1
|
Sui L, Guo X, Wang W, Xu Y, Zhao Y, Liu Q. Multi-proteomics and interactome dataset of tick-borne encephalitis virus infected host cells. Sci Data 2024; 11:1280. [PMID: 39587125 PMCID: PMC11589117 DOI: 10.1038/s41597-024-04036-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2024] [Accepted: 10/23/2024] [Indexed: 11/27/2024] Open
Abstract
Tick-borne encephalitis virus (TBEV) is a significant viral pathogen transmitted by ticks, causing severe neurological complications in humans across Europe and Asia, highlighting the urgent need for an in-depth understanding of molecular functions of viral proteins and their interactions with the host proteome. Multi-omics analysis of how TBEV hijack cellular processes provides information about their replication and pathogenic mechanisms. Here, we focused on the proteome, phosphoproteome, and acetylproteome of Vero cells infected by TBEV, revealing the host perturbations triggered by TBEV infection. Additionally, we performed protein-protein interactome analysis to examine the interactions between TBEV and the host. We have provided technical validation, demonstrating the high quality and correlation of samples across all datasets, and evidence of biological consistency of virus-infected cells at the proteomic, phosphoproteomics and acetylomic levels. This comprehensive multi-omics dataset serves as a valuable resource for studying TBEV pathogenesis and identifying potential drug targets for TBEV therapy.
Collapse
Affiliation(s)
- Liyan Sui
- Department of Infectious Diseases and Center of Infectious Diseases and Pathogen Biology, Key Laboratory of Organ Regeneration and Transplantation of the Ministry of Education, State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, The First Hospital of Jilin University, Changchun, 130012, China.
| | - Xuerui Guo
- China-Japan Union Hospital of Jilin University, Changchun, 130031, China
- School of Pharmaceutical Sciences, Jilin University, Changchun, 130061, China
| | - Wenfang Wang
- Department of Infectious Diseases and Center of Infectious Diseases and Pathogen Biology, Key Laboratory of Organ Regeneration and Transplantation of the Ministry of Education, State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, The First Hospital of Jilin University, Changchun, 130012, China
- State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, College of Basic Medical Science, Jilin University, Changchun, 130061, China
| | - Yueshan Xu
- Clinical Medical College, Changchun University of Chinese Medicine, Changchun, 130117, China
| | - Yicheng Zhao
- China-Japan Union Hospital of Jilin University, Changchun, 130031, China.
- Clinical Medical College, Changchun University of Chinese Medicine, Changchun, 130117, China.
| | - Quan Liu
- Department of Infectious Diseases and Center of Infectious Diseases and Pathogen Biology, Key Laboratory of Organ Regeneration and Transplantation of the Ministry of Education, State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, The First Hospital of Jilin University, Changchun, 130012, China
| |
Collapse
|
2
|
Gutiérrez-Chamorro L, Felip E, Castellà E, Quiroga V, Ezeonwumelu IJ, Angelats L, Esteve A, Perez-Roca L, Martínez-Cardús A, Fernandez PL, Ferrando-Díez A, Pous A, Bergamino M, Cirauqui B, Romeo M, Teruel I, Mesia R, Clotet B, Riveira-Muñoz E, Margelí M, Ballana E. SAMHD1 expression is a surrogate marker of immune infiltration and determines prognosis after neoadjuvant chemotherapy in early breast cancer. Cell Oncol (Dordr) 2024; 47:189-208. [PMID: 37667113 PMCID: PMC10899429 DOI: 10.1007/s13402-023-00862-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/07/2023] [Indexed: 09/06/2023] Open
Abstract
PURPOSE The lack of validated surrogate biomarkers is still an unmet clinical need in the management of early breast cancer cases that do not achieve complete pathological response after neoadjuvant chemotherapy (NACT). Here, we describe and validate the use of SAMHD1 expression as a prognostic biomarker in residual disease in vivo and in vitro. METHODS SAMHD1 expression was evaluated in a clinical cohort of early breast cancer patients with stage II-III treated with NACT. Heterotypic 3D cultures including tumor and immune cells were used to investigate the molecular mechanisms responsible of SAMHD1 depletion through whole transcriptomic profiling, immune infiltration capacity and subsequent delineation of dysregulated immune signaling pathways. RESULTS SAMHD1 expression was associated to increased risk of recurrence and higher Ki67 levels in post-NACT tumor biopsies of breast cancer patients with residual disease. Survival analysis showed that SAMHD1-expressing tumors presented shorter time-to-progression and overall survival than SAMHD1 negative cases, suggesting that SAMHD1 expression is a relevant prognostic factor in breast cancer. Whole-transcriptomic profiling of SAMHD1-depleted tumors identified downregulation of IL-12 signaling pathway as the molecular mechanism determining breast cancer prognosis. The reduced interleukin signaling upon SAMHD1 depletion induced changes in immune cell infiltration capacity in 3D heterotypic in vitro culture models, confirming the role of the SAMHD1 as a regulator of breast cancer prognosis through the induction of changes in immune response and tumor microenvironment. CONCLUSION SAMHD1 expression is a novel prognostic biomarker in early breast cancer that impacts immune-mediated signaling and differentially regulates inflammatory intra-tumoral response.
