1
|
Tang Y, Guo T, Wang X, Li C, Zhang X, Zhang J. Cyclodextrin-Derived Macromolecular Therapies for Inflammatory Diseases. Macromol Biosci 2025:e2400637. [PMID: 40271896 DOI: 10.1002/mabi.202400637] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2024] [Revised: 04/02/2025] [Indexed: 04/25/2025]
Abstract
Inflammation is an essential physiological defense mechanism against harmful stimuli, yet dysregulated inflammatory responses are closely associated with the pathogenesis of numerous acute and chronic diseases. Recent advances highlight the remarkable anti-inflammatory potential of bioactive macromolecules, particularly cyclodextrins (CDs) and their engineered derivatives, which are emerging as promising therapeutic agents. This review systematically introduces different CDs and CD-derived macromolecules that demonstrate anti-inflammatory properties, with emphasis on their molecular mechanisms of action. Native CDs exhibit direct therapeutic effects through host-guest interactions, enabling selective sequestration of pathogenic components such as cholesterol crystals and proteins that drive inflammatory cascades. Moreover, chemically modified CD derivatives incorporating functional groups demonstrate enhanced capabilities in neutralizing inflammatory mediators and modulating immune cell responses. This work further discusses the expanding therapeutic applications of these macromolecules across diverse inflammatory conditions, ranging from acute tissue injuries to chronic autoimmune disorders. Finally, this work critically analyzes the crucial challenges and emerging opportunities in translating CD-based macromolecular therapies into clinical practice, addressing key considerations in biocompatibility, targeted delivery, and therapeutic efficacy optimization.
Collapse
Affiliation(s)
- Yige Tang
- College of Pharmacy, Chongqing Medical University, Chongqing, 400016, China
- International Medical College, Chongqing Medical University, Chongqing, 400016, China
| | - Tao Guo
- College of Pharmacy, Chongqing Medical University, Chongqing, 400016, China
| | - Xuanran Wang
- West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, Chengdu, 610041, China
| | - Chenwen Li
- Department of Pharmaceutics, College of Pharmacy, Third Military Medical University (Army Medical University), Chongqing, 400038, China
- State Key Laboratory of Trauma and Chemical Poisoning, Third Military Medical University (Army Medical University), Chongqing, 400038, China
| | - Xiangjun Zhang
- College of Pharmacy, Chongqing Medical University, Chongqing, 400016, China
| | - Jianxiang Zhang
- Department of Pharmaceutics, College of Pharmacy, Third Military Medical University (Army Medical University), Chongqing, 400038, China
- State Key Laboratory of Trauma and Chemical Poisoning, Third Military Medical University (Army Medical University), Chongqing, 400038, China
- Yu-Yue Pathology Scientific Research Center, 313 Gaoteng Avenue, Jiulongpo District, Chongqing, 400039, China
| |
Collapse
|
2
|
Kumar V, Meidinna HN, Kaul SC, Gupta D, Ishida Y, Terao K, Vrati S, Sundar D, Wadhwa R. Molecular insights to the anti-COVID-19 potential of α-, β- and γ-cyclodextrins. J Biomol Struct Dyn 2025; 43:2890-2900. [PMID: 38116950 DOI: 10.1080/07391102.2023.2294385] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2023] [Accepted: 12/05/2023] [Indexed: 12/21/2023]
Abstract
SARS-CoV-2 viral infection is regulated by the host cell receptors ACE2 and TMPRSS2, and therefore the effect of various natural and synthetic compounds on these receptors has recently been the subject of investigations. Cyclodextrins, naturally occurring polysaccharides derived from starch, are soluble in water and have a hydrophobic cavity at their center enabling them to accommodate small molecules and utilize them as carriers in the food, supplements, and pharmaceutical industries to improve the solubility, stability, and bioavailability of target compounds. In the current study, computational molecular simulations were used to investigate the ability of α-, β- and γ-Cyclodextrins on human cell surface receptors. Cell-based experimental approaches, including expression analyses at mRNA and protein levels and virus replication, were used to assess the effect on receptor expression and virus infection, respectively. We found that none of the three CDs could dock effectively to human cell surface receptor ACE2 and viral protease Mpro (essential for virus replication). On the other hand, α- and β-CD showed strong and stable interactions with TMPRSS2, and the expression of both ACE2 and TMPRSS2 was downregulated at the mRNA and protein levels in cyclodextrin (CD)-treated cells. A cell-based virus replication assay showed ∼20% inhibition by β- and γ-CD. Taken together, the study suggested that (i) downregulation of expression of host cell receptors may not be sufficient to inhibit virus infection (ii) activity of the receptors and virus protein Mpro may play a critical and clinically relevant role, and hence (iii) newly emerging anti-Covid-19 compounds warrant multimodal functional analyses.
