1
|
Geng Y, Gai Y, Zhang Y, Zhao S, Jiang A, Li X, Deng K, Zhang F, Tan L, Song L. Genome-Wide Identification and Interaction Analysis of Turbot Heat Shock Protein 40 and 70 Families Suggest the Mechanism of Chaperone Proteins Involved in Immune Response after Bacterial Infection. Int J Mol Sci 2024; 25:7963. [PMID: 39063205 PMCID: PMC11277129 DOI: 10.3390/ijms25147963] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2024] [Revised: 07/17/2024] [Accepted: 07/19/2024] [Indexed: 07/28/2024] Open
Abstract
Hsp40-Hsp70 typically function in concert as molecular chaperones, and their roles in post-infection immune responses are increasingly recognized. However, in the economically important fish species Scophthalmus maximus (turbot), there is still a lack in the systematic identification, interaction models, and binding site analysis of these proteins. Herein, 62 Hsp40 genes and 16 Hsp70 genes were identified in the turbot at a genome-wide level and were unevenly distributed on 22 chromosomes through chromosomal distribution analysis. Phylogenetic and syntenic analysis provided strong evidence in supporting the orthologies and paralogies of these HSPs. Protein-protein interaction and expression analysis was conducted to predict the expression profile after challenging with Aeromonas salmonicida. dnajb1b and hspa1a were found to have a co-expression trend under infection stresses. Molecular docking was performed using Auto-Dock Tool and PyMOL for this pair of chaperone proteins. It was discovered that in addition to the interaction sites in the J domain, the carboxyl-terminal domain of Hsp40 also plays a crucial role in its interaction with Hsp70. This is important for the mechanistic understanding of the Hsp40-Hsp70 chaperone system, providing a theoretical basis for turbot disease resistance breeding, and effective value for the prevention of certain diseases in turbot.
Collapse
Affiliation(s)
- Yuanwei Geng
- School of Life Science, Qingdao Agricultural University, Qingdao 266109, China; (Y.G.); (Y.G.)
| | - Yuxuan Gai
- School of Life Science, Qingdao Agricultural University, Qingdao 266109, China; (Y.G.); (Y.G.)
- Key Laboratory of Applied Mycology, Qingdao Agricultural University, Qingdao 266109, China
- Qingdao International Center on Microbes Utilizing Biogas, Qingdao Agricultural University, Qingdao 266109, China
| | - Yanping Zhang
- College of Entrepreneurship and Innovation, Qingdao Agricultural University, Qingdao 266109, China
| | - Shengwei Zhao
- School of Life Science, Qingdao Agricultural University, Qingdao 266109, China; (Y.G.); (Y.G.)
| | - Anlan Jiang
- School of Life Science, Qingdao Agricultural University, Qingdao 266109, China; (Y.G.); (Y.G.)
| | - Xueqing Li
- School of Life Science, Qingdao Agricultural University, Qingdao 266109, China; (Y.G.); (Y.G.)
| | - Kaiqing Deng
- School of Life Science, Qingdao Agricultural University, Qingdao 266109, China; (Y.G.); (Y.G.)
| | - Fuxuan Zhang
- School of Life Science, Qingdao Agricultural University, Qingdao 266109, China; (Y.G.); (Y.G.)
| | - Lingling Tan
- School of Life Science, Qingdao Agricultural University, Qingdao 266109, China; (Y.G.); (Y.G.)
| | - Lin Song
- School of Life Science, Qingdao Agricultural University, Qingdao 266109, China; (Y.G.); (Y.G.)
