Lyon, France
| | - Hubert Curcio
- Department of Medical Oncology, Centre François Baclesse, Caen, France
| | - Bana Ambasager
- NeoGenomics, Babraham Research Campus, Cambridge, United Kingdom
| | - Gabriel Le Moel
- Department of Pneumology, Centre Hospitalier du Cotentin Louis Pasteur, Cherbourg, France
| | - Didier Debieuvre
- Department of Pneumology, Groupe Hospitalier de la Région Mulhouse Sud-Alsace, Hôpital Emile Muller, GHRMSA - Mulhouse, Mulhouse, France
| | - Jean-Marc Dot
- Department of Pneumology, Medipole, Lyon Villeurbanne, France
| | - Michael Duruisseaux
- Respiratory Department, Louis Pradel Hospital, Hospices Civils de Lyon Cancer Institute, Lyon, France
| | - Pierre Fournel
- Department of Pneumology and Thoracic Oncology, Hôpital Nord, Saint-Etienne, France
| | - Luc Odier
- Department of Pneumology, l'Hôpital Nord-Ouest Villefranche sur Saône, Villefranche-sur-Saône, France
| | - Sylvie Demolombe
- Department of Medical Oncology, Infirmerie Protestante, Caluire et Cuire, France
| | | | - Annie Peytier
- Department of Medical Oncology, Centre Hospitalier de Bayeux, Bayeux, France
| | - Roland Schott
- Department of Medical Oncology, Institut de Cancérologie Strasbourg Europe (ICANS), Strasbourg, France
| | - Stéphane Hominal
- Department of Pneumology, Centre Hospitalier Annecy-Genevois, Epagny-Metz Tessy, France
| | - Claire Tissot
- Department of Oncology, Hôpital Privé de la Loire, Saint-Etienne, France
| | - Pierre Bombaron
- Department of Medicine, Hôpital Privé Jean Mermoz, Lyon, France
| | - Séverine Metzger
- Department of Clinical Research and Innovation, Centre Léon Bérard, Lyon, France
| | - Mathilde Donnat
- Department of Clinical Research and Innovation, Centre Léon Bérard, Lyon, France
| | - Sandra Ortiz-Cuaran
- Univ Lyon, Claude Bernard Lyon 1 University, INSERM 1052, CNRS 5286, Centre Léon Bérard, Cancer Research Center of Lyon, Lyon, France
| | - Nitzan Rosenfeld
- Cancer Research UK Cambridge Institute, University of Cambridge, Cambridge, United Kingdom; Cancer Research UK Cambridge Centre, Cambridge, United Kingdom; Barts Cancer Institute, Queen Mary University of London, London, United Kingdom
| | | | - Pierre Saintigny
- Department of Medical Oncology, Centre Léon Bérard, Lyon, France; Univ Lyon, Claude Bernard Lyon 1 University, INSERM 1052, CNRS 5286, Centre Léon Bérard, Cancer Research Center of Lyon, Lyon, France
| | - Maurice Pérol
- Department of Medical Oncology, Centre Léon Bérard, Lyon, France
| |
Collapse
|
3
|
Mazouji O, Ouhajjou A, Anouar N, Nejjari C, Incitti R, Mansour H. Mutational profiling using liquid biopsy to guide targeted therapy in patients with metastatic cancer. Sci Rep 2025; 15:11135. [PMID: 40169620 PMCID: PMC11962155 DOI: 10.1038/s41598-025-88094-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2024] [Accepted: 01/24/2025] [Indexed: 04/03/2025] Open
Abstract
Liquid biopsy gained significant interest in the area of cancer management. This study aims to evaluate the effectiveness of molecular testing using ctDNA (circulating tumor DNA) to; detect genetic alterations, screen for abnormalities, identify mutations associated with treatment sensitivity or resistance and guide therapy decision for several types of cancer in patients with metastasis. A total of 85 samples were collected from 74 patients recruited at our center, as part of their routine clinical follow-up. 17 different cancer types were analyzed. Genetic testing was conducted in patients with metastasis after failure of standard treatments. Sequencing was conducted in plasma-ctDNA samples; and when it was possible on the tumor tissue as well. Our analysis revealed that 88% (65 patients) of patients were eligible for treatment guidance using liquid biopsy. Among them, 64% (47 patients) received an FDA-approved drug, and treatment decisions were based on molecular testing using ctDNA. Somatic gene mutations were detected in 89% (66 patients) of the patients tested; 81% (60 patients) of patients had at least two mutations, 8% (6 patients) had only one mutation and 11% (8 patients) had no detected mutations. Interestingly, among the genes tested, BRCA2, EGFR, MSH6, and NF1 were the most frequently mutated in our patients. Our study highlights the potential benefits of personalized medicine through a non-invasive genetic testing across patients with metastasis regardless of the cancer types. Moreover, our study identified the frequent occurrence of specific gene mutations across various types of cancer, which paves the way for considering targeted therapies that could be applicable to multiple cancer types, rather than being restricted to just a few.
Collapse
Grants
- Mohammed First University, Morocco
- Al-Azhar Oncology Center, Rabat, Morocco
- Cabinet of Pathology Bouregreg, Rabat, Morocco
- Euromed Research Center, Euromed University of Fes, Morocco
- Faculty of Medicine, Pharmacy, and Dentistry, Sidi Mohamed Ben Abdellah University, Fes, Morocco
Collapse
Affiliation(s)
- Omayma Mazouji
- GES-LCM2E, FPN, Mohamed First University, Oujda, Morocco
| | | | - Naima Anouar
- GES-LCM2E, FPN, Mohamed First University, Oujda, Morocco
- Cabinet of Pathology Bouregreg, Rabat, Morocco
| | - Chakib Nejjari
- Euromed Research Center, Euromed University of Fes, Fes, Morocco
- Faculty of Medicine, Pharmacy, and Dentistry, Sidi Mohamed Ben Abdellah University, Fes, Morocco
| | - Roberto Incitti
- Euromed Research Center, Euromed University of Fes, Fes, Morocco
| | - Hicham Mansour
- GES-LCM2E, FPN, Mohamed First University, Oujda, Morocco.
| |
Collapse
|
4
|
Liu D, Jee J, Drilon A, Heilmann AM, Allen JM, Schrock AB, Keller-Evans RB, Li BT. Diverse ERBB2/ERBB3 Activating Alterations and Coalterations Have Implications for HER2/3-Targeted Therapies across Solid Tumors. CANCER RESEARCH COMMUNICATIONS 2025; 5:680-693. [PMID: 40178042 PMCID: PMC12022956 DOI: 10.1158/2767-9764.crc-24-0620] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/10/2024] [Revised: 03/06/2025] [Accepted: 04/01/2025] [Indexed: 04/05/2025]
Abstract
SIGNIFICANCE CGP provides genomic context for HER2 status beyond the information provided by IHC and FISH, including detection of ERBB2 mutations and co-alterations that may suggest sensitivity/resistance to HER2-directed therapies, and is therefore crucial for guiding treatment choice and understanding individual patient response.
Collapse
Affiliation(s)
- Dazhi Liu
- Memorial Sloan Kettering Cancer Center, New York, New York
| | - Justin Jee
- Memorial Sloan Kettering Cancer Center, New York, New York
| | - Alexander Drilon
- Memorial Sloan Kettering Cancer Center, New York, New York
- Weill Cornell Medical College, New York, New York
| | | | | | | | | | - Bob T. Li
- Memorial Sloan Kettering Cancer Center, New York, New York
| |
Collapse
|
5
|
Kournoutas I, Siontis BL. Minimal Residual Disease in Metastatic Soft Tissue Sarcoma. Curr Treat Options Oncol 2025; 26:251-259. [PMID: 40072823 DOI: 10.1007/s11864-025-01303-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/15/2025] [Indexed: 03/14/2025]
Abstract
OPINION STATEMENT Liquid biopsies represent a promising and minimally invasive approach to diagnosing and monitoring cancer. In recent years, studies across a multitude of solid organ malignancies have suggested the clinical utility of biomarkers such as circulating tumor DNA (ctDNA). Particular attention has been given to serial assessment of such biomarkers in an effort to detect minimal residual disease (MRD), in order to predict which patients may be at highest risk of relapse following curative-intent surgical or medical intervention. Such investigations are particularly relevant to sarcomas, which are highly heterogeneous malignancies and commonly develop treatment resistance. While preliminary research described herein is promising, there remain key barriers to widespread adoption of liquid biopsy in sarcoma, including the lack of standardized detection methods, high cost, and the need for large, prospective studies to validate their clinical utility. Given the high level of interest in liquid biopsy in the biomedical community, it is plausible such obstacles may be overcome in the near future. With such advancements, one can anticipate that liquid biopsies may become a key tool in the sarcoma oncologists armamentarium, and offer a path toward improved outcomes for patients with sarcoma.
Collapse
Affiliation(s)
| | - Brittany L Siontis
- Division of Medical Oncology, Mayo Clinic, 200 First Street SW, Rochester, MN, 55905, USA.
| |
Collapse
|
6
|
Moon GY, Dalkiran B, Park HS, Shin D, Son C, Choi JH, Bang S, Lee H, Doh I, Kim DH, Jeong WJ, Bu J. Dual Biomarker Strategies for Liquid Biopsy: Integrating Circulating Tumor Cells and Circulating Tumor DNA for Enhanced Tumor Monitoring. BIOSENSORS 2025; 15:74. [PMID: 39996976 PMCID: PMC11852634 DOI: 10.3390/bios15020074] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/28/2024] [Revised: 01/21/2025] [Accepted: 01/26/2025] [Indexed: 02/26/2025]
Abstract
The liquid biopsy has gained significant attention in cancer diagnostics, with circulating tumor cells (CTCs) and circulating tumor DNA (ctDNA) being recognized as key biomarkers for tumor detection and monitoring. However, each biomarker possesses inherent limitations that restrict its standalone clinical utility, such as the rarity and heterogeneity of CTCs and the variable sensitivity and specificity of ctDNA assays. This highlights the necessity of integrating both biomarkers to maximize diagnostic and prognostic potential, offering a more comprehensive understanding of the tumor biology and therapeutic response. In this review, we summarize clinical studies that have explored the combined analysis of CTCs and ctDNA as biomarkers, providing insights into their synergistic value in diverse tumor types. Specifically, this paper examines the individual advantages and limitations of CTCs and ctDNA, details the findings of combined biomarker studies across various cancers, highlights the benefits of dual biomarker approaches over single-biomarker strategies, and discusses future prospects for advancing personalized oncology through liquid biopsies. By offering a comprehensive overview of clinical studies combining CTCs and ctDNA, this review serves as a guideline for researchers and clinicians aiming to enhance biomarker-based strategies in oncology and informs biosensor design for improved biomarker detection.
Collapse
Affiliation(s)
- Ga Young Moon
- Department of Biological Sciences and Bioengineering, Inha University, 100 Inha-ro, Michuhol-gu, Incheon 22212, Republic of Korea; (G.Y.M.); (B.D.); (H.S.P.); (D.S.); (C.S.); (J.H.C.); (S.B.); (H.L.)
| | - Basak Dalkiran
- Department of Biological Sciences and Bioengineering, Inha University, 100 Inha-ro, Michuhol-gu, Incheon 22212, Republic of Korea; (G.Y.M.); (B.D.); (H.S.P.); (D.S.); (C.S.); (J.H.C.); (S.B.); (H.L.)
| | - Hyun Sung Park
- Department of Biological Sciences and Bioengineering, Inha University, 100 Inha-ro, Michuhol-gu, Incheon 22212, Republic of Korea; (G.Y.M.); (B.D.); (H.S.P.); (D.S.); (C.S.); (J.H.C.); (S.B.); (H.L.)
| | - Dongjun Shin
- Department of Biological Sciences and Bioengineering, Inha University, 100 Inha-ro, Michuhol-gu, Incheon 22212, Republic of Korea; (G.Y.M.); (B.D.); (H.S.P.); (D.S.); (C.S.); (J.H.C.); (S.B.); (H.L.)
| | - Chaeyeon Son
- Department of Biological Sciences and Bioengineering, Inha University, 100 Inha-ro, Michuhol-gu, Incheon 22212, Republic of Korea; (G.Y.M.); (B.D.); (H.S.P.); (D.S.); (C.S.); (J.H.C.); (S.B.); (H.L.)
| | - Jung Hyun Choi
- Department of Biological Sciences and Bioengineering, Inha University, 100 Inha-ro, Michuhol-gu, Incheon 22212, Republic of Korea; (G.Y.M.); (B.D.); (H.S.P.); (D.S.); (C.S.); (J.H.C.); (S.B.); (H.L.)
