1
|
Dong R, Zhu S, Cheng X, Gao X, Wang Z, Wang Y. Study on the biodynamic characteristics and internal vibration behaviors of a seated human body under biomechanical characteristics. Biomech Model Mechanobiol 2024; 23:1449-1468. [PMID: 38671153 DOI: 10.1007/s10237-024-01849-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2023] [Accepted: 04/07/2024] [Indexed: 04/28/2024]
Abstract
To provide reference and theoretical guidance for establishing human body dynamics models and studying biomechanical vibration behavior, this study aimed to develop and verify a computational model of a three-dimensional seated human body with detailed anatomical structure under complex biomechanical characteristics to investigate dynamic characteristics and internal vibration behaviors of the human body. Fifty modes of a seated human body were extracted by modal method. The intervertebral disc and head motions under uniaxial white noise excitation (between 0 and 20 Hz at 1.0, 0.5 and 0.5 m/s2 r.m.s. for vertical, fore-aft and lateral direction, respectively) were computed by random response analysis method. It was found that there were many modes of the seated human body in the low-frequency range, and the modes that had a great impact on seated human vibration were mainly distributed below 13 Hz. The responses of different positions of the spine varied greatly under the fore-aft and lateral excitation, but the maximum stress was distributed in the lumbar under different excitations, which could explain why drivers were prone to lower back pain after prolonged driving. Moreover, there was a large vibration coupling between the vertical and fore-aft direction of an upright seated human body, while the vibration couplings between the lateral and other directions were very small. Overall, the study could provide new insights into not only the overall dynamic characteristics of the human body, but also the internal local motion and biomechanical characteristics under different excitations.
Collapse
Affiliation(s)
- RuiChun Dong
- School of Mechanical Engineering, Shandong University of Technology, Zibo, 255000, People's Republic of China.
| | - Shuai Zhu
- School of Mechanical Engineering, Shandong University of Technology, Zibo, 255000, People's Republic of China
| | - Xiang Cheng
- School of Mechanical Engineering, Shandong University of Technology, Zibo, 255000, People's Republic of China
| | - Xiang Gao
- School of Mechanical Engineering, Shandong University of Technology, Zibo, 255000, People's Republic of China
| | - ZhongLong Wang
- School of Mechanical Engineering, Shandong University of Technology, Zibo, 255000, People's Republic of China
| | - Yi Wang
- School of Chemical Engineering, University of Birmingham, Birmingham, B15 2TT, UK
| |
Collapse
|
2
|
Dong R, Tang S, Cheng X, Wang Z, Zhang P, Wei Z. Influence of foot excitation and shin posture on the vibration behavior of the entire spine inside a seated human body. Comput Methods Biomech Biomed Engin 2024; 27:1664-1679. [PMID: 37668064 DOI: 10.1080/10255842.2023.2252956] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2023] [Revised: 07/28/2023] [Accepted: 08/17/2023] [Indexed: 09/06/2023]
Abstract
Due to ethical issues and simplification of traditional biomechanical models, experimental methods and traditional computer methods were difficult to quantify the effects of foot excitation and shin posture on vibration behavior of the entire spine inside a seated human body under vertical whole-body vibration. This study developed and verified different three-dimensional (3D) finite element (FE) models of seated human body with detailed anatomical structure under the biomechanical characteristics to predict vibration behavior of the entire spine inside a seated human body with different foot excitation (with and without vibration) and shin posture (vertical and tilt posture). Random response analysis was performed to study the transmissibility of the entire spine to seat under vertical white noise excitation between 0 and 20 Hz at 0.5 m/s2 r.m.s. The results showed that although the foot excitation could reduce the fore-aft transmissibility in the cervical spine (23% reduction), it could significantly increase that in the lumbar spine (52% increase), which resulted in complex alternating stresses at lumbar spine and made the lumbar spine more vulnerable to injury in long-term vibration environment. Moreover, the shin tilt posture made the maximum fore-aft transmissibility in the lumbar spine move to the upper lumbar spine. The study provided new insights into the influence of foot excitation and shin posture on the vibration behavior of the entire spine inside a seated human body. Foot excitation exposed the lumbar spine to complex alternating stresses and made it more vulnerable to injury in long-term whole body vibration.