Collapse
Affiliation(s)
- Vipul Kumar
- DAILAB, Department of Biochemical Engineering & Biotechnology, Indian Institute of Technology (IIT) Delhi, Hauz Khas, New Delhi, India
| | - Hazna Noor Meidinna
- AIST-INDIA DAILAB, National Institute of Advanced Industrial Science & Technology (AIST), Tsukuba, Japan
| | - Sunil C Kaul
- AIST-INDIA DAILAB, National Institute of Advanced Industrial Science & Technology (AIST), Tsukuba, Japan
| | | | | | - Keiji Terao
- CycloChem Bio Co., Ltd, Chuo-ku, Kobe, Japan
| | | | - Durai Sundar
- DAILAB, Department of Biochemical Engineering & Biotechnology, Indian Institute of Technology (IIT) Delhi, Hauz Khas, New Delhi, India
| | - Renu Wadhwa
- AIST-INDIA DAILAB, National Institute of Advanced Industrial Science & Technology (AIST), Tsukuba, Japan
| |
Collapse
|
3
|
Hewitt CR, Wixon NJ, Gallegos A, Zhou Y, Huber VC, Killian MS. Inactivation of Zika Virus with Hydroxypropyl-Beta-Cyclodextrin. Vaccines (Basel) 2025; 13:79. [PMID: 39852858 PMCID: PMC11769224 DOI: 10.3390/vaccines13010079] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2024] [Revised: 01/08/2025] [Accepted: 01/10/2025] [Indexed: 01/26/2025] Open
Abstract
Background/Objectives: Zika virus (ZIKV) infection is associated with life-threatening diseases in humans. To date, there are no available FDA-approved therapies or vaccines for the specific treatment or prevention of ZIKV infection. Variation in the ZIKV envelope protein (Env), along with its complex quaternary structure, presents challenges to synthetic approaches for developing an effective vaccine and broadly neutralizing antibodies (bnAbs). We hypothesized that beta-cyclodextrin (BCD) could be used to uniquely inactivate infectious ZIKV without disruption of Env. Methods: ZIKV was propagated in Vero cells and admixed with BCD. The BCD-treated ZIKV was evaluated for infectivity using immunofluorescence and quantitative RT-PCR (qRT-PCR) assays, for immunoreactivity in Western blots, structural integrity by electron microscopy, and immunogenicity in mice. Results: Here, we show that 200 mM BCD-treated ZIKV is non-infectious in cell culture, remains immunoreactive with an Env-specific antibody, retains its virion shape and size, and elicits the production of immunogen-specific antibodies in immunized mice. Conclusions: These results indicate that BCD can be used to safely inactivate ZIKV, and they provide insights for vaccine and antibody development.
Collapse
Affiliation(s)
- Cory R. Hewitt
- Division of Basic Biomedical Sciences, Sanford School of Medicine, University of South Dakota, Vermillion, SD 57069, USA; (C.R.H.); (V.C.H.)
| | - Nicholas J. Wixon
- Division of Basic Biomedical Sciences, Sanford School of Medicine, University of South Dakota, Vermillion, SD 57069, USA; (C.R.H.); (V.C.H.)
| | - Arthur Gallegos
- Division of Basic Biomedical Sciences, Sanford School of Medicine, University of South Dakota, Vermillion, SD 57069, USA; (C.R.H.); (V.C.H.)
| | - You Zhou
- Microscopy Core Research Facility, Center for Biotechnology, University of Nebraska-Lincoln, Lincoln, NE 68588, USA
| | - Victor C. Huber
- Division of Basic Biomedical Sciences, Sanford School of Medicine, University of South Dakota, Vermillion, SD 57069, USA; (C.R.H.); (V.C.H.)
| | - M. Scott Killian
- Division of Basic Biomedical Sciences, Sanford School of Medicine, University of South Dakota, Vermillion, SD 57069, USA; (C.R.H.); (V.C.H.)
- Department of Public Health, School of Health Sciences, University of South Dakota, Vermillion, SD 57069, USA
| |
Collapse
|
4
|
Grewal T, Nguyen MKL, Buechler C. Cholesterol and COVID-19-therapeutic opportunities at the host/virus interface during cell entry. Life Sci Alliance 2024; 7:e202302453. [PMID: 38388172 PMCID: PMC10883773 DOI: 10.26508/lsa.202302453] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2023] [Revised: 02/12/2024] [Accepted: 02/13/2024] [Indexed: 02/24/2024] Open
Abstract
The rapid development of vaccines to combat severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infections has been critical to reduce the severity of COVID-19. However, the continuous emergence of new SARS-CoV-2 subtypes highlights the need to develop additional approaches that oppose viral infections. Targeting host factors that support virus entry, replication, and propagation provide opportunities to lower SARS-CoV-2 infection rates and improve COVID-19 outcome. This includes cellular cholesterol, which is critical for viral spike proteins to capture the host machinery for SARS-CoV-2 cell entry. Once endocytosed, exit of SARS-CoV-2 from the late endosomal/lysosomal compartment occurs in a cholesterol-sensitive manner. In addition, effective release of new viral particles also requires cholesterol. Hence, cholesterol-lowering statins, proprotein convertase subtilisin/kexin type 9 antibodies, and ezetimibe have revealed potential to protect against COVID-19. In addition, pharmacological inhibition of cholesterol exiting late endosomes/lysosomes identified drug candidates, including antifungals, to block SARS-CoV-2 infection. This review describes the multiple roles of cholesterol at the cell surface and endolysosomes for SARS-CoV-2 entry and the potential of drugs targeting cholesterol homeostasis to reduce SARS-CoV-2 infectivity and COVID-19 disease severity.
