1
|
Mastropietro A, Peruzzo D, Taccogna MG, Sanna N, Casali N, Nossa R, Biffi E, Ambrosini E, Pedrocchi A, Rizzo G. Multiparametric MRI Assessment of Morpho-Functional Muscle Changes Following a 6-Month FES-Cycling Training Program: Pilot Study in People With a Complete Spinal Cord Injury. JMIR Rehabil Assist Technol 2025; 12:e64825. [PMID: 39819652 PMCID: PMC11756844 DOI: 10.2196/64825] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2024] [Revised: 11/11/2024] [Accepted: 11/12/2024] [Indexed: 01/19/2025] Open
Abstract
Background Spinal cord injuries (SCIs) cause debilitating secondary conditions such as severe muscle deterioration, cardiovascular, and metabolic dysfunctions, significantly impacting patients' quality of life. Functional electrical stimulation (FES) combined with cycling exercise (FES-cycling) has shown promise in improving muscle function and health in individuals with SCI. Objective This pilot study aimed to investigate the potential role of multiparametric magnetic resonance imaging (MRI) to assess muscle health during and after an FES-cycling rehabilitation program. Methods Four male participants with chronic SCI underwent a 6-month FES-cycling training program, consisting of two 30-minute sessions per week. MRI scans were performed at baseline (T0), after 3 months (T1), at the end of the training (T2), and 1-month posttraining (T3). The MRI protocol included T1-weighted imaging for volume quantification, Dixon imaging for fat fraction, multi-echo spin echo for T2 relaxation times, and diffusion tensor imaging to assess diffusion parameters. Results Muscle hypertrophy was observed, with an average increase in muscle volume of 22.3% at T1 and 36.7% at T2 compared with baseline. One month posttraining, muscle volume remained 23.2% higher than baseline. Fat fraction decreased from 11.1% at T0 to 9.1% at T2, with a rebound to 10.9% at T3. T2 relaxation times showed a reduction even though this was not consistent among participants. Diffusion tensor imaging parameters revealed subtle changes in muscle tissue microstructure, with a decrease in fractional anisotropy mainly associated to an increase of radial diffusivity. Conclusions Although preliminary, this study provides evidence that 6 months of low-intensity FES-bike training can increase muscle volume and decrease fat infiltration in individuals with SCI. The study demonstrates that the use of a multiparametric MRI provides comprehensive insights into both macroscopic and microscopic changes within muscle tissues, supporting its integration into clinical practice for assessing the efficacy of rehabilitation interventions.
Collapse
Affiliation(s)
- Alfonso Mastropietro
- Istituto di Sistemi e Tecnologie Industriali Intelligenti per il Manifatturiero Avanzato, Consiglio Nazionale delle Ricerche, via Alfonso Corti, 12, Milan, 20133, Italy, 39 02 2369 993
| | - Denis Peruzzo
- Neuroimaging Unit, Scientific Institute, IRCCS E. Medea, Bosisio Parini, Lecco, Italy
| | | | - Nicole Sanna
- Dipartimento di Ingegneria Meccanica, Politecnico di Milano, Milan, Italy
- WeCobot Lab, Polo Territoriale di Lecco, Politecnico di Milano, Lecco, Italy
| | - Nicola Casali
- Istituto di Sistemi e Tecnologie Industriali Intelligenti per il Manifatturiero Avanzato, Consiglio Nazionale delle Ricerche, via Alfonso Corti, 12, Milan, 20133, Italy, 39 02 2369 993
- Dipartimento di Elettronica, Informatica e Bioingegneria, Politecnico di Milano, Milan, Italy
| | - Roberta Nossa
- Laboratorio di Bioingegneria, Istituto di Ricovero e Cura a Carattere Scientifico Eugenio Medea, Bosisio Parini, Italy
| | - Emilia Biffi
- Bioengineering Lab, Scientific Institute, IRCCS E. Medea, Bosisio Parini, Lecco, Italy
| | - Emilia Ambrosini
- WeCobot Lab, Polo Territoriale di Lecco, Politecnico di Milano, Lecco, Italy
- Nearlab, Dipartimento di Elettronica, Informatica e Bioingegneria, Politecnico di Milano, Milan, Italy
| | - Alessandra Pedrocchi
- WeCobot Lab, Polo Territoriale di Lecco, Politecnico di Milano, Lecco, Italy
- Nearlab, Dipartimento di Elettronica, Informatica e Bioingegneria, Politecnico di Milano, Milan, Italy
| | - Giovanna Rizzo
- Istituto di Sistemi e Tecnologie Industriali Intelligenti per il Manifatturiero Avanzato, Consiglio Nazionale delle Ricerche, via Alfonso Corti, 12, Milan, 20133, Italy, 39 02 2369 993
| |
Collapse
|
2
|
Alharbi A, Li J, Womack E, Farrow M, Yarar-Fisher C. The Effect of Lower Limb Combined Neuromuscular Electrical Stimulation on Skeletal Muscle Cross-Sectional Area and Inflammatory Signaling. Int J Mol Sci 2024; 25:11095. [PMID: 39456876 PMCID: PMC11507577 DOI: 10.3390/ijms252011095] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2024] [Revised: 10/07/2024] [Accepted: 10/09/2024] [Indexed: 10/28/2024] Open
Abstract
In individuals with a spinal cord injury (SCI), rapid skeletal muscle atrophy and metabolic dysfunction pose profound rehabilitation challenges, often resulting in substantial loss of muscle mass and function. This study evaluates the effect of combined neuromuscular electrical stimulation (Comb-NMES) on skeletal muscle cross-sectional area (CSA) and inflammatory signaling within the acute phase of SCI. We applied a novel Comb-NMES regimen, integrating both high-frequency resistance and low-frequency aerobic protocols on the vastus lateralis muscle, to participants early post-SCI. Muscle biopsies were analyzed for CSA and inflammatory markers pre- and post-intervention. The results suggest a potential preservation of muscle CSA in the Comb-NMES group compared to a control group. Inflammatory signaling proteins such as TLR4 and Atrogin-1 were downregulated, whereas markers associated with muscle repair and growth were modulated beneficially in the Comb-NMES group. The study's findings suggest that early application of Comb-NMES post-SCI may attenuate inflammatory pathways linked to muscle atrophy and promote muscle repair. However, the small sample size and variability in injury characteristics emphasize the need for further research to corroborate these results across a more diverse and extensive SCI population.
Collapse
Affiliation(s)
- Amal Alharbi
- Department of Physical Therapy, College of Applied Medical Sciences, Qassim University, Buraydah 51452, Saudi Arabia
- Department of Physical Therapy, University of Alabama at Birmingham, Birmingham, AL 35233, USA
| | - Jia Li
- Department of Physical Medicine and Rehabilitation, Ohio State University, Columbus, OH 43210, USA; (J.L.); (M.F.)
| | - Erika Womack
- Department of Biochemistry, Molecular Biology, Entomology, and Plant Pathology, Mississippi State University, Starkville, MS 39762, USA;
| | - Matthew Farrow
- Department of Physical Medicine and Rehabilitation, Ohio State University, Columbus, OH 43210, USA; (J.L.); (M.F.)
| | - Ceren Yarar-Fisher
- Department of Physical Medicine and Rehabilitation, Ohio State University, Columbus, OH 43210, USA; (J.L.); (M.F.)
