1
|
Li H, Song J, Deng Z, Yao Y, Qiao W, Tan J. Cleavage of Stau2 by 3C protease promotes EV-A71 replication. Virol J 2024; 21:216. [PMID: 39272111 PMCID: PMC11401396 DOI: 10.1186/s12985-024-02489-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2024] [Accepted: 09/04/2024] [Indexed: 09/15/2024] Open
Abstract
BACKGROUND Enterovirus A71 (EV-A71), as a neurotropic virus, mainly affects infants and young children under the age of 5. EV-A71 infection causes hand-foot-mouth disease and herpetic angina, and even life-threatening neurological complications. However, the molecular mechanism by which EV-A71 induces nervous system damage remains elusive. The viral protease 3C plays an important role during EV-A71 infection and is also a key intersection of virus-host interactions. Previously, we used yeast two-hybrid to screen out the host protein Double-stranded RNA-binding protein Staufen homolog 2 (Stau2), an important member involved in neuronal mRNA transport, potentially interacts with 3C. METHODS We used coimmunoprecipitation (Co-IP) and immunofluorescence assay (IFA) to confirm that EV-A71 3C interacts with Stau2. By constructing the mutant of Stau2, we found the specific site where the 3C protease cleaves Stau2. Detection of VP1 protein using Western blotting characterized EV-A71 viral replication, and overexpression or knockdown of Stau2 exhibited effects on EV-A71 replication. The effect of different cleavage products on EV-A71 replication was demonstrated by constructing Stau2 truncates. RESULTS In this study, we found that EV-A71 3C interacts with Stau2. Stau2 is cleaved by 3C at the Q507-G508 site. Overexpression of Stau2 promotes EV-A71 VP1 protein expression, whereas depletion of Stau2 by small interfering RNA inhibits EV-A71 replication. Stau2 is essential for EV-A71 replication, and the product of Stau2 cleavage by 3C, 508-570 aa, has activity that promotes EV-A71 replication. In addition, we found that mouse Stau2 is also cleaved by EV-A71 3C at the same site. CONCLUSIONS Our research provides an example for EV-A71-host interaction, enriching key targets of host factors that contribute to viral replication.
Collapse
Affiliation(s)
- Hui Li
- Key Laboratory of Molecular Microbiology and Technology, Ministry of Education, College of Life Sciences, Nankai University, Tianjin, 300071, China
- Precision Medicine Center, Tianjin Medical University General Hospital, Tianjin, 300052, China
| | - Jie Song
- Key Laboratory of Molecular Microbiology and Technology, Ministry of Education, College of Life Sciences, Nankai University, Tianjin, 300071, China
| | - Zhi Deng
- Key Laboratory of Molecular Microbiology and Technology, Ministry of Education, College of Life Sciences, Nankai University, Tianjin, 300071, China
| | - Yunfang Yao
- Key Laboratory of Molecular Microbiology and Technology, Ministry of Education, College of Life Sciences, Nankai University, Tianjin, 300071, China
| | - Wentao Qiao
- Key Laboratory of Molecular Microbiology and Technology, Ministry of Education, College of Life Sciences, Nankai University, Tianjin, 300071, China
| | - Juan Tan
- Key Laboratory of Molecular Microbiology and Technology, Ministry of Education, College of Life Sciences, Nankai University, Tianjin, 300071, China.
