1
|
Wei L, You Y, Hu Y, Wang K, Zhao H, Cheng Y, Zhu J, Weng J, Ren Y, Chen Y, Chen M, Chen X, Xing B, Bai L, Li H, Chen P, Wei Z. Rapid discovery of pseudorabies virus inhibitors repurposed from the antimicrobial agent ciprofloxacin. Eur J Med Chem 2025; 289:117490. [PMID: 40085975 DOI: 10.1016/j.ejmech.2025.117490] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2024] [Revised: 02/25/2025] [Accepted: 03/07/2025] [Indexed: 03/16/2025]
Abstract
Pseudorabies virus (PRV) is a significant pathogen impacting swine health and poses high zoonotic risks to humans. Effective antiviral treatments for PRV remain limited, underscoring the need for novel therapeutic strategies. In this study, ciprofloxacin was identified as a repurposed promising candidate with significant in vitro inhibition of PRV replication based on our inference from PNU-183792, an HSV-1 DNA polymerase inhibitor, that quinolones have the potential to act as anti-PRV drugs. Compound A1 was firstly hopping from ciprofloxacin and PNU-183792, showing more than 500-fold higher anti-PRV activity than ciprofloxacin with an EC50 of 2.21 nM. Then, C2 was obtained from rapid optimization of replacing the benzyl and cyclopropyl groups of A1, which showed excellent inhibition of PRV replication with an EC50 of 0.29 nM and MIC80 in range of 1.6-8 nM. Pharmacokinetic studies demonstrated favorable properties for C2, with good plasma exposure following intraperitoneal administration. In vivo studies in Kunming mice showed that C2 inhibited PRV replication by up to 99 %. These results suggest that quinolone-based inhibitors, particularly C2, represent a viable therapeutic approach for the treatment of PRV infections and warrant further preclinical development.
Collapse
Affiliation(s)
- Lin Wei
- State Key Laboratory of Biocatalysis and Enzyme Engineering, School of Life Sciences, Hubei University, Wuhan, Hubei, PR China; Hubei Jiangxia Laboratory, Wuhan, Hubei, PR China
| | - Yun You
- State Key Laboratory of Biocatalysis and Enzyme Engineering, School of Life Sciences, Hubei University, Wuhan, Hubei, PR China
| | - Yang Hu
- State Key Laboratory of Biocatalysis and Enzyme Engineering, School of Life Sciences, Hubei University, Wuhan, Hubei, PR China
| | - Keke Wang
- State Key Laboratory of Biocatalysis and Enzyme Engineering, School of Life Sciences, Hubei University, Wuhan, Hubei, PR China
| | - Honghe Zhao
- State Key Laboratory of Biocatalysis and Enzyme Engineering, School of Life Sciences, Hubei University, Wuhan, Hubei, PR China
| | - Yang Cheng
- State Key Laboratory of Biocatalysis and Enzyme Engineering, School of Life Sciences, Hubei University, Wuhan, Hubei, PR China
| | - Junfei Zhu
- State Key Laboratory of Biocatalysis and Enzyme Engineering, School of Life Sciences, Hubei University, Wuhan, Hubei, PR China
| | - Jun Weng
- State Key Laboratory of Biocatalysis and Enzyme Engineering, School of Life Sciences, Hubei University, Wuhan, Hubei, PR China; Key Laboratory of Molecular Biophysics of Ministry of Education, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, Hubei, 430074, PR China
| | - Yanliang Ren
- Key Laboratory of Pesticide & Chemical Biology (CCNU), Ministry of Education, College of Chemistry, Central China Normal University, Wuhan, 430079, PR China
| | - Yuhua Chen
- State Key Laboratory of Biocatalysis and Enzyme Engineering, School of Life Sciences, Hubei University, Wuhan, Hubei, PR China
| | - Meiting Chen
- State Key Laboratory of Biocatalysis and Enzyme Engineering, School of Life Sciences, Hubei University, Wuhan, Hubei, PR China
| | - Xiujuan Chen
- State Key Laboratory of Biocatalysis and Enzyme Engineering, School of Life Sciences, Hubei University, Wuhan, Hubei, PR China
| | - Banbin Xing
- State Key Laboratory of Biocatalysis and Enzyme Engineering, School of Life Sciences, Hubei University, Wuhan, Hubei, PR China
| | - Licheng Bai
- State Key Laboratory of Biocatalysis and Enzyme Engineering, School of Life Sciences, Hubei University, Wuhan, Hubei, PR China
| | - Han Li
- State Key Laboratory of Biocatalysis and Enzyme Engineering, School of Life Sciences, Hubei University, Wuhan, Hubei, PR China
| | - Peng Chen
- State Key Laboratory of Biocatalysis and Enzyme Engineering, School of Life Sciences, Hubei University, Wuhan, Hubei, PR China
| | - Zigong Wei
- State Key Laboratory of Biocatalysis and Enzyme Engineering, School of Life Sciences, Hubei University, Wuhan, Hubei, PR China; Hubei Jiangxia Laboratory, Wuhan, Hubei, PR China; Hubei Province Key Laboratory of Biotechnology of Chinese Traditional Medicine, National & Local Joint Engineering Research Center of High-throughput Drug Screening Technology, School of life sciences, Hubei University, Wuhan, Hubei, PR China.