- Department of Neuroscience, Ohio State University, Columbus, OH 43210, USA
| |
Collapse
|
3
|
Hoekstra S, King JA, Fenton J, Kirk N, Willis SA, Phillips SM, Webborn N, Tolfrey K, Bosch JDVD, Goosey‐Tolfrey VL. The effect of home-based neuromuscular electrical stimulation-resistance training and protein supplementation on lean mass in persons with spinal cord injury: A pilot study. Physiol Rep 2024; 12:e70073. [PMID: 39358836 PMCID: PMC11446856 DOI: 10.14814/phy2.70073] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2024] [Revised: 09/19/2024] [Accepted: 09/20/2024] [Indexed: 10/04/2024] Open
Abstract
In persons with a spinal cord injury (SCI), resistance training using neuromuscular electrical stimulation (NMES-RT) increases lean mass in the lower limbs. However, whether protein supplementation in conjunction with NMES-RT further enhances this training effect is unknown. In this randomized controlled pilot trial, 15 individuals with chronic SCI engaged in 3 times/week NMES-RT, with (NMES+PRO, n = 8) or without protein supplementation (NMES, n = 7), for 12 weeks. Before and after the intervention, whole body and regional body composition (DXA) and fasting glucose and insulin concentrations were assessed in plasma. Adherence to the intervention components was ≥96%. Thigh lean mass was increased to a greater extent after NMES+PRO compared to NMES (0.3 (0.2, 0.4) kg; p < 0.001). Furthermore, fasting insulin concentration and Homeostatic Model Assessment for Insulin Resistance (HOMA-IR) were decreased similarly in both groups (fasting insulin: 1 [-9, 11] pmol∙L-1; HOMA-IR: 0.1 [-0.3, 0.5] AU; both p ≥ 0.617). Twelve weeks of home-based NMES-RT increased thigh lean mass, an effect that was potentiated by protein supplementation. In combination with the excellent adherence and apparent improvement in cardiometabolic health outcomes, these findings support further investigation through a full-scale randomized controlled trial.
Collapse
Affiliation(s)
- Sven Hoekstra
- Peter Harrison Centre for Disability Sport, School of Sport, Exercise and Health SciencesLoughborough UniversityLeicestershireUK
- Department of Exercise and Sport ScienceSt. Mary's UniversitySan AntonioTexasUSA
- Department of Rehabilitation MedicineUniversity of Texas Health Science Center at San AntonioSan AntonioTexasUSA
| | - James A. King
- School of Sport, Exercise and Health SciencesLoughborough UniversityLeicestershireUK
- National Institute for Health and Care Research (NIHR) Leicester Biomedical Research Centre, University Hospitals of Leicester NHS Trust and University of LeicesterLeicesterUK
| | - Jordan Fenton
- Peter Harrison Centre for Disability Sport, School of Sport, Exercise and Health SciencesLoughborough UniversityLeicestershireUK
- School of Sport, Exercise and Health SciencesLoughborough UniversityLeicestershireUK
| | - Natasha Kirk
- Peter Harrison Centre for Disability Sport, School of Sport, Exercise and Health SciencesLoughborough UniversityLeicestershireUK
- School of Sport, Exercise and Health SciencesLoughborough UniversityLeicestershireUK
| | - Scott A. Willis
- School of Sport, Exercise and Health SciencesLoughborough UniversityLeicestershireUK
- National Institute for Health and Care Research (NIHR) Leicester Biomedical Research Centre, University Hospitals of Leicester NHS Trust and University of LeicesterLeicesterUK
| | | | - Nick Webborn
- Peter Harrison Centre for Disability Sport, School of Sport, Exercise and Health SciencesLoughborough UniversityLeicestershireUK
| | - Keith Tolfrey
- Peter Harrison Centre for Disability Sport, School of Sport, Exercise and Health SciencesLoughborough UniversityLeicestershireUK
- School of Sport, Exercise and Health SciencesLoughborough UniversityLeicestershireUK
| | | | - Vicky L. Goosey‐Tolfrey
- Peter Harrison Centre for Disability Sport, School of Sport, Exercise and Health SciencesLoughborough UniversityLeicestershireUK
- School of Sport, Exercise and Health SciencesLoughborough UniversityLeicestershireUK
| |
Collapse
|
4
|
Dolbow DR, Bersch I, Gorgey AS, Davis GM. The Clinical Management of Electrical Stimulation Therapies in the Rehabilitation of Individuals with Spinal Cord Injuries. J Clin Med 2024; 13:2995. [PMID: 38792536 PMCID: PMC11122106 DOI: 10.3390/jcm13102995] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2024] [Revised: 05/09/2024] [Accepted: 05/16/2024] [Indexed: 05/26/2024] Open
Abstract
Background: People with spinal cord injuries (SCIs) often have trouble remaining active because of paralysis. In the past, exercise recommendations focused on the non-paralyzed muscles in the arms, which provides limited benefits. However, recent studies show that electrical stimulation can help engage the paralyzed extremities, expanding the available muscle mass for exercise. Methods: The authors provide an evidence-based approach using expertise from diverse fields, supplemented by evidence from key studies toward the management of electrical stimulation therapies in individuals with SCIs. Literature searches were performed separately using the PubMed, Medline, and Google Scholar search engines. The keywords used for the searches included functional electrical stimulation cycling, hybrid cycling, neuromuscular electrical stimulation exercise, spinal cord injury, cardiovascular health, metabolic health, muscle strength, muscle mass, bone mass, upper limb treatment, diagnostic and prognostic use of functional electrical stimulation, tetraplegic hands, and hand deformities after SCI. The authors recently presented this information in a workshop at a major rehabilitation conference. Additional information beyond what was presented at the workshop was added for the writing of this paper. Results: Functional electrical stimulation (FES) cycling can improve aerobic fitness and reduce the risk of cardiovascular and metabolic diseases. The evidence indicates that while both FES leg cycling and neuromuscular electrical stimulation (NMES) resistance training can increase muscle strength and mass, NMES resistance training has been shown to be more effective for producing muscle hypertrophy in individual muscle groups. The response to the electrical stimulation of muscles can also help in the diagnosis and prognosis of hand dysfunction after tetraplegia. Conclusions: Electrical stimulation activities are safe and effective methods for exercise and testing for motor neuron lesions in individuals with SCIs and other paralytic or paretic conditions. They should be considered part of a comprehensive rehabilitation program in diagnosing, prognosing, and treating individuals with SCIs to improve function, physical activity, and overall health.
Collapse
Affiliation(s)
- David R. Dolbow
- Physical Therapy Program, College of Osteopathic Medicine, William Carey University, 710 William Carey Parkway, Hattiesburg, MS 39401, USA
| | - Ines Bersch
- International FES Centre®, Swiss Paraplegia Centre, CH-6207 Nottwil, Switzerland
| | - Ashraf S. Gorgey
- Spinal Cord Injury and Disorders Center, Hunter Holmes McGuire VA Medical Center, Richmond, VA 23249, USA;
| | - Glen M. Davis
- Discipline of Exercise and Sport Sciences, Sydney School of Health Sciences, Faculty of Medicine and Health, The University of Sydney, Camperdown, NSW 2006, Australia
| |
Collapse
|
5
|
Chaney R, Leger C, Wirtz J, Fontanier E, Méloux A, Quirié A, Martin A, Prigent-Tessier A, Garnier P. Cerebral Benefits Induced by Electrical Muscle Stimulation: Evidence from a Human and Rat Study. Int J Mol Sci 2024; 25:1883. [PMID: 38339161 PMCID: PMC10855504 DOI: 10.3390/ijms25031883] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Revised: 01/23/2024] [Accepted: 02/01/2024] [Indexed: 02/12/2024] Open
Abstract
Physical exercise (EX) is well established for its positive impact on brain health. However, conventional EX may not be feasible for certain individuals. In this regard, this study explores electromyostimulation (EMS) as a potential alternative for enhancing cognitive function. Conducted on both human participants and rats, the study involved two sessions of EMS applied to the quadriceps with a duration of 30 min at one-week intervals. The human subjects experienced assessments of cognition and mood, while the rats underwent histological and biochemical analyses on the prefrontal cortex, hippocampus, and quadriceps. Our findings indicated that EMS enhanced executive functions and reduced anxiety in humans. In parallel, our results from the animal studies revealed an elevation in brain-derived neurotrophic factor (BDNF), specifically in the hippocampus. Intriguingly, this increase was not associated with heightened neuronal activity or cerebral hemodynamics; instead, our data point towards a humoral interaction from muscle to brain. While no evidence of increased muscle and circulating BDNF or FNDC5/irisin pathways could be found, our data highlight lactate as a bridging signaling molecule of the muscle-brain crosstalk following EMS. In conclusion, our results suggest that EMS could be an effective alternative to conventional EX for enhancing both brain health and cognitive function.
