1
|
Tshiabuila D, Choga W, San JE, Maponga T, Van Zyl G, Giandhari J, Pillay S, Preiser W, Naidoo Y, Baxter C, Martin DP, de Oliveira T. An Oxford Nanopore Technology-Based Hepatitis B Virus Sequencing Protocol Suitable for Genomic Surveillance Within Clinical Diagnostic Settings. Int J Mol Sci 2024; 25:11702. [PMID: 39519254 PMCID: PMC11546910 DOI: 10.3390/ijms252111702] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2024] [Revised: 10/20/2024] [Accepted: 10/24/2024] [Indexed: 11/16/2024] Open
Abstract
Chronic Hepatitis B Virus (HBV) infection remains a significant public health concern, particularly in Africa, where the burden is substantial. HBV is an enveloped virus, classified into ten phylogenetically distinct genotypes (A-J). Tests to determine HBV genotypes are based on full-genome sequencing or reverse hybridization. In practice, both approaches have limitations. Whereas diagnostic sequencing, generally using the Sanger approach, tends to focus only on the S-gene and yields little or no information on intra-patient HBV genetic diversity, reverse hybridization detects only known genotype-specific mutations. To resolve these limitations, we developed an Oxford Nanopore Technology (ONT)-based HBV diagnostic sequencing protocol suitable for clinical virology that yields both complete genome sequences and extensive intra-patient HBV diversity data. Specifically, the protocol involves tiling-based PCR amplification of HBV sequences, library preparation using the ONT Rapid Barcoding Kit (Oxford nanopore Technologies, Oxford, OX4 4DQ, UK), ONT GridION sequencing, genotyping using genome detective software v1.132/1.133, a recombination analysis using jpHMM (26 October 2011 version) and RDP5.61 software, and drug resistance profiling using Geno2pheno v2.0 software. We prove the utility of our protocol by efficiently generating and characterizing high-quality near full-length HBV genomes from 148 residual diagnostic samples from HBV-infected patients in the Western Cape province of South Africa, providing valuable insights into the genetic diversity and epidemiology of HBV in this region of the world.
Collapse
Affiliation(s)
- Derek Tshiabuila
- Centre for Epidemic Response and Innovation (CERI), Stellenbosch University, Stellenbosch 7600, South Africa; (W.C.); (Y.N.); (C.B.); (T.d.O.)
| | - Wonderful Choga
- Centre for Epidemic Response and Innovation (CERI), Stellenbosch University, Stellenbosch 7600, South Africa; (W.C.); (Y.N.); (C.B.); (T.d.O.)
| | - James E. San
- Duke Human Vaccine Institute, Duke University Medical Center, Durham, NC 27710, USA;
| | - Tongai Maponga
- Division of Medical Virology, National Health Laboratory Service Tygerberg, Faculty of Medicine and Health Sciences, Stellenbosch University, Cape Town 8000, South Africa; (T.M.); (G.V.Z.)
| | - Gert Van Zyl
- Division of Medical Virology, National Health Laboratory Service Tygerberg, Faculty of Medicine and Health Sciences, Stellenbosch University, Cape Town 8000, South Africa; (T.M.); (G.V.Z.)
| | - Jennifer Giandhari
- KwaZulu Natal Research and Innovation Sequencing Platform (KRISP), University of KwaZulu Natal, Durban 4001, South Africa; (J.G.); (S.P.)
| | - Sureshnee Pillay
- KwaZulu Natal Research and Innovation Sequencing Platform (KRISP), University of KwaZulu Natal, Durban 4001, South Africa; (J.G.); (S.P.)
| | - Wolfgang Preiser
- Division of Medical Virology, National Health Laboratory Service Tygerberg, Faculty of Medicine and Health Sciences, Stellenbosch University, Cape Town 8000, South Africa; (T.M.); (G.V.Z.)
| | - Yeshnee Naidoo
- Centre for Epidemic Response and Innovation (CERI), Stellenbosch University, Stellenbosch 7600, South Africa; (W.C.); (Y.N.); (C.B.); (T.d.O.)
| | - Cheryl Baxter
- Centre for Epidemic Response and Innovation (CERI), Stellenbosch University, Stellenbosch 7600, South Africa; (W.C.); (Y.N.); (C.B.); (T.d.O.)
| | - Darren P. Martin
- Computational Biology Division, Department of Integrative Biomedical Sciences, Institute of Infectious Diseases and Molecular Medicine, University of Cape Town, Cape Town 8000, South Africa;
| | - Tulio de Oliveira
- Centre for Epidemic Response and Innovation (CERI), Stellenbosch University, Stellenbosch 7600, South Africa; (W.C.); (Y.N.); (C.B.); (T.d.O.)