Collapse
Affiliation(s)
- Lucía Gutiérrez-Chamorro
- AIDS Research Institute-IrsiCaixa and Health Research Institute Germans Trias i Pujol (IGTP), Hospital Germans Trias i Pujol, Universitat Autònoma de Barcelona, 08916, Badalona, Spain
| | - Eudald Felip
- AIDS Research Institute-IrsiCaixa and Health Research Institute Germans Trias i Pujol (IGTP), Hospital Germans Trias i Pujol, Universitat Autònoma de Barcelona, 08916, Badalona, Spain
- Medical Oncology Department, Catalan Institut of Oncology (ICO)-Badalona, B-ARGO (Badalona Applied Research Group in Oncology) and IGTP (Health Research Institute Germans Trias i Pujol), Universitat Autònoma de Barcelona, 08916, Badalona, Spain
| | - Eva Castellà
- Department of Pathology, Hospital Germans Trias i Pujol, IGTP (Health Research Institute Germans Trias I Pujol), Universitat Autònoma de Barcelona, 08916, Badalona, Spain
| | - Vanessa Quiroga
- Medical Oncology Department, Catalan Institut of Oncology (ICO)-Badalona, B-ARGO (Badalona Applied Research Group in Oncology) and IGTP (Health Research Institute Germans Trias i Pujol), Universitat Autònoma de Barcelona, 08916, Badalona, Spain
| | - Ifeanyi Jude Ezeonwumelu
- AIDS Research Institute-IrsiCaixa and Health Research Institute Germans Trias i Pujol (IGTP), Hospital Germans Trias i Pujol, Universitat Autònoma de Barcelona, 08916, Badalona, Spain
| | - Laura Angelats
- Medical Oncology Department, Catalan Institut of Oncology (ICO)-Badalona, B-ARGO (Badalona Applied Research Group in Oncology) and IGTP (Health Research Institute Germans Trias i Pujol), Universitat Autònoma de Barcelona, 08916, Badalona, Spain
| | - Anna Esteve
- Medical Oncology Department, Catalan Institut of Oncology (ICO)-Badalona, B-ARGO (Badalona Applied Research Group in Oncology) and IGTP (Health Research Institute Germans Trias i Pujol), Universitat Autònoma de Barcelona, 08916, Badalona, Spain
| | - Laia Perez-Roca
- Banc de Tumors, Health Research Institute Germans Trias i Pujol (IGTP), Hospital Germans Trias i Pujol, Universitat Autònoma de Barcelona, 08916, Badalona, Spain
| | - Anna Martínez-Cardús
- Medical Oncology Department, Catalan Institut of Oncology (ICO)-Badalona, B-ARGO (Badalona Applied Research Group in Oncology) and IGTP (Health Research Institute Germans Trias i Pujol), Universitat Autònoma de Barcelona, 08916, Badalona, Spain
| | - Pedro Luis Fernandez
- Department of Pathology, Hospital Germans Trias i Pujol, IGTP (Health Research Institute Germans Trias I Pujol), Universitat Autònoma de Barcelona, 08916, Badalona, Spain
| | - Angelica Ferrando-Díez
- Medical Oncology Department, Catalan Institut of Oncology (ICO)-Badalona, B-ARGO (Badalona Applied Research Group in Oncology) and IGTP (Health Research Institute Germans Trias i Pujol), Universitat Autònoma de Barcelona, 08916, Badalona, Spain
| | - Anna Pous
- Medical Oncology Department, Catalan Institut of Oncology (ICO)-Badalona, B-ARGO (Badalona Applied Research Group in Oncology) and IGTP (Health Research Institute Germans Trias i Pujol), Universitat Autònoma de Barcelona, 08916, Badalona, Spain
| | - Milana Bergamino
- Medical Oncology Department, Catalan Institut of Oncology (ICO)-Badalona, B-ARGO (Badalona Applied Research Group in Oncology) and IGTP (Health Research Institute Germans Trias i Pujol), Universitat Autònoma de Barcelona, 08916, Badalona, Spain
| | - Beatriz Cirauqui
- Medical Oncology Department, Catalan Institut of Oncology (ICO)-Badalona, B-ARGO (Badalona Applied Research Group in Oncology) and IGTP (Health Research Institute Germans Trias i Pujol), Universitat Autònoma de Barcelona, 08916, Badalona, Spain
| | - Marga Romeo
- Medical Oncology Department, Catalan Institut of Oncology (ICO)-Badalona, B-ARGO (Badalona Applied Research Group in Oncology) and IGTP (Health Research Institute Germans Trias i Pujol), Universitat Autònoma de Barcelona, 08916, Badalona, Spain
| | - Iris Teruel
- Medical Oncology Department, Catalan Institut of Oncology (ICO)-Badalona, B-ARGO (Badalona Applied Research Group in Oncology) and IGTP (Health Research Institute Germans Trias i Pujol), Universitat Autònoma de Barcelona, 08916, Badalona, Spain
| | - Ricard Mesia
- Medical Oncology Department, Catalan Institut of Oncology (ICO)-Badalona, B-ARGO (Badalona Applied Research Group in Oncology) and IGTP (Health Research Institute Germans Trias i Pujol), Universitat Autònoma de Barcelona, 08916, Badalona, Spain
| | - Bonaventura Clotet
- AIDS Research Institute-IrsiCaixa and Health Research Institute Germans Trias i Pujol (IGTP), Hospital Germans Trias i Pujol, Universitat Autònoma de Barcelona, 08916, Badalona, Spain
| | - Eva Riveira-Muñoz
- AIDS Research Institute-IrsiCaixa and Health Research Institute Germans Trias i Pujol (IGTP), Hospital Germans Trias i Pujol, Universitat Autònoma de Barcelona, 08916, Badalona, Spain
| | - Mireia Margelí
- Medical Oncology Department, Catalan Institut of Oncology (ICO)-Badalona, B-ARGO (Badalona Applied Research Group in Oncology) and IGTP (Health Research Institute Germans Trias i Pujol), Universitat Autònoma de Barcelona, 08916, Badalona, Spain.
| | - Ester Ballana
- AIDS Research Institute-IrsiCaixa and Health Research Institute Germans Trias i Pujol (IGTP), Hospital Germans Trias i Pujol, Universitat Autònoma de Barcelona, 08916, Badalona, Spain.
| |
Collapse
|
3
|
Felip E, Gutiérrez-Chamorro L, Gómez M, Garcia-Vidal E, Romeo M, Morán T, Layos L, Pérez-Roca L, Riveira-Muñoz E, Clotet B, Fernandez PL, Mesía R, Martínez-Cardús A, Ballana E, Margelí M. Modulation of DNA Damage Response by SAM and HD Domain Containing Deoxynucleoside Triphosphate Triphosphohydrolase (SAMHD1) Determines Prognosis and Treatment Efficacy in Different Solid Tumor Types. Cancers (Basel) 2022; 14:641. [PMID: 35158911 PMCID: PMC8833711 DOI: 10.3390/cancers14030641] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2022] [Revised: 01/19/2022] [Accepted: 01/21/2022] [Indexed: 12/31/2022] Open
Abstract
SAMHD1 is a deoxynucleotide triphosphate (dNTP) triphosphohydrolase with important roles in the control of cell proliferation and apoptosis, either through the regulation of intracellular dNTPs levels or the modulation of the DNA damage response. However, SAMHD1's role in cancer evolution is still unknown. We performed the first in-depth study of SAMHD1's role in advanced solid tumors, by analyzing samples of 128 patients treated with chemotherapy agents based on platinum derivatives and/or antimetabolites, developing novel in vitro knock-out models to explore the mechanisms driving SAMHD1 function in cancer. Low (or no) expression of SAMHD1 was associated with a positive prognosis in breast, ovarian, and non-small cell lung cancer (NSCLC) cancer patients. A predictive value was associated with low-SAMHD1 expression in NSCLC and ovarian patients treated with antimetabolites in combination with platinum derivatives. In vitro, SAMHD1 knock-out cells showed increased γ-H2AX and apoptosis, suggesting that SAMHD1 depletion induces DNA damage leading to cell death. In vitro treatment with platinum-derived drugs significantly enhanced γ-H2AX and apoptotic markers expression in knock-out cells, indicating a synergic effect of SAMHD1 depletion and platinum-based treatment. SAMHD1 expression represents a new strong prognostic and predictive biomarker in solid tumors and, thus, modulation of the SAMHD1 function may constitute a promising target for the improvement of cancer therapy.
Collapse
Affiliation(s)
- Eudald Felip
- AIDS Research Institute-IrsiCaixa, IGTP (Health Research Institute Germans Trias i Pujol), Hospital Germans Trias i Pujol, Universitat Autònoma de Barcelona, 08916 Badalona, Spain; (E.F.); (L.G.-C.); (E.G.-V.); (E.R.-M.); (B.C.)
- Medical Oncology Department, Catalan Institute of Oncology-Badalona, Hospital Germans Trias i Pujol (HGTiP), 08916 Badalona, Spain; (M.R.); (T.M.); (L.L.); (R.M.); (A.M.-C.)