Collapse
Affiliation(s)
- Thomas Grewal
- School of Pharmacy, Faculty of Medicine and Health, University of Sydney, Sydney, Australia
| | - Mai Khanh Linh Nguyen
- School of Pharmacy, Faculty of Medicine and Health, University of Sydney, Sydney, Australia
| | - Christa Buechler
- Department of Internal Medicine I, Regensburg University Hospital, Regensburg, Germany
| |
Collapse
|
5
|
Lu A, Ebright B, Naik A, Tan HL, Cohen NA, Bouteiller JMC, Lazzi G, Louie SG, Humayun MS, Asante I. Hydroxypropyl-Beta Cyclodextrin Barrier Prevents Respiratory Viral Infections: A Preclinical Study. Int J Mol Sci 2024; 25:2061. [PMID: 38396738 PMCID: PMC10888609 DOI: 10.3390/ijms25042061] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Revised: 02/05/2024] [Accepted: 02/06/2024] [Indexed: 02/25/2024] Open
Abstract
The emergence and mutation of pathogenic viruses have been occurring at an unprecedented rate in recent decades. The coronavirus disease 2019 (COVID-19) pandemic caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has developed into a global public health crisis due to extensive viral transmission. In situ RNA mapping has revealed angiotensin-converting enzyme 2 (ACE2) expression to be highest in the nose and lower in the lung, pointing to nasal susceptibility as a predominant route for infection and the cause of subsequent pulmonary effects. By blocking viral attachment and entry at the nasal airway using a cyclodextrin-based formulation, a preventative therapy can be developed to reduce viral infection at the site of entry. Here, we assess the safety and antiviral efficacy of cyclodextrin-based formulations. From these studies, hydroxypropyl beta-cyclodextrin (HPBCD) and hydroxypropyl gamma-cyclodextrin (HPGCD) were then further evaluated for antiviral effects using SARS-CoV-2 pseudotypes. Efficacy findings were confirmed with SARS-CoV-2 Delta variant infection of Calu-3 cells and using a K18-hACE2 murine model. Intranasal pre-treatment with HPBCD-based formulations reduced viral load and inflammatory signaling in the lung. In vitro efficacy studies were further conducted using lentiviruses, murine hepatitis virus (MHV), and influenza A virus subtype H1N1. These findings suggest HPBCD may be used as an agnostic barrier against transmissible pathogens, including but not limited to SARS-CoV-2.
Collapse
Affiliation(s)
- Angela Lu
- Alfred E. Mann School of Pharmacy and Pharmaceutical Sciences, University of Southern California, Los Angeles, CA 90089, USA; (A.L.); (B.E.); (A.N.); (S.G.L.)
| | - Brandon Ebright
- Alfred E. Mann School of Pharmacy and Pharmaceutical Sciences, University of Southern California, Los Angeles, CA 90089, USA; (A.L.); (B.E.); (A.N.); (S.G.L.)
| | - Aditya Naik
- Alfred E. Mann School of Pharmacy and Pharmaceutical Sciences, University of Southern California, Los Angeles, CA 90089, USA; (A.L.); (B.E.); (A.N.); (S.G.L.)
| | - Hui L. Tan
- Department of Otorhinolaryngology, Head and Neck Surgery, University of Pennsylvania, Philadelphia, PA 19104, USA; (H.L.T.); (N.A.C.)
| | - Noam A. Cohen
- Department of Otorhinolaryngology, Head and Neck Surgery, University of Pennsylvania, Philadelphia, PA 19104, USA; (H.L.T.); (N.A.C.)
- Corporal Michael J. Crescenz VA Medical Center, Philadelphia, PA 19104, USA
| | - Jean-Marie C. Bouteiller
- Viterbi School of Engineering, University of Southern California, Los Angeles, CA 90007, USA; (J.-M.C.B.); (G.L.); (M.S.H.)
| | - Gianluca Lazzi
- Viterbi School of Engineering, University of Southern California, Los Angeles, CA 90007, USA; (J.-M.C.B.); (G.L.); (M.S.H.)
- Department of Ophthalmology, Keck School of Medicine, University of Southern California, Los Angeles, CA 90089, USA
| | - Stan G. Louie
- Alfred E. Mann School of Pharmacy and Pharmaceutical Sciences, University of Southern California, Los Angeles, CA 90089, USA; (A.L.); (B.E.); (A.N.); (S.G.L.)
| | - Mark S. Humayun
- Viterbi School of Engineering, University of Southern California, Los Angeles, CA 90007, USA; (J.-M.C.B.); (G.L.); (M.S.H.)
- Department of Ophthalmology, Keck School of Medicine, University of Southern California, Los Angeles, CA 90089, USA
| | - Isaac Asante
- Alfred E. Mann School of Pharmacy and Pharmaceutical Sciences, University of Southern California, Los Angeles, CA 90089, USA; (A.L.); (B.E.); (A.N.); (S.G.L.)