| |
Collapse
|
2
|
Li H, Yao Y, Chen Y, Zhang S, Deng Z, Qiao W, Tan J. TRAF3IP3 Is Cleaved by EV71 3C Protease and Exhibits Antiviral Activity. Front Microbiol 2022; 13:914971. [PMID: 35814660 PMCID: PMC9260427 DOI: 10.3389/fmicb.2022.914971] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2022] [Accepted: 05/17/2022] [Indexed: 11/27/2022] Open
Abstract
Enterovirus 71 (EV71) is one of the major pathogens of hand, foot, and mouth disease, which poses a major risk to public health and infant safety. 3C protease (3Cpro), a non-structural protein of EV71, promotes viral protein maturation by cleaving polyprotein precursors and facilitates viral immune escape by cleaving host proteins. In this study, we screened for human proteins that could interact with EV71 3Cpro using a yeast two-hybrid assay. Immune-associated protein TRAF3 Interacting Protein 3 (TRAF3IP3) was selected for further study. The results of co-immunoprecipitation and immunofluorescence demonstrated the interaction between TRAF3IP3 and EV71 3Cpro. A cleavage band was detected, indicating that both transfected 3Cpro and EV71 infection could cleave TRAF3IP3. 87Q-88G was identified as the only 3Cpro cleavage site in TRAF3IP3. In Jurkat and rhabdomyosarcoma (RD) cells, TRAF3IP3 inhibited EV71 replication, and 3Cpro cleavage partially resisted TRAF3IP3-induced inhibition. Additionally, the nuclear localization signal (NLS) and nuclear export signal (NES) of TRAF3IP3 were identified. The NES contributed to TRAF3IP3 alteration of 3Cpro localization and inhibition of EV71 replication. Together, these results indicate that TRAF3IP3 inhibits EV71 replication and 3Cpro resists such inhibition via proteolytic cleavage, providing a new example of virus-host interaction.
Collapse
|
3
|
Wo X, Yuan Y, Xu Y, Chen Y, Wang Y, Zhao S, Lin L, Zhong X, Wang Y, Zhong Z, Zhao W. TAR DNA-Binding Protein 43 is Cleaved by the Protease 3C of Enterovirus A71. Virol Sin 2021; 36:95-103. [PMID: 32696397 PMCID: PMC7973337 DOI: 10.1007/s12250-020-00262-x] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2020] [Accepted: 06/01/2020] [Indexed: 12/13/2022] Open
Abstract
Enterovirus A71 (EV-A71) is one of the etiological pathogens leading to hand, foot, and mouth disease (HFMD), which can cause severe neurological complications. The neuropathogenesis of EV-A71 infection is not well understood. The mislocalization and aggregation of TAR DNA-binding protein 43 (TDP-43) is the pathological hallmark of amyotrophic lateral sclerosis (ALS). However, whether TDP-43 was impacted by EV-A71 infection is unknown. This study demonstrated that TDP-43 was cleaved during EV-A71 infection. The cleavage of TDP-43 requires EV-A71 replication rather than the activated caspases due to viral infection. TDP-43 is cleaved by viral protease 3C between the residues 331Q and 332S, while mutated TDP-43 (Q331A) was not cleaved. In addition, mutated 3C which lacks the protease activity failed to induce TDP-43 cleavage. We also found that TDP-43 was translocated from the nucleus to the cytoplasm, and the mislocalization of TDP-43 was induced by viral protease 2A rather than 3C. Taken together, we demonstrated that TDP-43 was cleaved by viral protease and translocated to the cytoplasm during EV-A71 infection, implicating the possible involvement of TDP-43 in the pathogenesis of EV-A71infection.
Collapse
Affiliation(s)
- Xiaoman Wo
- Department of Cell Biology, Harbin Medical University, Harbin, 150081, China
| | - Yuan Yuan
- Department of Cell Biology, Harbin Medical University, Harbin, 150081, China
| | - Yong Xu
- Department of Cell Biology, Harbin Medical University, Harbin, 150081, China
| | - Yang Chen
- Department of Microbiology, Harbin Medical University, Harbin, 150081, China
| | - Yao Wang
- Department of Cell Biology, Harbin Medical University, Harbin, 150081, China
| | - Shuoxuan Zhao
- Department of Cell Biology, Harbin Medical University, Harbin, 150081, China
| | - Lexun Lin
- Department of Microbiology, Harbin Medical University, Harbin, 150081, China
| | - Xiaoyan Zhong
- Department of Microbiology, Harbin Medical University, Harbin, 150081, China
| | - Yan Wang
- Department of Microbiology, Harbin Medical University, Harbin, 150081, China
| | - Zhaohua Zhong
- Department of Microbiology, Harbin Medical University, Harbin, 150081, China.
| | - Wenran Zhao
- Department of Cell Biology, Harbin Medical University, Harbin, 150081, China.