| |
Collapse
|
2
|
Ge S, Jian R, Xuan Q, Zhu Y, Ren X, Li W, Chen X, Huang RK, Lee CS, Leung SC, Basilico N, Parapini S, Taramelli D, Pinthong N, Antonyuk SV, O'Neill PM, Sheng Z, Hong WD. Novel antimalarial 3-substituted quinolones isosteres with improved pharmacokinetic properties. Eur J Med Chem 2025; 284:117228. [PMID: 39752821 DOI: 10.1016/j.ejmech.2024.117228] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2024] [Revised: 12/05/2024] [Accepted: 12/27/2024] [Indexed: 01/20/2025]
Abstract
Aryl quinolone derivatives can target the cytochrome bc1 complex of Plasmodium falciparum, exhibiting excellent in vitro and in vivo antimalarial activity. However, their clinical development has been hindered due to their poor aqueous solubility profiles. In this study, a series of bioisosteres containing saturated heterocycles fused to a 4-pyridone ring were designed to replace the inherently poorly soluble quinolone core in antimalarial quinolones with the aim to reduce π-π stacking interactions in the crystal packing solid state, and a synthetic route was developed to prepare these alternative core derivatives. One such novel derivate, F14, exhibited significant enhancements in both aqueous solubility (20 μM) and lipophilicity (LogD 2.7), whilst retaining nanomolar antimalarial activity against the W2 strain of P. falciparum (IC50 = 235 nM). The pharmacokinetic studies reported, provide preliminary insights into the in vivo distribution and elimination of F14, while findings from single crystal X-ray diffraction experiment rationalized the enhanced solubility. Protein X-ray crystallography and in silico docking simulations provide insight into the potential mode of action within the cytochrome bc1 complex. These findings demonstrated the viability of this bioisostere replacement strategy and provided support for further exploration of in vivo efficacy in preclinical animal models and valuable insights for new drug design strategies in the fight against malaria.