- Division of Biomedical Metrology, Korea Research Institute of Standards and Science, 267 Gajeongno, Yuseong-gu, Daejeon 34113, Republic of Korea; (I.D.); (D.H.K.)
| | - Seha Bang
- Department of Biological Sciences and Bioengineering, Inha University, 100 Inha-ro, Michuhol-gu, Incheon 22212, Republic of Korea; (G.Y.M.); (B.D.); (H.S.P.); (D.S.); (C.S.); (J.H.C.); (S.B.); (H.L.)
| | - Hosu Lee
- Department of Biological Sciences and Bioengineering, Inha University, 100 Inha-ro, Michuhol-gu, Incheon 22212, Republic of Korea; (G.Y.M.); (B.D.); (H.S.P.); (D.S.); (C.S.); (J.H.C.); (S.B.); (H.L.)
| | - Il Doh
- Division of Biomedical Metrology, Korea Research Institute of Standards and Science, 267 Gajeongno, Yuseong-gu, Daejeon 34113, Republic of Korea; (I.D.); (D.H.K.)
| | - Dong Hyung Kim
- Division of Biomedical Metrology, Korea Research Institute of Standards and Science, 267 Gajeongno, Yuseong-gu, Daejeon 34113, Republic of Korea; (I.D.); (D.H.K.)
| | - Woo-jin Jeong
- Department of Biological Sciences and Bioengineering, Inha University, 100 Inha-ro, Michuhol-gu, Incheon 22212, Republic of Korea; (G.Y.M.); (B.D.); (H.S.P.); (D.S.); (C.S.); (J.H.C.); (S.B.); (H.L.)
- Department of Biological Engineering, Inha University, 100 Inha-ro, Michuhol-gu, Incheon 22212, Republic of Korea
| | - Jiyoon Bu
- Department of Biological Sciences and Bioengineering, Inha University, 100 Inha-ro, Michuhol-gu, Incheon 22212, Republic of Korea; (G.Y.M.); (B.D.); (H.S.P.); (D.S.); (C.S.); (J.H.C.); (S.B.); (H.L.)
- Department of Biological Engineering, Inha University, 100 Inha-ro, Michuhol-gu, Incheon 22212, Republic of Korea
- Biohybrid Systems Research Center, Inha University, 100 Inha-ro, Michuhol-gu, Incheon 22212, Republic of Korea
| |
Collapse
|
7
|
Mavrikios A, Baldini C, Loriot Y, Hénon C, Marabelle A, Postel-Vinay S, Champiat S, Danlos FX, Quevrin C, Lopes E, Gazzah A, Bahleda R, Massard C, Deutsch E, Levy A. Is Local Ablative Stereotactic Radiation Therapy a Valuable Rescue Strategy for Time on Drug in Patients Enrolled in Phase I Trials? Int J Radiat Oncol Biol Phys 2024; 120:1245-1256. [PMID: 39128580 DOI: 10.1016/j.ijrobp.2024.07.2336] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Revised: 07/19/2024] [Accepted: 07/22/2024] [Indexed: 08/13/2024]
Abstract
PURPOSE Patients with advanced tumors enrolled in phase I trials display strong treatment expectations and few therapeutic alternatives. When oligoacquired resistance (OAR; ≤3 lesions of disease progression) occurs, local ablative stereotactic radiation therapy (SRT) could allow disease control and continuing the experimental systemic treatment. METHODS AND MATERIALS Data from patients enrolled in phase I trials evaluating systemic treatments, who experienced OAR while on the phase I systemic therapy and subsequently received SRT between January 2014 and April 2023, were retrospectively analyzed. Progression-free survival (PFS)1 (trial entry to OAR), PFS2 (SRT to first subsequent relapse), time to next systemic treatment (TTNT), and overall survival (OS) were assessed. First subsequent patterns of relapse after SRT were distinguished as OAR2, which could be locally rechallenged, or systemic acquired resistance (SAR; >3 lesions of disease progression). When available, correlations between molecular profile and pathway enrichments of OAR and SAR were explored. RESULTS Forty-two patients with 52 oligoprogressive lesions were analyzed. The median follow-up was 24 months. SRT allowed a median PFS2 of 7.1 months and a median TTNT of 12.8 months. PFS2 included 49% OAR2 and 51% SAR. Median time to first subsequent relapse (9.6 vs 3.5 months; P = .014) and TTNT (22.4 vs 7.6 months; P < .001) were longer for OAR2 compared with that for SAR. No severe toxicities were reported. A PFS1 of <6 months and de novo oligoprogressive lesions were associated with the presence of SAR. More diverse enriched gene pathways were observed for SAR compared with that for OAR2. CONCLUSIONS In patients enrolled in phase I trials, OAR managed with SRT may increase time on investigational systemic treatments. Predictive factors reflecting tumor aggressiveness and clonal heterogeneity could help deciphering OAR2 from SAR and maximize SRT output in the oligoprogressive setting.
Collapse
Affiliation(s)
- Antoine Mavrikios
- Department of Radiation Oncology, International Center for Thoracic Cancers (CICT), Gustave Roussy, Villejuif, France; Sorbonne Université, Faculté de Médecine, Paris, France
| | - Capucine Baldini
- Drug Development Department (DITEP), Gustave Roussy, Villejuif, France
| | - Yohann Loriot
- Drug Development Department (DITEP), Gustave Roussy, Villejuif, France; Université Paris-Saclay, Faculté de Médecine, Kremlin-Bicêtre, France
| | - Clémence Hénon
- Drug Development Department (DITEP), Gustave Roussy, Villejuif, France
| | - Aurélien Marabelle
- Drug Development Department (DITEP), Gustave Roussy, Villejuif, France; Université Paris-Saclay, Faculté de Médecine, Kremlin-Bicêtre, France
| | - Sophie Postel-Vinay
- Drug Development Department (DITEP), Gustave Roussy, Villejuif, France; Université Paris-Saclay, Faculté de Médecine, Kremlin-Bicêtre, France; Université Paris-Saclay, INSERM U981, Molecular predictors and new targets in oncology, Gustave Roussy, Villejuif, France; University College of London Cancer Institute, London, England
| | - Stéphane Champiat
- Drug Development Department (DITEP), Gustave Roussy, Villejuif, France
| | | | - Clément Quevrin
- Université Paris-Saclay, INSERM U1030, Molecular radiotherapy and therapeutic innovation, Gustave Roussy, Villejuif, France
| | - Eloise Lopes
- Université Paris-Saclay, INSERM U1030, Molecular radiotherapy and therapeutic innovation, Gustave Roussy, Villejuif, France
| | - Anas Gazzah
- Drug Development Department (DITEP), Gustave Roussy, Villejuif, France
| | - Rastislav Bahleda
- Drug Development Department (DITEP), Gustave Roussy, Villejuif, France
| | - Christophe Massard
- Drug Development Department (DITEP), Gustave Roussy, Villejuif, France; Université Paris-Saclay, Faculté de Médecine, Kremlin-Bicêtre, France; Université Paris-Saclay, INSERM U1030, Molecular radiotherapy and therapeutic innovation, Gustave Roussy, Villejuif, France
| | - Eric Deutsch
- Department of Radiation Oncology, International Center for Thoracic Cancers (CICT), Gustave Roussy, Villejuif, France; Université Paris-Saclay, Faculté de Médecine, Kremlin-Bicêtre, France; Université Paris-Saclay, INSERM U1030, Molecular radiotherapy and therapeutic innovation, Gustave Roussy, Villejuif, France
| | - Antonin Levy
- Department of Radiation Oncology, International Center for Thoracic Cancers (CICT), Gustave Roussy, Villejuif, France; Université Paris-Saclay, Faculté de Médecine, Kremlin-Bicêtre, France; Université Paris-Saclay, INSERM U1030, Molecular radiotherapy and therapeutic innovation, Gustave Roussy, Villejuif, France.
| |
Collapse
|
8
|
Xi J, Ma CX, O'Shaughnessy J. Current Clinical Utility of Circulating Tumor DNA Testing in Breast Cancer: A Practical Approach. JCO Oncol Pract 2024; 20:1460-1470. [PMID: 39531841 DOI: 10.1200/op.24.00274] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Revised: 08/26/2024] [Accepted: 08/27/2024] [Indexed: 11/16/2024] Open
Abstract
Circulating tumor DNA (ctDNA) refers to DNA fragments released from cancer cells into the bloodstream. Clinical utility of ctDNA in breast cancer has been explored in both metastatic breast cancer (MBC) and early-stage breast cancer (EBC) settings. In MBC, ctDNA can detect therapeutically targetable genomic alterations and has shown great potential in predicting treatment response or resistance. Accumulating data suggest that ctDNA might also have prognostic value in MBC. In EBC, emerging data have shown ctDNA's predictive and/or prognostic value in both neoadjuvant and adjuvant settings. Minimal residual disease (MRD) detection via ctDNA to detect clinical recurrence after curative therapy is a rapidly advancing field. In this review, we discuss the existing and emerging data regarding ctDNA utility in both MBC and EBC settings.
Collapse
Affiliation(s)
- Jing Xi
- Rocky Mountain Cancer Centers, Denver, CO
| | | | | |
Collapse
|
9
|
Vasseur D, Bigot L, Beshiri K, Flórez-Arango J, Facchinetti F, Hollebecque A, Tselikas L, Aldea M, Blanc-Durand F, Gazzah A, Planchard D, Lacroix L, Pata-Merci N, Nobre C, Da Silva A, Nicotra C, Ngo-Camus M, Braye F, Nikolaev SI, Michiels S, Jules-Clement G, Olaussen KA, André F, Scoazec JY, Barlesi F, Ponce S, Soria JC, Besse B, Loriot Y, Friboulet L. Deciphering resistance mechanisms in cancer: final report of MATCH-R study with a focus on molecular drivers and PDX development. Mol Cancer 2024; 23:221. [PMID: 39363320 PMCID: PMC11451117 DOI: 10.1186/s12943-024-02134-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2024] [Accepted: 09/20/2024] [Indexed: 10/05/2024] Open
Abstract
BACKGROUND Understanding the resistance mechanisms of tumor is crucial for advancing cancer therapies. The prospective MATCH-R trial (NCT02517892), led by Gustave Roussy, aimed to characterize resistance mechanisms to cancer treatments through molecular analysis of fresh tumor biopsies. This report presents the genomic data analysis of the MATCH-R study conducted from 2015 to 2022 and focuses on targeted therapies. METHODS The study included resistant metastatic patients (pts) who accepted an image-guided tumor biopsy. After evaluation of tumor content (TC) in frozen tissue biopsies, targeted NGS (10 < TC < 30%) or Whole Exome Sequencing and RNA sequencing (TC > 30%) were performed before and/or after the anticancer therapy. Patient-derived xenografts (PDX) were established by implanting tumor fragments into NOD scid gamma mice and amplified up to five passages. RESULTS A total of 1,120 biopsies were collected from 857 pts with the most frequent tumor types being lung (38.8%), digestive (16.3%) and prostate (14.1%) cancer. Molecular targetable driver were identified in 30.9% (n = 265/857) of the patients, with EGFR (41.5%), FGFR2/3 (15.5%), ALK (11.7%), BRAF (6.8%), and KRAS (5.7%) being the most common altered genes. Furthermore, 66.0% (n = 175/265) had a biopsy at progression on targeted therapy. Among resistant cases, 41.1% (n = 72/175) had no identified molecular mechanism, 32.0% (n = 56/175) showed on-target resistance, and 25.1% (n = 44/175) exhibited a by-pass resistance mechanism. Molecular profiling of the 44 patients with by-pass resistance identified 51 variants, with KRAS (13.7%), PIK3CA (11.8%), PTEN (11.8%), NF2 (7.8%), AKT1 (5.9%), and NF1 (5.9%) being the most altered genes. Treatment was tailored for 45% of the patients with a resistance mechanism identified leading to an 11 months median extension of clinical benefit. A total of 341 biopsies were implanted in mice, successfully establishing 136 PDX models achieving a 39.9% success rate. PDX models are available for EGFR (n = 31), FGFR2/3 (n = 26), KRAS (n = 18), ALK (n = 16), BRAF (n = 6) and NTRK (n = 2) driven cancers. These models closely recapitulate the biology of the original tumors in term of molecular alterations and pharmacological status, and served as valuable models to validate overcoming treatment strategies. CONCLUSION The MATCH-R study highlights the feasibility of on purpose image guided tumor biopsies and PDX establishment to characterize resistance mechanisms and guide personalized therapies to improve outcomes in pre-treated metastatic patients.