Collapse
Affiliation(s)
- RuiChun Dong
- School of Mechanical Engineering, Shandong University of Technology, Zibo, P.R. China
| | - ShengJie Tang
- School of Mechanical Engineering, Shandong University of Technology, Zibo, P.R. China
| | - Xiang Cheng
- School of Mechanical Engineering, Shandong University of Technology, Zibo, P.R. China
| | - ZongLiang Wang
- Key Laboratory of Polymer Ecomaterials, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, P.R. China
| | - PeiBiao Zhang
- Key Laboratory of Polymer Ecomaterials, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, P.R. China
| | - Zheng Wei
- School of Mechanical Engineering, Shandong University of Technology, Zibo, P.R. China
| |
Collapse
|
3
|
Tang SJ, Dong RC, Cheng X, Liu YT, Wang ZL, Zhang PB. Effect of anteroposterior vibration frequency on the risk of lumbar injury in seated individuals. ERGONOMICS 2024:1-13. [PMID: 39150052 DOI: 10.1080/00140139.2024.2391591] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/05/2024] [Accepted: 08/06/2024] [Indexed: 08/17/2024]
Abstract
Few studies investigate the impact of anterior-posterior excitation frequency on the time-domain vibrational response and injury risk of the lumbar spine in seated individuals. Firstly, this study utilised a previously developed finite element model of an upright seated human body on a rigid chair without a backrest to investigate the modes that affect the anterior-posterior vibrations of the seated body. Subsequently, transient dynamic analysis was employed to calculate the lumbar spine's time-domain responses (displacement, stress, and pressure) and risk factors under anteroposterior sinusoidal excitation at varying frequencies (1-8 Hz). Modal analysis suggested the frequencies significantly affecting the lumbar spine's vibration were notably at 4.7 Hz and 5.5 Hz. The transient analysis results and risk factor assessment indicated that the lumbar responses were most pronounced at 5 Hz. In addition, risk factor assessment showed that long-term exposure to 8 Hz vibration was associated with a greater risk of lumbar injury.
Collapse
Affiliation(s)
- Sheng-Jie Tang
- School of Mechanical Engineering, Shandong University of Technology, Zibo, PR China
| | - Rui-Chun Dong
- School of Mechanical Engineering, Shandong University of Technology, Zibo, PR China
| | - Xiang Cheng
- School of Mechanical Engineering, Shandong University of Technology, Zibo, PR China
| | - Yi-Tang Liu
- School of Mechanical Engineering, Shandong University of Technology, Zibo, PR China
| | - Zong-Liang Wang
- Key Laboratory of Polymer Ecomaterials, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, PR China
| | - Pei-Biao Zhang
- Key Laboratory of Polymer Ecomaterials, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, PR China
| |
Collapse
|
4
|
Luo H, Cao X, Dong Y, Li Y. Simulation and experimental study on the stability and comfortability of the wheelchair human system under uneven pavement. Front Bioeng Biotechnol 2023; 11:1279675. [PMID: 38026870 PMCID: PMC10652388 DOI: 10.3389/fbioe.2023.1279675] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2023] [Accepted: 10/13/2023] [Indexed: 12/01/2023] Open
Abstract
With the improvement in the level of science and technology and the improvement of people's living standards, the functions of traditional manual wheelchairs have been unable to meet people's living needs. Therefore, traditional wheelchairs have been gradually replaced by smart wheelchairs. Compared with traditional wheelchairs, smart wheelchairs have the characteristics of light operation and faster speed. However, when driving on some complex road surfaces, the vibration generated by the bumps of the motorcycle will cause damage to the human body, so wheelchairs with good electric power and stability can better meet the needs of people and make up for their travel needs. Based on the traditional vehicle stability analysis method, the mathematical theory of roll stability and pitch stability of the wheelchair-human system was established. We built a multi-body dynamics model with human skeleton and joint stiffness based on the multi-body dynamics method. The functioning of the wheelchair-human system was simulated and analyzed on the ditch, step, and combined road. The acceleration and Euler angle changes of the human head, chest, and wheelchair truss position were obtained, and the data results were analyzed to evaluate the stability and comfort of the system. Finally, a wheelchair test platform was built, and the road driving test was carried out according to the simulation conditions to obtain the system acceleration and angle data during the driving process. The simulation analysis was compared to verify the accuracy of the multi-body dynamics method, and the stability and comfort of the system were evaluated.