| |
Collapse
|
4
|
Yamada K, Noguchi K, Kimitsuki K, Kaimori R, Saito N, Komeno T, Nakajima N, Furuta Y, Nishizono A. Reevaluation of the efficacy of favipiravir against rabies virus using in vivo imaging analysis. Antiviral Res 2019; 172:104641. [PMID: 31672666 DOI: 10.1016/j.antiviral.2019.104641] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2019] [Revised: 10/13/2019] [Accepted: 10/23/2019] [Indexed: 12/30/2022]
Abstract
Rabies virus (RABV) is a highly neurotropic virus and the causative agent of rabies, an encephalitis with an almost 100% case-fatality rate that remains incurable after the onset of symptoms. Favipiravir (T-705), a broad-spectrum antiviral drug against RNA viruses, has been shown to be effective against RABV in vitro but ineffective in vivo. We hypothesized that favipiravir is effective in infected mice when RABV replicates in the peripheral tissues/nerves but not after virus neuroinvasion. We attempted to clarify this point in this study using in vivo bioluminescence imaging. We generated a recombinant RABV from the field isolate 1088, which expressed red firefly luciferase (1088/RFLuc). This allowed semiquantitative detection and monitoring of primary replication at the inoculation site and viral spread in the central nervous system (CNS) in the same mice. Bioluminescence imaging revealed that favipiravir (300 mg/kg/day) treatment commencing 1 h after intramuscular inoculation of RABV efficiently suppressed viral replication at the inoculation site and the subsequent replication in the CNS. However, virus replication in the CNS was not inhibited when the treatment began 2 days after inoculation. We also found that higher doses (600 or 900 mg/kg/day) of favipiravir could suppress viral replication in the CNS even when administration started 2 days after inoculation. These results support our hypothesis and suggest that a highly effective drug-delivery system into the CNS and/or the enhancement of favipiravir conversion to its active form are required to improve favipiravir treatment of rabies. Furthermore, the bioluminescence imaging system established in this study will facilitate the development of treatment for symptomatic rabies.
Collapse
Affiliation(s)
- Kentaro Yamada
- Research Promotion Institute, Faculty of Medicine, Oita University, 1-1 Idaigaoka, Hasama-machi, Yufu City, Oita, 879-5593, Japan
| | - Kazuko Noguchi
- Department of Microbiology, Faculty of Medicine, Oita University, 1-1 Idaigaoka, Hasama-machi, Yufu City, Oita, 879-5593, Japan; Department of Food Science and Technology, Minami Kyushu University, 5-1-2 Kirishima, Miyazaki City, Miyazaki, 880-0031, Japan
| | - Kazunori Kimitsuki
- Department of Microbiology, Faculty of Medicine, Oita University, 1-1 Idaigaoka, Hasama-machi, Yufu City, Oita, 879-5593, Japan
| | - Ryo Kaimori
- Department of Microbiology, Faculty of Medicine, Oita University, 1-1 Idaigaoka, Hasama-machi, Yufu City, Oita, 879-5593, Japan
| | - Nobuo Saito
- Department of Microbiology, Faculty of Medicine, Oita University, 1-1 Idaigaoka, Hasama-machi, Yufu City, Oita, 879-5593, Japan
| | - Takashi Komeno
- FUJIFILM Toyama Chemical Co.,Ltd, 2-4-1 Shimookui, Toyama City, Toyama, 930-8508, Japan
| | - Nozomi Nakajima
- FUJIFILM Toyama Chemical Co.,Ltd, 2-4-1 Shimookui, Toyama City, Toyama, 930-8508, Japan
| | - Yousuke Furuta
- FUJIFILM Toyama Chemical Co.,Ltd, 2-4-1 Shimookui, Toyama City, Toyama, 930-8508, Japan
| | - Akira Nishizono
- Research Promotion Institute, Faculty of Medicine, Oita University, 1-1 Idaigaoka, Hasama-machi, Yufu City, Oita, 879-5593, Japan; Department of Microbiology, Faculty of Medicine, Oita University, 1-1 Idaigaoka, Hasama-machi, Yufu City, Oita, 879-5593, Japan.