- (B-ARGO) Badalona Applied Research Group in Oncology, (IGTP), Institut d’Investigació en Ciències de la Salut Germans Trias i Pujol, Departament de Medicina, Universitat Autònoma de Barcelona, 08916 Badalona, Spain
| | - Lucía Gutiérrez-Chamorro
- AIDS Research Institute-IrsiCaixa, IGTP (Health Research Institute Germans Trias i Pujol), Hospital Germans Trias i Pujol, Universitat Autònoma de Barcelona, 08916 Badalona, Spain; (E.F.); (L.G.-C.); (E.G.-V.); (E.R.-M.); (B.C.)
| | - Maica Gómez
- Department of Pathology, IGTP (Health Research Institute Germans Trias i Pujol), Hospital Germans Trias i Pujol, Universitat Autònoma de Barcelona, 08916 Badalona, Spain; (M.G.); (P.L.F.)
| | - Edurne Garcia-Vidal
- AIDS Research Institute-IrsiCaixa, IGTP (Health Research Institute Germans Trias i Pujol), Hospital Germans Trias i Pujol, Universitat Autònoma de Barcelona, 08916 Badalona, Spain; (E.F.); (L.G.-C.); (E.G.-V.); (E.R.-M.); (B.C.)
| | - Margarita Romeo
- Medical Oncology Department, Catalan Institute of Oncology-Badalona, Hospital Germans Trias i Pujol (HGTiP), 08916 Badalona, Spain; (M.R.); (T.M.); (L.L.); (R.M.); (A.M.-C.)
- (B-ARGO) Badalona Applied Research Group in Oncology, (IGTP), Institut d’Investigació en Ciències de la Salut Germans Trias i Pujol, Departament de Medicina, Universitat Autònoma de Barcelona, 08916 Badalona, Spain
| | - Teresa Morán
- Medical Oncology Department, Catalan Institute of Oncology-Badalona, Hospital Germans Trias i Pujol (HGTiP), 08916 Badalona, Spain; (M.R.); (T.M.); (L.L.); (R.M.); (A.M.-C.)
- (B-ARGO) Badalona Applied Research Group in Oncology, (IGTP), Institut d’Investigació en Ciències de la Salut Germans Trias i Pujol, Departament de Medicina, Universitat Autònoma de Barcelona, 08916 Badalona, Spain
| | - Laura Layos
- Medical Oncology Department, Catalan Institute of Oncology-Badalona, Hospital Germans Trias i Pujol (HGTiP), 08916 Badalona, Spain; (M.R.); (T.M.); (L.L.); (R.M.); (A.M.-C.)
- (B-ARGO) Badalona Applied Research Group in Oncology, (IGTP), Institut d’Investigació en Ciències de la Salut Germans Trias i Pujol, Departament de Medicina, Universitat Autònoma de Barcelona, 08916 Badalona, Spain
| | - Laia Pérez-Roca
- Banc de Tumors, IGTP (Health Research Institute Germans Trias i Pujol), Hospital Germans Trias i Pujol, Universitat Autònoma de Barcelona, 08916 Badalona, Spain;
| | - Eva Riveira-Muñoz
- AIDS Research Institute-IrsiCaixa, IGTP (Health Research Institute Germans Trias i Pujol), Hospital Germans Trias i Pujol, Universitat Autònoma de Barcelona, 08916 Badalona, Spain; (E.F.); (L.G.-C.); (E.G.-V.); (E.R.-M.); (B.C.)
| | - Bonaventura Clotet
- AIDS Research Institute-IrsiCaixa, IGTP (Health Research Institute Germans Trias i Pujol), Hospital Germans Trias i Pujol, Universitat Autònoma de Barcelona, 08916 Badalona, Spain; (E.F.); (L.G.-C.); (E.G.-V.); (E.R.-M.); (B.C.)
| | - Pedro Luis Fernandez
- Department of Pathology, IGTP (Health Research Institute Germans Trias i Pujol), Hospital Germans Trias i Pujol, Universitat Autònoma de Barcelona, 08916 Badalona, Spain; (M.G.); (P.L.F.)
| | - Ricard Mesía
- Medical Oncology Department, Catalan Institute of Oncology-Badalona, Hospital Germans Trias i Pujol (HGTiP), 08916 Badalona, Spain; (M.R.); (T.M.); (L.L.); (R.M.); (A.M.-C.)
- (B-ARGO) Badalona Applied Research Group in Oncology, (IGTP), Institut d’Investigació en Ciències de la Salut Germans Trias i Pujol, Departament de Medicina, Universitat Autònoma de Barcelona, 08916 Badalona, Spain
| | - Anna Martínez-Cardús
- Medical Oncology Department, Catalan Institute of Oncology-Badalona, Hospital Germans Trias i Pujol (HGTiP), 08916 Badalona, Spain; (M.R.); (T.M.); (L.L.); (R.M.); (A.M.-C.)
- (B-ARGO) Badalona Applied Research Group in Oncology, (IGTP), Institut d’Investigació en Ciències de la Salut Germans Trias i Pujol, Departament de Medicina, Universitat Autònoma de Barcelona, 08916 Badalona, Spain
| | - Ester Ballana
- AIDS Research Institute-IrsiCaixa, IGTP (Health Research Institute Germans Trias i Pujol), Hospital Germans Trias i Pujol, Universitat Autònoma de Barcelona, 08916 Badalona, Spain; (E.F.); (L.G.-C.); (E.G.-V.); (E.R.-M.); (B.C.)
| | - Mireia Margelí
- Medical Oncology Department, Catalan Institute of Oncology-Badalona, Hospital Germans Trias i Pujol (HGTiP), 08916 Badalona, Spain; (M.R.); (T.M.); (L.L.); (R.M.); (A.M.-C.)
- (B-ARGO) Badalona Applied Research Group in Oncology, (IGTP), Institut d’Investigació en Ciències de la Salut Germans Trias i Pujol, Departament de Medicina, Universitat Autònoma de Barcelona, 08916 Badalona, Spain
| |
Collapse
|
4
|
Duran-Frigola M, Pauls E, Guitart-Pla O, Bertoni M, Alcalde V, Amat D, Juan-Blanco T, Aloy P. Extending the small-molecule similarity principle to all levels of biology with the Chemical Checker. Nat Biotechnol 2020; 38:1087-1096. [PMID: 32440005 PMCID: PMC7616951 DOI: 10.1038/s41587-020-0502-7] [Citation(s) in RCA: 60] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2019] [Accepted: 03/27/2020] [Indexed: 02/07/2023]
Abstract
Small molecules are usually compared by their chemical structure, but there is no unified analytic framework for representing and comparing their biological activity. We present the Chemical Checker (CC), which provides processed, harmonized and integrated bioactivity data on ~800,000 small molecules. The CC divides data into five levels of increasing complexity, from the chemical properties of compounds to their clinical outcomes. In between, it includes targets, off-targets, networks and cell-level information, such as omics data, growth inhibition and morphology. Bioactivity data are expressed in a vector format, extending the concept of chemical similarity to similarity between bioactivity signatures. We show how CC signatures can aid drug discovery tasks, including target identification and library characterization. We also demonstrate the discovery of compounds that reverse and mimic biological signatures of disease models and genetic perturbations in cases that could not be addressed using chemical information alone. Overall, the CC signatures facilitate the conversion of bioactivity data to a format that is readily amenable to machine learning methods.