Collapse
Affiliation(s)
- Damien Vasseur
- Medical Biology and Pathology Department, Gustave Roussy, Villejuif, France
- AMMICa UAR3655/US23, Gustave Roussy, Villejuif, France
| | - Ludovic Bigot
- Université Paris-Saclay, Gustave Roussy, Inserm U981, Villejuif, France
| | - Kristi Beshiri
- Département d'Innovation Thérapeutique (DITEP), Gustave Roussy, Villejuif, France
| | | | | | - Antoine Hollebecque
- Département d'Innovation Thérapeutique (DITEP), Gustave Roussy, Villejuif, France
- Département de Médecine Oncologique, Gustave Roussy, Villejuif, France
| | - Lambros Tselikas
- Department of Interventional Radiology, BIOTHERIS, Gustave Roussy, Université Paris-Saclay, Villejuif, France
| | - Mihaela Aldea
- Département de Médecine Oncologique, Gustave Roussy, Villejuif, France
| | | | - Anas Gazzah
- Département d'Innovation Thérapeutique (DITEP), Gustave Roussy, Villejuif, France
| | - David Planchard
- Département de Médecine Oncologique, Gustave Roussy, Villejuif, France
| | - Ludovic Lacroix
- Medical Biology and Pathology Department, Gustave Roussy, Villejuif, France
- AMMICa UAR3655/US23, Gustave Roussy, Villejuif, France
| | | | - Catline Nobre
- Université Paris-Saclay, Gustave Roussy, Inserm U981, Villejuif, France
| | - Alice Da Silva
- Université Paris-Saclay, Gustave Roussy, Inserm U981, Villejuif, France
| | - Claudio Nicotra
- Département d'Innovation Thérapeutique (DITEP), Gustave Roussy, Villejuif, France
| | - Maud Ngo-Camus
- Département d'Innovation Thérapeutique (DITEP), Gustave Roussy, Villejuif, France
| | - Floriane Braye
- Université Paris-Saclay, Gustave Roussy, Inserm U981, Villejuif, France
| | - Sergey I Nikolaev
- Université Paris-Saclay, Gustave Roussy, Inserm U981, Villejuif, France
| | - Stefan Michiels
- Université Paris-Saclay, CESP, InsermVillejuif, France
- Office of Biostatistics and Epidemiology, Gustave Roussy, Villejuif, France
| | - Gérôme Jules-Clement
- Bioinformatics Core Facility, Gustave Roussy, Université Paris-Saclay, CNRS UMS 3655, Inserm US23, Villejuif, France
| | | | - Fabrice André
- Université Paris-Saclay, Gustave Roussy, Inserm U981, Villejuif, France
- Département de Médecine Oncologique, Gustave Roussy, Villejuif, France
| | - Jean-Yves Scoazec
- Medical Biology and Pathology Department, Gustave Roussy, Villejuif, France
- AMMICa UAR3655/US23, Gustave Roussy, Villejuif, France
| | - Fabrice Barlesi
- Département de Médecine Oncologique, Gustave Roussy, Villejuif, France
| | - Santiago Ponce
- Université Paris-Saclay, Gustave Roussy, Inserm U981, Villejuif, France
- Département de Médecine Oncologique, Gustave Roussy, Villejuif, France
| | - Jean-Charles Soria
- Université Paris-Saclay, Gustave Roussy, Inserm U981, Villejuif, France
- Département de Médecine Oncologique, Gustave Roussy, Villejuif, France
| | - Benjamin Besse
- Université Paris-Saclay, Gustave Roussy, Inserm U981, Villejuif, France
- Département de Médecine Oncologique, Gustave Roussy, Villejuif, France
| | - Yohann Loriot
- Université Paris-Saclay, Gustave Roussy, Inserm U981, Villejuif, France.
- Département d'Innovation Thérapeutique (DITEP), Gustave Roussy, Villejuif, France.
- Département de Médecine Oncologique, Gustave Roussy, Villejuif, France.
| | - Luc Friboulet
- Université Paris-Saclay, Gustave Roussy, Inserm U981, Villejuif, France.
| |
Collapse
|
10
|
MacKay H, Fernandes I. Cell-free DNA in recurrent and metastatic endometrial cancer: The future is now? Promises and potential pitfalls. Cancer 2024; 130:3275-3277. [PMID: 38985823 DOI: 10.1002/cncr.35448] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/12/2024]
Abstract
Blanc‐Durand and colleagues present a prospective analysis of cell‐free DNA in patients with recurrent, advanced, or metastatic endometrial cancer, which offers insights into its potential application in molecular classification and the evolving targeted therapy landscape of this disease. More research is needed to validate cell‐free DNA's clinical utility but its potential to guide therapy and improve patient outcomes warrants ongoing exploration.
Collapse
Affiliation(s)
- Helen MacKay
- Odette Cancer Centre, Sunnybrook Research Institute, Toronto, Ontario, Canada
| | - Italo Fernandes
- Odette Cancer Centre, Sunnybrook Research Institute, Toronto, Ontario, Canada
| |
Collapse
|
11
|
Armstrong AJ, Taylor A, Haffner MC, Abida W, Bryce AH, Karsh LI, Tagawa ST, Twardowski P, Serritella AV, Lang JM. Germline and somatic testing for homologous repair deficiency in patients with prostate cancer (part 1 of 2). Prostate Cancer Prostatic Dis 2024:10.1038/s41391-024-00901-4. [PMID: 39354185 DOI: 10.1038/s41391-024-00901-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2024] [Revised: 08/08/2024] [Accepted: 09/20/2024] [Indexed: 10/03/2024]
Abstract
BACKGROUND/OBJECTIVES Unfortunately, not all metastatic castration resistant prostate cancer (mCRPC) patients receive available life-prolonging systemic therapies, emphasizing the need to optimize mCRPC treatment selections. Better guidelines are necessary to determine genetic testing in prostate cancer. SUBJECTS/METHODS In this two-part expert opinion-based guide, we provide an expert consensus opinion on the utilization of germline and somatic testing to detect HRR alterations in patients with mCRPC. This guide was developed by a multidisciplinary expert panel that convened in 2023-2024, including representatives from medical oncology, urology, radiation oncology, pathology, medical genomics, and basic science. RESULTS/CONCLUSION We argue for the widespread adoption of germline testing in all patients with prostate cancer and for somatic mutations testing in patients at the time of recurrent/metastatic disease. In this first part, we review how genomic testing is performed. We also review how to overcome certain barriers to integrate genetic and biomarker testing into clinical practice.
Collapse
Affiliation(s)
- Andrew J Armstrong
- Duke Cancer Institute Center for Prostate and Urologic Cancers, Duke University Medical Center, Durham, NC, USA
| | - Amy Taylor
- University of Wisconsin, Madison, WI, USA
| | | | - Wassim Abida
- Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | | | | | | | | | | | | |
Collapse
|
12
|
Boileve A, Smolenschi C, Lambert A, Boige V, Tarabay A, Valery M, Fuerea A, Pudlarz T, Conroy T, Hollebecque A, Ducreux M. Role of molecular biology in the management of pancreatic cancer. World J Gastrointest Oncol 2024; 16:2902-2914. [PMID: 39072173 PMCID: PMC11271790 DOI: 10.4251/wjgo.v16.i7.2902] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/18/2024] [Revised: 04/04/2024] [Accepted: 05/21/2024] [Indexed: 07/12/2024] Open
Abstract
Pancreatic ductal adenocarcinoma (PDAC) presents significant challenges in patient management due to a dismal prognosis, increasing incidence, and limited treatment options. In this regard, precision medicine, which personalizes treatments based on tumour molecular characteristics, has gained great interest. However, its widespread implementation is not fully endorsed in current recommendations. This review explores key molecular alterations in PDAC, while emphasizing differences between KRAS-mutated and KRAS-wild-type tumours. It assesses the practical application of precision medicine in clinical settings and outlines potential future directions with respect to PDAC. Actionable molecular targets are examined with the aim of enhancing our understanding of PDAC molecular biology. Insights from this analysis may contribute to a more refined and personalized approach to pancreatic cancer treatment, ultimately improving patient outcomes.
Collapse
Affiliation(s)
- Alice Boileve
- Department of Medical, Gustave Roussy, Villejuif 94800, France
| | | | - Aurélien Lambert
- Department of Medical Oncology, Institut de Cancérologie de Lorraine, Nancy 54519, France
| | - Valérie Boige
- Department of Medical, Gustave Roussy, Villejuif 94800, France
| | - Anthony Tarabay
- Department of Medical, Gustave Roussy, Villejuif 94800, France
| | - Marine Valery
- Department of Medical, Gustave Roussy, Villejuif 94800, France
| | - Alina Fuerea
- Department of Medical, Gustave Roussy, Villejuif 94800, France
| | - Thomas Pudlarz
- Department of Medical, Gustave Roussy, Villejuif 94800, France
| | - Thierry Conroy
- Department of Medical Oncology, Institut de Cancérologie de Lorraine, Nancy 54519, France
| | | | - Michel Ducreux
- Department of Medical, Gustave Roussy, Villejuif 94800, France
| |
Collapse
|
13
|
Pastò B, Buzzatti G, Schettino C, Malapelle U, Bergamini A, De Angelis C, Musacchio L, Dieci MV, Kuhn E, Lambertini M, Passarelli A, Toss A, Farolfi A, Roncato R, Capoluongo E, Vida R, Pignata S, Callari M, Baldassarre G, Bartoletti M, Gerratana L, Puglisi F. Unlocking the potential of Molecular Tumor Boards: from cutting-edge data interpretation to innovative clinical pathways. Crit Rev Oncol Hematol 2024; 199:104379. [PMID: 38718940 DOI: 10.1016/j.critrevonc.2024.104379] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Revised: 04/02/2024] [Accepted: 05/01/2024] [Indexed: 05/22/2024] Open
Abstract
The emerging era of precision medicine is characterized by an increasing availability of targeted anticancer therapies and by the parallel development of techniques to obtain more refined molecular data, whose interpretation may not always be straightforward. Molecular tumor boards gather various professional figures, in order to leverage the analysis of molecular data and provide prognostic and predictive insights for clinicians. In addition to healthcare development, they could also become a tool to promote knowledge and research spreading. A growing body of evidence on the application of molecular tumor boards to clinical practice is forming and positive signals are emerging, although a certain degree of heterogeneity exists. This work analyzes molecular tumor boards' potential workflows, figures involved, data sources, sample matrices and eligible patients, as well as available evidence and learning examples. The emerging concept of multi-institutional, disease-specific molecular tumor boards is also considered by presenting two ongoing nationwide experiences.