Collapse
Affiliation(s)
- Siyuan Ge
- School of Pharmacy and Food Engineering, Wuyi University, 529020, Jiangmen, China; Department of Chemistry, University of Liverpool, L69 7ZD, Liverpool, UK; Department of Chemistry, Hong Kong Baptist University, Kowloon Tong, Hong Kong Special Administrative Region of China
| | - Rongchao Jian
- School of Pharmacy and Food Engineering, Wuyi University, 529020, Jiangmen, China
| | - Qiwei Xuan
- School of Pharmacy and Food Engineering, Wuyi University, 529020, Jiangmen, China; Liverpool-Jiangmen Public Health Research Centre, International Healthcare Innovation Institute (Jiangmen), 529020, Jiangmen, China
| | - Yingxiang Zhu
- School of Pharmacy and Food Engineering, Wuyi University, 529020, Jiangmen, China; Liverpool-Jiangmen Public Health Research Centre, International Healthcare Innovation Institute (Jiangmen), 529020, Jiangmen, China
| | - Xiaofei Ren
- School of Pharmacy and Food Engineering, Wuyi University, 529020, Jiangmen, China; Liverpool-Jiangmen Public Health Research Centre, International Healthcare Innovation Institute (Jiangmen), 529020, Jiangmen, China
| | - Wenjiao Li
- School of Pharmacy and Food Engineering, Wuyi University, 529020, Jiangmen, China; Liverpool-Jiangmen Public Health Research Centre, International Healthcare Innovation Institute (Jiangmen), 529020, Jiangmen, China
| | - Xiaole Chen
- School of Pharmacy and Food Engineering, Wuyi University, 529020, Jiangmen, China; Department of Chemistry, Hong Kong Baptist University, Kowloon Tong, Hong Kong Special Administrative Region of China
| | - Rui-Kang Huang
- Graduate School of Environmental Science, Hokkaido University, N10W5, Kita-ku, 060-0810, Sapporo, Japan; Research Institute for Electronic Science (RIES), Hokkaido University, N20W10, Kita-ku, Sapporo, Japan
| | - Chi-Sing Lee
- Department of Chemistry, Hong Kong Baptist University, Kowloon Tong, Hong Kong Special Administrative Region of China
| | - Suet C Leung
- Department of Chemistry, University of Liverpool, L69 7ZD, Liverpool, UK
| | - Nicoletta Basilico
- Dipartimento di Scienze Biomediche, Chirurgiche e Odontoiatriche, Università degli Studi di Milano, Via Pascal 36, 20133, Milano, Italy; Affiliated to Centro Interuniversitario di Ricerche sulla Malaria/ Italian Malaria Network (CIRM-IMN), Università degli Studi di Camerino, UK
| | - Silvia Parapini
- Dipartimento di Scienze Biomediche per la Salute, Università degli Studi di Milano, Via Pascal 36, 20133, Milano, Italy; Affiliated to Centro Interuniversitario di Ricerche sulla Malaria/ Italian Malaria Network (CIRM-IMN), Università degli Studi di Camerino, UK
| | - Donatella Taramelli
- Dipartimento di Scienze Farmacologiche e Biomolecolari, Università degli Studi di Milano, Via Pascal 36, 20133, Milano, Italy; Affiliated to Centro Interuniversitario di Ricerche sulla Malaria/ Italian Malaria Network (CIRM-IMN), Università degli Studi di Camerino, UK
| | - Nattapon Pinthong
- Molecular Biophysics Group, Institute of Systems, Molecular and Integrative Biology, Faculty of Health and Life Sciences, University of Liverpool, L69 7ZB, Liverpool, UK
| | - Svetlana V Antonyuk
- Molecular Biophysics Group, Institute of Systems, Molecular and Integrative Biology, Faculty of Health and Life Sciences, University of Liverpool, L69 7ZB, Liverpool, UK
| | - Paul M O'Neill
- Department of Chemistry, University of Liverpool, L69 7ZD, Liverpool, UK
| | - Zhaojun Sheng
- School of Pharmacy and Food Engineering, Wuyi University, 529020, Jiangmen, China; Liverpool-Jiangmen Public Health Research Centre, International Healthcare Innovation Institute (Jiangmen), 529020, Jiangmen, China.
| | - W David Hong
- School of Pharmacy and Food Engineering, Wuyi University, 529020, Jiangmen, China; Department of Chemistry, University of Liverpool, L69 7ZD, Liverpool, UK.
| |
Collapse
|
3
|
Ahmad G, Sohail M, Bilal M, Rasool N, Qamar MU, Ciurea C, Marceanu LG, Misarca C. N-Heterocycles as Promising Antiviral Agents: A Comprehensive Overview. Molecules 2024; 29:2232. [PMID: 38792094 PMCID: PMC11123935 DOI: 10.3390/molecules29102232] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2024] [Revised: 04/22/2024] [Accepted: 05/03/2024] [Indexed: 05/26/2024] Open
Abstract
Viruses are a real threat to every organism at any stage of life leading to extensive infections and casualties. N-heterocycles can affect the viral life cycle at many points, including viral entrance into host cells, viral genome replication, and the production of novel viral species. Certain N-heterocycles can also stimulate the host's immune system, producing antiviral cytokines and chemokines that can stop the reproduction of viruses. This review focused on recent five- or six-membered synthetic N-heterocyclic molecules showing antiviral activity through SAR analyses. The review will assist in identifying robust scaffolds that might be utilized to create effective antiviral drugs with either no or few side effects.