Collapse
Affiliation(s)
- Miquel Duran-Frigola
- Joint IRB-BSC-CRG Program in Computational Biology, Institute for Research in Biomedicine (IRB Barcelona), The Barcelona Institute of Science and Technology, Barcelona, Spain.
| | - Eduardo Pauls
- Joint IRB-BSC-CRG Program in Computational Biology, Institute for Research in Biomedicine (IRB Barcelona), The Barcelona Institute of Science and Technology, Barcelona, Spain
| | - Oriol Guitart-Pla
- Joint IRB-BSC-CRG Program in Computational Biology, Institute for Research in Biomedicine (IRB Barcelona), The Barcelona Institute of Science and Technology, Barcelona, Spain
| | - Martino Bertoni
- Joint IRB-BSC-CRG Program in Computational Biology, Institute for Research in Biomedicine (IRB Barcelona), The Barcelona Institute of Science and Technology, Barcelona, Spain
| | - Víctor Alcalde
- Joint IRB-BSC-CRG Program in Computational Biology, Institute for Research in Biomedicine (IRB Barcelona), The Barcelona Institute of Science and Technology, Barcelona, Spain
| | - David Amat
- Joint IRB-BSC-CRG Program in Computational Biology, Institute for Research in Biomedicine (IRB Barcelona), The Barcelona Institute of Science and Technology, Barcelona, Spain
| | - Teresa Juan-Blanco
- Joint IRB-BSC-CRG Program in Computational Biology, Institute for Research in Biomedicine (IRB Barcelona), The Barcelona Institute of Science and Technology, Barcelona, Spain
| | - Patrick Aloy
- Joint IRB-BSC-CRG Program in Computational Biology, Institute for Research in Biomedicine (IRB Barcelona), The Barcelona Institute of Science and Technology, Barcelona, Spain.
- Institució Catalana de Recerca i Estudis Avançats (ICREA), Barcelona, Spain.
| |
Collapse
|
5
|
Shinde PB, Bhowmick S, Alfantoukh E, Patil PC, Wabaidur SM, Chikhale RV, Islam MA. De novo design based identification of potential HIV-1 integrase inhibitors: A pharmacoinformatics study. Comput Biol Chem 2020; 88:107319. [PMID: 32801062 DOI: 10.1016/j.compbiolchem.2020.107319] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2020] [Revised: 05/10/2020] [Accepted: 06/22/2020] [Indexed: 12/30/2022]
Abstract
In the present study, pharmacoinformatics paradigms include receptor-based de novo design, virtual screening through molecular docking and molecular dynamics (MD) simulation are implemented to identify novel and promising HIV-1 integrase inhibitors. The de novodrug/ligand/molecule design is a powerful and effective approach to design a large number of novel and structurally diverse compounds with the required pharmacological profiles. A crystal structure of HIV-1 integrase bound with standard inhibitor BI-224436 is used and a set of 80,000 compounds through the de novo approach in LigBuilder is designed. Initially, a number of criteria including molecular docking, in-silico toxicity and pharmacokinetics profile assessments are implied to reduce the chemical space. Finally, four de novo designed molecules are proposed as potential HIV-1 integrase inhibitors based on comparative analyses. Notably, strong binding interactions have been identified between a few newly identified catalytic amino acid residues and proposed HIV-1 integrase inhibitors. For evaluation of the dynamic stability of the protein-ligand complexes, a number of parameters are explored from the 100 ns MD simulation study. The MD simulation study suggested that proposed molecules efficiently retained their molecular interaction and structural integrity inside the HIV-1 integrase. The binding free energy is calculated through the Molecular Mechanics Poisson-Boltzmann Surface Area (MM-PBSA) approach for all complexes and it also explains their thermodynamic stability. Hence, proposed molecules through de novo design might be critical to inhibiting the HIV-1 integrase.
Collapse
Affiliation(s)
- Pooja Balasaheb Shinde
- Department of Bioinformatics, Rajiv Gandhi Institute of IT and Biotechnology, Bharati Vidyapeeth Deemed University, Pune-Satara Road, Pune, India
| | - Shovonlal Bhowmick
- Department of Chemical Technology, University of Calcutta, 92, A.P.C. Road, Kolkata, 700009, India
| | - Etidal Alfantoukh
- Health Sciences Research Center, Princess Nourah bint Abdulrahman University, Riyadh, Saudi Arabia
| | - Pritee Chunarkar Patil
- Department of Bioinformatics, Rajiv Gandhi Institute of IT and Biotechnology, Bharati Vidyapeeth Deemed University, Pune-Satara Road, Pune, India
| | - Saikh Mohammad Wabaidur
- Department of Chemistry P.O. Box 2455, College of Science, King Saud University, Riyadh, 11451, Saudi Arabia
| | - Rupesh V Chikhale
- School of Pharmacy, University of East Anglia, Norwich, United Kingdom
| | - Md Ataul Islam
- Division of Pharmacy and Optometry, School of Health Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Oxford Road, Manchester, M13 9PL, United Kingdom; School of Health Sciences, University of Kwazulu-Natal, Westville Campus, Durban, South Africa; Department of Chemical Pathology, Faculty of Health Sciences, University of Pretoria and National Health Laboratory Service Tshwane Academic Division, Pretoria, South Africa.
| |
Collapse
|
6
|
Pharmacological Modulation of SAMHD1 Activity by CDK4/6 Inhibitors Improves Anticancer Therapy. Cancers (Basel) 2020; 12:cancers12030713. [PMID: 32197329 PMCID: PMC7140116 DOI: 10.3390/cancers12030713] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2020] [Revised: 03/09/2020] [Accepted: 03/16/2020] [Indexed: 01/16/2023] Open
Abstract
Sterile alpha motif and histidine-aspartic acid domain-containing protein 1 (SAMHD1) is a dNTP triphosphohydrolase involved in the regulation of the intracellular dNTP pool, linked to viral restriction, cancer development and autoimmune disorders. SAMHD1 function is regulated by phosphorylation through a mechanism controlled by cyclin-dependent kinases and tightly linked to cell cycle progression. Recently, SAMHD1 has been shown to decrease the efficacy of nucleotide analogs used as chemotherapeutic drugs. Here, we demonstrate that SAMHD1 can enhance or decrease the efficacy of various classes of anticancer drug, including nucleotide analogues, but also anti-folate drugs and CDK inhibitors. Importantly, we show that selective CDK4/6 inhibitors are pharmacological activators of SAMHD1 that act by inhibiting its inactivation by phosphorylation. Combinations of a CDK4/6 inhibitor with nucleoside or folate antimetabolites potently enhanced drug efficacy, resulting in highly synergic drug combinations (CI < 0.04). Mechanistic analyses reveal that cell cycle-controlled modulation of SAMHD1 function is the central process explaining changes in anticancer drug efficacy, therefore providing functional proof of the potential of CDK4/6 inhibitors as a new class of adjuvants to boost chemotherapeutic regimens. The evaluation of SAMHD1 expression in cancer tissues allowed for the identification of cancer types that would benefit from the pharmacological modulation of SAMHD1 function. In conclusion, these results indicate that the modulation of SAMHD1 function may represent a promising strategy for the improvement of current antimetabolite-based treatments.