Collapse
Affiliation(s)
- Brenno Pastò
- Department of Medicine (DMED), University of Udine, Udine 33100, Italy; Department of Medical Oncology, Centro di Riferimento Oncologico di Aviano (CRO), IRCCS, Aviano 33081, Italy
| | - Giulia Buzzatti
- Department of Medical Oncology, U.O. Clinica di Oncologia Medica, IRCCS Ospedale Policlinico San Martino, Genova 16132, Italy
| | - Clorinda Schettino
- Clinical Trials Unit, Istituto Nazionale Tumori, IRCCS, Fondazione G. Pascale, Napoli 80131, Italy
| | - Umberto Malapelle
- Department of Public Health, University of Naples Federico II, Napoli 80131, Italy
| | - Alice Bergamini
- Faculty of Medicine and Surgery, Vita-Salute San Raffaele University, Milano 20132, Italy; Unit of Obstetrics and Gynaecology, IRCCS San Raffaele Scientific Institute, Milano 20132, Italy
| | - Carmine De Angelis
- Oncology Unit - Department of Clinical Medicine and Surgery, University of Naples Federico II, Napoli 80131, Italy
| | - Lucia Musacchio
- Department of Women and Child Health, Division of Gynaecologic Oncology, Fondazione Policlinico Universitario "A. Gemelli" IRCCS, Roma 00168, Italy
| | - Maria Vittoria Dieci
- Department of Surgery, Oncology and Gastroenterology, University of Padova, Padova 35122, Italy; Oncology 2, Veneto Institute of Oncology IOV-IRCCS, Padova 35128, Italy
| | - Elisabetta Kuhn
- Department of Biomedical, Surgical and Dental Sciences, University of Milan, Milano 20122, Italy; Pathology Unit, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milano 20122, Italy
| | - Matteo Lambertini
- Department of Medical Oncology, U.O. Clinica di Oncologia Medica, IRCCS Ospedale Policlinico San Martino, Genova 16132, Italy; Department of Internal Medicine and Medical Specialties (DiMI), School of Medicine, University of Genova, Genova 16132, Italy
| | - Anna Passarelli
- Department of Urology and Gynaecology, Istituto Nazionale Tumori IRCCS "Fondazione G. Pascale", Napoli 80131, Italy
| | - Angela Toss
- Department of Oncology and Hematology, Azienda Ospedaliero-Universitaria di Modena, Modena 41124, Italy; Department of Medical and Surgical Sciences, University of Modena and Reggio Emilia, Modena 41124, Italy
| | - Alberto Farolfi
- Department of Medical Oncology, IRCCS Istituto Romagnolo per lo Studio dei Tumori (IRST) "Dino Amadori", Meldola 47014, Italy
| | - Rossana Roncato
- Department of Medicine (DMED), University of Udine, Udine 33100, Italy; Experimental and Clinical Pharmacology Unit, Centro di Riferimento Oncologico di Aviano (CRO) IRCCS, Aviano 33081, Italy
| | - Ettore Capoluongo
- Department of Molecular Medicine and Medical Biotechnologies, University of Naples Federico II, Napoli 80131, Italy; Clinical Pathology Unit, Azienda Ospedaliera San Giovanni Addolorata, Roma 00184, Italy
| | - Riccardo Vida
- Department of Medicine (DMED), University of Udine, Udine 33100, Italy; Department of Medical Oncology, Centro di Riferimento Oncologico di Aviano (CRO), IRCCS, Aviano 33081, Italy
| | - Sandro Pignata
- Department of Urology and Gynaecology, Istituto Nazionale Tumori IRCCS "Fondazione G. Pascale", Napoli 80131, Italy
| | | | - Gustavo Baldassarre
- Molecular Oncology Unit, Centro di Riferimento Oncologico di Aviano (CRO) IRCCS, Aviano 33081, Italy
| | - Michele Bartoletti
- Department of Medical Oncology, Centro di Riferimento Oncologico di Aviano (CRO), IRCCS, Aviano 33081, Italy
| | - Lorenzo Gerratana
- Department of Medicine (DMED), University of Udine, Udine 33100, Italy; Department of Medical Oncology, Centro di Riferimento Oncologico di Aviano (CRO), IRCCS, Aviano 33081, Italy.
| | - Fabio Puglisi
- Department of Medicine (DMED), University of Udine, Udine 33100, Italy; Department of Medical Oncology, Centro di Riferimento Oncologico di Aviano (CRO), IRCCS, Aviano 33081, Italy
| |
Collapse
|
14
|
Aupperle-Lellbach H, Kehl A, de Brot S, van der Weyden L. Clinical Use of Molecular Biomarkers in Canine and Feline Oncology: Current and Future. Vet Sci 2024; 11:199. [PMID: 38787171 PMCID: PMC11126050 DOI: 10.3390/vetsci11050199] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Revised: 04/24/2024] [Accepted: 04/29/2024] [Indexed: 05/25/2024] Open
Abstract
Molecular biomarkers are central to personalised medicine for human cancer patients. It is gaining traction as part of standard veterinary clinical practice for dogs and cats with cancer. Molecular biomarkers can be somatic or germline genomic alterations and can be ascertained from tissues or body fluids using various techniques. This review discusses how these genomic alterations can be determined and the findings used in clinical settings as diagnostic, prognostic, predictive, and screening biomarkers. We showcase the somatic and germline genomic alterations currently available to date for testing dogs and cats in a clinical setting, discussing their utility in each biomarker class. We also look at some emerging molecular biomarkers that are promising for clinical use. Finally, we discuss the hurdles that need to be overcome in going 'bench to bedside', i.e., the translation from discovery of genomic alterations to adoption by veterinary clinicians. As we understand more of the genomics underlying canine and feline tumours, molecular biomarkers will undoubtedly become a mainstay in delivering precision veterinary care to dogs and cats with cancer.
Collapse
Affiliation(s)
- Heike Aupperle-Lellbach
- Laboklin GmbH&Co.KG, Steubenstr. 4, 97688 Bad Kissingen, Germany; (H.A.-L.); (A.K.)
- School of Medicine, Institute of Pathology, Technical University of Munich, Trogerstr. 18, 80333 München, Germany
| | - Alexandra Kehl
- Laboklin GmbH&Co.KG, Steubenstr. 4, 97688 Bad Kissingen, Germany; (H.A.-L.); (A.K.)
- School of Medicine, Institute of Pathology, Technical University of Munich, Trogerstr. 18, 80333 München, Germany
| | - Simone de Brot
- Institute of Animal Pathology, COMPATH, University of Bern, 3012 Bern, Switzerland;
| | | |
Collapse
|
15
|
Fonseca NM, Maurice-Dror C, Herberts C, Tu W, Fan W, Murtha AJ, Kollmannsberger C, Kwan EM, Parekh K, Schönlau E, Bernales CQ, Donnellan G, Ng SWS, Sumiyoshi T, Vergidis J, Noonan K, Finch DL, Zulfiqar M, Miller S, Parimi S, Lavoie JM, Hardy E, Soleimani M, Nappi L, Eigl BJ, Kollmannsberger C, Taavitsainen S, Nykter M, Tolmeijer SH, Boerrigter E, Mehra N, van Erp NP, De Laere B, Lindberg J, Grönberg H, Khalaf DJ, Annala M, Chi KN, Wyatt AW. Prediction of plasma ctDNA fraction and prognostic implications of liquid biopsy in advanced prostate cancer. Nat Commun 2024; 15:1828. [PMID: 38418825 PMCID: PMC10902374 DOI: 10.1038/s41467-024-45475-w] [Citation(s) in RCA: 21] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2023] [Accepted: 01/24/2024] [Indexed: 03/02/2024] Open
Abstract
No consensus strategies exist for prognosticating metastatic castration-resistant prostate cancer (mCRPC). Circulating tumor DNA fraction (ctDNA%) is increasingly reported by commercial and laboratory tests but its utility for risk stratification is unclear. Here, we intersect ctDNA%, treatment outcomes, and clinical characteristics across 738 plasma samples from 491 male mCRPC patients from two randomized multicentre phase II trials and a prospective province-wide blood biobanking program. ctDNA% correlates with serum and radiographic metrics of disease burden and is highest in patients with liver metastases. ctDNA% strongly predicts overall survival, progression-free survival, and treatment response independent of therapeutic context and outperformed established prognostic clinical factors. Recognizing that ctDNA-based biomarker genotyping is limited by low ctDNA% in some patients, we leverage the relationship between clinical prognostic factors and ctDNA% to develop a clinically-interpretable machine-learning tool that predicts whether a patient has sufficient ctDNA% for informative ctDNA genotyping (available online: https://www.ctDNA.org ). Our results affirm ctDNA% as an actionable tool for patient risk stratification and provide a practical framework for optimized biomarker testing.
Collapse
Affiliation(s)
- Nicolette M Fonseca
- Vancouver Prostate Centre, Department of Urologic Sciences, University of British Columbia, Vancouver, BC, Canada
| | | | - Cameron Herberts
- Vancouver Prostate Centre, Department of Urologic Sciences, University of British Columbia, Vancouver, BC, Canada
| | - Wilson Tu
- Vancouver Prostate Centre, Department of Urologic Sciences, University of British Columbia, Vancouver, BC, Canada
| | - William Fan
- Department of Medical Oncology, BC Cancer, Vancouver, BC, Canada
| | - Andrew J Murtha
- Vancouver Prostate Centre, Department of Urologic Sciences, University of British Columbia, Vancouver, BC, Canada
| | | | - Edmond M Kwan
- Vancouver Prostate Centre, Department of Urologic Sciences, University of British Columbia, Vancouver, BC, Canada
- Department of Medical Oncology, BC Cancer, Vancouver, BC, Canada
- Department of Medicine, School of Clinical Sciences; Monash University, Melbourne, VIC, Australia
| | - Karan Parekh
- Vancouver Prostate Centre, Department of Urologic Sciences, University of British Columbia, Vancouver, BC, Canada
| | - Elena Schönlau
- Vancouver Prostate Centre, Department of Urologic Sciences, University of British Columbia, Vancouver, BC, Canada
| | - Cecily Q Bernales
- Vancouver Prostate Centre, Department of Urologic Sciences, University of British Columbia, Vancouver, BC, Canada
| | - Gráinne Donnellan
- Vancouver Prostate Centre, Department of Urologic Sciences, University of British Columbia, Vancouver, BC, Canada
| | - Sarah W S Ng
- Vancouver Prostate Centre, Department of Urologic Sciences, University of British Columbia, Vancouver, BC, Canada
| | - Takayuki Sumiyoshi
- Vancouver Prostate Centre, Department of Urologic Sciences, University of British Columbia, Vancouver, BC, Canada
- Department of Urology, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Joanna Vergidis
- Department of Medical Oncology, BC Cancer, Victoria, BC, Canada
| | - Krista Noonan
- Department of Medical Oncology, BC Cancer, Surrey, BC, Canada
| | - Daygen L Finch
- Department of Medical Oncology, BC Cancer, Kelowna, BC, Canada
| | | | - Stacy Miller
- Department of Radiation Oncology, BC Cancer, Prince George, BC, Canada
| | - Sunil Parimi
- Department of Medical Oncology, BC Cancer, Vancouver, BC, Canada
| | | | - Edward Hardy
- Tom McMurtry & Peter Baerg Cancer Centre, Vernon Jubilee Hospital, Vernon, BC, Canada
| | - Maryam Soleimani
- Department of Medical Oncology, BC Cancer, Vancouver, BC, Canada
| | - Lucia Nappi
- Vancouver Prostate Centre, Department of Urologic Sciences, University of British Columbia, Vancouver, BC, Canada
- Department of Medical Oncology, BC Cancer, Vancouver, BC, Canada
| | - Bernhard J Eigl
- Department of Medical Oncology, BC Cancer, Vancouver, BC, Canada
| | | | - Sinja Taavitsainen
- Prostate Cancer Research Center, Faculty of Medicine and Health Technology, Tampere University and Tays Cancer Center, Tampere, Finland
| | - Matti Nykter
- Prostate Cancer Research Center, Faculty of Medicine and Health Technology, Tampere University and Tays Cancer Center, Tampere, Finland
| | - Sofie H Tolmeijer
- Vancouver Prostate Centre, Department of Urologic Sciences, University of British Columbia, Vancouver, BC, Canada
- Department of Medical Oncology, Research Institute for Medical Innovation, Radboud University, Nijmegen, The Netherlands
| | - Emmy Boerrigter
- Department of Pharmacy, Research Institute for Medical Innovation, Radboud University, Nijmegen, The Netherlands
| | - Niven Mehra
- Department of Medical Oncology, Research Institute for Medical Innovation, Radboud University, Nijmegen, The Netherlands
| | - Nielka P van Erp
- Department of Pharmacy, Research Institute for Medical Innovation, Radboud University, Nijmegen, The Netherlands
| | - Bram De Laere
- Department of Human Structure and Repair, Ghent University, Ghent, Belgium
- Cancer Research Institute Ghent (CRIG), Ghent University, Ghent, Belgium
- Department of Medical Epidemiology and Biostatistics, Karolinska Institute, Stockholm, Sweden
| | - Johan Lindberg
- Department of Medical Epidemiology and Biostatistics, Karolinska Institute, Stockholm, Sweden
| | - Henrik Grönberg
- Department of Medical Epidemiology and Biostatistics, Karolinska Institute, Stockholm, Sweden
| | - Daniel J Khalaf
- Department of Medical Oncology, BC Cancer, Vancouver, BC, Canada
| | - Matti Annala
- Vancouver Prostate Centre, Department of Urologic Sciences, University of British Columbia, Vancouver, BC, Canada.
- Prostate Cancer Research Center, Faculty of Medicine and Health Technology, Tampere University and Tays Cancer Center, Tampere, Finland.
| | - Kim N Chi
- Vancouver Prostate Centre, Department of Urologic Sciences, University of British Columbia, Vancouver, BC, Canada.
- Department of Medical Oncology, BC Cancer, Vancouver, BC, Canada.
| | - Alexander W Wyatt
- Vancouver Prostate Centre, Department of Urologic Sciences, University of British Columbia, Vancouver, BC, Canada.