Collapse
Affiliation(s)
- Haitao Luo
- State Key Laboratory of Robotics, Shenyang Institute of Automation, Chinese Academy of Sciences, Shenyang, China
- Institutes for Robotics and Intelligent Manufacturing, Chinese Academy of Sciences, Shenyang, China
| | - Xuan Cao
- School of Mechanical Engineering, Shenyang Ligong University, Shenyang, China
| | - Yuming Dong
- State Key Laboratory of Robotics, Shenyang Institute of Automation, Chinese Academy of Sciences, Shenyang, China
- School of Mechanical Engineering, Shenyang University of Technology, Shenyang, China
| | - Yuxin Li
- State Key Laboratory of Robotics, Shenyang Institute of Automation, Chinese Academy of Sciences, Shenyang, China
- University of Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
5
|
Zhang C, Guo LX. Effect of whole-body vibration at different frequencies on the lumbar spine: A finite element study based on a whole human body model. Proc Inst Mech Eng H 2022; 236:1752-1761. [DOI: 10.1177/09544119221135688] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Many previous studies have found that occupational drivers commonly suffered from low back pain, and low back pain and degeneration of the intervertebral disc might be associated with vibration conditions. However, the biomechanical mechanisms of whole-body vibration that caused pain and injury were not clear. In this study, a validated whole human body finite element model was used, and vibration loads at frequencies of 3, 5, 7 and 9 Hz were loaded to evaluate the frequency effects on the spine. The results showed that the responses of the spine were strong at the 5 Hz vibration load. Vibration loads would produce alternating stresses and bulges in the annulus fibrosus and change the direction of the pressure in the nucleus pulposus. The posterior region of the intervertebral disc showed greater stress fluctuations than the anterior region. The Risk Factors showed that long-term exposure to whole-body vibrations at 5 and 7 Hz might have greater adverse effects on the spine. The findings of this study confirmed that vibrations near the resonance frequency of the human body would cause more injuries to the spine than other frequencies. Alternating stress and bulge might cause fatigue and the degeneration of the intervertebral disc, which might be the mechanisms of spinal injury caused by whole-body vibration, and the posterior regions of the intervertebral disc were more susceptible to degeneration. Some appropriate measures should be taken to reduce the adverse effects of whole-body vibration on spinal health.
Collapse
Affiliation(s)
- Chi Zhang
- School of Mechanical Engineering and Automation, Northeastern University, Shenyang, China
| | - Li-Xin Guo
- School of Mechanical Engineering and Automation, Northeastern University, Shenyang, China
| |
Collapse
|
6
|
Guo LX, Zhang C. Development and Validation of a Whole Human Body Finite Element Model with Detailed Lumbar Spine. World Neurosurg 2022; 163:e579-e592. [PMID: 35436583 DOI: 10.1016/j.wneu.2022.04.037] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2022] [Revised: 04/06/2022] [Accepted: 04/07/2022] [Indexed: 10/18/2022]
Abstract
OBJECTIVE Investigations showed that low back pain of occupational drivers might be closely related to the whole-body vibration. Restricted by ethical concerns, the finite element method had become a viable alternative to invasive human experiments. Many mechanical behaviors of the human spine inside of the human body were unclear; therefore, a human whole-body finite element model might be required to better understand the lumbar behavior under whole-body vibration. METHODS In this study, a human whole-body finite element model with a detailed lumbar spine segment was developed. Several validations were performed to ensure the correctness of this model. RESULTS The results of anthropometry and geometry validation, static validation, and dynamic validation were presented in this study. The validation results showed that the whole human body model was reasonable and valid by comparing with published data. CONCLUSIONS The model developed in this study could reflect the biomechanical response of the human lumbar spine under vibration and could be used in further vibration analysis and offer proposals for protecting human body under whole-body vibration environment.
Collapse
Affiliation(s)
- Li-Xin Guo
- School of Mechanical Engineering and Automation, Northeastern University, Shenyang, China.
| | - Chi Zhang
- School of Mechanical Engineering and Automation, Northeastern University, Shenyang, China
| |
Collapse
|
7
|
Simulating 3D Human Postural Stabilization in Vibration and Dynamic Driving. APPLIED SCIENCES-BASEL 2022. [DOI: 10.3390/app12136657] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
In future automated vehicles we will often engage in non-driving tasks and will not watch the road. This will affect postural stabilization and may elicit discomfort or even motion sickness in dynamic driving. Future vehicles will accommodate this with properly designed seats and interiors, whereas comfortable vehicle motion will be achieved with smooth driving styles and well-designed (active) suspensions. To support research and development in dynamic comfort, this paper presents the validation of a multi-segment full-body human model, including visuo-vestibular and muscle spindle feedback, for postural stabilization. Dynamic driving is evaluated using a “sickening drive”, including a 0.2 Hz 4 m/s2 slalom. Vibration transmission is evaluated with compliant automotive seats, applying 3D platform motion and evaluating 3D translation and rotation of pelvis, trunk and head. The model matches human motion in dynamic driving and reproduces fore–aft, lateral and vertical oscillations. Visuo-vestibular and muscle spindle feedback are shown to be essential, in particular, for head–neck stabilization. Active leg muscle control at the hips and knees is shown to be essential to stabilize the trunk in the high-amplitude slalom condition but not with low-amplitude horizontal vibrations. However, active leg muscle control can strongly affect 4–6 Hz vertical vibration transmission. Compared to the vibration tests, the dynamic driving tests show enlarged postural control gains to minimize trunk and head roll and pitch and to align head yaw with driving direction. Human modelling can enable the insights required to achieve breakthrough comfort enhancements, while enabling efficient developments for a wide range of driving conditions, body sizes and other factors. Hence, modelling human postural control can accelerate the innovation of seats and vehicle motion-control strategies for (automated) vehicles.