Collapse
Affiliation(s)
- Gulraiz Ahmad
- Department of Chemistry, Government College University, Faisalabad 38000, Pakistan; (G.A.); (M.S.)
| | - Maria Sohail
- Department of Chemistry, Government College University, Faisalabad 38000, Pakistan; (G.A.); (M.S.)
| | - Muhammad Bilal
- School of Chemistry and Chemical Engineering, Shandong University, Jinan 250100, China;
| | - Nasir Rasool
- Department of Chemistry, Government College University, Faisalabad 38000, Pakistan; (G.A.); (M.S.)
| | - Muhammad Usman Qamar
- Institute of Microbiology, Faculty of Life Sciences, Government College University, Faisalabad 38000, Pakistan;
- Division of Infectious Diseases, Geneva University Hospitals, 1205 Geneva, Switzerland
- Department of Microbiology and Molecular Medicine, University of Geneva, 1205 Geneva, Switzerland
| | - Codrut Ciurea
- Faculty of Medicine, Transilvania University of Brasov, 500036 Brasov, Romania; (L.G.M.)
| | - Luigi Geo Marceanu
- Faculty of Medicine, Transilvania University of Brasov, 500036 Brasov, Romania; (L.G.M.)
| | - Catalin Misarca
- Faculty of Medicine, Transilvania University of Brasov, 500036 Brasov, Romania; (L.G.M.)
| |
Collapse
|
4
|
Gao S, Song L, Xu H, Fikatas A, Oeyen M, De Jonghe S, Zhao F, Jing L, Jochmans D, Vangeel L, Cheng Y, Kang D, Neyts J, Herdewijn P, Schols D, Zhan P, Liu X. Identification of Polyphenol Derivatives as Novel SARS-CoV-2 and DENV Non-Nucleoside RdRp Inhibitors. MOLECULES (BASEL, SWITZERLAND) 2022; 28:molecules28010160. [PMID: 36615354 PMCID: PMC9822497 DOI: 10.3390/molecules28010160] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/14/2022] [Revised: 12/19/2022] [Accepted: 12/21/2022] [Indexed: 12/28/2022]
Abstract
The Coronavirus Disease 2019 (COVID-19) and dengue fever (DF) pandemics both remain to be significant public health concerns in the foreseeable future. Anti-SARS-CoV-2 drugs and vaccines are both indispensable to eliminate the epidemic situation. Here, two piperazine-based polyphenol derivatives DF-47 and DF-51 were identified as potential inhibitors directly blocking the active site of SARS-CoV-2 and DENV RdRp. Data through RdRp inhibition screening of an in-house library and in vitro antiviral study selected DF-47 and DF-51 as effective inhibitors of SARS-CoV-2/DENV polymerase. Moreover, in silico simulation revealed stable binding modes between the DF-47/DF-51 and SARS-CoV-2/DENV RdRp, respectively, including chelating with Mg2+ near polymerase active site. This work discovered the inhibitory effect of two polyphenols on distinct viral RdRp, which are expected to be developed into broad-spectrum, non-nucleoside RdRp inhibitors with new scaffold.
Collapse
Affiliation(s)
- Shenghua Gao
- Department of Medicinal Chemistry, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan 250012, China
- Department of Pharmacology, School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan 250012, China
- Shenzhen Research Institute of Shandong University, A301 Virtual University Park in South District of Shenzhen, Shenzhen 518057, China
| | - Letian Song
- Department of Medicinal Chemistry, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan 250012, China
- Department of Pharmacology, School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan 250012, China
| | - Hongtao Xu
- Laboratory of Virology and Chemotherapy, Rega Institute for Medical Research, Department of Microbiology, Immunology and Transplantation, KU Leuven, 3000 Leuven, Belgium
- Correspondence: (H.X.); (D.S.); (P.Z.); (X.L.)