- Department of Ophthalmology, Keck School of Medicine, University of Southern California, Los Angeles, CA 90089, USA
| |
Collapse
|
6
|
Hou Q, Wang C, Xiong J, Wang H, Wang Z, Zhao J, Wu Q, Fu ZF, Zhao L, Zhou M. Cholesterol depletion inhibits rabies virus infection by restricting viral adsorption and fusion. Vet Microbiol 2024; 289:109952. [PMID: 38141399 DOI: 10.1016/j.vetmic.2023.109952] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2023] [Revised: 11/23/2023] [Accepted: 12/12/2023] [Indexed: 12/25/2023]
Abstract
Rabies is an ancient zoonotic disease caused by the rabies virus (RABV), and a sharp increase in rabies cases and deaths were observed following the COVID-19 pandemic, indicating that it still poses a severe public health threat in most countries in the world. Cholesterol is one of the major lipid components in cells, and the exact role of cholesterol in RABV infection remains unclear. In this study, we initially observed that cellular cholesterol levels were significantly elevated in RABV infected cells, while cholesterol depletion by using methyl-β-cyclodextrin (MβCD) could restrict RABV entry. We further found that decreasing the cholesterol level of the viral envelope could change the bullet-shaped morphology of RABV and dislodge the glycoproteins on its surface to affect RABV entry. Moreover, the depletion of cholesterol could decrease lysosomal cholesterol accumulation to inhibit RABV fusion. Finally, it was found that the depletion of cholesterol by MβCD was due to the increase of oxygen sterol production in RABV-infected cells and the enhancement of cholesterol efflux by activating liver X receptor alpha (LXRα). Together, our study reveals a novel role of cholesterol in RABV infection, providing new insight into explore of effective therapeutics for rabies.
Collapse
Affiliation(s)
- Qingxiu Hou
- National Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan 430070, China; Key Laboratory of Preventive Veterinary Medicine of Hubei Province, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China
| | - Caiqian Wang
- National Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan 430070, China; Key Laboratory of Preventive Veterinary Medicine of Hubei Province, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China
| | - Jingyi Xiong
- National Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan 430070, China; Key Laboratory of Preventive Veterinary Medicine of Hubei Province, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China
| | - Haoran Wang
- National Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan 430070, China; Key Laboratory of Preventive Veterinary Medicine of Hubei Province, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China
| | - Zhihui Wang
- National Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan 430070, China; Key Laboratory of Preventive Veterinary Medicine of Hubei Province, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China
| | - Juanjuan Zhao
- National Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan 430070, China; Key Laboratory of Preventive Veterinary Medicine of Hubei Province, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China
| | - Qiong Wu
- National Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan 430070, China; Key Laboratory of Preventive Veterinary Medicine of Hubei Province, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China
| | - Zhen F Fu
- National Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan 430070, China; Key Laboratory of Preventive Veterinary Medicine of Hubei Province, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China
| | - Ling Zhao
- National Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan 430070, China; Hubei Hongshan Laboratory, Wuhan 430070, China; Key Laboratory of Preventive Veterinary Medicine of Hubei Province, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China.
| | - Ming Zhou
- National Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan 430070, China; Hubei Hongshan Laboratory, Wuhan 430070, China; Key Laboratory of Preventive Veterinary Medicine of Hubei Province, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China.
| |
Collapse
|
7
|
Dasgupta A, Gangai S, Narayan R, Kapoor S. Mapping the Lipid Signatures in COVID-19 Infection: Diagnostic and Therapeutic Solutions. J Med Chem 2023; 66:14411-14433. [PMID: 37899546 DOI: 10.1021/acs.jmedchem.3c01238] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/31/2023]
Abstract
The COVID-19 pandemic ignited research centered around the identification of robust biomarkers and therapeutic targets. SARS-CoV-2, the virus responsible, hijacks the metabolic machinery of the host cells. It relies on lipids and lipoproteins of host cells for entry, trafficking, immune evasion, viral replication, and exocytosis. The infection causes host cell lipid metabolic remodelling. Targeting lipid-based processes is thus a promising strategy for countering COVID-19. Here, we review the role of lipids in the different steps of the SARS-CoV-2 pathogenesis and identify lipid-centric targetable avenues. We discuss lipidome changes in infected patients and their relevance as potential clinical diagnostic or prognostic biomarkers. We summarize the emerging direct and indirect therapeutic approaches for targeting COVID-19 using lipid-inspired approaches. Given that viral protein-targeted therapies may become less effective due to mutations in emerging SARS-CoV-2 variants, lipid-inspired interventions may provide additional and perhaps better means of combating this and future pandemics.