| |
Collapse
|
5
|
Dial CN, Tate PM, Kicmal TM, Mounce BC. Coxsackievirus B3 Responds to Polyamine Depletion via Enhancement of 2A and 3C Protease Activity. Viruses 2019; 11:E403. [PMID: 31052199 PMCID: PMC6563312 DOI: 10.3390/v11050403] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2019] [Revised: 04/26/2019] [Accepted: 04/26/2019] [Indexed: 01/16/2023] Open
Abstract
Polyamines are small positively-charged molecules abundant in eukaryotic cells that are crucial to RNA virus replication. In eukaryotic cells, polyamines facilitate processes such as transcription, translation, and DNA replication, and viruses similarly rely on polyamines to facilitate transcription and translation. Whether polyamines function at additional stages in viral replication remains poorly understood. Picornaviruses, including Coxsackievirus B3 (CVB3), are sensitive to polyamine depletion both in vitro and in vivo; however, precisely how polyamine function in picornavirus infection has not been described. Here, we describe CVB3 mutants that arise with passage in polyamine-depleted conditions. We observe mutations in the 2A and 3C proteases, and we find that these mutant proteases confer resistance to polyamine depletion. Using a split luciferase reporter system to measure protease activity, we determined that polyamines facilitate viral protease activity. We further observe that the 2A and 3C protease mutations enhance reporter protease activity in polyamine-depleted conditions. Finally, we find that these mutations promote cleavage of cellular eIF4G during infection of polyamine-depleted cells. In sum, our results suggest that polyamines are crucial to protease function during picornavirus infection. Further, these data highlight viral proteases as potential antiviral targets and highlight how CVB3 may overcome polyamine-depleting antiviral therapies.
Collapse
Affiliation(s)
- Courtney N Dial
- Department of Microbiology and Immunology, Stritch School of Medicine, Loyola University Chicago, Maywood, IL 60153, USA.
- Infectious Disease and Immunology Research Institute, Stritch School of Medicine, Loyola University Chicago, Maywood, IL 60153, USA.
| | - Patrick M Tate
- Department of Microbiology and Immunology, Stritch School of Medicine, Loyola University Chicago, Maywood, IL 60153, USA.
| | - Thomas M Kicmal
- Department of Microbiology and Immunology, Stritch School of Medicine, Loyola University Chicago, Maywood, IL 60153, USA.
- Infectious Disease and Immunology Research Institute, Stritch School of Medicine, Loyola University Chicago, Maywood, IL 60153, USA.
| | - Bryan C Mounce
- Department of Microbiology and Immunology, Stritch School of Medicine, Loyola University Chicago, Maywood, IL 60153, USA.
- Infectious Disease and Immunology Research Institute, Stritch School of Medicine, Loyola University Chicago, Maywood, IL 60153, USA.
| |
Collapse
|
6
|
Zhang Y, Ke X, Zheng C, Liu Y, Xie L, Zheng Z, Wang H. Development of a luciferase-based biosensor to assess enterovirus 71 3C protease activity in living cells. Sci Rep 2017; 7:10385. [PMID: 28871120 PMCID: PMC5583365 DOI: 10.1038/s41598-017-10840-x] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2017] [Accepted: 08/15/2017] [Indexed: 11/23/2022] Open
Abstract
Enterovirus 71 (EV71) is a major pathogen of hand, foot, and mouth disease (HFMD). To date, no antiviral drug has been approved to treat EV71 infection. Due to the essential role that EV71 3 C protease (3Cpro) plays in the viral life cycle, it is generally considered as a highly appealing target for antiviral drug development. In this study, we present a transgene-encoded biosensor that can accurately, sensitively and quantitatively report the proteolytic activity of EV71 3Cpro. This biosensor is based on the catalyzed activity of a pro-interleukin (IL)-1β-enterovirus 3Cpro cleavage site-Gaussia Luciferase (GLuc) fusion protein that we named i-3CS-GLuc. GLuc enzyme is inactive in the fusion protein because of aggregation caused by pro-IL-1β. However, the 3Cpro of EV71 and other enteroviruses, such as coxsackievirus A9 (CVA9), coxsackievirus B3 (CVB3), and poliovirus can recognize and process the canonical enterovirus 3Cpro cleavage site between pro-IL-1β and GLuc, thereby releasing and activating GLuc and resulting in increased luciferase activity. The high sensitivity, ease of use, and applicability as a transgene in cell-based assays of i-3CS-GLuc biosensor make it a powerful tool for studying viral protease proteolytic events in living cells and for achieving high-throughput screening of antiviral agents.