- Key Laboratory of Applied Mycology, Qingdao Agricultural University, Qingdao 266109, China
- Qingdao International Center on Microbes Utilizing Biogas, Qingdao Agricultural University, Qingdao 266109, China
| |
Collapse
|
2
|
Guo J, Yan Y, Sun J, Ji K, Hei Z, Zeng L, Xu H, Ren X, Sun Y. Chaperones Hsc70 and Hsp70 play distinct roles in the replication of bocaparvovirus minute virus of canines. Mol Microbiol 2024; 121:1127-1147. [PMID: 38629786 DOI: 10.1111/mmi.15263] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2023] [Revised: 03/09/2024] [Accepted: 04/02/2024] [Indexed: 06/14/2024]
Abstract
Minute virus of canines (MVC) belongs to the genus Bocaparvovirus (formerly Bocavirus) within the Parvoviridae family and causes serious respiratory and gastrointestinal symptoms in neonatal canines worldwide. A productive viral infection relies on the successful recruitment of host factors for various stages of the viral life cycle. However, little is known about the MVC-host cell interactions. In this study, we identified that two cellular proteins (Hsc70 and Hsp70) interacted with NS1 and VP2 proteins of MVC, and both two domains of Hsc70/Hsp70 were mediated for their interactions. Functional studies revealed that Hsp70 was induced by MVC infection, knockdown of Hsc70 considerably suppressed MVC replication, whereas the replication was dramatically promoted by Hsp70 knockdown. It is interesting that low amounts of overexpressed Hsp70 enhanced viral protein expression and virus production, but high amounts of Hsp70 overexpression weakened them. Upon Hsp70 overexpressing, we observed that the ubiquitination of viral proteins changed with Hsp70 overexpression, and proteasome inhibitor (MG132) restored an accumulation of viral proteins. In addition, we verified that Hsp70 family inhibitors remarkably decreased MVC replication. Overall, we identified Hsc70 and Hsp70 as interactors of MVC NS1 and VP2 proteins and were involved in MVC replication, which may provide novel targets for anti-MVC approach.
Collapse
Affiliation(s)
- Jianhui Guo
- Department of Biochemistry and Molecular Biology, School of Basic Medical Science, Ningxia Medical University, Yinchuan, China
| | - Yan Yan
- Department of Biochemistry and Molecular Biology, School of Basic Medical Science, Ningxia Medical University, Yinchuan, China
| | - Jinhan Sun
- Department of Clinical Medicine, School of Clinical Medicine, Ningxia Medical University, Yinchuan, China
| | - Kai Ji
- Department of Biochemistry and Molecular Biology, School of Basic Medical Science, Ningxia Medical University, Yinchuan, China
| | - Zhiping Hei
- Department of Biochemistry and Molecular Biology, School of Basic Medical Science, Ningxia Medical University, Yinchuan, China
| | - Liang Zeng
- Department of Biochemistry and Molecular Biology, School of Basic Medical Science, Ningxia Medical University, Yinchuan, China
| | - Huanzhou Xu
- Center for Emerging Infectious Diseases, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, Hubei, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Xiang Ren
- Department of Biochemistry and Molecular Biology, School of Basic Medical Science, Ningxia Medical University, Yinchuan, China
| | - Yuning Sun
- Department of Biochemistry and Molecular Biology, School of Basic Medical Science, Ningxia Medical University, Yinchuan, China
| |
Collapse
|
3
|
Moreno P, Leiva-Rebollo R, Garcia-Rosado E, Bejar J, Alonso MC. Cytokine-like activity of European sea bass ISG15 protein on RGNNV-infected E-11 cells. FISH & SHELLFISH IMMUNOLOGY 2022; 128:612-619. [PMID: 36007830 DOI: 10.1016/j.fsi.2022.08.048] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/18/2022] [Revised: 07/25/2022] [Accepted: 08/18/2022] [Indexed: 06/15/2023]
Abstract
IFN-I generates an antiviral state by inducing the expression of numerous genes, called IFN-stimulated genes, ISGs, including ISG15, which is the only ISG with cytokine-like activity. In a previous study, we developed the Dl_ISG15_E11 cell line, which consisted of E11 cells able to express and secrete sea bass ISG15. The current study is a step forward, analysing the effect of secreted sea bass ISG15 on RGNNV replication in E11 cells, and looking into its immunomodulatory activity in order to corroborate its cytokine-like activity. The medium from ISG15-produccing cells compromised RGNNV replication, as it has been demonstrated both, by reduction in the viral genome synthesis and, specially, in the yield of infective viral particles. The implication of sea bass ISG15 in this protection has been demonstrated by ISG15 removal, which decreased the percentage of surviving cells upon viral infection, and by incubation of RGNNV-infected cells with a recombinant sea bass ISG15 protein, which resulted in almost full protection. Furthermore, the immunomodulatory activity of extracellular sea bass ISG15 has been demonstrated, which reaffirms a cytokine-like role for this protein.