Collapse
Affiliation(s)
- Rémi Chaney
- INSERM UMR1093-CAPS, Université Bourgogne Franche-Comté, UFR des Sciences de Santé, F-21000 Dijon, France; (R.C.); (C.L.); (J.W.); (E.F.); (A.M.); (A.Q.); (P.G.)
| | - Clémence Leger
- INSERM UMR1093-CAPS, Université Bourgogne Franche-Comté, UFR des Sciences de Santé, F-21000 Dijon, France; (R.C.); (C.L.); (J.W.); (E.F.); (A.M.); (A.Q.); (P.G.)
| | - Julien Wirtz
- INSERM UMR1093-CAPS, Université Bourgogne Franche-Comté, UFR des Sciences de Santé, F-21000 Dijon, France; (R.C.); (C.L.); (J.W.); (E.F.); (A.M.); (A.Q.); (P.G.)
| | - Estelle Fontanier
- INSERM UMR1093-CAPS, Université Bourgogne Franche-Comté, UFR des Sciences de Santé, F-21000 Dijon, France; (R.C.); (C.L.); (J.W.); (E.F.); (A.M.); (A.Q.); (P.G.)
| | - Alexandre Méloux
- INSERM UMR1093-CAPS, Université Bourgogne Franche-Comté, UFR des Sciences de Santé, F-21000 Dijon, France; (R.C.); (C.L.); (J.W.); (E.F.); (A.M.); (A.Q.); (P.G.)
| | - Aurore Quirié
- INSERM UMR1093-CAPS, Université Bourgogne Franche-Comté, UFR des Sciences de Santé, F-21000 Dijon, France; (R.C.); (C.L.); (J.W.); (E.F.); (A.M.); (A.Q.); (P.G.)
| | - Alain Martin
- INSERM UMR1093-CAPS, Université Bourgogne Franche-Comté, UFR des Sciences du Sport, F-21000 Dijon, France;
| | - Anne Prigent-Tessier
- INSERM UMR1093-CAPS, Université Bourgogne Franche-Comté, UFR des Sciences de Santé, F-21000 Dijon, France; (R.C.); (C.L.); (J.W.); (E.F.); (A.M.); (A.Q.); (P.G.)
| | - Philippe Garnier
- INSERM UMR1093-CAPS, Université Bourgogne Franche-Comté, UFR des Sciences de Santé, F-21000 Dijon, France; (R.C.); (C.L.); (J.W.); (E.F.); (A.M.); (A.Q.); (P.G.)
- Département Génie Biologique, IUT, F-21000 Dijon, France
| |
Collapse
|
6
|
Alharbi A, Li J, Womack E, Farrow M, Yarar-Fisher C. The Effect of Lower Limb Combined Neuromuscular Electrical Stimulation on Skeletal Muscle Signaling for Glucose Utilization, Myofiber Distribution, and Metabolic Function after Spinal Cord Injury. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2023; 20:6958. [PMID: 37887696 PMCID: PMC10606374 DOI: 10.3390/ijerph20206958] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/28/2023] [Revised: 09/29/2023] [Accepted: 10/12/2023] [Indexed: 10/28/2023]
Abstract
Maintaining healthy myofiber type and metabolic function early after spinal cord injury (SCI) may prevent chronic metabolic disorders. This study compares the effects of a 2-5 week combined (aerobic + resistance) neuromuscular electrical stimulation (Comb-NMES) regimen versus a sham control treatment on muscle protein signaling for glucose uptake, myofiber type distribution, and metabolic function. Twenty participants (31 ± 9 years of age) with an SCI (C4-L1, AIS level A-C) within 14 days of the SCI were randomly assigned to control (N = 8) or Comb-NMES (N = 12). Sessions were given three times per week. Fasting blood samples and vastus lateralis muscle biopsies were collected 24-48 h before or after the last session. Western blots were performed to quantify proteins, immunohistochemical analyses determined muscle myofiber distribution, and enzymatic assays were performed to measure serum glucose, insulin, and lipids. Our main findings include a decrease in fasting glucose (p < 0.05) and LDL-C (p < 0.05) levels, an upregulation of CamKII and Hexokinase (p < 0.05), and an increase in type I (+9%) and a decrease in type IIx (-36%) myofiber distribution in response to Comb-NMES. Our findings suggest that maintaining healthy myofiber type and metabolic function may be achieved via early utilization of Comb-NMES.
Collapse
Affiliation(s)
- Amal Alharbi
- Department of Physical Therapy, University of Alabama at Birmingham, Birmingham, AL 35233, USA;
| | - Jia Li
- Department of Physical Medicine and Rehabilitation, Ohio State University, Columbus, OH 43210, USA; (J.L.); (M.F.)
| | - Erika Womack
- Department of Biochemistry, Molecular Biology, Entomology and Plant Pathology, Mississippi State University, Starkville, MS 39762, USA;
| | - Matthew Farrow
- Department of Physical Medicine and Rehabilitation, Ohio State University, Columbus, OH 43210, USA; (J.L.); (M.F.)
| | - Ceren Yarar-Fisher
- Department of Physical Medicine and Rehabilitation, Ohio State University, Columbus, OH 43210, USA; (J.L.); (M.F.)
- Department of Neuroscience, Ohio State University, Columbus, OH 43210, USA
| |
Collapse
|
7
|
Sanchez MJ, Mossayebi A, Sigaroodi S, Apaflo JN, Galvan MJ, Min K, Agullo FJ, Wagler A, Bajpeyi S. Effects of neuromuscular electrical stimulation on glycemic control: a systematic review and meta-analysis. Front Endocrinol (Lausanne) 2023; 14:1222532. [PMID: 37583429 PMCID: PMC10424918 DOI: 10.3389/fendo.2023.1222532] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/14/2023] [Accepted: 07/12/2023] [Indexed: 08/17/2023] Open
Abstract
Background Physical inactivity increases the risk for metabolic diseases such as obesity and type 2 diabetes. Neuromuscular electrical stimulation (NMES) is an effective method to induce muscle contraction, particularly for populations with physical impairments and/or metabolic diseases. However, its effectiveness to improve glycemic control is unclear. This review aimed to determine the effectiveness of NMES on glycemic control. Methods Electronic search consisted of MEDLINE (PubMed), EMBASE, Cochrane Library, Google Scholar, and Web of Science to identify studies that investigated the effects of NMES on glycemic control for this systematic review. The meta-analysis consists of the studies designed as randomized controlled trials. Effect sizes were calculated as the standardized mean difference (SMD) and meta-analysis was conducted using a random-effects model. Results Thirty-five studies met the inclusion criteria for systematic review and of those, nine qualified for the meta-analysis. Existing evidence suggested that NMES effectively improves glycemic control predominantly in middle-aged and elderly population with type 2 diabetes, obesity, and spinal cord injury. The meta-analysis is comprised of 180 participants and reported that NMES intervention lowered fasting blood glucose (SMD: 0.48; 95% CI: 0.17 to 0.78; p=0.002; I²=0%). Additional analysis using the primary measures reported by each study to indicate glycemic control (i.e., OGTT, HOMA-IR, and fasting glucose) also confirmed a significant effect of NMES on improving glycemic control (SMD: 0.41; 95% CI, 0.09 to 0.72; p=0.01; I²=11%). NMES protocol varied across studies and requires standardization. Conclusion NMES could be considered as a therapeutic strategy to improve glycemic control in populations with physical impairments and/or metabolic disorders. Systematic review registration https://www.crd.york.ac.uk/prospero/, identifier CRD42020192491.