Collapse
Affiliation(s)
- Yuan Zhang
- Key Laboratory of Special Pathogens and Biosafety, Center for Emerging Infectious Diseases, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, 430071, China
| | - Xianliang Ke
- Guangzhou Institute of Pediatrics, Guangzhou Women and Children Medical Center, Guangzhou, 510623, China
| | - Caishang Zheng
- Guangzhou Institute of Pediatrics, Guangzhou Women and Children Medical Center, Guangzhou, 510623, China
| | - Yan Liu
- Key Laboratory of Special Pathogens and Biosafety, Center for Emerging Infectious Diseases, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, 430071, China
| | - Li Xie
- Key Laboratory of Special Pathogens and Biosafety, Center for Emerging Infectious Diseases, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, 430071, China
| | - Zhenhua Zheng
- Key Laboratory of Special Pathogens and Biosafety, Center for Emerging Infectious Diseases, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, 430071, China
| | - Hanzhong Wang
- Key Laboratory of Special Pathogens and Biosafety, Center for Emerging Infectious Diseases, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, 430071, China.
| |
Collapse
|
7
|
Wu S, Wang Y, Lin L, Si X, Wang T, Zhong X, Tong L, Luan Y, Chen Y, Li X, Zhang F, Zhao W, Zhong Z. Protease 2A induces stress granule formation during coxsackievirus B3 and enterovirus 71 infections. Virol J 2014; 11:192. [PMID: 25410318 PMCID: PMC4247557 DOI: 10.1186/s12985-014-0192-1] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2014] [Accepted: 10/26/2014] [Indexed: 02/02/2023] Open
Abstract
Background Stress granules (SGs) are granular aggregates in the cytoplasm that are formed under a variety of stress situations including viral infection. Previous studies indicate that poliovirus, a member of Picornaviridae, can induce SG formation. However, the exact mechanism by which the picornaviruses induce SG formation is unknown. Method The localization of SG markers in cells infected with coxsackievirus B3 (CVB3) or enterovirus 71 (EV71) and in cells expressing each viral protein was determined via immunofluorescence assays or plasmid transfection. Eight plasmids expressing mutants of the 2A protease (2Apro) of CVB3 were generated using a site-directed mutagenesis strategy. The cleavage efficiencies of eIF4G by CVB3 2Apro and its mutants were determined via western blotting assays. Results In this study, we found that CVB3 infection induced SG formation, as evidenced by the co-localization of some accepted SG markers in viral infection-induced granules. Furthermore, we identified that 2Apro of CVB3 was the key viral component that triggered SG formation. A 2Apro mutant with the G122E mutation, which exhibited very low cleavage efficiency toward eIF4G, significantly attenuated its capacity for SG induction, indicating that the protease activity was required for 2Apro to initiate SG formation. Finally, we observed that SGs also formed in EV71-infected cells. Expression of EV71 2Apro alone was also sufficient to cause SG formation. Conclusion Both CVB3 and EV71 infections can induce SG formation, and 2Apro plays a crucial role in the induction of SG formation during these infections. This finding may help us to better understand how picornaviruses initiate the SG response. Electronic supplementary material The online version of this article (doi:10.1186/s12985-014-0192-1) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Shuo Wu
- Department of Microbiology, Harbin Medical University, Harbin, 150081, China.
| | - Yan Wang
- Department of Microbiology, Harbin Medical University, Harbin, 150081, China.
| | - Lexun Lin
- Department of Microbiology, Harbin Medical University, Harbin, 150081, China.
| | - Xiaoning Si
- Department of Microbiology, Harbin Medical University, Harbin, 150081, China.