- Michael Smith Genome Sciences Centre, BC Cancer, Vancouver, BC, Canada.
| |
Collapse
|
16
|
Tagliamento M, Morfouace M, Loizides C, Oliveira J, Greillier L, Raimbourg J, Toffart AC, Chatellier T, Cloarec N, Sullivan I, Brasiuniene B, Duruisseaux M, Oselin K, Robert MS, Fernandes C, Poncin A, Blay JY, Besse B, Girard N. EORTC-SPECTA Arcagen study, comprehensive genomic profiling and treatment adaptation of rare thoracic cancers. NPJ Precis Oncol 2024; 8:37. [PMID: 38366021 PMCID: PMC10873296 DOI: 10.1038/s41698-024-00518-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2023] [Accepted: 01/15/2024] [Indexed: 02/18/2024] Open
Abstract
Arcagen (NCT02834884) is a European prospective study aiming at defining the molecular landscape of rare cancers for treatment guidance. We present data from the cohort of rare thoracic tumors. Patients with advanced pleural mesothelioma (PM) or thymic epithelial tumors (TET) underwent genomic profiling with large targeted assay [>300 genes, tumor mutational burden (TMB), microsatellite instability (MSI) status] on formalin-fixed paraffin-embedded (FFPE) or plasma samples. EORTC molecular tumor board (MTB) advised for biomarker-guided treatments. 102 patients recruited from 8 countries between July 2019 and May 2022 were evaluable: 56 with PM, 46 with TET (23 thymomas, 23 thymic carcinomas). Molecular profiling was performed on 70 FFPE samples (42 PM, 28 TET), and 32 cases on ctDNA (14 PM, 18 TET), within a median turnaround time of 8 days from sample reception. We detected relevant molecular alterations in 66 out of 102 patients (65%; 79% PM, 48% TET), 51 of 70 FFPE samples (73%; 90% PM, 46% TET), and 15 of 32 plasma samples (47%; 43% PM, 50% TET). The most frequently altered genes were CDKN2A/B, BAP1, MTAP in PM and TP53, CDKN2A/B, SETD2 in TET. The TMB was low (mean 3.2 Muts/MB), 2 PM had MSI-high status. MTB advised molecular-guided treatment options in 32 situations, for 17 PM and 15 TET patients (75% clinical trial option, 22% off-label drug or compassionate use, 3% early access program). Molecular testing and MTB discussion were feasible for patients with rare thoracic cancers and allowed the broadening of treatment options for 30% of the cases.
Collapse
Affiliation(s)
- Marco Tagliamento
- Department of Cancer Medicine, Gustave Roussy, Villejuif, France.
- Department of Internal Medicine and Medical Specialties, University of Genova, Genova, Italy.
| | | | | | - Julio Oliveira
- Medical Oncology Department, Instituto Portugues de Oncologia do Porto Francisco Gentil, Porto, Portugal
| | - Laurent Greillier
- Aix Marseille University, APHM, INSERM, CNRS, CRCM, Hôpital Nord, Multidisciplinary Oncology and Therapeutic Innovations Department, Marseille, France
| | - Judith Raimbourg
- Department of Medical Oncology, Nantes Université, Institut de Cancerologie de l'Ouest, Saint-Herblain, France
| | | | - Thierry Chatellier
- Clinique Mutualiste de l'Estuaire - Centre d'Oncologie, Saint Nazaire, France
| | - Nicolas Cloarec
- Service d'Oncologie Médicale et Hématologie Clinique, Centre Hospitalier d'Avignon, Avignon, France
| | - Ivana Sullivan
- Medical Oncology Department, Hospital de la Santa Creu i Sant Pau, Barcelona, Spain
| | - Birute Brasiuniene
- Department of Medical Oncology of National Cancer Institute, Faculty of Medicine of Vilnius University, Vilnius, Lithuania
| | - Michael Duruisseaux
- Department of Medical Oncology, CHU de Lyon - Hôpital Lyon Sud, Lyon, France
| | - Kersti Oselin
- Department of Chemotherapy, Clinic of Oncology and Hematology, North Estonia Medical Centre, Tallinn, Estonia
| | | | | | | | - Jean-Yves Blay
- Department of Medicine, Centre Léon Bérard, Lyon, France
| | - Benjamin Besse
- Paris-Saclay University, Department of Cancer Medicine, Gustave Roussy, Villejuif, France
| | - Nicolas Girard
- Institut du Thorax Curie Montsouris, Institut Curie, Paris, France
| |
Collapse
|
17
|
Pepe F, Venetis K, Cursano G, Frascarelli C, Pisapia P, Vacirca D, Scimone C, Rappa A, Russo G, Mane E, Pagni F, Castellano I, Troncone G, Angelis CD, Curigliano G, Guerini-Rocco E, Malapelle U, Fusco N. PIK3CA testing in hormone receptor-positive/HER2-negative metastatic breast cancer: real-world data from Italian molecular pathology laboratories. Pharmacogenomics 2024; 25:161-169. [PMID: 38440825 DOI: 10.2217/pgs-2023-0238] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/06/2024] Open
Abstract
Introduction: PIK3CA gene mutations occur in approximately 40% of hormone receptor-positive/HER2-negative (HR+/HER2-) metastatic breast cancers (MBCs), electing them to targeted therapy. Testing PIK3CA status is complex due to selection of biological specimen and testing method. Materials & methods: This work investigates real-life experience on PIK3CA testing in HR+/HER2- MBC. Clinical, technical and molecular data on PIK3CA testing were collected from two referral laboratories. Additionally, the results of a nationwide PIK3CA survey involving 116 institutions were assessed. Results: Overall, n = 35 MBCs were PIK3CA-mutated, with mutations mostly occurring in exons 9 (n = 19; 51.4%) and 20 (n = 15; 40.5%). The nationwide survey revealed significant variability across laboratories in terms of sampling methodology, technical assessment and clinical report signing healthcare figures for PIK3CA molecular testing in diagnostic routine practice. Conclusion: This study provides insights into the real-world routine of PIK3CA testing in HR+/HER2- MBC and highlights the need for standardization and networking in predictive pathology.
Collapse
Affiliation(s)
- Francesco Pepe
- Department of Public Health, Federico II University of Naples, 80131, Naples, Italy
| | - Konstantinos Venetis
- Division of Pathology, European Institute of Oncology IRCCS, 20141, Milan, Italy
| | - Giulia Cursano
- Division of Pathology, European Institute of Oncology IRCCS, 20141, Milan, Italy
| | - Chiara Frascarelli
- Division of Pathology, European Institute of Oncology IRCCS, 20141, Milan, Italy
- Department of Oncology & Hemato-Oncology, University of Milan, 20122, Milan, Italy
| | - Pasquale Pisapia
- Department of Public Health, Federico II University of Naples, 80131, Naples, Italy
| | - Davide Vacirca
- Division of Pathology, European Institute of Oncology IRCCS, 20141, Milan, Italy
| | - Claudia Scimone
- Department of Public Health, Federico II University of Naples, 80131, Naples, Italy
| | - Alessandra Rappa
- Division of Pathology, European Institute of Oncology IRCCS, 20141, Milan, Italy
| | - Gianluca Russo
- Department of Public Health, Federico II University of Naples, 80131, Naples, Italy
| | - Eltjona Mane
- Division of Pathology, European Institute of Oncology IRCCS, 20141, Milan, Italy
| | - Fabio Pagni
- Center for Digital Medicine, Department of Medicine & Surgery, University Milan Bicocca, Monza (MB), Italy
- Molecular Pathology & Predictive Medicine PMMP Group, Italian Society of Pathology, SIAPeC, Italy
| | - Isabella Castellano
- Pathology Unit, Department of Medical Sciences, City of Health and Science University Hospital, University of Turin, 10126, Turin, Italy
- Breast Pathology GIPaM Group, Italian Society of Pathology, SIAPeC, Italy
| | - Giancarlo Troncone
- Department of Public Health, Federico II University of Naples, 80131, Naples, Italy
| | - Carmine De Angelis
- Department of Clinical Medicine & Surgery, University Federico II, 80131, Naples, Italy
| | - Giuseppe Curigliano
- Department of Oncology & Hemato-Oncology, University of Milan, 20122, Milan, Italy
- Division of New Drugs & Early Drug Development, European Institute of Oncology, IRCCS, 20141, Milan, Italy
| | - Elena Guerini-Rocco
- Division of Pathology, European Institute of Oncology IRCCS, 20141, Milan, Italy
- Department of Oncology & Hemato-Oncology, University of Milan, 20122, Milan, Italy
- Molecular Pathology & Predictive Medicine PMMP Group, Italian Society of Pathology, SIAPeC, Italy
| | - Umberto Malapelle
- Department of Public Health, Federico II University of Naples, 80131, Naples, Italy
- Molecular Pathology & Predictive Medicine PMMP Group, Italian Society of Pathology, SIAPeC, Italy
| | - Nicola Fusco
- Division of Pathology, European Institute of Oncology IRCCS, 20141, Milan, Italy
- Department of Oncology & Hemato-Oncology, University of Milan, 20122, Milan, Italy
- Molecular Pathology & Predictive Medicine PMMP Group, Italian Society of Pathology, SIAPeC, Italy
- Breast Pathology GIPaM Group, Italian Society of Pathology, SIAPeC, Italy
| |
Collapse
|
18
|
Iams WT, Mackay M, Ben-Shachar R, Drews J, Manghnani K, Hockenberry AJ, Cristofanilli M, Nimeiri H, Guinney J, Benson AB. Concurrent Tissue and Circulating Tumor DNA Molecular Profiling to Detect Guideline-Based Targeted Mutations in a Multicancer Cohort. JAMA Netw Open 2024; 7:e2351700. [PMID: 38252441 PMCID: PMC10804266 DOI: 10.1001/jamanetworkopen.2023.51700] [Citation(s) in RCA: 25] [Impact Index Per Article: 25.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/28/2023] [Accepted: 11/26/2023] [Indexed: 01/23/2024] Open
Abstract
Importance Tissue-based next-generation sequencing (NGS) of solid tumors is the criterion standard for identifying somatic mutations that can be treated with National Comprehensive Cancer Network guideline-recommended targeted therapies. Sequencing of circulating tumor DNA (ctDNA) can also identify tumor-derived mutations, and there is increasing clinical evidence supporting ctDNA testing as a diagnostic tool. The clinical value of concurrent tissue and ctDNA profiling has not been formally assessed in a large, multicancer cohort from heterogeneous clinical settings. Objective To evaluate whether patients concurrently tested with both tissue and ctDNA NGS testing have a higher rate of detection of guideline-based targeted mutations compared with tissue testing alone. Design, Setting, and Participants This cohort study comprised 3209 patients who underwent sequencing between May 2020, and December 2022, within the deidentified, Tempus multimodal database, consisting of linked molecular and clinical data. Included patients had stage IV disease (non-small cell lung cancer, breast cancer, prostate cancer, or colorectal cancer) with sufficient tissue and blood sample quantities for analysis. Exposures Received results from tissue and plasma ctDNA genomic profiling, with biopsies and blood draws occurring within 30 days of one another. Main Outcomes and Measures Detection rates of guideline-based variants found uniquely by ctDNA and tissue profiling. Results The cohort of 3209 patients (median age at diagnosis of stage IV disease, 65.3 years [2.5%-97.5% range, 43.3-83.3 years]) who underwent concurrent tissue and ctDNA testing included 1693 women (52.8%). Overall, 1448 patients (45.1%) had a guideline-based variant detected. Of these patients, 9.3% (135 of 1448) had variants uniquely detected by ctDNA profiling, and 24.2% (351 of 1448) had variants uniquely detected by solid-tissue testing. Although largely concordant with one another, differences in the identification of actionable variants by either assay varied according to cancer type, gene, variant, and ctDNA burden. Of 352 patients with breast cancer, 20.2% (71 of 352) with actionable variants had unique findings in ctDNA profiling results. Most of these unique, actionable variants (55.0% [55 of 100]) were found in ESR1, resulting in a 24.7% increase (23 of 93) in the identification of patients harboring an ESR1 mutation relative to tissue testing alone. Conclusions and Relevance This study suggests that unique actionable biomarkers are detected by both concurrent tissue and ctDNA testing, with higher ctDNA identification among patients with breast cancer. Integration of concurrent NGS testing into the routine management of advanced solid cancers may expand the delivery of molecularly guided therapy and improve patient outcomes.