Collapse
Affiliation(s)
- Michael J. Sanchez
- Metabolic, Nutrition, and Exercise Research (MiNER) Laboratory, Department of Kinesiology, The University of Texas at El Paso, El Paso, TX, United States
| | - Ali Mossayebi
- Metabolic, Nutrition, and Exercise Research (MiNER) Laboratory, Department of Kinesiology, The University of Texas at El Paso, El Paso, TX, United States
| | - Solmaz Sigaroodi
- Metabolic, Nutrition, and Exercise Research (MiNER) Laboratory, Department of Kinesiology, The University of Texas at El Paso, El Paso, TX, United States
| | - Jehu N. Apaflo
- Metabolic, Nutrition, and Exercise Research (MiNER) Laboratory, Department of Kinesiology, The University of Texas at El Paso, El Paso, TX, United States
| | - Michelle J. Galvan
- Metabolic, Nutrition, and Exercise Research (MiNER) Laboratory, Department of Kinesiology, The University of Texas at El Paso, El Paso, TX, United States
| | - Kisuk Min
- Muscle Molecular Physiology Laboratory, Department of Kinesiology, The University of Texas at El Paso, El Paso, TX, United States
| | | | - Amy Wagler
- Department of Mathematical Sciences, The University of Texas at El Paso, El Paso, TX, United States
| | - Sudip Bajpeyi
- Metabolic, Nutrition, and Exercise Research (MiNER) Laboratory, Department of Kinesiology, The University of Texas at El Paso, El Paso, TX, United States
| |
Collapse
|
8
|
Dolbow DR, Gorgey AS, Sutor TW, Musselman K, Bochkezanian V, Davis GM. Electrical Stimulation Exercise Recommendations for Individuals With Spinal Cord Injury. Arch Phys Med Rehabil 2023; 104:847-851. [PMID: 36708856 DOI: 10.1016/j.apmr.2022.11.017] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2022] [Accepted: 11/28/2022] [Indexed: 01/27/2023]
|
9
|
Gorgey AS, Goldsmith JA, Khalil RE, Liu XH, Pan J, Cardozo C, Adler RA. Predictors of muscle hypertrophy responsiveness to electrically evoked resistance training after spinal cord injury. Eur J Appl Physiol 2023; 123:479-493. [PMID: 36305973 DOI: 10.1007/s00421-022-05069-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2022] [Accepted: 10/08/2022] [Indexed: 11/03/2022]
Abstract
The purpose of the study was to identify potential predictors of muscle hypertrophy responsiveness following neuromuscular electrical stimulation resistance training (NMES-RT) in persons with chronic spinal cord injury (SCI). Data for twenty individuals with motor complete SCI who completed twice weekly NMES-RT lasting 12-16 weeks as part of their participation in one of two separate clinical trials were pooled and retrospectively analyzed. Magnetic resonance imaging (MRI) was used to measure muscle cross-sectional area (CSA) of the whole thigh and knee extensor muscle before and after NMES-RT. Muscle biopsies and fasting biomarkers were also measured. Following the completion of the respective NMES-RT trials, participants were classified into either high-responders (n = 8; muscle CSA > 20%) or low-responders (n = 12; muscle CSA < 20%) based on whole thigh muscle CSA hypertrophy. Whole thigh muscle and knee extensors CSAs were significantly greater (P < 0.0001) in high-responders (29 ± 7% and 47 ± 15%, respectively) compared to low-responders (12 ± 3% and 19 ± 6%, respectively). There were no differences in total caloric intake or macronutrient intake between groups. Extensor spasticity was lower in the high-responders compared to the low-responders as was the dosage of baclofen. Prior to the intervention, the high-responders had greater body mass compared to the low-responders with SCI (87.8 ± 13.7 vs. 70.4 ± 15.8 kg; P = 0.012), body mass index (BMI: 27.6 ± 2.7 vs. 22.9 ± 6.0 kg/m2; P = 0.04), as well as greater percentage in whole body and regional fat mass (P < 0.05). Furthermore, high-responders had a 69% greater increase (P = 0.086) in total Akt protein expression than low-responders. High-responders also exhibited reduced circulating IGF-1 with a concomitant increase in IGFBP-3. Exploratory analyses revealed upregulation of mRNAs for muscle hypertrophy markers [IRS-1, Akt, mTOR] and downregulation of protein degradation markers [myostatin, MurF-1, and PDK4] in the high-responders compared to low-responders. The findings indicate that body composition, spasticity, baclofen usage, and multiple signaling pathways (anabolic and catabolic) are involved in the differential muscle hypertrophy response to NMES-RT in persons with chronic SCI.
Collapse
Affiliation(s)
- Ashraf S Gorgey
- Spinal Cord Injury and Disorders Service, Central Virginia VA Health Care System, Hunter Holmes McGuire VA Medical Center, Richmond, VA, USA.
- Physical Medicine and Rehabilitation, Virginia Commonwealth University, Richmond, VA, USA.
| | - Jacob A Goldsmith
- Spinal Cord Injury and Disorders Service, Central Virginia VA Health Care System, Hunter Holmes McGuire VA Medical Center, Richmond, VA, USA
| | - Refka E Khalil
- Spinal Cord Injury and Disorders Service, Central Virginia VA Health Care System, Hunter Holmes McGuire VA Medical Center, Richmond, VA, USA
| | - Xin-Hua Liu
- National Center for the Medical Consequences of Spinal Cord Injury and Medical and Surgical Service, James J Peters VA Medical Center, Bronx, NY, USA
- Department of Medicine, Icahn School of Medicine, New York, NY, USA
| | - Jiangping Pan
- National Center for the Medical Consequences of Spinal Cord Injury and Medical and Surgical Service, James J Peters VA Medical Center, Bronx, NY, USA
- Department of Medicine, Icahn School of Medicine, New York, NY, USA
| | - Christopher Cardozo
- National Center for the Medical Consequences of Spinal Cord Injury and Medical and Surgical Service, James J Peters VA Medical Center, Bronx, NY, USA
- Department of Medicine, Icahn School of Medicine, New York, NY, USA
| | - Robert A Adler
- Endocrinology Service, Hunter Holmes McGuire VA Medical Center, Richmond, VA, USA
- Endocrine Division, Virginia Commonwealth University School of Medicine, Richmond, VA, USA
| |
Collapse
|
10
|
Ibitoye MO, Hamzaid NA, Ahmed YK. Effectiveness of FES-supported leg exercise for promotion of paralysed lower limb muscle and bone health-a systematic review. BIOMED ENG-BIOMED TE 2023:bmt-2021-0195. [PMID: 36852605 DOI: 10.1515/bmt-2021-0195] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2021] [Accepted: 02/07/2023] [Indexed: 03/01/2023]
Abstract
Leg exercises through standing, cycling and walking with/without FES may be used to preserve lower limb muscle and bone health in persons with physical disability due to SCI. This study sought to examine the effectiveness of leg exercises on bone mineral density and muscle cross-sectional area based on their clinical efficacy in persons with SCI. Several literature databases were searched for potential eligible studies from the earliest return date to January 2022. The primary outcome targeted was the change in muscle mass/volume and bone mineral density as measured by CT, MRI and similar devices. Relevant studies indicated that persons with SCI that undertook FES- and frame-supported leg exercise exhibited better improvement in muscle and bone health preservation in comparison to those who were confined to frame-assisted leg exercise only. However, this observation is only valid for exercise initiated early (i.e., within 3 months after injury) and for ≥30 min/day for ≥ thrice a week and for up to 24 months or as long as desired and/or tolerable. Consequently, apart from the positive psychological effects on the users, leg exercise may reduce fracture rate and its effectiveness may be improved if augmented with FES.