| | - Tianying Wang
- Department of Microbiology, Harbin Medical University, Harbin, 150081, China.
| | - Xiaoyan Zhong
- Department of Microbiology, Harbin Medical University, Harbin, 150081, China.
| | - Lei Tong
- Department of Microbiology, Harbin Medical University, Harbin, 150081, China.
| | - Ying Luan
- Department of Microbiology, Harbin Medical University, Harbin, 150081, China.
| | - Yang Chen
- Department of Microbiology, Harbin Medical University, Harbin, 150081, China.
| | - Xiaoyu Li
- Division of Gastroenterology and Hepatology, Department of Medicine, University of Florida-Jacksonville, Jacksonville, FL, 32206, USA.
| | - Fengmin Zhang
- Department of Microbiology, Harbin Medical University, Harbin, 150081, China.
| | - Wenran Zhao
- Department of Cell Biology, Harbin Medical University, Harbin, 150081, China.
| | - Zhaohua Zhong
- Department of Microbiology, Harbin Medical University, Harbin, 150081, China.
| |
Collapse
|
8
|
Wu S, Lin L, Zhao W, Li X, Wang Y, Si X, Wang T, Wu H, Zhai X, Zhong X, Gao S, Tong L, Xu Z, Zhong Z. AUF1 is recruited to the stress granules induced by coxsackievirus B3. Virus Res 2014; 192:52-61. [PMID: 25148713 DOI: 10.1016/j.virusres.2014.08.003] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2014] [Revised: 08/05/2014] [Accepted: 08/11/2014] [Indexed: 11/18/2022]
Abstract
Stress granules (SGs) are cytoplasmic granules that are formed in cells when stress occurs. In this study, we found that SGs formed in cells infected with coxsackievirus B3 (CVB3), evidenced with the co-localization of some accepted SG markers in the viral infection-induced granules. We further discovered that adenosine-uridine (AU)-rich element RNA binding factor 1 (AUF1), which can bind to mRNAs and regulate their translation, was recruited to the SGs in response to high dose of CVB3 by detecting the co-localization of AUF1 with SG markers. Similar results were also observed in the enterovirus 71 (EV71)-infected cells. Finally, we demonstrated that AUF1 was also recruited to arsenite-induced SGs, suggesting that the recruitment of AUF1 to SG is not a specific response to viral infection. In summary, our data indicate that both CVB3 and EV71 infections can induce SG formation, and AUF1 is a novel SG component upon the viral infections. Our findings may shed light on understanding the picornavirus-host interaction.
Collapse
Affiliation(s)
- Shuo Wu
- Department of Microbiology, Harbin Medical University, Harbin 150081, China
| | - Lexun Lin
- Department of Microbiology, Harbin Medical University, Harbin 150081, China
| | - Wenran Zhao
- Department of Cell Biology, Harbin Medical University, Harbin 150081, China
| | - Xiaobo Li
- Department of Pathology, Harbin Medical University, Harbin 150081, China
| | - Yan Wang
- Department of Microbiology, Harbin Medical University, Harbin 150081, China
| | - Xiaoning Si
- Department of Microbiology, Harbin Medical University, Harbin 150081, China
| | - Tianying Wang
- Department of Microbiology, Harbin Medical University, Harbin 150081, China
| | - Heng Wu
- Department of Microbiology, Harbin Medical University, Harbin 150081, China
| | - Xia Zhai
- Department of Microbiology, Harbin Medical University, Harbin 150081, China
| | - Xiaoyan Zhong
- Department of Microbiology, Harbin Medical University, Harbin 150081, China
| | - Shuoyang Gao
- Department of Microbiology, Harbin Medical University, Harbin 150081, China
| | - Lei Tong
- Department of Microbiology, Harbin Medical University, Harbin 150081, China
| | - Zhikai Xu
- Department of Microbiology, School of Basic Medicine, Fourth Military Medical University, Xi'an 710032, China.
| | - Zhaohua Zhong
- Department of Microbiology, Harbin Medical University, Harbin 150081, China.
| |
Collapse
|