Collapse
Affiliation(s)
- Aishi Dasgupta
- Department of Chemistry, Indian Institute of Technology Bombay, Mumbai 400076, India
- IIT-Bombay Monash Academy, Indian Institute of Technology Bombay, Mumbai 400076, India
| | - Shon Gangai
- School of Chemical and Materials Sciences (SCMS), Institute of Technology Goa, Farmagudi, Ponda, Goa 403401, India
| | - Rishikesh Narayan
- School of Chemical and Materials Sciences (SCMS), Institute of Technology Goa, Farmagudi, Ponda, Goa 403401, India
- School of Interdisciplinary Life Sciences (SILS), Institute of Technology Goa, Farmagudi, Ponda, Goa 403401, India
| | - Shobhna Kapoor
- Department of Chemistry, Indian Institute of Technology Bombay, Mumbai 400076, India
- IIT-Bombay Monash Academy, Indian Institute of Technology Bombay, Mumbai 400076, India
- Graduate School of Integrated Sciences for Life, Hiroshima University, Hiroshima 739-8528, Japan
| |
Collapse
|
8
|
Raïch-Regué D, Tenorio R, Fernández de Castro I, Tarrés-Freixas F, Sachse M, Perez-Zsolt D, Muñoz-Basagoiti J, Fernández-Sánchez SY, Gallemí M, Ortega-González P, Fernández-Oliva A, Gabaldón JA, Nuñez-Delicado E, Casas J, Roca N, Cantero G, Pérez M, Usai C, Lorca-Oró C, Alert JV, Segalés J, Carrillo J, Blanco J, Clotet Sala B, Cerón-Carrasco JP, Izquierdo-Useros N, Risco C. β-Cyclodextrins as affordable antivirals to treat coronavirus infection. Biomed Pharmacother 2023; 164:114997. [PMID: 37311279 DOI: 10.1016/j.biopha.2023.114997] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2023] [Revised: 06/01/2023] [Accepted: 06/06/2023] [Indexed: 06/15/2023] Open
Abstract
The SARS-CoV-2 pandemic made evident that there are only a few drugs against coronavirus. Here we aimed to identify a cost-effective antiviral with broad spectrum activity and high safety profile. Starting from a list of 116 drug candidates, we used molecular modelling tools to rank the 44 most promising inhibitors. Next, we tested their efficacy as antivirals against α and β coronaviruses, such as the HCoV-229E and SARS-CoV-2 variants. Four drugs, OSW-1, U18666A, hydroxypropyl-β-cyclodextrin (HβCD) and phytol, showed in vitro antiviral activity against HCoV-229E and SARS-CoV-2. The mechanism of action of these compounds was studied by transmission electron microscopy and by fusion assays measuring SARS-CoV-2 pseudoviral entry into target cells. Entry was inhibited by HβCD and U18666A, yet only HβCD inhibited SARS-CoV-2 replication in the pulmonary Calu-3 cells. Compared to the other cyclodextrins, β-cyclodextrins were the most potent inhibitors, which interfered with viral fusion via cholesterol depletion. β-cyclodextrins also prevented infection in a human nasal epithelium model ex vivo and had a prophylactic effect in the nasal epithelium of hamsters in vivo. All accumulated data point to β-cyclodextrins as promising broad-spectrum antivirals against different SARS-CoV-2 variants and distant alphacoronaviruses. Given the wide use of β-cyclodextrins for drug encapsulation and their high safety profile in humans, our results support their clinical testing as prophylactic antivirals.
Collapse
Affiliation(s)
- Dalia Raïch-Regué
- IrsiCaixa, Germans Trias i Pujol Research Institute (IGTP), Can Ruti Campus, 08916, Badalona, Spain
| | - Raquel Tenorio
- Cell Structure Lab, Centro Nacional de Biotecnologia, CNB - CSIC, Campus de Cantoblanco, 28049 Madrid, Spain
| | - Isabel Fernández de Castro
- Cell Structure Lab, Centro Nacional de Biotecnologia, CNB - CSIC, Campus de Cantoblanco, 28049 Madrid, Spain
| | - Ferran Tarrés-Freixas
- IRTA, Centre de Recerca en Sanitat Animal (CReSA, IRTA-UAB), Campus de la UAB, 08193 Bellaterra (Cerdanyola del Vallès), Spain; Unitat Mixta d'Investigació IRTA-UAB en Sanitat Animal, Centre de Recerca en Sanitat Animal (CReSA), Campus de la Universitat Autònoma de Barcelona (UAB), 08193 Barcelona, Spain
| | - Martin Sachse
- Cell Structure Lab, Centro Nacional de Biotecnologia, CNB - CSIC, Campus de Cantoblanco, 28049 Madrid, Spain
| | - Daniel Perez-Zsolt
- IrsiCaixa, Germans Trias i Pujol Research Institute (IGTP), Can Ruti Campus, 08916, Badalona, Spain
| | - Jordana Muñoz-Basagoiti
- IrsiCaixa, Germans Trias i Pujol Research Institute (IGTP), Can Ruti Campus, 08916, Badalona, Spain
| | - Sara Y Fernández-Sánchez
- Cell Structure Lab, Centro Nacional de Biotecnologia, CNB - CSIC, Campus de Cantoblanco, 28049 Madrid, Spain
| | - Marçal Gallemí
- IrsiCaixa, Germans Trias i Pujol Research Institute (IGTP), Can Ruti Campus, 08916, Badalona, Spain
| | - Paula Ortega-González