Collapse
Affiliation(s)
- Morufu Olusola Ibitoye
- Department of Biomedical Engineering, Faculty of Engineering and Technology, University of Ilorin, Ilorin, Nigeria
| | - Nur Azah Hamzaid
- Department of Biomedical Engineering, Faculty of Engineering, University of Malaya, Kuala Lumpur Malaysia
| | - Yusuf Kola Ahmed
- Department of Biomedical Engineering, Faculty of Engineering and Technology, University of Ilorin, Ilorin, Nigeria
| |
Collapse
|
11
|
Arnold N, Scott J, Bush TR. A review of the characterizations of soft tissues used in human body modeling: Scope, limitations, and the path forward. J Tissue Viability 2023; 32:286-304. [PMID: 36878737 DOI: 10.1016/j.jtv.2023.02.003] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2022] [Revised: 02/06/2023] [Accepted: 02/10/2023] [Indexed: 02/27/2023]
Abstract
Soft tissue material properties are vital to human body models that evaluate interactions between the human body and its environment. Such models evaluate internal stress/strain responses in soft tissues to investigate issues like pressure injuries. Numerous constitutive models and parameters have been used to represent mechanical behavior of soft tissues in biomechanical models under quasi-static loading. However, researchers reported that generic material properties cannot accurately represent specific target populations due to large inter-individual variability. Two challenges that exist are experimental mechanical characterization and constitutive modeling of biological soft tissues and personalization of constitutive parameters using non-invasive, non-destructive bedside testing methods. It is imperative to understand the scope and appropriate applications for reported material properties. Thus, the goal of this paper was to compile studies from which soft tissue material properties were obtained and categorize them by source of tissue samples, methods used to quantify deformation, and material models used to describe tissues. The collected studies displayed wide ranges of material properties, and factors that affected the properties included whether tissue samples were in vivo or ex vivo, from humans or animals, the body region tested, body position during in vivo studies, deformation measurements, and material models used to describe tissues. Because of the factors that affected reported material properties, it is clear that much progress has been made in understanding soft tissue responses to loading, yet there is a need to broaden the scope of reported soft tissue material properties and better match reported properties to appropriate human body models.
Collapse
Affiliation(s)
- Nicole Arnold
- Department of Mechanical Engineering, Michigan State University, 428 S Shaw Lane, Rm. 2555 Engineering Building, East Lansing, MI, 48824-1226, USA
| | - Justin Scott
- Department of Mechanical Engineering, Michigan State University, 428 S Shaw Lane, Rm. 2555 Engineering Building, East Lansing, MI, 48824-1226, USA
| | - Tamara Reid Bush
- Department of Mechanical Engineering, Michigan State University, 428 S Shaw Lane, Rm. 2555 Engineering Building, East Lansing, MI, 48824-1226, USA.
| |
Collapse
|
12
|
Gibbs JC, Patsakos EM, Maltais DB, Wolfe DL, Gagnon DH, Craven BC. Rehabilitation interventions to modify endocrine-metabolic disease risk in individuals with chronic spinal cord injury living in the community (RIISC): A systematic search and review of prospective cohort and case-control studies. J Spinal Cord Med 2023; 46:6-25. [PMID: 33596167 PMCID: PMC9897753 DOI: 10.1080/10790268.2020.1863898] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
CONTEXT Endocrine-metabolic disease (EMD) is associated with functional disability, social isolation, hospitalization and even death in individuals living with a chronic spinal cord injury (SCI). There is currently very low-quality evidence that rehabilitation interventions can reduce EMD risk during chronic SCI. Non-randomized trials and alternative study designs are excluded from traditional knowledge synthesis. OBJECTIVE To characterize evidence from level 3-4 studies evaluating rehabilitation interventions for their effectiveness to improve EMD risk in community-dwelling adults with chronic SCI. METHODS Systematic searches of MEDLINE PubMed, EMBASE Ovid, CINAHL, Cochrane Database of Systematic Reviews, and PsychInfo were completed. All longitudinal trials, prospective cohort, case-control studies, and case series evaluating the effectiveness of rehabilitation/therapeutic interventions to modify/associate with EMD outcomes in adults with chronic SCI were eligible. Two authors independently selected studies and abstracted data. Mean changes from baseline were reported for EMD outcomes. The Downs and Black Checklist was used to rate evidence quality. RESULTS Of 489 articles identified, 44 articles (N = 842) were eligible for inclusion. Individual studies reported statistically significant effects of electrical stimulation-assisted training on lower-extremity bone outcomes, and the combined effects of exercise and dietary interventions to improve body composition and cardiometabolic biomarkers (lipid profiles, glucose regulation). In contrast, there were also reports of no clinically important changes in EMD outcomes, suggesting lower quality evidence (study bias, inconsistent findings). CONCLUSION Longitudinal multicentre pragmatic studies involving longer-term exercise and dietary intervention and follow-up periods are needed to fully understand the impact of these rehabilitation approaches to mitigate EMD risk. Our broad evaluation of prospective cohort and case-control studies provides new perspectives on alternative study designs, a multi-impairment paradigm approach of studying EMD outcomes, and knowledge gaps related to SCI rehabilitation.
Collapse
Affiliation(s)
- Jenna C. Gibbs
- Department of Kinesiology and Physical Education, Faculty of Education, McGill University, Montréal, QC, Canada
| | - Eleni M. Patsakos
- KITE, Toronto Rehabilitation Institute – University Health Network, Toronto, ON, Canada
| | - Desiree B. Maltais
- Department of Rehabilitation, Faculty of Medicine, Université Laval, Quebec City, QC, Canada
| | - Dalton L. Wolfe
- Parkwood Institute Research, Lawson Health Research Institute, London, ON, Canada
- Department of Physical Medicine and Rehabilitation, Western University, London, ON, Canada
| | - Dany H. Gagnon
- Centre intégré universitaire de santé et de services sociaux (CIUSSS) du Centre-Sud-de-l'Île-de-Montréal, Montréal, QC, Canada
- School of Rehabilitation, Faculty of Medicine, Université de Montréal, Montréal, QC, Canada
| | - B. Catharine Craven
- KITE, Toronto Rehabilitation Institute – University Health Network, Toronto, ON, Canada
- Division of Physical Therapy and Rehabilitation, Department of Medicine, University of Toronto, Toronto, ON, Canada
| |
Collapse
|
13
|
Gorgey AS, Khalil RE, Alrubaye M, Gill R, Rivers J, Goetz LL, Cifu DX, Castillo T, Caruso D, Lavis TD, Lesnefsky EJ, Cardozo CC, Adler RA. Testosterone and long pulse width stimulation (TLPS) for denervated muscles after spinal cord injury: a study protocol of randomised clinical trial. BMJ Open 2022; 12:e064748. [PMID: 36198461 PMCID: PMC9535184 DOI: 10.1136/bmjopen-2022-064748] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/03/2022] Open
Abstract
INTRODUCTION Long pulse width stimulation (LPWS; 120-150 ms) has the potential to stimulate denervated muscles and to restore muscle size in denervated people with spinal cord injury (SCI). We will determine if testosterone treatment (TT)+LPWS would increase skeletal muscle size, leg lean mass and improve overall metabolic health in persons with SCI with denervation. We hypothesise that the 1-year TT+LPWS will upregulate protein synthesis pathways, downregulate protein degradation pathways and increase overall mitochondrial health. METHODS AND ANALYSIS Twenty-four male participants (aged 18-70 years with chronic SCI) with denervation of both knee extensor muscles and tolerance to the LPWS paradigm will be randomised into either TT+neuromuscular electrical stimulation via telehealth or TT+LPWS. The training sessions will be twice weekly for 1 year. Measurements will be conducted 1 week prior training (baseline; week 0), 6 months following training (postintervention 1) and 1 week after the end of 1 year of training (postintervention 2). Measurements will include body composition assessment using anthropometry, dual X-ray absorptiometry and MRI to measure size of different muscle groups. Metabolic profile will include measuring of basal metabolic rate, followed by blood drawn to measure fasting biomarkers similar to hemoglobin A1c, lipid panels, C reactive protein, interleukin-6 and free fatty acids and then intravenous glucose tolerance test to test for insulin sensitivity and glucose effectiveness. Finally, muscle biopsy will be captured to measure protein expression and intracellular signalling; and mitochondrial electron transport chain function. The participants will fill out 3 days dietary record to monitor their energy intake on a weekly basis. ETHICS AND DISSEMINATION The study was approved by Institutional Review Board of the McGuire Research Institute (ID # 02189). Dissemination plans will include the Veteran Health Administration and its practitioners, the national SCI/D services office, the general healthcare community and the veteran population, as well as the entire SCI community via submitting quarterly letters or peer-review articles. TRIAL REGISTRATION NUMBER NCT03345576.