Collapse
Affiliation(s)
- Patricia Moreno
- Universidad de Málaga, Instituto de Biotecnología y Desarrollo Azul, IBYDA, Departamento de Microbiología, Facultad de Ciencias, 29071, Málaga, Spain
| | - Rocio Leiva-Rebollo
- Universidad de Málaga, Instituto de Biotecnología y Desarrollo Azul, IBYDA, Departamento de Microbiología, Facultad de Ciencias, 29071, Málaga, Spain
| | - Esther Garcia-Rosado
- Universidad de Málaga, Instituto de Biotecnología y Desarrollo Azul, IBYDA, Departamento de Microbiología, Facultad de Ciencias, 29071, Málaga, Spain
| | - Julia Bejar
- Universidad de Málaga, Instituto de Biotecnología y Desarrollo Azul, IBYDA, Departamento de Biología Celular, Genética y Fisiología, Facultad de Ciencias, 29071, Málaga, Spain
| | - M Carmen Alonso
- Universidad de Málaga, Instituto de Biotecnología y Desarrollo Azul, IBYDA, Departamento de Microbiología, Facultad de Ciencias, 29071, Málaga, Spain.
| |
Collapse
|
4
|
Zenke K, Okinaka Y. Multiple isoforms of HSP70 and HSP90 required for betanodavirus multiplication in medaka cells. Arch Virol 2022; 167:1961-1975. [PMID: 35752988 DOI: 10.1007/s00705-022-05489-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Accepted: 05/18/2022] [Indexed: 11/28/2022]
Abstract
Heat shock proteins (HSPs) are molecular chaperones that have recently been shown to function as host factors (HFs) for virus multiplication in fish as well as in mammals, plants, and insects. HSPs are classified into families, and each family has multiple isoforms. However, no comprehensive studies have been performed to clarify the biological importance of these multiple isoforms for fish virus multiplication. Betanodaviruses are the causative agents of viral nervous necrosis in cultured marine fish and cause very high mortality. Although the viral genome and encoded proteins have been characterized extensively, information on HFs for these viruses is limited. In this study, therefore, we focused on the HSP70 and HSP90 families to examine the importance of their isoforms for betanodavirus multiplication. We found that HSP inhibitors (17-AAG, radicicol, and quercetin) suppressed viral RNA replication and production of progeny virus in infected medaka (Oryzias latipes) cells. Thermal stress or virus infection resulted in increased expression of some isoform genes and facilitated virus multiplication. Furthermore, overexpression and knockdown of some isoform genes revealed that the isoforms HSP70-1, HSP70-2, HSP70-5, HSP90-α1, HSP90-α2, and HSP90-β play positive roles in virus multiplication in medaka. Collectively, these results suggest that multiple isoforms of fish HPSs serve as HFs for betanodavirus multiplication.
Collapse
Affiliation(s)
- Kosuke Zenke
- Graduate School of Integrated Sciences for Life, Hiroshima University, Higashi-Hiroshima, 739-8528, Japan.,Research Institute of Pharmaceutical Sciences, Musashino University, 1-1-20 Shinmachi, Nishitokyo-shi, Tokyo, 202-8585, Japan
| | - Yasushi Okinaka
- Graduate School of Integrated Sciences for Life, Hiroshima University, Higashi-Hiroshima, 739-8528, Japan.
| |
Collapse
|
5
|
García-Álvarez MÁ, Arizcun M, Chaves-Pozo E, Cuesta A. Profile of Innate Immunity in Gilthead Seabream Larvae Reflects Mortality upon Betanodavirus Reassortant Infection and Replication. Int J Mol Sci 2022; 23:ijms23095092. [PMID: 35563482 PMCID: PMC9105140 DOI: 10.3390/ijms23095092] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2022] [Revised: 04/28/2022] [Accepted: 04/29/2022] [Indexed: 12/10/2022] Open
Abstract
Historically, gilthead seabream (Sparus aurata) has been considered a fish species resistant to nervous necrosis virus (NNV) disease. Nevertheless, mortality in seabream hatcheries, associated with typical clinical signs of the viral encephalopathy and retinopathy (VER) disease has been confirmed to be caused by RGNNV/SJNNV reassortants. Because of this, seabream larvae at 37 and 86 days post-hatching (dph) were infected by immersion with RGNNV/SJNNV and SJNNV/RGNNV reassortants under laboratory conditions, and mortality, viral replication and immunity were evaluated. Our results show that gilthead seabream larvae, mainly those at 37 dph, are susceptible to infection with both NNV reassortant genotypes, with the highest impact from the RGNNV/SJNNV reassortant. In addition, viral replication occurs at both ages (37 and 86 dph) but the recovery of infective particles was only confirmed in 37 dph larvae,; this value was also highest with the RGNNV/SJNNV reassortant. Larvae immunity, including the expression of antiviral, inflammatory and cell-mediated cytotoxicity genes, was affected by NNV infection. Levels of the natural killer lysin (Nkl) peptide were increased in SJNNV/RGNNV-infected larvae of 37 dph, though hepcidin was not. Our results demonstrate that the seabream larvae are susceptible to both NNV reassortants, though mainly to RGNNV/SJNNV, in an age-dependent manner.