Collapse
|
7
|
Garcia-Vidal E, Badia R, Pujantell M, Castellví M, Felip E, Clotet B, Riveira-Muñoz E, Ballana E, Esté JA. Dual effect of the broad spectrum kinase inhibitor midostaurin in acute and latent HIV-1 infection. Antiviral Res 2019; 168:18-27. [PMID: 31077767 DOI: 10.1016/j.antiviral.2019.05.003] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2019] [Revised: 04/03/2019] [Accepted: 05/07/2019] [Indexed: 01/26/2023]
Abstract
Midostaurin is a multi-kinase inhibitor with antineoplastic activity. We assessed the capacity of midostaurin to affect early and late steps of HIV-1 infection and to reactivate HIV-1 latently infected cells, alone or in combination with histone deacetylase inhibitors (HDACi) known to act as latency-reversing agents (LRA). Acute HIV-1 infection was assessed by flow cytometry in three cell types treated with midostaurin in the presence or absence of SAMHD1. Non-infected cells were treated with midostaurin and harvested for Western blot analysis. Macrophage infections were also measured by quantitative RT-PCR. HIV-1 latency reactivation was assessed in several latency models. Midostaurin induced G2/M arrest and inhibited CDK2, preventing the phosphorylation of SAMHD1 associated to inhibition of its dNTPase activity. In the presence of SAMHD1, midostaurin blocked HIV-1 DNA formation and viral replication. However, following Vpx-mediated SAMHD1 degradation, midostaurin increased viral transcripts and virus replication. In three out of four HIV-1 latency models, including primary CD4+ T cells, midostaurin effectively reversed HIV-1 latency and was synergistic in combination with LRA vorinostat and panobinostat. Our study describes a dual effect for midostaurin in HIV-1 infection, antiviral or proviral depending on SAMHD1 activation, and highlights a role for active SAMHD1 in regulating the activity of potential HIV-1 latency reversal agents.
Collapse
Affiliation(s)
- Edurne Garcia-Vidal
- AIDS Research Institute - IrsiCaixa, AIDS Unit and Health Research Institute Germans Trias i Pujol (IGTP), Hospital Germans Trias i Pujol, Universitat Autònoma de Barcelona, Badalona, Spain
| | - Roger Badia
- AIDS Research Institute - IrsiCaixa, AIDS Unit and Health Research Institute Germans Trias i Pujol (IGTP), Hospital Germans Trias i Pujol, Universitat Autònoma de Barcelona, Badalona, Spain
| | - Maria Pujantell
- AIDS Research Institute - IrsiCaixa, AIDS Unit and Health Research Institute Germans Trias i Pujol (IGTP), Hospital Germans Trias i Pujol, Universitat Autònoma de Barcelona, Badalona, Spain
| | - Marc Castellví
- AIDS Research Institute - IrsiCaixa, AIDS Unit and Health Research Institute Germans Trias i Pujol (IGTP), Hospital Germans Trias i Pujol, Universitat Autònoma de Barcelona, Badalona, Spain
| | - Eudald Felip
- AIDS Research Institute - IrsiCaixa, AIDS Unit and Health Research Institute Germans Trias i Pujol (IGTP), Hospital Germans Trias i Pujol, Universitat Autònoma de Barcelona, Badalona, Spain
| | - Bonaventura Clotet
- AIDS Research Institute - IrsiCaixa, AIDS Unit and Health Research Institute Germans Trias i Pujol (IGTP), Hospital Germans Trias i Pujol, Universitat Autònoma de Barcelona, Badalona, Spain
| | - Eva Riveira-Muñoz
- AIDS Research Institute - IrsiCaixa, AIDS Unit and Health Research Institute Germans Trias i Pujol (IGTP), Hospital Germans Trias i Pujol, Universitat Autònoma de Barcelona, Badalona, Spain
| | - Ester Ballana
- AIDS Research Institute - IrsiCaixa, AIDS Unit and Health Research Institute Germans Trias i Pujol (IGTP), Hospital Germans Trias i Pujol, Universitat Autònoma de Barcelona, Badalona, Spain.
| | - José A Esté
- AIDS Research Institute - IrsiCaixa, AIDS Unit and Health Research Institute Germans Trias i Pujol (IGTP), Hospital Germans Trias i Pujol, Universitat Autònoma de Barcelona, Badalona, Spain.
| |
Collapse
|
8
|
Increased SAMHD1 transcript expression correlates with interferon-related genes in HIV-1-infected patients. Med Microbiol Immunol 2018; 208:679-691. [PMID: 30564919 DOI: 10.1007/s00430-018-0574-x] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2018] [Accepted: 11/24/2018] [Indexed: 01/12/2023]
Abstract
PURPOSE To investigate the contribution of SAMHD1 to HIV-1 infection in vivo and its relationship with IFN response, the expression of SAMHD1 and IFN-related pathways was evaluated in HIV-1-infected patients. METHODS Peripheral blood mononuclear cells (PBMC) from 388 HIV-1-infected patients, both therapy naïve (n = 92) and long-term HAART treated (n = 296), and from 100 gender and age-matched healthy individuals were examined. CD4+ T cells, CD14+ monocytes and gut biopsies were also analyzed in HIV-1-infected subjects on suppressive antiretroviral therapy. Gene expression levels of SAMDH1, ISGs (MxA, MxB, HERC5, IRF7) and IRF3 were evaluated by real-time RT-PCR assays. RESULTS SAMHD1 levels in HIV-1-positive patients were significantly increased compared to those in healthy donors. SAMHD1 expression was enhanced in treated patients compared to naïve patients (p < 0.0001) and healthy donors (p = 0.0038). Virologically suppressed treated patients exhibited higher SAMHD1 levels than healthy donors (p = 0.0008), viraemic patients (p = 0.0001) and naïve patients (p < 0.0001). SAMHD1 levels were also increased in CD4+ T cells compared to those in CD14+ monocytes and in PBMC compared to those of GALT. Moreover, SAMHD1 was expressed more strongly than ISGs in HIV-1-infected patients and positive correlations were found between SAMHD1, ISGs and IRF3 levels. CONCLUSIONS SAMHD1 is more strongly expressed than the classical IFN-related genes, increased during antiretroviral therapy and correlated with ISGs and IRF3 in HIV-1-infected patients.