Collapse
Affiliation(s)
- Ashraf S Gorgey
- Spinal Cord Injury Service and Disorders, Hunter Holmes McGuire VA Medical Center, Richmond, Virginia, USA
| | - Refka E Khalil
- Spinal Cord Injury Service and Disorders, Hunter Holmes McGuire VA Medical Center, Richmond, Virginia, USA
| | - Malak Alrubaye
- Spinal Cord Injury Service and Disorders, Hunter Holmes McGuire VA Medical Center, Richmond, Virginia, USA
| | - Ranjodh Gill
- Endocrine Service, Hunter Holmes McGuire VA Medical Center, Richmond, Virginia, USA
| | - Jeannie Rivers
- Spinal Cord Injury Service and Disorders, Hunter Holmes McGuire VA Medical Center, Richmond, Virginia, USA
| | - Lance L Goetz
- Spinal Cord Injury Service and Disorders, Hunter Holmes McGuire VA Medical Center, Richmond, Virginia, USA
| | - David X Cifu
- Physical Medicine and Rehab, Commonwealth of Virginia, Richmond, Virginia, USA
| | - Teodoro Castillo
- Spinal Cord Injury Service and Disorders, Hunter Holmes McGuire VA Medical Center, Richmond, Virginia, USA
| | - Deborah Caruso
- Spinal Cord Injury Service and Disorders, Hunter Holmes McGuire VA Medical Center, Richmond, Virginia, USA
| | - Timothy D Lavis
- Spinal Cord Injury Service and Disorders, Hunter Holmes McGuire VA Medical Center, Richmond, Virginia, USA
| | - Edward J Lesnefsky
- Cardiology Service, Hunter Holmes McGuire VA Medical Center, Richmond, Virginia, USA
| | - Christopher C Cardozo
- National Center for the Medical Consequences of Spinal Cord Injury and Medical and Surgical Service, James J Peters VA Medical Center, Bronx, New York, USA
| | - Robert A Adler
- Endocrine Service, Hunter Holmes McGuire VA Medical Center, Richmond, Virginia, USA
| |
Collapse
|
14
|
Bekhet AH, Jahan AM, Bochkezanian V, Musselman KE, Elsareih AA, Gorgey AS. Effects of Electrical Stimulation Training on Body Composition Parameters After Spinal Cord Injury: A Systematic Review. Arch Phys Med Rehabil 2022; 103:1168-1178. [PMID: 34687676 DOI: 10.1016/j.apmr.2021.09.004] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2021] [Revised: 08/10/2021] [Accepted: 09/05/2021] [Indexed: 11/19/2022]
Abstract
OBJECTIVE To determine the effects of neuromuscular electrical stimulation (NMES) or functional electrical stimulation (FES), or both, training on different body composition parameters in individuals with spinal cord injury. DATA SOURCES Three independent reviewers searched PubMed, Web of Science, Scopus, Cochrane Central, and Virtual Health Library until March 2020. STUDY SELECTION Studies were included if they applied NMES/FES on the lower limb muscles after spinal cord injury, reported stimulation parameters (frequency, pulse duration, and amplitude of current), and body composition parameters, which included muscle cross-sectional area (CSA), fat-free mass, lean mass (LM), fat mass, visceral adipose tissue, and intramuscular fat. DATA SYNTHESIS A total of 46 studies were included in the final analysis with a total sample size of 414 subjects. NMES loading exercise and FES cycling exercise were commonly used for training. Increases in muscle CSA ranged from 5.7-75%, with an average of 26% (n=33). Fifteen studies reported changes (both increase and decrease) in LM or fat-free mas ranged from -4% to 35%, with an average of less than 5%. Changes in fat mass (n=10) were modest. The effect on ectopic adipose tissue is inconclusive, with 2 studies showing an average reduction in intramuscular fat by 9.9%. Stimulation parameters ranged from 200-1000 μs for pulse duration, 2-60 Hz for the frequency, and 10-200 mA in amplitude. Finally, increase in weekly training volumes after NMES loading exercise resulted in a remarkable increase in percentage changes in LM or muscle CSA. CONCLUSIONS NMES/FES is an effective rehabilitation strategy for muscle hypertrophy and increasing LM. Weekly training volumes are associated with muscle hypertrophy after NMES loading exercise. Furthermore, positive muscle adaptations occur despite the applied stimulation parameters. Finally, the included studies reported wide range of stimulation parameters without reporting rationale for such selection.
Collapse
Affiliation(s)
| | - Alhadi M Jahan
- School of Rehabilitation Sciences, University of Ottawa, Ottawa, Canada
| | - Vanesa Bochkezanian
- Department of Exercise and Health Sciences, School of Health, Medical and Applied Sciences, Central Queensland University, Rockhampton, QLD, Australia
| | - Kristin E Musselman
- KITE, Toronto Rehabilitation Institute-University Health Network, Toronto, Canada; Department of Physical Therapy, Faculty of Medicine, University of Toronto, Toronto, Canada; Rehabilitation Sciences Institute, Faculty of Medicine, University of Toronto, Toronto, Canada
| | - Amr A Elsareih
- Faculty of Physical Therapy, Cairo University, Giza, Egypt
| | - Ashraf S Gorgey
- Faculty of Physical Therapy, Cairo University, Giza, Egypt; Spinal Cord Injury and Disorders Center, Hunter Holmes McGuire VAMC, 1201 Broad Rock Boulevard, Richmond, VA; Virginia Commonwealth University, Department of Physical Medicine & Rehabilitation, Richmond, VA.
| |
Collapse
|
15
|
Fenton JM, King JA, Hoekstra SP, Valentino SE, Phillips SM, Goosey-Tolfrey VL. Protocols aiming to increase muscle mass in persons with motor complete spinal cord injury: a systematic review. Disabil Rehabil 2022; 45:1433-1443. [PMID: 35465798 DOI: 10.1080/09638288.2022.2063420] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
PURPOSE The purpose of this review was to compare all intervention modalities aimed at increasing skeletal muscle mass (SMM) in the paralysed limbs of persons with chronic (>1-year post-injury), motor complete spinal cord injury (SCI). MATERIALS AND METHODS A systematic review of EMBASE, MEDLINE, Scopus, and SPORTDiscus databases was conducted from inception until December 2021. Published intervention studies aimed to increase SMM (measured by magnetic resonance imaging, computed tomography, ultrasound, muscle biopsy, or lean soft tissue mass by dual X-ray absorptiometry) in the paralysed limbs of adults (>18 years) with SCI were included. RESULTS Fifty articles were included that, overall, demonstrated a high risk of bias. Studies were categorised into six groups: neuromuscular electrical stimulation (NMES) with and without external resistance, functional electrical stimulation cycling, walking- and standing-based interventions, pharmacological treatments, and studies that compared or combined intervention modalities. Resistance training (RT) using NMES on the quadriceps produced the largest and most consistent increases in SMM of all intervention modalities. CONCLUSIONS Current evidence suggests that clinical practise aiming to increase SMM in the paralysed limbs of persons with motor complete SCI should perform NMES-RT. However, more high-quality randomised control trials are needed to determine how training variables, such as exercise volume and intensity, can be optimised for increasing SMM. Implications for rehabilitationPersons with spinal cord injury (SCI) experience severe reductions in skeletal muscle mass (SMM) post-injury, which may exacerbate their risk of obesity and metabolic disease.Out of all exercise and non-exercise-based interventions, this systematic review shows that neuromuscular electrical stimulation-based resistance training demonstrates the most robust and consistent evidence for increasing skeletal muscle mass in the paralysed limbs of adults with motor complete spinal cord injury.The findings from this review can be used to inform evidence-based practise for exercise practitioners, as well as direct future research focused on increasing muscle mass in this population.