Collapse
Affiliation(s)
- Wade T. Iams
- Vanderbilt-Ingram Cancer Center, Vanderbilt University Medical Center, Nashville, Tennessee
| | | | | | | | | | | | - Massimo Cristofanilli
- Sandra and Edward Meyer Cancer Center at Weill Cornell Medicine, New York, New York
- NewYork-Presbyterian Hospital, New York, New York
| | | | | | - Al B. Benson
- Department of Medicine, Robert H. Lurie Comprehensive Cancer Center, Feinberg School of Medicine, Northwestern University, Chicago, Illinois
| |
Collapse
|
19
|
Moog S, Lamartina L, Bani MA, Al Ghuzlan A, Friboulet L, Italiano A, Lacroix L, Postel Vinay S, Tselikas L, Deschamps F, Bonnet B, Pani F, Baudin E, Hadoux J. Alkylating Agent-Induced High Tumor Mutational Burden in Medullary Thyroid Cancer and Response to Immune Checkpoint Inhibitors: Two Case Reports. Thyroid 2023; 33:1368-1373. [PMID: 37698883 DOI: 10.1089/thy.2023.0144] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 09/13/2023]
Abstract
Background: Patients with metastatic medullary thyroid cancer (MTC) who progressed under tyrosine kinase inhibitors can benefit from an alkylating agent such as dacarbazine or temozolomide. Patient Findings: We describe two patients with metastatic MTC who developed a hypermutant phenotype after alkylating agent treatment. This phenotype was characterized by a high tumor mutational burden (TMB) and a mutational signature indicative of alkylating agent mutagenesis (single-base substitution 11). Both patients received immune checkpoint inhibitors, with partial morphological responses, clinical benefit, and progression-free survival of 6 and 9 months, respectively. Summary and Conclusions: Based on the described observations, we suggest that a hypermutant phenotype may be induced after alkylating agent treatment for MTC and the sequential use of immunotherapy should be further explored as a treatment option for MTC patients with increased TMB.
Collapse
Affiliation(s)
- Sophie Moog
- Service d'Oncologie Endocrinienne, Département d'Imagerie, Institut Gustave Roussy, Villejuif, France
| | - Livia Lamartina
- Service d'Oncologie Endocrinienne, Département d'Imagerie, Institut Gustave Roussy, Villejuif, France
| | - Mohamed-Amine Bani
- Département de Biologie et Pathologie Médicale, Institut Gustave Roussy, Villejuif, France
| | - Abir Al Ghuzlan
- Département de Biologie et Pathologie Médicale, Institut Gustave Roussy, Villejuif, France
| | - Luc Friboulet
- Université Paris-Saclay, Institut Gustave Roussy, Inserm U981, Villejuif, France
| | - Antoine Italiano
- Département d'Innovation Thérapeutique et Essais Précoces, and Institut Gustave Roussy, Villejuif, France
| | - Ludovic Lacroix
- Université Paris-Saclay, Institut Gustave Roussy, Inserm U981, Villejuif, France
| | - Sophie Postel Vinay
- Département d'Innovation Thérapeutique et Essais Précoces, and Institut Gustave Roussy, Villejuif, France
- Université Paris-Saclay, Institut Gustave Roussy, Inserm U981, Villejuif, France
| | - Lambros Tselikas
- Département de Radiologie Interventionnelle, Institut Gustave Roussy, Villejuif, France
| | - Frédéric Deschamps
- Département de Radiologie Interventionnelle, Institut Gustave Roussy, Villejuif, France
| | - Baptiste Bonnet
- Département de Radiologie Interventionnelle, Institut Gustave Roussy, Villejuif, France
| | - Fabiana Pani
- Service d'Oncologie Endocrinienne, Département d'Imagerie, Institut Gustave Roussy, Villejuif, France
| | - Eric Baudin
- Service d'Oncologie Endocrinienne, Département d'Imagerie, Institut Gustave Roussy, Villejuif, France
| | - Julien Hadoux
- Service d'Oncologie Endocrinienne, Département d'Imagerie, Institut Gustave Roussy, Villejuif, France
| |
Collapse
|
20
|
Tarabay A, Boileve A, Smolenschi C, Antoun L, Valery M, Fuerea A, Perret A, Burtin P, Cosconea S, Belkhodja H, Malka D, Boige V, Hollebecque A, Ducreux M. Precision Medicine in Pancreatic Ductal Adenocarcinoma: The Impact of Targeted Therapies on Survival of Patients Harboring Actionable Mutations. Biomedicines 2023; 11:2569. [PMID: 37761010 PMCID: PMC10526242 DOI: 10.3390/biomedicines11092569] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2023] [Revised: 09/14/2023] [Accepted: 09/15/2023] [Indexed: 09/29/2023] Open
Abstract
BACKGROUND Pancreatic ductal adenocarcinoma (PDAC) is the third leading cause of death by cancer worldwide. Mostly diagnosed with locally advanced or metastatic disease, patients lack treatment options. Gene alterations (GAs) are frequently observed in PDAC, some of which are considered for molecular targeted therapies (MTTs), with potential clinical benefits and improved outcomes. However, the applicability of molecular profiling (MP) for precision medicine in PDAC remains to be demonstrated. METHODS We conducted a retrospective analysis of all patients, aged ≥18 years with histologically confirmed PDAC, who underwent tumor MP between 2010 and 2020 in our institution as part of personalized medicine trials. The primary study endpoint was overall survival (OS), and (minimal follow-up was 6 months after MP). RESULTS Of 115 eligible patients, MP was successful in 102 patients (89%). KRAS mutations were the most frequent GAs, mostly G12D. Based on ESCAT classification, actionable GAs were found in 29 patients (28%), involving mainly BRCA1 or BRCA2 (5 (18%)), HER2 (5 (18%)), MTAP (5 (18%)), and FGFR (3 (11%)). Only 12 of these 29 patients (41%, or 10% of the whole population) received MTTs, with a median progression-free survival of 1.6 months. Median OS was 19 months in patients with actionable GAs treated with MTTs (n = 12 (11.8%)), 14 months in patients with actionable GAs treated with standard therapies (n = 17 (16.7%)), and 17 months in patients without actionable GAs treated with standard therapies (n = 73 (71.5%); p = 0.26). The absence of liver metastases was associated with better OS (HR = 0.471, p = 0.01). The highest OS following MTT was observed in patients with BRCA mutations treated with olaparib. INTERPRETATION Actionable GAs were found in more than a quarter of patients with advanced PDAC. Overall, targeting actionable GAs with MTTs was not associated with improved OS in this retrospective study with limited patient numbers. However, selected GA/MTT combinations (e.g., BRCA mutations/olaparib) were associated with a better outcome.
Collapse
Affiliation(s)
- Anthony Tarabay
- Gustave Roussy, Département de Médecine, 94805 Villejuif, France; (A.B.); (C.S.); (L.A.); (M.V.); (A.F.); (A.P.); (P.B.); (S.C.); (H.B.); (D.M.); (V.B.); (M.D.)
| | - Alice Boileve
- Gustave Roussy, Département de Médecine, 94805 Villejuif, France; (A.B.); (C.S.); (L.A.); (M.V.); (A.F.); (A.P.); (P.B.); (S.C.); (H.B.); (D.M.); (V.B.); (M.D.)
| | - Cristina Smolenschi
- Gustave Roussy, Département de Médecine, 94805 Villejuif, France; (A.B.); (C.S.); (L.A.); (M.V.); (A.F.); (A.P.); (P.B.); (S.C.); (H.B.); (D.M.); (V.B.); (M.D.)
| | - Leony Antoun
- Gustave Roussy, Département de Médecine, 94805 Villejuif, France; (A.B.); (C.S.); (L.A.); (M.V.); (A.F.); (A.P.); (P.B.); (S.C.); (H.B.); (D.M.); (V.B.); (M.D.)
| | - Marine Valery
- Gustave Roussy, Département de Médecine, 94805 Villejuif, France; (A.B.); (C.S.); (L.A.); (M.V.); (A.F.); (A.P.); (P.B.); (S.C.); (H.B.); (D.M.); (V.B.); (M.D.)
| | - Alina Fuerea
- Gustave Roussy, Département de Médecine, 94805 Villejuif, France; (A.B.); (C.S.); (L.A.); (M.V.); (A.F.); (A.P.); (P.B.); (S.C.); (H.B.); (D.M.); (V.B.); (M.D.)
| | - Audrey Perret
- Gustave Roussy, Département de Médecine, 94805 Villejuif, France; (A.B.); (C.S.); (L.A.); (M.V.); (A.F.); (A.P.); (P.B.); (S.C.); (H.B.); (D.M.); (V.B.); (M.D.)
| | - Pascal Burtin
- Gustave Roussy, Département de Médecine, 94805 Villejuif, France; (A.B.); (C.S.); (L.A.); (M.V.); (A.F.); (A.P.); (P.B.); (S.C.); (H.B.); (D.M.); (V.B.); (M.D.)
| | - Simona Cosconea
- Gustave Roussy, Département de Médecine, 94805 Villejuif, France; (A.B.); (C.S.); (L.A.); (M.V.); (A.F.); (A.P.); (P.B.); (S.C.); (H.B.); (D.M.); (V.B.); (M.D.)
| | - Hichem Belkhodja
- Gustave Roussy, Département de Médecine, 94805 Villejuif, France; (A.B.); (C.S.); (L.A.); (M.V.); (A.F.); (A.P.); (P.B.); (S.C.); (H.B.); (D.M.); (V.B.); (M.D.)
| | - David Malka
- Gustave Roussy, Département de Médecine, 94805 Villejuif, France; (A.B.); (C.S.); (L.A.); (M.V.); (A.F.); (A.P.); (P.B.); (S.C.); (H.B.); (D.M.); (V.B.); (M.D.)
| | - Valérie Boige
- Gustave Roussy, Département de Médecine, 94805 Villejuif, France; (A.B.); (C.S.); (L.A.); (M.V.); (A.F.); (A.P.); (P.B.); (S.C.); (H.B.); (D.M.); (V.B.); (M.D.)
| | - Antoine Hollebecque
- Gustave Roussy, Département d’Innovation Thérapeutique et d’Essais Précoces, 94805 Villejuif, France;
| | - Michel Ducreux
- Gustave Roussy, Département de Médecine, 94805 Villejuif, France; (A.B.); (C.S.); (L.A.); (M.V.); (A.F.); (A.P.); (P.B.); (S.C.); (H.B.); (D.M.); (V.B.); (M.D.)
- Faculty of Medicine, Université Paris Saclay, 91400 Orsay, France
| |
Collapse
|
21
|
Hofman P. Matched tissue and liquid biopsies for advanced non-small cell lung cancer patients A potentially indispensable complementary approach. Transl Oncol 2023; 35:101735. [PMID: 37413719 PMCID: PMC10366644 DOI: 10.1016/j.tranon.2023.101735] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2022] [Revised: 05/17/2023] [Accepted: 06/27/2023] [Indexed: 07/08/2023] Open
Abstract
The introduction of liquid biopsies (LB) has brought forth a number of therapeutic opportunities into the domain of thoracic oncology. Many of which have been adopted for care of patients presenting with advanced non-squamous non-small cell lung cancer (aNS-NSCLC). For example, one of the most frequent indications to perform a LB in these patients, at least in Europe, is for patients treated with tyrosine kinase inhibitors (TKIs) targeting EGFR and ALK genomic alterations when the tumor progresses. A tissue biopsy (TB) must then be taken, ideally from a site of a tumor that progresses, in particular if the LB does not permit detection of a mechanism of resistance to TKI. A LB from a patient with aNS-NSCLC is recommended before first-line therapy if no tissue and/or cytological material is accessible or if the extracted nucleic acid is insufficient in amount and/or of poor quality. At present a LB and a TB are rarely performed simultaneously before treatment and/or on tumor progression. This complementary/matched testing approach is still controversial but needs to be better evaluated to determine the true benefit to care of patients. This review provides an update on the complementarity of the LB and TB method for care of patients presenting with aNS-NSCLC.