Collapse
|
9
|
Nawrozkij MB, Forgione M, Yablokov AS, Lucidi A, Tomaselli D, Patsilinakos A, Panella C, Hailu GS, Kirillov IA, Badia R, Riveira-Muñoz E, Crespan E, Armijos Rivera JI, Cirilli R, Ragno R, Esté JA, Maga G, Mai A, Rotili D. Effect of α-Methoxy Substitution on the Anti-HIV Activity of Dihydropyrimidin-4(3H)-ones. J Med Chem 2018; 62:604-621. [DOI: 10.1021/acs.jmedchem.8b01238] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Affiliation(s)
- Maxim B. Nawrozkij
- Volgograd State Technical University, Lenina Avenue 28, 400005 Volgograd, Russia
| | - Mariantonietta Forgione
- Dipartimento di Chimica e Tecnologie del Farmaco, Università degli Studi di Roma “La Sapienza”, P. le A. Moro 5, 00185 Roma, Italy
| | | | - Alessia Lucidi
- Dipartimento di Chimica e Tecnologie del Farmaco, Università degli Studi di Roma “La Sapienza”, P. le A. Moro 5, 00185 Roma, Italy
| | - Daniela Tomaselli
- Dipartimento di Chimica e Tecnologie del Farmaco, Università degli Studi di Roma “La Sapienza”, P. le A. Moro 5, 00185 Roma, Italy
| | - Alexandros Patsilinakos
- Dipartimento di Chimica e Tecnologie del Farmaco, Università degli Studi di Roma “La Sapienza”, P. le A. Moro 5, 00185 Roma, Italy
| | - Cristina Panella
- Centro Nazionale per il Controllo e la Valutazione dei Farmaci, Istituto Superiore di Sanità, Viale Regina Elena 299, 00161 Roma, Italy
| | - Gebremedhin S. Hailu
- Dipartimento di Chimica e Tecnologie del Farmaco, Università degli Studi di Roma “La Sapienza”, P. le A. Moro 5, 00185 Roma, Italy
| | - Ivan A. Kirillov
- Volgograd State Technical University, Lenina Avenue 28, 400005 Volgograd, Russia
| | - Roger Badia
- IrsiCaixa-AIDS Research Institute, Hospital Universitari Germans Trias i Pujol, Universitat Autònoma de Barcelona, 08916 Badalona, Spain
| | - Eva Riveira-Muñoz
- IrsiCaixa-AIDS Research Institute, Hospital Universitari Germans Trias i Pujol, Universitat Autònoma de Barcelona, 08916 Badalona, Spain
| | - Emmanuele Crespan
- Istituto di Genetica Molecolare IGM-CNR, via Abbiategrasso 207, 27100 Pavia, Italy
| | | | - Roberto Cirilli
- Centro Nazionale per il Controllo e la Valutazione dei Farmaci, Istituto Superiore di Sanità, Viale Regina Elena 299, 00161 Roma, Italy
| | - Rino Ragno
- Dipartimento di Chimica e Tecnologie del Farmaco, Università degli Studi di Roma “La Sapienza”, P. le A. Moro 5, 00185 Roma, Italy
| | - José A. Esté
- IrsiCaixa-AIDS Research Institute, Hospital Universitari Germans Trias i Pujol, Universitat Autònoma de Barcelona, 08916 Badalona, Spain
| | - Giovanni Maga
- Istituto di Genetica Molecolare IGM-CNR, via Abbiategrasso 207, 27100 Pavia, Italy
| | - Antonello Mai
- Dipartimento di Chimica e Tecnologie del Farmaco, Università degli Studi di Roma “La Sapienza”, P. le A. Moro 5, 00185 Roma, Italy
- Istituto Pasteur—Fondazione Cenci Bolognetti, Università degli Studi di Roma “La Sapienza”, P. le A. Moro 5, 00185 Roma, Italy
| | - Dante Rotili
- Dipartimento di Chimica e Tecnologie del Farmaco, Università degli Studi di Roma “La Sapienza”, P. le A. Moro 5, 00185 Roma, Italy
| |
Collapse
|
10
|
Bray M, Andrei G, Ballana E, Carter K, Durantel D, Gentry B, Janeba Z, Moffat J, Oomen CJ, Tarbet B, Riveira-Muñoz E, Esté JA. Meeting report: 31 st International Conference on Antiviral Research. Antiviral Res 2018; 158:88-102. [PMID: 30086336 PMCID: PMC7113893 DOI: 10.1016/j.antiviral.2018.08.002] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2018] [Accepted: 08/01/2018] [Indexed: 12/29/2022]
Abstract
The 31st International Conference on Antiviral Research (ICAR) was held in Porto, Portugal from June 11–15, 2018. In this report, volunteer rapporteurs provide their summaries of scientific presentations, hoping to effectively convey the speakers' goals and the results and conclusions of their talks. This report provides an overview of the invited keynote and award lectures and highlights of short oral presentations, from the perspective of experts in antiviral research. Of note, a session on human cytomegalovirus included an update on the introduction to the clinic of letermovir for the prevention of CMV infection and disease. The 31st ICAR successfully promoted new discoveries in antiviral research and drug development. The 32nd ICAR will be held in Baltimore, Maryland, USA, May 6–10, 2019. The 31st ICAR was held in Porto, Portugal, June 11–15, 2018. This article provides an overview of the invited keynote and award lectures and highlights of short oral presentations. ICAR provided an interdisciplinary forum to review recent developments in all areas of antiviral research. The 32nd ICAR will be held in Baltimore, Maryland, USA, May 6–10, 2019.
Collapse
Affiliation(s)
| | - Graciela Andrei
- KU Leuven, Rega Institute for Medical Research, Laboratory of Virology and Chemotherapy, B-3000 Leuven, Belgium
| | - Ester Ballana
- AIDS Research Institute - Irsicaixa, Hospital Germans Trias i Pujol, Universitat Autónoma de Barcelona, Badalona, Spain
| | | | - David Durantel
- Cancer Research Centre of Lyon (CRCL), INSERM, U1052, UMR_5286 CNRS/University of Lyon, Lyon, France
| | - Brian Gentry
- Drake University College of Pharmacy and Health Sciences, Des Moines, IA, USA
| | - Zlatko Janeba
- Institute of Organic Chemistry and Biochemistry of the Czech Academy of Sciences, Flemingovo nam. 2, CZ-16610 Prague 6, Czech Republic
| | | | - Clasien J Oomen
- Virology Division, Dept. of Infectious Diseases & Immunology, Faculty of Veterinary Medicine, Utrecht University, Utrecht, The Netherlands
| | - Bart Tarbet
- Institute for Antiviral Research, Utah State University, Logan, UT, USA
| | - Eva Riveira-Muñoz
- AIDS Research Institute - Irsicaixa, Hospital Germans Trias i Pujol, Universitat Autónoma de Barcelona, Badalona, Spain.
| | - José A Esté
- AIDS Research Institute - Irsicaixa, Hospital Germans Trias i Pujol, Universitat Autónoma de Barcelona, Badalona, Spain.
| |
Collapse
|
11
|
Tramentozzi E, Ferraro P, Hossain M, Stillman B, Bianchi V, Pontarin G. The dNTP triphosphohydrolase activity of SAMHD1 persists during S-phase when the enzyme is phosphorylated at T592. Cell Cycle 2018; 17:1102-1114. [PMID: 30039733 PMCID: PMC6110608 DOI: 10.1080/15384101.2018.1480216] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2017] [Revised: 06/01/2018] [Accepted: 05/16/2018] [Indexed: 01/31/2023] Open
Abstract
SAMHD1 is the major catabolic enzyme regulating the intracellular concentrations of DNA precursors (dNTPs). The S-phase kinase CDK2-cyclinA phosphorylates SAMHD1 at Thr-592. How this modification affects SAMHD1 function is highly debated. We investigated the role of endogenous SAMHD1 phosphorylation during the cell cycle. Thr-592 phosphorylation occurs first at the G1/S border and is removed during mitotic exit parallel with Thr-phosphorylations of most CDK1 targets. Differential sensitivity to the phosphatase inhibitor okadaic acid suggested different involvement of the PP1 and PP2 families dependent upon the time of the cell cycle. SAMHD1 turn-over indicates that Thr-592 phosphorylation does not cause rapid protein degradation. Furthermore, SAMHD1 influenced the size of the four dNTP pools independently of its phosphorylation. Our findings reveal that SAMHD1 is active during the entire cell cycle and performs an important regulatory role during S-phase by contributing with ribonucleotide reductase to maintain dNTP pool balance for proper DNA replication.