Collapse
|
8
|
Zhang X, Zhang Q, Li Y, Liu C, Qiu Y. Effect of the thickness of polyurethane foams at the seat pan and the backrest on fore-and-aft in-line and vertical cross-axis seat transmissibility when sitting with various contact conditions of backrest during fore-and-aft vibration. APPLIED ERGONOMICS 2021; 93:103354. [PMID: 33516943 DOI: 10.1016/j.apergo.2021.103354] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/14/2020] [Revised: 12/24/2020] [Accepted: 12/30/2020] [Indexed: 06/12/2023]
Abstract
Ride comfort in vehicles can be affected by seat properties. While previous studies focused on the vertical whole-body vibration, this study was designed to understand the influence of the foam thickness at the seat pan and at the backrest on seat transmissibilities with fore-and-aft vibration. Twelve subjects sitting with or without a vertical backrest were exposed to random fore-and-aft vibration between 1 and 15 Hz with the magnitude of 0.5 ms-2 r.m.s.. It was found that there was no significant difference in the primary resonance frequencies in the fore-and-aft in-line and vertical cross-axis transmissibilities to the seat pan and to the backrest. The resonance frequency in the fore-and-aft in-line transmissibilities to the seat pan and the backrest decreased with increasing thickness of foam at the seat pan and the backrest. Altering the thickness of foam at the seat pan was more effective than changing that at the backrest.
Collapse
Affiliation(s)
- Xiaolu Zhang
- College of Mechanical Engineering and Applied Electronics Technology, Beijing University of Technology, China
| | - Qingyu Zhang
- College of Mechanical Engineering and Applied Electronics Technology, Beijing University of Technology, China
| | - Yuejuan Li
- College of Mechanical Engineering and Applied Electronics Technology, Beijing University of Technology, China
| | - Chi Liu
- Vehicle NVH and Refinement, Jaguar Land Rover, Gaydon, United Kingdom.
| | - Yi Qiu
- Dynamics Group, Institute of Sound and Vibration Research, University of Southampton, United Kingdom
| |
Collapse
|
9
|
Fard M, Yao J, Kato K, Davy JL. The geometric mean is a superior frequency response averaging method for human body vibration. ERGONOMICS 2021; 64:273-283. [PMID: 32909521 DOI: 10.1080/00140139.2020.1820584] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/26/2019] [Accepted: 08/27/2020] [Indexed: 06/11/2023]
Abstract
The frequency response data of human body vibration are often used for standardisation, design of transport vehicles and occupational health and safety measures. This article shows that the commonly used methods of averaging frequency response spectra, such as arithmetic averaging in the complex or magnitude domain and median averaging, are not as suitable as the less commonly used geometric averaging in the complex domain. This is because it is necessary to minimise the deviation of the measured values about the mean value and to minimise the bias from the true mean value due to noise, distortion and nonlinearity. Practitioner summary: For averaging frequency response spectra, it is necessary to minimise the bias from the true mean value. This research shows that the commonly used averaging methods, such as arithmetic averaging in the complex or magnitude domain and the median, are not as suitable as geometric averaging in the complex domain. Abbreviations: H1 Estimator: frequency response function estimation method using the cross-spectrum of the output with the input divided by the auto-spectrum of the input; ISO: International Organization for Standardization; NHK: Nippon Hatsujo Kabushiki Kaisha; PCB: PCB Group ("PCB" is abbreviation for "PicoCoulomB"); RMIT: Royal Melbourne Institute of Technology; r.m.s.: root mean square.
Collapse
Affiliation(s)
- Mohammad Fard
- School of Engineering, RMIT University, Melbourne, Australia
| | - Jianchun Yao
- School of Engineering, RMIT University, Melbourne, Australia
| | | | - John L Davy
- School of Science, RMIT University, Melbourne, Australia
| |
Collapse
|