Collapse
Affiliation(s)
- Jordan M. Fenton
- National Centre for Sport and Exercise Medicine, School of Sport, Exercise and Health Sciences, Loughborough University, Loughborough, UK
- Peter Harrison Centre for Disability Sport, Loughborough University, Loughborough, UK
| | - James A. King
- National Centre for Sport and Exercise Medicine, School of Sport, Exercise and Health Sciences, Loughborough University, Loughborough, UK
- National Institute for Health Research (NIHR) Leicester Biomedical Research Centre, University Hospitals of Leicester NHS Trust and University of Leicester, Leicester, UK
| | - Sven P. Hoekstra
- National Centre for Sport and Exercise Medicine, School of Sport, Exercise and Health Sciences, Loughborough University, Loughborough, UK
- Peter Harrison Centre for Disability Sport, Loughborough University, Loughborough, UK
| | | | - Stuart M. Phillips
- Department of Kinesiology, McMaster University, Hamilton, Ontario, Canada
| | - Victoria L. Goosey-Tolfrey
- National Centre for Sport and Exercise Medicine, School of Sport, Exercise and Health Sciences, Loughborough University, Loughborough, UK
- Peter Harrison Centre for Disability Sport, Loughborough University, Loughborough, UK
| |
Collapse
|
16
|
Schmoll M, Le Guillou R, Fattal C, Coste CA. OIDA: An optimal interval detection algorithm for automatized determination of stimulation patterns for FES-Cycling in individuals with SCI. J Neuroeng Rehabil 2022; 19:39. [PMID: 35422040 PMCID: PMC9008993 DOI: 10.1186/s12984-022-01018-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2021] [Accepted: 04/05/2022] [Indexed: 11/24/2022] Open
Abstract
Background FES-Cycling is an exciting recreational activity, which allows certain individuals after spinal cord injury or stroke to exercise their paralyzed muscles. The key for a successful application is to activate the right muscles at the right time. Methods While a stimulation pattern is usually determined empirically, we propose an approach using the torque feedback provided by a commercially available crank power-meter installed on a standard trike modified for FES-Cycling. By analysing the difference between active (with stimulation) and passive (without stimulation) torques along a full pedalling cycle, it is possible to differentiate between contributing and resisting phases for a particular muscle group. In this article we present an algorithm for the detection of optimal stimulation intervals and demonstrate its functionality, bilaterally for the quadriceps and hamstring muscles, in one subject with complete SCI on a home trainer. Stimulation patterns were automatically determined for two sensor input modalities: the crank-angle and a normalized thigh-angle (i.e. cycling phase, measured via inertial measurement units). In contrast to previous studies detecting automatic stimulation intervals on motorised ergo-cycles, our approach does not rely on a constant angular velocity provided by a motor, thus being applicable to the domain of mobile FES-Cycling. Results The algorithm was successfully able to identify stimulation intervals, individually for the subject’s left and right quadriceps and hamstring muscles. Smooth cycling was achieved without further adaptation, for both input signals (i.e. crank-angle and normalized thigh-angle). Conclusion The automatic determination of stimulation patterns, on basis of the positive net-torque generated during electrical stimulation, can help to reduce the duration of the initial fitting phase and to improve the quality of pedalling during a FES-Cycling session. In contrast to previous works, the presented algorithm does not rely on a constant angular velocity and thus can be effectively implemented into mobile FES-Cycling systems. As each muscle or muscle group is assessed individually, our algorithm can be used to evaluate the efficiency of novel electrode configurations and thus could promote increased performances during FES-Cycling. Supplementary Information The online version contains supplementary material available at 10.1186/s12984-022-01018-2.
Collapse
|
17
|
Weighted differential evolution-based heuristic computing for identification of Hammerstein systems in electrically stimulated muscle modeling. Soft comput 2022. [DOI: 10.1007/s00500-021-06701-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
|
18
|
Galvan MJ, Sanchez MJ, McAinch AJ, Covington JD, Boyle JB, Bajpeyi S. Four weeks of electrical stimulation improves glucose tolerance in a sedentary overweight or obese Hispanic population. Endocr Connect 2022; 11:e210533. [PMID: 35007207 PMCID: PMC8859936 DOI: 10.1530/ec-21-0533] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/31/2021] [Accepted: 01/10/2022] [Indexed: 11/08/2022]
Abstract
Introduction/purpose Most US adults (54%) do not meet the minimum exercise recommendations by the American College of Sports Medicine. Neuromuscular electrical stimulation (NMES) is a novel alternate strategy to induce muscle contraction. However, the effectiveness of NMES to improve insulin sensitivity and energy expenditure is unclear. The purpose of this study was to investigate the effects of 4 weeks of NMES on glucose tolerance in a sedentary overweight or obese population. Methods Participants (n = 10; age: 36.8 ± 3.8 years; BMI = 32 ± 1.3 kg/m2) were randomized into either control or NMES group. All participants received bilateral quadriceps stimulation (12 sessions; 30 min/session; three times/week at 50 Hz and 300 µs pulse width) altering pulse amplitude to either provide low-intensity sensory level (control; tingling sensation) or at high-intensity neuromuscular level (NMES; maximum tolerable levels with visible muscle contraction). Glucose tolerance was assessed by a 3-h oral glucose tolerance test (OGTT), and substrate utilization was measured by indirect calorimetry and body composition via dual X-ray absorptiometry at baseline and after 4 weeks of NMES intervention. Results Control and NMES groups had comparable fasting blood glucose, glucose tolerance, substrate utilization, and muscle mass at baseline. Four weeks of NMES resulted in a significant improvement in glucose tolerance measured by OGTT, whereas no change was observed in the control group. There was no change in substrate utilization and muscle mass in both control and NMES groups. Conclusion NMES is a novel and effective strategy to improve glucose tolerance in an at-risk overweight or obese sedentary population.
Collapse
Affiliation(s)
- Michelle J Galvan
- Metabolic, Nutrition, and Exercise Research (MiNER) Laboratory, Department of Kinesiology, University of Texas at El Paso, El Paso, Texas, USA
| | - Michael J Sanchez
- Metabolic, Nutrition, and Exercise Research (MiNER) Laboratory, Department of Kinesiology, University of Texas at El Paso, El Paso, Texas, USA
| | - Andrew J McAinch
- Institute for Health and Sport (IHES), Victoria University, Melbourne, Victoria, Australia
- Australian Institute for Musculoskeletal Science (AIMSS), Victoria University, Melbourne, Victoria, Australia
| | - Jeffrey D Covington
- Department of Pathology, University of Massachusetts Medical School, Worcester, Massachusetts, USA
| | - Jason B Boyle
- Metabolic, Nutrition, and Exercise Research (MiNER) Laboratory, Department of Kinesiology, University of Texas at El Paso, El Paso, Texas, USA
| | - Sudip Bajpeyi
- Metabolic, Nutrition, and Exercise Research (MiNER) Laboratory, Department of Kinesiology, University of Texas at El Paso, El Paso, Texas, USA
| |
Collapse
|
19
|
Benefits of 1-Yr Home Training With Functional Electrical Stimulation Cycling in Paraplegia During COVID-19 Crisis. Am J Phys Med Rehabil 2021; 100:1148-1151. [PMID: 34596097 PMCID: PMC8594387 DOI: 10.1097/phm.0000000000001898] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
ABSTRACT The purpose of this observational study was to report the experience of a 1-yr home training with functional electrical stimulation cycling of a person with T4 American Impairment Scale A paraplegia for 9 yrs, homebound due to the COVID-19 health crisis. The 40-yr-old participant had a three-phase training: V1, isometric stimulation; V2, functional electrical stimulation cycling for 3 sessions/wk; and V3, functional electrical stimulation cycling for 2-4 sessions/wk. Data on general and physical tolerance, health impact, and performance were collected. Borg Scale score relating to fatigue was 10.1 before training and 11.8 after training. The average score for satisfaction at the end of sessions was 8.7. Lean leg mass increased more than 29%, although total bone mineral density dropped by 1.6%. The ventilatory thresholds increased from 19.5 to 29% and the maximum ventilatory peak increased by 9.5%. Rosenberg's Self-esteem Scale score returned to its highest level by the end of training. For the only track event on a competition bike, the pilot covered a distance of 1607.8 m in 17 mins 49 secs. When functional electrical stimulation cycling training is based on a clear and structured protocol, it offers the person with paraplegia the opportunity to practice this activity recreationally and athletically. In times of crisis, this training has proven to be very relevant.