Collapse
Affiliation(s)
| | - Paola Ferraro
- Department of Biology, University of Padova, Padova, Italy
| | - Manzar Hossain
- Cold Spring Harbor Laboratory, Cold Spring Harbor, NY, USA
| | - Bruce Stillman
- Cold Spring Harbor Laboratory, Cold Spring Harbor, NY, USA
| | - Vera Bianchi
- Department of Biology, University of Padova, Padova, Italy
| | - Giovanna Pontarin
- Department of Biology, University of Padova, Padova, Italy
- Cold Spring Harbor Laboratory, Cold Spring Harbor, NY, USA
| |
Collapse
|
12
|
Hu J, Qiao M, Chen Y, Tang H, Zhang W, Tang D, Pi S, Dai J, Tang N, Huang A, Hu Y. Cyclin E2-CDK2 mediates SAMHD1 phosphorylation to abrogate its restriction of HBV replication in hepatoma cells. FEBS Lett 2018; 592:1893-1904. [PMID: 29782647 DOI: 10.1002/1873-3468.13105] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2018] [Revised: 04/28/2018] [Accepted: 05/12/2018] [Indexed: 12/19/2022]
Abstract
SAMHD1 inhibits Hepatitis B virus (HBV) replication by reducing the intracellular dNTP levels. However, how SAMHD1 phosphorylation is regulated to abrogate its restriction of HBV replication in hepatoma cells is poorly understood. Here, we show that HBV replication and SAMHD1 phosphorylation levels are significantly reduced by knocking down cyclin-dependent kinase (CDK) 2 expression or in the presence of a CDK2 inhibitor. SAMHD1 binds to CDK2 in hepatocarcinoma cells, and this interaction does not require the HBV core protein. Furthermore, cyclin E2 participates in regulating viral replication through the CDK2/SAMHD1 phosphorylation pathway in an HBV infection system. Collectively, our results provide evidence that CDK2 has a greater role in regulating SAMHD1 phosphorylation and HBV replication than CDK1 or CDK6.
Collapse
Affiliation(s)
- Jie Hu
- Key Laboratory of Molecular Biology on Infectious Diseases, Ministry of Education, Department of Infectious Diseases, Institute for Viral Hepatitis, Second Affiliated Hospital, Chongqing Medical University, China
| | - Miao Qiao
- Key Laboratory of Molecular Biology on Infectious Diseases, Ministry of Education, Department of Infectious Diseases, Institute for Viral Hepatitis, Second Affiliated Hospital, Chongqing Medical University, China
| | - Yanmeng Chen
- Key Laboratory of Molecular Biology on Infectious Diseases, Ministry of Education, Department of Infectious Diseases, Institute for Viral Hepatitis, Second Affiliated Hospital, Chongqing Medical University, China
| | - Hua Tang
- Key Laboratory of Molecular Biology on Infectious Diseases, Ministry of Education, Department of Infectious Diseases, Institute for Viral Hepatitis, Second Affiliated Hospital, Chongqing Medical University, China
| | - Wenlu Zhang
- Key Laboratory of Molecular Biology on Infectious Diseases, Ministry of Education, Department of Infectious Diseases, Institute for Viral Hepatitis, Second Affiliated Hospital, Chongqing Medical University, China
| | - Dan Tang
- Endocrinology Department, Chengdu First People's Hospital, Chengdu, China
| | - Sidie Pi
- Key Laboratory of Molecular Biology on Infectious Diseases, Ministry of Education, Department of Infectious Diseases, Institute for Viral Hepatitis, Second Affiliated Hospital, Chongqing Medical University, China
| | - Juan Dai
- Key Laboratory of Molecular Biology on Infectious Diseases, Ministry of Education, Department of Infectious Diseases, Institute for Viral Hepatitis, Second Affiliated Hospital, Chongqing Medical University, China
| | - Ni Tang
- Key Laboratory of Molecular Biology on Infectious Diseases, Ministry of Education, Department of Infectious Diseases, Institute for Viral Hepatitis, Second Affiliated Hospital, Chongqing Medical University, China
| | - Ailong Huang
- Key Laboratory of Molecular Biology on Infectious Diseases, Ministry of Education, Department of Infectious Diseases, Institute for Viral Hepatitis, Second Affiliated Hospital, Chongqing Medical University, China
| | - Yuan Hu
- Key Laboratory of Molecular Biology on Infectious Diseases, Ministry of Education, Department of Infectious Diseases, Institute for Viral Hepatitis, Second Affiliated Hospital, Chongqing Medical University, China
| |
Collapse
|
13
|
Effects of PCR inhibitors on mRNA expression for human blood identification. Leg Med (Tokyo) 2018; 32:113-119. [DOI: 10.1016/j.legalmed.2018.04.002] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2017] [Revised: 03/21/2018] [Accepted: 04/08/2018] [Indexed: 11/20/2022]
|
14
|
Bakir TM. The role of SAMHD1 expression and its relation to HIV-2 (Vpx) gene production. Saudi Pharm J 2018; 26:903-908. [PMID: 30202235 PMCID: PMC6128726 DOI: 10.1016/j.jsps.2018.03.005] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2017] [Accepted: 03/10/2018] [Indexed: 11/21/2022] Open
Abstract
SAMHD1 (sterile alpha motif and HD domain 1) is a protein that is found in myeloid cells, which restricts HIV1 replication. It depletes the de-oxy-nucleoside tri-phosphate (dNTPs) pool needed for a viral cDNA synthesis leading to inhibition of viral replication inside the cells. However, it does not restrict HIV2 replication in myeloid cells due to the presence of viral Vpx protein. Vpx is a virion-associated protein which augments viral infectivity and it only exists in HIV2 and it has been recently shown in Simian Immunodeficiency Virus (SIV) and which can induce degradation of SAMHD1 protein. This increases the amount of dNTPs for viral reverse transcription in cytoplasm and HIV infection. HIV2 reverse transcription is believed to be less active than HIV1 and this could be the reason for the absence of Vpx from HIV1. Protein expression and interaction between Vpx and SAMHD1 remains unclear. The interaction of SAMHD1 and HIV2-VPx patients' cells can be considered as a first step to help in the development for more effective anti-HIV drugs and possible novel intervention therapy in the future. Present review article provides comprehensive insights on the above issue. We performed a comprehensive literature search in the bibliographic database “Pubmed,” looking at studies discussing the SAMHDI and Vpx interactions.