Collapse
Affiliation(s)
- Paul Hofman
- Laboratory of Clinical and Experimental Pathology de Pathologie, University Côte d'Azur, FHU OncoAge, Biobank BB-0033-00025, IHU RespireRA, 30 Avenue de la Voie Romaine, 01, Nice 06002 CEDEX, France.
| |
Collapse
|
22
|
Assi T, Khoury R, Ibrahim R, Baz M, Ibrahim T, LE Cesne A. Overview of the role of liquid biopsy in cancer management. Transl Oncol 2023; 34:101702. [PMID: 37267803 DOI: 10.1016/j.tranon.2023.101702] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Revised: 05/12/2023] [Accepted: 05/23/2023] [Indexed: 06/04/2023] Open
Abstract
With the emergence of novel targeted therapeutic options in early-stage and advanced-stage malignancies, researchers have shifted their focus on developing personalized treatment plans through molecular profiling. Circulating tumor DNA (ctDNA) is a cell-free DNA (ctDNA) fragment, originating from tumor cells, and circulating in the bloodstream as well as biological fluids. Over the past decade, many techniques were developed for liquid biopsies through next-generation sequencing. This alternative non-invasive biopsy offers several advantages in various types of tumors over traditional tissue biopsy. The process of liquid biopsy is considered minimally invasive and therefore easily repeatable when needed, providing a more dynamic analysis of the tumor cells. Moreover, it has an advantage in patients with tumors that are not candidates for tissue sampling. Besides, it offers a deeper understanding of tumor burden as well as treatment response, thereby enhancing the detection of minimal residual disease and therapeutic guidance for personalized medicine. Despite its many advantages, ctDNA and liquid biopsy do have some limitations. This paper discusses the basis of ctDNA and the current data available on the subject, as well as its clinical utility. We also reflect on the limitations of using ctDNA in addition to its future perspectives in clinical oncology and precision medicine.
Collapse
Affiliation(s)
- Tarek Assi
- Division of International Patients Care, Gustave Roussy Cancer Campus, Villejuif, France.
| | - Rita Khoury
- Division of International Patients Care, Gustave Roussy Cancer Campus, Villejuif, France
| | - Rebecca Ibrahim
- Division of International Patients Care, Gustave Roussy Cancer Campus, Villejuif, France
| | - Maria Baz
- Division of International Patients Care, Gustave Roussy Cancer Campus, Villejuif, France
| | - Tony Ibrahim
- Division of International Patients Care, Gustave Roussy Cancer Campus, Villejuif, France
| | - Axel LE Cesne
- Division of International Patients Care, Gustave Roussy Cancer Campus, Villejuif, France
| |
Collapse
|
23
|
Moeckel C, Bakhl K, Georgakopoulos-Soares I, Zaravinos A. The Efficacy of Tumor Mutation Burden as a Biomarker of Response to Immune Checkpoint Inhibitors. Int J Mol Sci 2023; 24:ijms24076710. [PMID: 37047684 PMCID: PMC10095310 DOI: 10.3390/ijms24076710] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2023] [Revised: 03/21/2023] [Accepted: 03/31/2023] [Indexed: 04/14/2023] Open
Abstract
Cancer is one of the leading causes of death in the world; therefore, extensive research has been dedicated to exploring potential therapeutics, including immune checkpoint inhibitors (ICIs). Initially, programmed-death ligand-1 was the biomarker utilized to predict the efficacy of ICIs. However, its heterogeneous expression in the tumor microenvironment, which is critical to cancer progression, promoted the exploration of the tumor mutation burden (TMB). Research in various cancers, such as melanoma and lung cancer, has shown an association between high TMB and response to ICIs, increasing its predictive value. However, the TMB has failed to predict ICI response in numerous other cancers. Therefore, future research is needed to analyze the variations between cancer types and establish TMB cutoffs in order to create a more standardized methodology for using the TMB clinically. In this review, we aim to explore current research on the efficacy of the TMB as a biomarker, discuss current approaches to overcoming immunoresistance to ICIs, and highlight new trends in the field such as liquid biopsies, next generation sequencing, chimeric antigen receptor T-cell therapy, and personalized tumor vaccines.
Collapse
Affiliation(s)
- Camille Moeckel
- Department of Biochemistry and Molecular Biology, Institute for Personalized Medicine, The Pennsylvania State University College of Medicine, Hershey, PA 17033, USA
| | - Katrina Bakhl
- Department of Biochemistry and Molecular Biology, Institute for Personalized Medicine, The Pennsylvania State University College of Medicine, Hershey, PA 17033, USA
| | - Ilias Georgakopoulos-Soares
- Department of Biochemistry and Molecular Biology, Institute for Personalized Medicine, The Pennsylvania State University College of Medicine, Hershey, PA 17033, USA
| | - Apostolos Zaravinos
- Department of Life Sciences, European University Cyprus, Diogenis Str., 6, Nicosia 2404, Cyprus
- Cancer Genetics, Genomics and Systems Biology Laboratory, Basic and Translational Cancer Research Center (BTCRC), Nicosia 1516, Cyprus
| |
Collapse
|
24
|
Vanni I, Pastorino L, Tanda ET, Andreotti V, Dalmasso B, Solari N, Mascherini M, Cabiddu F, Guadagno A, Coco S, Allavena E, Bruno W, Pietra G, Croce M, Gangemi R, Piana M, Zoppoli G, Ferrando L, Spagnolo F, Queirolo P, Ghiorzo P. Whole-Exome Sequencing and cfDNA Analysis Uncover Genetic Determinants of Melanoma Therapy Response in a Real-World Setting. Int J Mol Sci 2023; 24:4302. [PMID: 36901733 PMCID: PMC10002464 DOI: 10.3390/ijms24054302] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2022] [Revised: 02/16/2023] [Accepted: 02/19/2023] [Indexed: 02/24/2023] Open
Abstract
Although several studies have explored the molecular landscape of metastatic melanoma, the genetic determinants of therapy resistance are still largely unknown. Here, we aimed to determine the contribution of whole-exome sequencing and circulating free DNA (cfDNA) analysis in predicting response to therapy in a consecutive real-world cohort of 36 patients, undergoing fresh tissue biopsy and followed during treatment. Although the underpowered sample size limited statistical analysis, samples from non-responders had higher copy number variations and mutations in melanoma driver genes compared to responders in the BRAF V600+ subset. In the BRAF V600- subset, Tumor Mutational Burden (TMB) was twice that in responders vs. non-responders. Genomic layout revealed commonly known and novel potential intrinsic/acquired resistance driver gene variants. Among these, RAC1, FBXW7, GNAQ mutations, and BRAF/PTEN amplification/deletion were present in 42% and 67% of patients, respectively. Both Loss of Heterozygosity (LOH) load and tumor ploidy were inversely associated with TMB. In immunotherapy-treated patients, samples from responders showed higher TMB and lower LOH and were more frequently diploid compared to non-responders. Secondary germline testing and cfDNA analysis proved their efficacy in finding germline predisposing variants carriers (8.3%) and following dynamic changes during treatment as a surrogate of tissue biopsy, respectively.
Collapse
Affiliation(s)
- Irene Vanni
- Genetics of Rare Cancers, IRCCS Ospedale Policlinico San Martino, 16132 Genoa, Italy
| | - Lorenza Pastorino
- Genetics of Rare Cancers, IRCCS Ospedale Policlinico San Martino, 16132 Genoa, Italy
- Department of Internal Medicine and Medical Specialties (DiMI), University of Genoa, 16132 Genoa, Italy
| | - Enrica Teresa Tanda
- Department of Internal Medicine and Medical Specialties (DiMI), University of Genoa, 16132 Genoa, Italy
- Medical Oncology 2, IRCCS Ospedale Policlinico San Martino, 16132 Genoa, Italy
| | - Virginia Andreotti
- Genetics of Rare Cancers, IRCCS Ospedale Policlinico San Martino, 16132 Genoa, Italy
| | - Bruna Dalmasso
- Genetics of Rare Cancers, IRCCS Ospedale Policlinico San Martino, 16132 Genoa, Italy
| | - Nicola Solari
- Surgical Oncology, IRCCS Ospedale Policlinico San Martino, 16132 Genoa, Italy
| | - Matteo Mascherini
- Surgical Clinic Unit 1, IRCCS Ospedale Policlinico San Martino, 16132 Genoa, Italy
| | - Francesco Cabiddu
- Anatomic Pathology Unit, IRCCS Ospedale Policlinico San Martino, 16132 Genoa, Italy
| | - Antonio Guadagno
- Anatomic Pathology Unit, IRCCS Ospedale Policlinico San Martino, 16132 Genoa, Italy
| | - Simona Coco
- Lung Cancer Unit, IRCCS Ospedale Policlinico San Martino, 16132 Genoa, Italy
| | - Eleonora Allavena
- Department of Internal Medicine and Medical Specialties (DiMI), University of Genoa, 16132 Genoa, Italy
| | - William Bruno
- Genetics of Rare Cancers, IRCCS Ospedale Policlinico San Martino, 16132 Genoa, Italy
- Department of Internal Medicine and Medical Specialties (DiMI), University of Genoa, 16132 Genoa, Italy
| | - Gabriella Pietra
- IRCCS Ospedale Policlinico San Martino, U.O. Immunologia, 16132 Genoa, Italy
- Department of Experimental Medicine (DiMES), University of Genoa, 16132 Genoa, Italy
| | - Michela Croce
- Bioterapie, IRCCS Ospedale Policlinico San Martino, 16132 Genoa, Italy
| | - Rosaria Gangemi
- Bioterapie, IRCCS Ospedale Policlinico San Martino, 16132 Genoa, Italy
| | - Michele Piana
- Dipartimento di Matematica (MIDA), University of Genoa, 16132 Genoa, Italy
- Life Science Computational Laboratory (LISCOMP), IRCCS Ospedale Policlinico San Martino, 16132 Genoa, Italy
| | - Gabriele Zoppoli
- Department of Internal Medicine and Medical Specialties (DiMI), University of Genoa, 16132 Genoa, Italy
- Clinica di Medicina Interna a Indirizzo Oncologico, IRCCS Ospedale Policlinico San Martino, 16132 Genoa, Italy
| | - Lorenzo Ferrando
- Department of Internal Medicine and Medical Specialties (DiMI), University of Genoa, 16132 Genoa, Italy
- Clinica di Medicina Interna a Indirizzo Oncologico, IRCCS Ospedale Policlinico San Martino, 16132 Genoa, Italy
| | - Francesco Spagnolo
- Medical Oncology 2, IRCCS Ospedale Policlinico San Martino, 16132 Genoa, Italy
- Dipartimento di Scienze Chirurgiche e Diagnostiche Integrate (DISC), University of Genoa, 16132 Genoa, Italy
| | - Paola Queirolo
- Melanoma, Sarcoma & Rare Tumors Division, European Institute of Oncology (IEO), 20141 Milan, Italy
| | - Paola Ghiorzo
- Genetics of Rare Cancers, IRCCS Ospedale Policlinico San Martino, 16132 Genoa, Italy
- Department of Internal Medicine and Medical Specialties (DiMI), University of Genoa, 16132 Genoa, Italy
| |
Collapse
|
25
|
Labiano I, Huerta AE, Arrazubi V, Hernandez-Garcia I, Mata E, Gomez D, Arasanz H, Vera R, Alsina M. State of the Art: ctDNA in Upper Gastrointestinal Malignancies. Cancers (Basel) 2023; 15:1379. [PMID: 36900172 PMCID: PMC10000247 DOI: 10.3390/cancers15051379] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2023] [Revised: 02/14/2023] [Accepted: 02/20/2023] [Indexed: 02/24/2023] Open
Abstract
Circulating tumor DNA (ctDNA) has emerged as a promising non-invasive source to characterize genetic alterations related to the tumor. Upper gastrointestinal cancers, including gastroesophageal adenocarcinoma (GEC), biliary tract cancer (BTC) and pancreatic ductal adenocarcinoma (PADC) are poor prognostic malignancies, usually diagnosed at advanced stages when no longer amenable to surgical resection and show a poor prognosis even for resected patients. In this sense, ctDNA has emerged as a promising non-invasive tool with different applications, from early diagnosis to molecular characterization and follow-up of tumor genomic evolution. In this manuscript, novel advances in the field of ctDNA analysis in upper gastrointestinal tumors are presented and discussed. Overall, ctDNA analyses can help in early diagnosis, outperforming current diagnostic approaches. Detection of ctDNA prior to surgery or active treatment is also a prognostic marker that associates with worse survival, while ctDNA detection after surgery is indicative of minimal residual disease, anticipating in some cases the imaging-based detection of progression. In the advanced setting, ctDNA analyses characterize the genetic landscape of the tumor and identify patients for targeted-therapy approaches, and studies show variable concordance levels with tissue-based genetic testing. In this line, several studies also show that ctDNA serves to follow responses to active therapy, especially in targeted approaches, where it can detect multiple resistance mechanisms. Unfortunately, current studies are still limited and observational. Future prospective multi-center and interventional studies, carefully designed to assess the value of ctDNA to help clinical decision-making, will shed light on the real applicability of ctDNA in upper gastrointestinal tumor management. This manuscript presents a review of the evidence available in this field up to date.