- Cell Structure Lab, Centro Nacional de Biotecnologia, CNB - CSIC, Campus de Cantoblanco, 28049 Madrid, Spain
| | - Alberto Fernández-Oliva
- Cell Structure Lab, Centro Nacional de Biotecnologia, CNB - CSIC, Campus de Cantoblanco, 28049 Madrid, Spain
| | - José A Gabaldón
- Reconocimiento y Encapsulación Molecular. Universidad Católica San Antonio de Murcia (UCAM), Campus de los Jerónimos, N° 135, Guadalupe, 30107 Murcia, Spain
| | - Estrella Nuñez-Delicado
- Reconocimiento y Encapsulación Molecular. Universidad Católica San Antonio de Murcia (UCAM), Campus de los Jerónimos, N° 135, Guadalupe, 30107 Murcia, Spain
| | - Josefina Casas
- Institut de Química Avançada de Catalunya (IQAC-CSIC), Barcelona, Spain; Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBEREHD), Instituto de Salud Carlos III, 28029 Madrid, Spain
| | - Núria Roca
- IRTA, Centre de Recerca en Sanitat Animal (CReSA, IRTA-UAB), Campus de la UAB, 08193 Bellaterra (Cerdanyola del Vallès), Spain; Unitat Mixta d'Investigació IRTA-UAB en Sanitat Animal, Centre de Recerca en Sanitat Animal (CReSA), Campus de la Universitat Autònoma de Barcelona (UAB), 08193 Barcelona, Spain
| | - Guillermo Cantero
- IRTA, Centre de Recerca en Sanitat Animal (CReSA, IRTA-UAB), Campus de la UAB, 08193 Bellaterra (Cerdanyola del Vallès), Spain; Unitat Mixta d'Investigació IRTA-UAB en Sanitat Animal, Centre de Recerca en Sanitat Animal (CReSA), Campus de la Universitat Autònoma de Barcelona (UAB), 08193 Barcelona, Spain
| | - Mónica Pérez
- IRTA, Centre de Recerca en Sanitat Animal (CReSA, IRTA-UAB), Campus de la UAB, 08193 Bellaterra (Cerdanyola del Vallès), Spain; Unitat Mixta d'Investigació IRTA-UAB en Sanitat Animal, Centre de Recerca en Sanitat Animal (CReSA), Campus de la Universitat Autònoma de Barcelona (UAB), 08193 Barcelona, Spain
| | - Carla Usai
- IRTA, Centre de Recerca en Sanitat Animal (CReSA, IRTA-UAB), Campus de la UAB, 08193 Bellaterra (Cerdanyola del Vallès), Spain; Unitat Mixta d'Investigació IRTA-UAB en Sanitat Animal, Centre de Recerca en Sanitat Animal (CReSA), Campus de la Universitat Autònoma de Barcelona (UAB), 08193 Barcelona, Spain
| | - Cristina Lorca-Oró
- IRTA, Centre de Recerca en Sanitat Animal (CReSA, IRTA-UAB), Campus de la UAB, 08193 Bellaterra (Cerdanyola del Vallès), Spain; Unitat Mixta d'Investigació IRTA-UAB en Sanitat Animal, Centre de Recerca en Sanitat Animal (CReSA), Campus de la Universitat Autònoma de Barcelona (UAB), 08193 Barcelona, Spain
| | - Júlia-Vergara Alert
- IRTA, Centre de Recerca en Sanitat Animal (CReSA, IRTA-UAB), Campus de la UAB, 08193 Bellaterra (Cerdanyola del Vallès), Spain; Unitat Mixta d'Investigació IRTA-UAB en Sanitat Animal, Centre de Recerca en Sanitat Animal (CReSA), Campus de la Universitat Autònoma de Barcelona (UAB), 08193 Barcelona, Spain
| | - Joaquim Segalés
- Unitat Mixta d'Investigació IRTA-UAB en Sanitat Animal, Centre de Recerca en Sanitat Animal (CReSA), Campus de la Universitat Autònoma de Barcelona (UAB), 08193 Barcelona, Spain; Departament de Sanitat i Anatomia Animals, Facultat de Veterinària, UAB, 08193 Bellaterra (Cerdanyola del Vallès), Spain
| | - Jorge Carrillo
- IrsiCaixa, Germans Trias i Pujol Research Institute (IGTP), Can Ruti Campus, 08916, Badalona, Spain
| | - Julià Blanco
- IrsiCaixa, Germans Trias i Pujol Research Institute (IGTP), Can Ruti Campus, 08916, Badalona, Spain; University of Vic-Central University of Catalonia (UVic-UCC), 08500 Vic, Spain; Consorcio Centro de Investigación Biomédica en Red de Enfermedades Infecciosas (CIBERINFEC), Instituto de Salud Carlos III, 28029 Madrid, Spain
| | - Bonaventura Clotet Sala
- IrsiCaixa, Germans Trias i Pujol Research Institute (IGTP), Can Ruti Campus, 08916, Badalona, Spain; University of Vic-Central University of Catalonia (UVic-UCC), 08500 Vic, Spain; Consorcio Centro de Investigación Biomédica en Red de Enfermedades Infecciosas (CIBERINFEC), Instituto de Salud Carlos III, 28029 Madrid, Spain
| | - José P Cerón-Carrasco
- Centro Universitario de la Defensa, Universidad Politécnica de Cartagena, C/Coronel López Peña s/n, Base Aérea de San Javier, Santiago de la Ribera, 30720 Murcia, Spain.
| | - Nuria Izquierdo-Useros
- IrsiCaixa, Germans Trias i Pujol Research Institute (IGTP), Can Ruti Campus, 08916, Badalona, Spain; Consorcio Centro de Investigación Biomédica en Red de Enfermedades Infecciosas (CIBERINFEC), Instituto de Salud Carlos III, 28029 Madrid, Spain.
| | - Cristina Risco
- Cell Structure Lab, Centro Nacional de Biotecnologia, CNB - CSIC, Campus de Cantoblanco, 28049 Madrid, Spain.