Collapse
Affiliation(s)
- Miguel Ángel García-Álvarez
- Immunobiology for Aquaculture Group, Department of Cell Biology and Histology, Faculty of Biology, Regional Campus of International Excellence “Campus Mare Nostrum”, University of Murcia, 30100 Murcia, Spain;
| | - Marta Arizcun
- Oceanographic Center of Murcia, Spanish Institute of Oceanography, Spanish National Research Council (IEO-CSIC), Carretera de la Azohía s/n. Puerto de Mazarrón, 30860 Murcia, Spain; (M.A.); (E.C.-P.)
| | - Elena Chaves-Pozo
- Oceanographic Center of Murcia, Spanish Institute of Oceanography, Spanish National Research Council (IEO-CSIC), Carretera de la Azohía s/n. Puerto de Mazarrón, 30860 Murcia, Spain; (M.A.); (E.C.-P.)
| | - Alberto Cuesta
- Immunobiology for Aquaculture Group, Department of Cell Biology and Histology, Faculty of Biology, Regional Campus of International Excellence “Campus Mare Nostrum”, University of Murcia, 30100 Murcia, Spain;
- Correspondence:
| |
Collapse
|
6
|
Liang CS, Chen C, Lin ZY, Shen JL, Wang T, Jiang HF, Wang GX. Acyclovir inhibits white spot syndrome virus replication in crayfish Procambarus clarkii. Virus Res 2021; 305:198570. [PMID: 34555435 DOI: 10.1016/j.virusres.2021.198570] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2021] [Revised: 08/31/2021] [Accepted: 09/07/2021] [Indexed: 12/12/2022]
Abstract
White spot syndrome virus (WSSV) is a fatal pathogen threatening global crustacean industry with no commercially available drugs to control WSSV. To address the urgent need for finding effective antiviral agents against WSSV, we examined the anti-WSSV activities of 11 common antiviral agents in crayfish Procambarus clarkia. The results showed that acyclovir displayed the highest inhibition on WSSV replication in vivo (92.59%, 50 mg/kg). Acyclovir repressed WSSV proliferation followed a dose-dependent fashion and pre- or post-treatment of acyclovir exerted strong inhibition on the viral loads. Further, we observed a markedly reduced expression levels of WSSV genes (immediate-early IE gene ie1, DNA polymerase gene DNApol and envelope protein gene Vp28) that are crucial in viral life cycle with the acyclovir treatment during the early infection. Meantime, we also found a significantly increased expressions of anti-oxidative as well as apoptosis related genes, suggesting that acyclovir could effectively suppress WSSV replication in vivo. Finally, acyclovir treatment could significantly improve the survival rate of WSSV-challenged crayfish by 56%. Taken together, acyclovir has the potential to be developed as a promising preventive or therapeutic agent against WSSV infection, and this finding may provide a reference for rapid discovery anti-WSSV agent in crustacean aquaculture.
Collapse
Affiliation(s)
- Chang-Shuai Liang
- College of Animal Science and Technology, Northwest A&F University, Xinong Road 22nd, Yangling, Shaanxi 712100, China
| | - Cheng Chen
- College of Animal Science and Technology, Northwest A&F University, Xinong Road 22nd, Yangling, Shaanxi 712100, China
| | - Zhi-Yang Lin
- College of Animal Science and Technology, Northwest A&F University, Xinong Road 22nd, Yangling, Shaanxi 712100, China
| | - Jing-Lei Shen
- College of Animal Science and Technology, Northwest A&F University, Xinong Road 22nd, Yangling, Shaanxi 712100, China
| | - Tao Wang
- College of Animal Science and Technology, Northwest A&F University, Xinong Road 22nd, Yangling, Shaanxi 712100, China
| | - Hai-Feng Jiang
- College of Animal Science and Technology, Northwest A&F University, Xinong Road 22nd, Yangling, Shaanxi 712100, China.
| | - Gao-Xue Wang
- College of Animal Science and Technology, Northwest A&F University, Xinong Road 22nd, Yangling, Shaanxi 712100, China.