- KwaZulu Natal Research and Innovation Sequencing Platform (KRISP), University of KwaZulu Natal, Durban 4001, South Africa; (J.G.); (S.P.)
| |
Collapse
|
2
|
Tshiabuila D, Choga W, James SE, Maponga T, Preiser W, van Zyl G, Moir M, van Wyk S, Giandhari J, Pillay S, Anyaneji UJ, Lessells RJ, Naidoo Y, Sanko TJ, Wilkinson E, Tegally H, Baxter C, Martin DP, de Oliveira T. An Oxford Nanopore Technology-Based Hepatitis B Virus Sequencing Protocol Suitable For Genomic Surveillance Within Clinical Diagnostic Settings. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2024:2024.01.19.24301519. [PMID: 38293032 PMCID: PMC10827254 DOI: 10.1101/2024.01.19.24301519] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/01/2024]
Abstract
Chronic hepatitis B virus (HBV) infection remains a significant public health concern, particularly in Africa, where there is a substantial burden. HBV is an enveloped virus, with isolates being classified into ten phylogenetically distinct genotypes (A - J) determined based on full-genome sequence data or reverse hybridization-based diagnostic tests. In practice, limitations are noted in that diagnostic sequencing, generally using Sanger sequencing, tends to focus only on the S-gene, yielding little or no information on intra-patient HBV genetic diversity with very low-frequency variants and reverse hybridization detects only known genotype-specific mutations. To resolve these limitations, we developed an Oxford Nanopore Technology (ONT)-based HBV genotyping protocol suitable for clinical virology, yielding complete HBV genome sequences and extensive data on intra-patient HBV diversity. Specifically, the protocol involves tiling-based PCR amplification of HBV sequences, library preparation using the ONT Rapid Barcoding Kit, ONT GridION sequencing, genotyping using Genome Detective software, recombination analysis using jpHMM and RDP5 software, and drug resistance profiling using Geno2pheno software. We prove the utility of our protocol by efficiently generating and characterizing high-quality near full-length HBV genomes from 148 left-over diagnostic Hepatitis B patient samples obtained in the Western Cape province of South Africa, providing valuable insights into the genetic diversity and epidemiology of HBV in this region of the world.
Collapse
Affiliation(s)
- Derek Tshiabuila
- Centre for Epidemic Response and Innovation (CERI), Stellenbosch University, South Africa
| | - Wonderful Choga
- Centre for Epidemic Response and Innovation (CERI), Stellenbosch University, South Africa
| | - San E. James
- Centre for Epidemic Response and Innovation (CERI), Stellenbosch University, South Africa
- KwaZulu Natal Research and Innovation Sequencing Platform (KRISP), University of KwaZulu Natal, Durban, South Africa
| | - Tongai Maponga
- Division of Medical Virology, Faculty of Medicine and Health Sciences, Stellenbosch University, Cape Town, South Africa & National Health Laboratory Service
| | - Wolfgang Preiser
- Division of Medical Virology, Faculty of Medicine and Health Sciences, Stellenbosch University, Cape Town, South Africa & National Health Laboratory Service
| | - Gert van Zyl
- Division of Medical Virology, Faculty of Medicine and Health Sciences, Stellenbosch University, Cape Town, South Africa & National Health Laboratory Service
| | - Monika Moir
- Centre for Epidemic Response and Innovation (CERI), Stellenbosch University, South Africa
| | - Stephanie van Wyk
- Collaborating Centre for Optimizing Antimalarial Therapy (CCOAT), Mitigating Antimalarial Resistance Consortium in South East Africa (MARC SEA), Department of Medicine, Division of Clinical Pharmacology, University of Cape Town, South Africa
| | - Jennifer Giandhari
- KwaZulu Natal Research and Innovation Sequencing Platform (KRISP), University of KwaZulu Natal, Durban, South Africa
| | - Sureshnee Pillay
- KwaZulu Natal Research and Innovation Sequencing Platform (KRISP), University of KwaZulu Natal, Durban, South Africa
| | - Ugochukwu J. Anyaneji
- KwaZulu Natal Research and Innovation Sequencing Platform (KRISP), University of KwaZulu Natal, Durban, South Africa
| | - Richard J. Lessells
- KwaZulu Natal Research and Innovation Sequencing Platform (KRISP), University of KwaZulu Natal, Durban, South Africa
| | - Yeshnee Naidoo
- Centre for Epidemic Response and Innovation (CERI), Stellenbosch University, South Africa
| | - Tomasz Janusz Sanko
- Centre for Epidemic Response and Innovation (CERI), Stellenbosch University, South Africa
| | - Eduan Wilkinson
- Centre for Epidemic Response and Innovation (CERI), Stellenbosch University, South Africa
| | - Houriiyah Tegally
- Centre for Epidemic Response and Innovation (CERI), Stellenbosch University, South Africa
| | - Cheryl Baxter
- Centre for Epidemic Response and Innovation (CERI), Stellenbosch University, South Africa
| | - Darren P. Martin
- Computational Biology Division, Department of Integrative Biomedical Sciences, Institute of Infectious Diseases and Molecular Medicine, University of Cape Town, Observatory 7925, South Africa
| | - Tulio de Oliveira
- Centre for Epidemic Response and Innovation (CERI), Stellenbosch University, South Africa
- KwaZulu Natal Research and Innovation Sequencing Platform (KRISP), University of KwaZulu Natal, Durban, South Africa
| |
Collapse
|