| |
Collapse
|
9
|
Lekshmi VS, Asha K, Sanicas M, Asi A, Arya UM, Kumar B. PI3K/Akt/Nrf2 mediated cellular signaling and virus-host interactions: latest updates on the potential therapeutic management of SARS-CoV-2 infection. Front Mol Biosci 2023; 10:1158133. [PMID: 37325475 PMCID: PMC10267462 DOI: 10.3389/fmolb.2023.1158133] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2023] [Accepted: 05/22/2023] [Indexed: 06/17/2023] Open
Abstract
The emergence and re-emergence of viral diseases, which cause significant global mortality and morbidity, are the major concerns of this decade. Of these, current research is focused majorly on the etiological agent of the COVID-19 pandemic, SARS-CoV-2. Understanding the host response and metabolic changes during viral infection may provide better therapeutic targets for the proper management of pathophysiological conditions associated with SARS-CoV-2 infection. We have achieved control over most emerging viral diseases; however, a lack of understanding of the underlying molecular events prevents us from exploring novel therapeutic targets, leaving us forced to witness re-emerging viral infections. SARS-CoV-2 infection is usually accompanied by oxidative stress, which leads to an overactive immune response, the release of inflammatory cytokines, increasing lipid production, and also alterations in the endothelial and mitochondrial functions. PI3K/Akt signaling pathway confers protection against oxidative injury by various cell survival mechanisms including Nrf2-ARE mediated antioxidant transcriptional response. SARS-CoV-2 is also reported to hijack this pathway for its survival within host and few studies have suggested the role of antioxidants in modulating the Nrf2 pathway to manage disease severity. This review highlights the interrelated pathophysiological conditions associated with SARS-CoV-2 infection and the host survival mechanisms mediated by PI3K/Akt/Nrf2 signaling pathways that can help ameliorate the severity of the disease and provide effective antiviral targets against SARS-CoV-2.
Collapse
Affiliation(s)
- V. S. Lekshmi
- Department of Antiviral Research, Institute of Advanced Virology, Thiruvananthapuram, Kerala, India
| | - Kumari Asha
- Department of Microbiology and Immunology, Chicago Medical School, Rosalind Franklin University of Medicine and Science, North Chicago, IL, United States
| | | | - Abhila Asi
- Department of Antiviral Research, Institute of Advanced Virology, Thiruvananthapuram, Kerala, India
| | - U. M. Arya
- Department of Antiviral Research, Institute of Advanced Virology, Thiruvananthapuram, Kerala, India
| | - Binod Kumar
- Department of Antiviral Research, Institute of Advanced Virology, Thiruvananthapuram, Kerala, India
| |
Collapse
|
10
|
Alboni S, Secco V, Papotti B, Vilella A, Adorni MP, Zimetti F, Schaeffer L, Tascedda F, Zoli M, Leblanc P, Villa E. Hydroxypropyl-β-Cyclodextrin Depletes Membrane Cholesterol and Inhibits SARS-CoV-2 Entry into HEK293T-ACE hi Cells. Pathogens 2023; 12:pathogens12050647. [PMID: 37242317 DOI: 10.3390/pathogens12050647] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2023] [Revised: 04/23/2023] [Accepted: 04/24/2023] [Indexed: 05/28/2023] Open
Abstract
Vaccination has drastically decreased mortality due to coronavirus disease 19 (COVID-19), but not the rate of acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection. Alternative strategies such as inhibition of virus entry by interference with angiotensin-I-converting enzyme 2 (ACE2) receptors could be warranted. Cyclodextrins (CDs) are cyclic oligosaccharides that are able to deplete cholesterol from membrane lipid rafts, causing ACE2 receptors to relocate to areas devoid of lipid rafts. To explore the possibility of reducing SARS-CoV-2 entry, we tested hydroxypropyl-β-cyclodextrin (HPβCD) in a HEK293T-ACE2hi cell line stably overexpressing human ACE2 and Spike-pseudotyped SARS-CoV-2 lentiviral particles. We showed that HPβCD is not toxic to the cells at concentrations up to 5 mM, and that this concentration had no significant effect on cell cycle parameters in any experimental condition tested. Exposure of HEK293T-ACEhi cells to concentrations of HPβCD starting from 2.5 mM to 10 mM showed a concentration-dependent reduction of approximately 50% of the membrane cholesterol content. In addition, incubation of HEK293T-ACEhi cells with HIV-S-CoV-2 pseudotyped particles in the presence of increasing concentrations of HPβCD (from 0.1 to 10 mM) displayed a concentration-dependent effect on SARS-CoV-2 entry efficiency. Significant effects were detected at concentrations at least one order of magnitude lower than the lowest concentration showing toxic effects. These data indicate that HPβCD is a candidate for use as a SARS-CoV-2 prophylactic agent.