| |
Collapse
|
7
|
α-Lipoic Acid Exerts Its Antiviral Effect against Viral Hemorrhagic Septicemia Virus (VHSV) by Promoting Upregulation of Antiviral Genes and Suppressing VHSV-Induced Oxidative Stress. Virol Sin 2021; 36:1520-1531. [PMID: 34510367 PMCID: PMC8435143 DOI: 10.1007/s12250-021-00440-5] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2021] [Accepted: 06/28/2021] [Indexed: 12/03/2022] Open
Abstract
Viral hemorrhagic septicemia virus (VHSV), belonging to the genus Novirhabdovirus, Rhabdoviridae family, is a causative agent of high mortality in fish and has caused significant losses to the aquaculture industry. Currently, no effective vaccines, Food and Drug Administration-approved inhibitors, or other therapeutic intervention options are available against VHSV. α-Lipoic Acid (LA), a potent antioxidant, has been proposed to have antiviral effects against different viruses. In this study, LA (CC50 = 472.6 μmol/L) was repurposed to exhibit antiviral activity against VHSV. In fathead minnow cells, LA significantly increased the cell viability post-VHSV infection (EC50 = 42.7 μmol/L), and exerted a dose-dependent inhibitory effect on VHSV induced-plaque, cytopathic effects, and VHSV glycoprotein expression. The time-of-addition assay suggested that the antiviral activity of LA occurred at viral replication stage. Survival assay revealed that LA could significantly upregulated the survival rate of VHSV-infected largemouth bass in both co-injection (38.095% vs. 1.887%, P < 0.01) and post-injection manner (38.813% vs. 8.696%, P < 0.01) compared with the control group. Additional comparative transcriptome and qRT-PCR analysis revealed LA treatment upregulated the expression of several antiviral genes, such as IRF7, Viperin, and ISG15. Moreover, LA treatment reduced VHSV-induced reactive oxygen species production in addition to Nrf2 and SOD1 expression. Taken together, these data demonstrated that LA suppressed VHSV replication by inducing antiviral genes expression and reducing VHSV-induced oxidative stress. These results suggest a new direction in the development of potential antiviral candidate drugs against VHSV infection.
Collapse
|
8
|
Dawood MAO, Abo-Al-Ela HG, Hasan MT. Modulation of transcriptomic profile in aquatic animals: Probiotics, prebiotics and synbiotics scenarios. FISH & SHELLFISH IMMUNOLOGY 2020; 97:268-282. [PMID: 31863903 DOI: 10.1016/j.fsi.2019.12.054] [Citation(s) in RCA: 78] [Impact Index Per Article: 15.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/07/2019] [Revised: 12/15/2019] [Accepted: 12/18/2019] [Indexed: 05/25/2023]
Abstract
Aquaculture and fisheries have provided protein sources for human consumption for a long time, but diseases have induced declines in product benefits and raised concerns, resulting in great losses to these industries in many countries. The overuse of antibiotics for the treatment of diseases has increased the chemical concentrations in culture systems and weakened the natural immunity of aquatic organisms. Concerns regarding the detrimental effects of antibiotics on the environment and human health due to residual antibiotic-related issues encourage the development of reliable, environmental and health safety methods, such as vaccines, probiotics, prebiotics, synbiotics and phytobiotics, for protection against disease and for reducing and possibly eliminating disease occurrence. Immunity has been effectively enhanced by pro-, pre-, and synbiotics, which confer strong protection and reduce the risks associated with stressors and disease outbreaks in culture systems. These agents confer several benefits, including enhancing both host growth and immune responses against pathogens, while sustaining health and environmental stability, and their use is thus widely accepted. Alterations in gene expression in individual cells could serve as an indicator of the immunity and growth rate of aquatic animals after pro-, pre- and synbiotic feeding. This review addresses the potential use of pro, pre- and synbiotics as immunostimulants for improved aquaculture management and environmental health and chronicles the recent insights regarding the application of pro-, pre- and synbiotics with special emphasis on their immunomodulatory and antioxidative responses based on gene expression changes. Furthermore, the current review describes the research gaps and other issues that merit further investigation.
Collapse
Affiliation(s)
- Mahmoud A O Dawood
- Department of Animal Production, Faculty of Agriculture, Kafrelsheikh University, 33516, Kafrelsheikh, Egypt.
| | - Haitham G Abo-Al-Ela
- Animal Health Research Institute, Agriculture Research Center, Shibin Al-Kom, El-Minufiya, Egypt
| | - Md Tawheed Hasan
- Department of Aquaculture, Sylhet Agricultural University, Sylhet, 3100, Bangladesh
| |
Collapse
|