Collapse
|
15
|
A Cyclin-Binding Motif in Human SAMHD1 Is Required for Its HIV-1 Restriction, dNTPase Activity, Tetramer Formation, and Efficient Phosphorylation. J Virol 2018; 92:JVI.01787-17. [PMID: 29321329 DOI: 10.1128/jvi.01787-17] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2017] [Accepted: 12/22/2017] [Indexed: 12/22/2022] Open
Abstract
Sterile alpha motif and HD domain-containing protein 1 (SAMHD1) regulates intracellular deoxynucleoside triphosphate (dNTP) levels and functions as a retroviral restriction factor through its dNTP triphosphohydrolase (dNTPase) activity. Human SAMHD1 interacts with cell cycle regulatory proteins cyclin A2, cyclin-dependent kinase 1 (CDK1), and CDK2. This interaction mediates phosphorylation of SAMHD1 at threonine 592 (T592), which negatively regulates HIV-1 restriction. We previously reported that the interaction is mediated, at least in part, through a cyclin-binding motif (RXL, amino acids [aa] 451 to 453). To understand the role of the RXL motif in regulating SAMHD1 activity, we performed structural and functional analyses of RXL mutants and the effect on HIV-1 restriction. We found that the RXL mutation (R451A and L453A, termed RL/AA) disrupted SAMHD1 tetramer formation and abolished its dNTPase activity in vitro and in cells. Compared to wild-type (WT) SAMHD1, the RL/AA mutant failed to restrict HIV-1 infection and had reduced binding to cyclin A2. WT SAMHD1 and RL/AA mutant proteins were degraded by Vpx from HIV-2 but were not spontaneously ubiquitinated in the absence of Vpx. Analysis of proteasomal and autophagy degradation revealed that WT and RL/AA SAMHD1 protein levels were enhanced only when both pathways of degradation were simultaneously inhibited. Our results demonstrate that the RXL motif of human SAMHD1 is required for its HIV-1 restriction, tetramer formation, dNTPase activity, and efficient phosphorylation at T592. These findings identify a new functional domain of SAMHD1 important for its structural integrity, enzyme activity, phosphorylation, and HIV-1 restriction.IMPORTANCE SAMHD1 is the first mammalian dNTPase identified as a restriction factor that inhibits HIV-1 replication by decreasing the intracellular dNTP pool in nondividing cells, although the critical mechanisms regulating SAMHD1 function remain unclear. We previously reported that mutations of a cyclin-binding RXL motif in human SAMHD1 significantly affect protein expression levels, half-life, nuclear localization, and phosphorylation, suggesting an important role of this motif in modulating SAMHD1 functions in cells. To further understand the significance and mechanisms of the RXL motif in regulating SAMHD1 activity, we performed structural and functional analyses of the RXL motif mutation and its effect on HIV-1 restriction. Our results indicate that the RXL motif is critical for tetramer formation, dNTPase activity, and HIV-1 restriction. These findings help us understand SAMHD1 interactions with other host proteins and the mechanisms regulating SAMHD1 structure and functions in cells.
Collapse
|
16
|
RNA editing by ADAR1 regulates innate and antiviral immune functions in primary macrophages. Sci Rep 2017; 7:13339. [PMID: 29042669 PMCID: PMC5645456 DOI: 10.1038/s41598-017-13580-0] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2017] [Accepted: 09/25/2017] [Indexed: 12/24/2022] Open
Abstract
ADAR1-dependent A-to-I editing has recently been recognized as a key process for marking dsRNA as self, therefore, preventing innate immune activation and affecting the development and resolution of immune-mediated diseases and infections. Here, we have determined the role of ADAR1 as a regulator of innate immune activation and modifier of viral susceptibility in primary myeloid and lymphoid cells. We show that ADAR1 knockdown significantly enhanced interferon, cytokine and chemokine production in primary macrophages that function as antiviral paracrine factors, rendering them resistant to HIV-1 infection. ADAR1 knockdown induced deregulation of the RLRs-MAVS signaling pathway, by increasing MDA5, RIG-I, IRF7 and phospho-STAT1 expression, an effect that was partially rescued by pharmacological blockade of the pathway. In summary, our results demonstrate a role of ADAR1 in regulating innate immune function in primary macrophages, suggesting that macrophages may play an essential role in disease associated to ADAR1 dysfunction. We also show that viral inhibition is exclusively dependent on innate immune activation consequence of ADAR1 knockdown, pointing towards ADAR1 as a potential target to boost antiviral immune response.
Collapse
|
17
|
Herold N, Rudd SG, Sanjiv K, Kutzner J, Myrberg IH, Paulin CBJ, Olsen TK, Helleday T, Henter JI, Schaller T. With me or against me: Tumor suppressor and drug resistance activities of SAMHD1. Exp Hematol 2017; 52:32-39. [PMID: 28502830 DOI: 10.1016/j.exphem.2017.05.001] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2017] [Revised: 04/29/2017] [Accepted: 05/02/2017] [Indexed: 01/04/2023]
Abstract
Sterile alpha motif and histidine/aspartic acid domain-containing protein 1 (SAMHD1) is a (deoxy)guanosine triphosphate (dGTP/GTP)-activated deoxyribonucleoside triphosphate (dNTP) triphosphohydrolase involved in cellular dNTP homoeostasis. Mutations in SAMHD1 have been associated with the hyperinflammatory disease Aicardi-Goutières syndrome (AGS). SAMHD1 also limits cells' permissiveness to infection with diverse viruses, including human immunodeficiency virus (HIV-1), and controls endogenous retroviruses. Increasing evidence supports the role of SAMHD1 as a tumor suppressor. However, SAMHD1 also can act as a resistance factor to nucleoside-based chemotherapies by hydrolyzing their active triphosphate metabolites, thereby reducing response of various malignancies to these anticancer drugs. Hence, informed cancer therapies must take into account the ambiguous properties of SAMHD1 as both an inhibitor of uncontrolled proliferation and a resistance factor limiting the efficacy of anticancer treatments. Here, we provide evidence that SAMHD1 is a double-edged sword for patients with acute myelogenous leukemia (AML). Our time-dependent analyses of The Cancer Genome Atlas (TCGA) AML cohort indicate that high expression of SAMHD1, even though it critically limits the efficacy of high-dose ara-C therapy, might be associated with more favorable disease progression.
Collapse
Affiliation(s)
- Nikolas Herold
- Childhood Cancer Research Unit, Department of Women's and Children's Health, Karolinska Institutet, and Karolinska University Hospital, Stockholm, Sweden; Theme of Children's and Women's Health, Astrid Lindgren Children's Hospital, Karolinska University Hospital, Stockholm, Sweden.
| | - Sean G Rudd
- Science for Life Laboratory, Division of Translational Medicine and Chemical Biology, Department of Medical Biochemistry and Biophysics, Karolinska Institutet, Stockholm, Sweden
| | - Kumar Sanjiv
- Science for Life Laboratory, Division of Translational Medicine and Chemical Biology, Department of Medical Biochemistry and Biophysics, Karolinska Institutet, Stockholm, Sweden
| | - Juliane Kutzner
- Department of Infectious Diseases, Virology, University Hospital Heidelberg, Heidelberg, Germany
| | - Ida Hed Myrberg
- Childhood Cancer Research Unit, Department of Women's and Children's Health, Karolinska Institutet, and Karolinska University Hospital, Stockholm, Sweden
| | - Cynthia B J Paulin
- Science for Life Laboratory, Division of Translational Medicine and Chemical Biology, Department of Medical Biochemistry and Biophysics, Karolinska Institutet, Stockholm, Sweden
| | - Thale Kristin Olsen
- Childhood Cancer Research Unit, Department of Women's and Children's Health, Karolinska Institutet, and Karolinska University Hospital, Stockholm, Sweden
| | - Thomas Helleday
- Science for Life Laboratory, Division of Translational Medicine and Chemical Biology, Department of Medical Biochemistry and Biophysics, Karolinska Institutet, Stockholm, Sweden
| | - Jan-Inge Henter
- Childhood Cancer Research Unit, Department of Women's and Children's Health, Karolinska Institutet, and Karolinska University Hospital, Stockholm, Sweden; Theme of Children's and Women's Health, Astrid Lindgren Children's Hospital, Karolinska University Hospital, Stockholm, Sweden
| | - Torsten Schaller
- Department of Infectious Diseases, Virology, University Hospital Heidelberg, Heidelberg, Germany.
| |
Collapse
|