| | - Antonios Fikatas
- Laboratory of Virology and Chemotherapy, Rega Institute for Medical Research, Department of Microbiology, Immunology and Transplantation, KU Leuven, 3000 Leuven, Belgium
| | - Merel Oeyen
- Laboratory of Virology and Chemotherapy, Rega Institute for Medical Research, Department of Microbiology, Immunology and Transplantation, KU Leuven, 3000 Leuven, Belgium
| | - Steven De Jonghe
- Laboratory of Virology and Chemotherapy, Rega Institute for Medical Research, Department of Microbiology, Immunology and Transplantation, KU Leuven, 3000 Leuven, Belgium
| | - Fabao Zhao
- Department of Medicinal Chemistry, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan 250012, China
- Department of Pharmacology, School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan 250012, China
| | - Lanlan Jing
- Department of Medicinal Chemistry, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan 250012, China
- Department of Pharmacology, School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan 250012, China
| | - Dirk Jochmans
- Laboratory of Virology and Chemotherapy, Rega Institute for Medical Research, Department of Microbiology, Immunology and Transplantation, KU Leuven, 3000 Leuven, Belgium
| | - Laura Vangeel
- Laboratory of Virology and Chemotherapy, Rega Institute for Medical Research, Department of Microbiology, Immunology and Transplantation, KU Leuven, 3000 Leuven, Belgium
| | - Yusen Cheng
- Department of Medicinal Chemistry, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan 250012, China
- Department of Pharmacology, School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan 250012, China
| | - Dongwei Kang
- Department of Medicinal Chemistry, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan 250012, China
- Department of Pharmacology, School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan 250012, China
| | - Johan Neyts
- Laboratory of Virology and Chemotherapy, Rega Institute for Medical Research, Department of Microbiology, Immunology and Transplantation, KU Leuven, 3000 Leuven, Belgium
| | - Piet Herdewijn
- Laboratory of Medicinal Chemistry, Rega Institute for Medical Research, KU Leuven, 3000 Leuven, Belgium
| | - Dominique Schols
- Laboratory of Virology and Chemotherapy, Rega Institute for Medical Research, Department of Microbiology, Immunology and Transplantation, KU Leuven, 3000 Leuven, Belgium
- Correspondence: (H.X.); (D.S.); (P.Z.); (X.L.)
| | - Peng Zhan
- Department of Medicinal Chemistry, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan 250012, China
- Department of Pharmacology, School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan 250012, China
- Correspondence: (H.X.); (D.S.); (P.Z.); (X.L.)
| | - Xinyong Liu
- Department of Medicinal Chemistry, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan 250012, China
- Department of Pharmacology, School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan 250012, China
- Correspondence: (H.X.); (D.S.); (P.Z.); (X.L.)
| |
Collapse
|
5
|
Kaur P, Anuradha, Chandra A, Tanwar T, Sahu SK, Mittal A. Emerging quinoline- and quinolone-based antibiotics in the light of epidemics. Chem Biol Drug Des 2022; 100:765-785. [PMID: 35128812 DOI: 10.1111/cbdd.14025] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2021] [Revised: 12/03/2021] [Accepted: 01/23/2022] [Indexed: 01/25/2023]
Abstract
Pandemics are large-scale outbreaks of infectious disease that can greatly increase morbidity and mortality all the globe. Since past 1990 till twentieth century, these infectious diseases have been major threat all over the globe associated with poor hygiene and sanitation. In light of these epidemics, researches have gained enormous rise in the developing the potential therapeutic treatment. Thus, revolutionized antibiotics have led to the near eradication of such ailments. Around 50 million prescription of antibiotics written in US per year according to center for disease control and prevention (CDC) report. There is a wide range of antibiotics available which differ in their usage and their mechanism of action. Among these quinoline and quinolone class of antibiotics get attention as they show tremendous potential in fighting the epidemics. Quinoline and quinolone comprise of two rings along with substitutions at different positions which is synthetically obtained by structural modifications of quinine. Quinoline and quinolone antibiotics exhibit extensive activities approved by FDA in the treatment of the several ailments such as gastrointestinal infections, urinary tract infections, prostate inflammation, malaria, gonorrhea, skin infection, colorectal cancer, respiratory tract infections. These are active against both gram-negative and gram-positive bacteria. This basic core of quinoline and quinolone is vital due to its capability of targeting the pathogen causing disease and beneficial in treating the infectious disease. They inhibit the synthesis of nucleic acid of bacteria which results in the rupture of bacterial chromosome due to the interruption of enzymes such as DNA gyrase and topoisomerase IV. There are various quinoline and quinolone compounds that are synthetically derived by applying different synthesis approaches which show a wide range of pharmacological activities in several diseases. The most commonly used are fluoro, chloro, and hydroxychloro derivatives of quinoline and quinolone. These compounds are helpful in the treatment of numerous epidemics as a chief and combination therapy. These quinoline and quinolone pharmacophore fascinate the interest of researchers as they inhibit the entry of virus in host cell and cease its replication by blocking the host receptor glycosylation and proteolytic processing. They act as immune modulator by inhibiting autophagy and reduction of both lysosomal activity and production of cytokine. Therefore, quinoline and quinolone derivatives attain significance in area of research and treatment of various life-threatening epidemics such as SARS, Zika virus, Ebola virus, dengue, and COVID-19 (currently). In this chapter, the research and advancements of quinoline- and quinolone-based antibiotics in epidemic management are briefly discussed.