Collapse
Affiliation(s)
- Silvia Alboni
- Department of Life Sciences, University of Modena and Reggio Emilia, 41121 Modena, Italy
- Centre for Neuroscience and Neurotechnology, University of Modena and Reggio Emilia, 41121 Modena, Italy
| | - Valentina Secco
- Department of Biomedical, Metabolic and Neural Sciences, University of Modena and Reggio Emilia, 41121 Modena, Italy
| | - Bianca Papotti
- Department of Food and Drug, University of Parma, 43124 Parma, Italy
| | - Antonietta Vilella
- Centre for Neuroscience and Neurotechnology, University of Modena and Reggio Emilia, 41121 Modena, Italy
- Department of Biomedical, Metabolic and Neural Sciences, University of Modena and Reggio Emilia, 41121 Modena, Italy
| | - Maria Pia Adorni
- Department of Medicine and Surgery, University of Parma, 43125 Parma, Italy
| | - Francesca Zimetti
- Department of Food and Drug, University of Parma, 43124 Parma, Italy
| | - Laurent Schaeffer
- Institut NeuroMyoGène INMG-PGNM Pathophysiologie & Génétique du Neurone et du Muscle, UMR5261, Inserm U1315, 69008 Lyon, France
| | - Fabio Tascedda
- Department of Life Sciences, University of Modena and Reggio Emilia, 41121 Modena, Italy
- Centre for Neuroscience and Neurotechnology, University of Modena and Reggio Emilia, 41121 Modena, Italy
- Consorzio Interuniversitario Biotecnologie (CIB), 34148 Trieste, Italy
| | - Michele Zoli
- Centre for Neuroscience and Neurotechnology, University of Modena and Reggio Emilia, 41121 Modena, Italy
- Department of Biomedical, Metabolic and Neural Sciences, University of Modena and Reggio Emilia, 41121 Modena, Italy
| | - Pascal Leblanc
- Institut NeuroMyoGène INMG-PGNM Pathophysiologie & Génétique du Neurone et du Muscle, UMR5261, Inserm U1315, 69008 Lyon, France
| | - Erica Villa
- CHIMOMO Department, University of Modena and Reggio Emilia, and Azienda Ospedaliero-Universitaria di Modena, 41124 Modena, Italy
| |
Collapse
|
11
|
Vaslin MFS, da Silva GPD, Leal AA, Bueno LM, Bittar C, de Souza GF, Lourenço K, Guedes MIMC, Proença-Módena JL, Araújo Júnior JP, Ferreira HL, da Fonseca FG. 33rd Brazilian Society for Virology (SBV) 2022 Annual Meeting. Viruses 2023; 15:v15040943. [PMID: 37112924 PMCID: PMC10145839 DOI: 10.3390/v15040943] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2023] [Accepted: 03/20/2023] [Indexed: 04/29/2023] Open
Abstract
Each year, the Brazilian Society for Virology promotes a national meeting during the second semester of the year. In October 2022, the 33rd meeting took place at Arraial da Ajuda, Porto Seguro, Bahia, in-person:.this was the first in-person meeting since 2019, as the 2020 and 2021 events occurred online due to the issues imposed by COVID-19. It was a great pleasure for the whole audience to return to an in-person event, which certainly improved the interactions between the attendees in all ways. As usual, the meeting involved massive participation of undergraduate, graduate, and postdoc students, and several noteworthy international researchers were present. During five afternoons and evenings, attendees could discuss and learn about the most recent data presented by distinguished scientists from Brazil and other countries. In addition, young virology researchers from all levels could present their latest results as oral presentations and posters. The meeting covered all virology areas, with conferences and roundtables about human, veterinary, fundamental, environmental, invertebrate, and plant virology. The costs associated with attending the in-person event caused a slight reduction in the number of attendees compared to the two online events. However, even with this issue, the attendance was impressive. The meeting successfully achieved its most important goals: inspiring young and senior scientists and discussing high-quality, up-to-date virology research.
Collapse
Affiliation(s)
- Maite Freitas Silva Vaslin
- Departamento de Virologia, Instituto de Microbiologia Paulo de Góes, Universidade Federal do Rio de Janeiro (UFRJ), Rio de Janeiro 21941-599, Brazil
| | - Gustavo Peixoto Duarte da Silva
- Departamento de Virologia, Instituto de Microbiologia Paulo de Góes, Universidade Federal do Rio de Janeiro (UFRJ), Rio de Janeiro 21941-599, Brazil
| | - Alessandra Alevato Leal
- Laboratório de Pesquisa em Virologia Animal, Departamento de Medicina Veterinária Preventiva, Escola de Veterinária, Universidade Federal de Minas Gerais (UFMG), Belo Horizonte 31270-901, Brazil
| | - Larissa Mayumi Bueno
- Departamento de Medicina Veterinária, FZEA-USP, Universidade de São Paulo, Pirassununga 13635-900, Brazil
| | - Cíntia Bittar
- Departamento de Biologia, Instituto de Biociências Letras e Ciências, Universidade Estadual Paulista (UNESP), São José do Rio Preto 15054-000, Brazil
| | - Gabriela Fabiano de Souza
- Departamento de Genética, Evolução, Microbiologia e Imunologia, Instituto de Biologia, Universidade Estadual de Campinas (UNICAMP), Campinas 13083-862, Brazil
| | - Karine Lourenço
- Instituto de Biotecnologia (IBTEC), Universidade Estadual Paulista (UNESP), Botucatu 18607-440, Brazil
| | - Maria Isabel Maldonado Coelho Guedes
- Laboratório de Pesquisa em Virologia Animal, Departamento de Medicina Veterinária Preventiva, Escola de Veterinária, Universidade Federal de Minas Gerais (UFMG), Belo Horizonte 31270-901, Brazil
| | - José Luiz Proença-Módena
- Departamento de Genética, Evolução, Microbiologia e Imunologia, Instituto de Biologia, Universidade Estadual de Campinas (UNICAMP), Campinas 13083-862, Brazil
| | - João Pessoa Araújo Júnior
- Instituto de Biotecnologia (IBTEC), Universidade Estadual Paulista (UNESP), Botucatu 18607-440, Brazil
| | - Helena Lage Ferreira
- Departamento de Medicina Veterinária, FZEA-USP, Universidade de São Paulo, Pirassununga 13635-900, Brazil
| | - Flávio Guimarães da Fonseca
- Instituto de Ciências Biológicas (ICB), Universidade Federal de Minas Gerais (UFMG), Belo Horizonte 31270-901, Brazil
| |
Collapse
|