Collapse
Affiliation(s)
- Ibone Labiano
- Oncobiona Group, Navarrabiomed-Instituto de Investigación Sanitaria de Navarra (IdiSNA), Irunlarrea 3, 31008 Pamplona, Spain
| | - Ana Elsa Huerta
- Oncobiona Group, Navarrabiomed-Instituto de Investigación Sanitaria de Navarra (IdiSNA), Irunlarrea 3, 31008 Pamplona, Spain
| | - Virginia Arrazubi
- Oncobiona Group, Navarrabiomed-Instituto de Investigación Sanitaria de Navarra (IdiSNA), Irunlarrea 3, 31008 Pamplona, Spain
- Medical Oncology Department, Hospital Universitario de Navarra (HUN), Irunlarrea 3, 31008 Pamplona, Spain
| | - Irene Hernandez-Garcia
- Oncobiona Group, Navarrabiomed-Instituto de Investigación Sanitaria de Navarra (IdiSNA), Irunlarrea 3, 31008 Pamplona, Spain
- Medical Oncology Department, Hospital Universitario de Navarra (HUN), Irunlarrea 3, 31008 Pamplona, Spain
| | - Elena Mata
- Oncobiona Group, Navarrabiomed-Instituto de Investigación Sanitaria de Navarra (IdiSNA), Irunlarrea 3, 31008 Pamplona, Spain
- Medical Oncology Department, Hospital Universitario de Navarra (HUN), Irunlarrea 3, 31008 Pamplona, Spain
| | - David Gomez
- Medical Oncology Department, Hospital Universitario de Navarra (HUN), Irunlarrea 3, 31008 Pamplona, Spain
| | - Hugo Arasanz
- Oncobiona Group, Navarrabiomed-Instituto de Investigación Sanitaria de Navarra (IdiSNA), Irunlarrea 3, 31008 Pamplona, Spain
- Medical Oncology Department, Hospital Universitario de Navarra (HUN), Irunlarrea 3, 31008 Pamplona, Spain
| | - Ruth Vera
- Oncobiona Group, Navarrabiomed-Instituto de Investigación Sanitaria de Navarra (IdiSNA), Irunlarrea 3, 31008 Pamplona, Spain
- Medical Oncology Department, Hospital Universitario de Navarra (HUN), Irunlarrea 3, 31008 Pamplona, Spain
| | - Maria Alsina
- Oncobiona Group, Navarrabiomed-Instituto de Investigación Sanitaria de Navarra (IdiSNA), Irunlarrea 3, 31008 Pamplona, Spain
- Medical Oncology Department, Hospital Universitario de Navarra (HUN), Irunlarrea 3, 31008 Pamplona, Spain
| |
Collapse
|
26
|
Amato O, Aftimos P, Ignatiadis M. Liquid biopsy accelerates precision medicine. Ann Oncol 2023; 34:333-335. [PMID: 36804455 DOI: 10.1016/j.annonc.2023.02.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2023] [Accepted: 02/07/2023] [Indexed: 02/17/2023] Open
Affiliation(s)
- O Amato
- Department of Medical Oncology, Institut Jules Bordet and Université Libre de Bruxelles, Brussels, Belgium; Department of Surgery, Oncology and Gastroenterology (DISCOG), University of Padova, Padova, Italy
| | - P Aftimos
- Department of Medical Oncology, Institut Jules Bordet and Université Libre de Bruxelles, Brussels, Belgium
| | - M Ignatiadis
- Department of Medical Oncology, Institut Jules Bordet and Université Libre de Bruxelles, Brussels, Belgium.
| |
Collapse
|
27
|
Debien V, Vignot S, Massard C, Malouf G, Hollebecque A, Scoazec JY, Michiels S, Verlingue L. Molecular analysis for refractory rare cancers: Sequencing battle continues - learnings for the MOSCATO-01 study. Crit Rev Oncol Hematol 2023; 181:103888. [PMID: 36460264 DOI: 10.1016/j.critrevonc.2022.103888] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2022] [Revised: 11/18/2022] [Accepted: 11/23/2022] [Indexed: 12/03/2022] Open
Abstract
BACKGROUND For patients with metastatic rare cancers, treatments are limited. How systematic tumor sequencing can improve therapeutic possibilities in this population? PATIENTS AND METHODS Patients with rare cancer were identified in the MOSCATO-01 trial. Patients' outcome was measured by progression-free survival (PFS) and overall survival (OS). RESULTS The most frequently identified histologic subypes were ovarian adenocarcinoma (N = 13), carcinoma of unknown primary (N = 11), and leiomyosarcoma (N = 10). Ninety-nine (39%) of them had at least one targetable cancer molecular alteration Forty-nine patients (50%) received the therapy proposed by the molecular tumor board, and 13 patients (26%, 95%CI 15-41%) achieved a PFS2/PFS1 > 1.3. The median PFS2 on matched treatment subgroup was 2.3 months (95% CI 1.8-3.6) and the median OS was 11.4 months (95% CI 9-15.5). CONCLUSIONS The molecular screening of patients with refractory, metastatic rare cancers might increase the therapeutic options. Facilitating access strategy to molecular-driven clinical trials or agnostic-approved treatment is crucial.
Collapse
Affiliation(s)
- Véronique Debien
- Department of oncology, Institut de Cancérologie Strasbourg Europe, ICANS, Strasbourg, France; Drug Development Department (DITEP), Gustave Roussy, Université Paris-Sud, Université Paris-Saclay, Villejuif, France; Institut Jules Bordet, Université Libre de Bruxelles (U.L.B), Brussels, Belgium
| | | | - Christophe Massard
- Drug Development Department (DITEP), Gustave Roussy, Université Paris-Sud, Université Paris-Saclay, Villejuif, France; Department of Oncology, Institut Eugène Marquis, Rennes, France
| | - Gabriel Malouf
- Department of oncology, Institut de Cancérologie Strasbourg Europe, ICANS, Strasbourg, France
| | - Antoine Hollebecque
- Drug Development Department (DITEP), Gustave Roussy, Université Paris-Sud, Université Paris-Saclay, Villejuif, France
| | - Jean-Yves Scoazec
- Pathology Department, Gustave Roussy, Université Paris-Sud, Université Paris-Saclay, Villejuif, France; AMMICa, CNRS UAR3655 INSERM US23, Université Paris Saclay, Villejuif, France
| | - Stefan Michiels
- Service de Biostatistique et d'Epidémiologie, Oncostat, CESP, Inserm U1018, Université Paris-Saclay, Equipe labellisée Ligue Contre le Cancer, Institut Gustave Roussy, Villejuif, France
| | - Loïc Verlingue
- Drug Development Department (DITEP), Gustave Roussy, Université Paris-Sud, Université Paris-Saclay, Villejuif, France; Unité de Phase 1, Centre Léon Bérard, Lyon, France.
| |
Collapse
|
28
|
Pinet S, Durand S, Perani A, Darnaud L, Amadjikpe F, Yon M, Darbas T, Vergnenegre A, Egenod T, Simonneau Y, Le Brun-Ly V, Pestre J, Venat L, Thuillier F, Chaunavel A, Duchesne M, Fermeaux V, Guyot A, Lacorre S, Bessette B, Lalloué F, Durand K, Deluche E. Clinical management of molecular alterations identified by high throughput sequencing in patients with advanced solid tumors in treatment failure: Real-world data from a French hospital. Front Oncol 2023; 13:1104659. [PMID: 36923436 PMCID: PMC10009270 DOI: 10.3389/fonc.2023.1104659] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2022] [Accepted: 02/07/2023] [Indexed: 03/03/2023] Open
Abstract
Background In the context of personalized medicine, screening patients to identify targetable molecular alterations is essential for therapeutic decisions such as inclusion in clinical trials, early access to therapies, or compassionate treatment. The objective of this study was to determine the real-world impact of routine incorporation of FoundationOne analysis in cancers with a poor prognosis and limited treatment options, or in those progressing after at least one course of standard therapy. Methods A FoundationOneCDx panel for solid tumor or liquid biopsy samples was offered to 204 eligible patients. Results Samples from 150 patients were processed for genomic testing, with a data acquisition success rate of 93%. The analysis identified 2419 gene alterations, with a median of 11 alterations per tumor (range, 0-86). The most common or likely pathogenic variants were on TP53, TERT, PI3KCA, CDKN2A/B, KRAS, CCDN1, FGF19, FGF3, and SMAD4. The median tumor mutation burden was three mutations/Mb (range, 0-117) in 143 patients with available data. Of 150 patients with known or likely pathogenic actionable alterations, 13 (8.6%) received matched targeted therapy. Sixty-nine patients underwent Molecular Tumor Board, which resulted in recommendations in 60 cases. Treatment with genotype-directed therapy had no impact on overall survival (13 months vs. 14 months; p = 0.95; hazard ratio = 1.04 (95% confidence interval, 0.48-2.26)]. Conclusions This study highlights that an organized center with a Multidisciplinary Molecular Tumor Board and an NGS screening system can obtain satisfactory results comparable with those of large centers for including patients in clinical trials.
Collapse
Affiliation(s)
- Sandra Pinet
- Medical Oncology Department, Dupuytren University Hospital, Limoges, France
| | - Stéphanie Durand
- The National Institute for Health and Medical Research (INSERM) U1308 - CAPTuR "Control Of Cell Activation, Tumor Progression and Therapeutic Resistance", Faculty of Medicine, University of Limoges, Limoges, France
| | - Alexandre Perani
- Cytogenetic, Medical Genetic and Reproductive Biology, Dupuytren University Hospital, Limoges, France
| | - Léa Darnaud
- Department of Pathology, Dupuytren University Hospital, Limoges, France
| | - Fifame Amadjikpe
- Department of Pathology, Dupuytren University Hospital, Limoges, France
| | - Mathieu Yon
- Department of Pathology, Dupuytren University Hospital, Limoges, France
| | - Tiffany Darbas
- Medical Oncology Department, Dupuytren University Hospital, Limoges, France
| | | | - Thomas Egenod
- Chest Department, Dupuytren University Hospital, Limoges, France
| | | | - Valérie Le Brun-Ly
- Medical Oncology Department, Dupuytren University Hospital, Limoges, France
| | - Julia Pestre
- Medical Oncology Department, Dupuytren University Hospital, Limoges, France
| | - Laurence Venat
- Medical Oncology Department, Dupuytren University Hospital, Limoges, France
| | - Frédéric Thuillier
- Medical Oncology Department, Dupuytren University Hospital, Limoges, France
| | - Alain Chaunavel
- The National Institute for Health and Medical Research (INSERM) U1308 - CAPTuR "Control Of Cell Activation, Tumor Progression and Therapeutic Resistance", Faculty of Medicine, University of Limoges, Limoges, France.,Department of Pathology, Dupuytren University Hospital, Limoges, France
| | - Mathilde Duchesne
- Department of Pathology, Dupuytren University Hospital, Limoges, France.,Research Unit (UR) 20218 - NEURIT "Neuropathies et Innovations Thérapeutiques", Faculty of Medicine, University of Limoges, Limoges, France
| | | | - Anne Guyot
- Department of Pathology, Dupuytren University Hospital, Limoges, France
| | - Sylvain Lacorre
- Department of Pathology, Dupuytren University Hospital, Limoges, France
| | - Barbara Bessette
- The National Institute for Health and Medical Research (INSERM) U1308 - CAPTuR "Control Of Cell Activation, Tumor Progression and Therapeutic Resistance", Faculty of Medicine, University of Limoges, Limoges, France
| | - Fabrice Lalloué
- The National Institute for Health and Medical Research (INSERM) U1308 - CAPTuR "Control Of Cell Activation, Tumor Progression and Therapeutic Resistance", Faculty of Medicine, University of Limoges, Limoges, France
| | - Karine Durand
- The National Institute for Health and Medical Research (INSERM) U1308 - CAPTuR "Control Of Cell Activation, Tumor Progression and Therapeutic Resistance", Faculty of Medicine, University of Limoges, Limoges, France.,Department of Pathology, Dupuytren University Hospital, Limoges, France
| | - Elise Deluche
- Medical Oncology Department, Dupuytren University Hospital, Limoges, France.,The National Institute for Health and Medical Research (INSERM) U1308 - CAPTuR "Control Of Cell Activation, Tumor Progression and Therapeutic Resistance", Faculty of Medicine, University of Limoges, Limoges, France
| |
Collapse
|