Collapse
Affiliation(s)
- Paranjeet Kaur
- Department of Pharmaceutical Chemistry, School of Pharmaceutical Sciences, Lovely Professional University, Phagwara, Punjab, India
| | - Anuradha
- Department of Pharmaceutical Chemistry, School of Pharmaceutical Sciences, Lovely Professional University, Phagwara, Punjab, India
| | - Avik Chandra
- Department of Pharmaceutical Chemistry, School of Pharmaceutical Sciences, Lovely Professional University, Phagwara, Punjab, India
| | - Tamanna Tanwar
- Department of Pharmaceutical Chemistry, School of Pharmaceutical Sciences, Lovely Professional University, Phagwara, Punjab, India
| | - Sanjeev Kumar Sahu
- Department of Pharmaceutical Chemistry, School of Pharmaceutical Sciences, Lovely Professional University, Phagwara, Punjab, India
| | - Amit Mittal
- Department of Pharmaceutical Chemistry, School of Pharmaceutical Sciences, Lovely Professional University, Phagwara, Punjab, India
| |
Collapse
|
6
|
Insights on Dengue and Zika NS5 RNA-dependent RNA polymerase (RdRp) inhibitors. Eur J Med Chem 2021; 224:113698. [PMID: 34274831 DOI: 10.1016/j.ejmech.2021.113698] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2021] [Revised: 07/09/2021] [Accepted: 07/10/2021] [Indexed: 11/20/2022]
Abstract
Over recent years, many outbreaks caused by (re)emerging RNA viruses have been reported worldwide, including life-threatening Flaviviruses, such as Dengue (DENV) and Zika (ZIKV). Currently, there is only one licensed vaccine against Dengue, Dengvaxia®. However, its administration is not recommended for children under nine years. Still, there are no specific inhibitors available to treat these infectious diseases. Among the flaviviral proteins, NS5 RNA-dependent RNA polymerase (RdRp) is a metalloenzyme essential for viral replication, suggesting that it is a promising macromolecular target since it has no human homolog. Nowadays, several NS5 RdRp inhibitors have been reported, while none inhibitors are currently in clinical development. In this context, this review constitutes a comprehensive work focused on RdRp inhibitors from natural, synthetic, and even repurposing sources. Furthermore, their main aspects associated with the structure-activity relationship (SAR), proposed mechanisms of action, computational studies, and other topics will be discussed in detail.
Collapse
|
7
|
Antiviral Agents - Benzazine Derivatives. Chem Heterocycl Compd (N Y) 2021; 57:374-382. [PMID: 34007084 PMCID: PMC8118681 DOI: 10.1007/s10593-021-02915-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2020] [Accepted: 02/06/2021] [Indexed: 11/15/2022]
Abstract
The review outlines the results of studies of the antiviral activity of quinoline, quinoxaline, and quinazoline derivatives published over the past 5 years. The supplied data indicate the enormous potential of benzazines for the design of effective antiviral drugs.
Collapse
|