Collapse
|
20
|
Invasive and Non-Invasive Approaches of Electrical Stimulation to Improve Physical Functioning after Spinal Cord Injury. J Clin Med 2021; 10:jcm10225356. [PMID: 34830637 PMCID: PMC8625266 DOI: 10.3390/jcm10225356] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2021] [Revised: 11/09/2021] [Accepted: 11/12/2021] [Indexed: 12/13/2022] Open
Abstract
This review of literature provides the latest evidence involving invasive and non-invasive uses of electrical stimulation therapies that assist in restoring functional abilities and the enhancement of quality of life in those with spinal cord injuries. The review includes neuromuscular electrical stimulation and functional electrical stimulation activities that promote improved body composition changes and increased muscular strength, which have been shown to improve abilities in activities of daily living. Recommendations for optimizing electrical stimulation parameters are also reported. Electrical stimulation is also used to enhance the skills of reaching, grasping, standing, and walking, among other activities of daily living. Additionally, we report on the use of invasive and non-invasive neuromodulation techniques targeting improved mobility, including standing, postural control, and assisted walking. We attempt to summarize the effects of epidural stimulation on cardiovascular performance and provide a mechanistic explanation to the current research findings. Future trends such as the combination of epidural stimulation and exoskeletal-assisted walking are also discussed.
Collapse
|
21
|
Gorgey AS, Khalil RE, Gill R, Khan R, Adler RA. Effects of dose de-escalation following testosterone treatment and evoked resistance exercise on body composition, metabolic profile, and neuromuscular parameters in persons with spinal cord injury. Physiol Rep 2021; 9:e15089. [PMID: 34713983 PMCID: PMC8554770 DOI: 10.14814/phy2.15089] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2021] [Revised: 09/29/2021] [Accepted: 10/06/2021] [Indexed: 11/24/2022] Open
Abstract
The dose de-escalation (DD) effects of testosterone and evoked resistance training (RT) on body composition, cardiometabolic, and neuromuscular variables were investigated. Thirteen men with chronic complete spinal cord injury (SCI) were followed for additional 16 weeks after receiving either testosterone treatment only (TT) or TT+RT. During the 16-week DD period, the TT+RT group underwent a program of once weekly electrical stimulation with gradually decreasing ankle weights and testosterone patches of 2 mg day-1 (TT+RT group). The TT only group did not receive any intervention throughout the detraining period (no-TT group). Body composition was tested using anthropometrics, dual energy X-ray absorptiometry, and magnetic resonance imaging. After an overnight fast, basal metabolic rate (BMR), lipid panel, serum testosterone, inflammatory biomarkers, glucose effectiveness, and insulin sensitivity were measured. Finally, peak isometric and isokinetic torques were measured only in the TT+RT group. All measurements were conducted at the beginning and at the end of DD. Absolute thigh muscle cross-sectional areas (CSAs) demonstrated interaction effects (p < 0.05) between the TT+RT (-8.15%, -6.5%) and no-TT (2.3%, 4.4%) groups. Similarly, absolute knee extensor muscle CSA demonstrated interaction effects (p < 0.05) between the TT+RT (-11%, -7.0%) and no-TT (2.6%, 3.8%) groups. There was a trend (p = 0.07) of increasing visceral adipose tissue (VAT) CSAs in the TT+RT (18%) and in the no-TT (16% cm2 ) groups. There was an interaction (p = 0.005) between TT+RT (decreased by 3.7%) and no-TT groups (increased by 9.0%) in BMR. No interactions were evident between groups over time for biomarkers related to carbohydrate, lipid metabolism, or inflammation. Finally, there were no changes (p > 0.05) in peak isometric or isokinetic torques and rise time following 16 weeks of the DD period in the TT+RT group. TT+RT during 16 weeks of DD was minimally effective at preventing detraining relative to no-TT on muscle size, BMR, and VAT. However, neuromuscular gains were successfully maintained.
Collapse
Affiliation(s)
- Ashraf S. Gorgey
- Spinal Cord Injury and Disorders CenterHunter Holmes McGuire VAMCRichmondVirginiaUSA
- Department of Physical Medicine & RehabilitationVirginia Commonwealth UniversityRichmondVirginiaUSA
| | - Refka E. Khalil
- Spinal Cord Injury and Disorders CenterHunter Holmes McGuire VAMCRichmondVirginiaUSA
| | - Ranjodh Gill
- Endocrinology ServiceHunter Holmes McGuire VA Medical CenterRichmondVirginiaUSA
- Endocrine DivisionVirginia Commonwealth University School of MedicineRichmondVirginiaUSA
| | - Rehan Khan
- Radiology ServiceHunter Holmes McGuire VA Medical CenterRichmondVirginiaUSA
| | - Robert A. Adler
- Endocrinology ServiceHunter Holmes McGuire VA Medical CenterRichmondVirginiaUSA
- Endocrine DivisionVirginia Commonwealth University School of MedicineRichmondVirginiaUSA
| |
Collapse
|
22
|
Atkins KD, Bickel CS. Effects of functional electrical stimulation on muscle health after spinal cord injury. Curr Opin Pharmacol 2021; 60:226-231. [PMID: 34464934 DOI: 10.1016/j.coph.2021.07.025] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2021] [Revised: 07/16/2021] [Accepted: 07/26/2021] [Indexed: 10/20/2022]
Abstract
Spinal cord injury is a devastating condition interrupting voluntary movement and motor control. In response to unloading, skeletal muscle undergoes numerous adaptations, including rapid and profound atrophy, intramuscular fat accumulation, impaired muscular glucose metabolism and decreased force generation and muscle performance. Functional electrical stimulation (FES) involves electrically stimulating affected muscles to contract in a coordinated manner to create a functional movement or task. Effects of FES-cycling, rowing and resistance training on muscle health are described here. Briefly, FES-cycling and resistance training may slow muscle atrophy or facilitate muscle hypertrophy, and all modalities benefit muscle composition and performance to some extent. These interventions show promise as future rehabilitative tools after spinal cord injury.
Collapse
Affiliation(s)
- Kelly D Atkins
- Department of Physical Therapy, Samford University, Birmingham, AL, USA
| | - C Scott Bickel
- Department of Physical Therapy, Samford University, Birmingham, AL, USA.
| |
Collapse
|
23
|
Holman ME, Chang G, Ghatas MP, Saha PK, Zhang X, Khan MR, Sima AP, Adler RA, Gorgey AS. Bone and non-contractile soft tissue changes following open kinetic chain resistance training and testosterone treatment in spinal cord injury: an exploratory study. Osteoporos Int 2021; 32:1321-1332. [PMID: 33443609 DOI: 10.1007/s00198-020-05778-2] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/10/2020] [Accepted: 12/04/2020] [Indexed: 01/30/2023]
Abstract
UNLABELLED Twenty men with spinal cord injury (SCI) were randomized into two 16-week intervention groups receiving testosterone treatment (TT) or TT combined with resistance training (TT + RT). TT + RT appears to hold the potential to reverse or slow down bone loss following SCI if provided over a longer period. INTRODUCTION Persons with SCI experience bone loss below the level of injury. The combined effects of resistance training and TT on bone quality following SCI remain unknown. METHODS Men with SCI were randomized into 16-week treatments receiving TT or TT + RT. Magnetic resonance imaging (MRI) of the right lower extremity before participation and post-intervention was used to visualize the proximal, middle, and distal femoral shaft, the quadriceps tendon, and the intermuscular fascia of the quadriceps. For the TT + RT group, MRI microarchitecture techniques were utilized to elucidate trabecular changes around the knee. Individual mixed models were used to estimate effect sizes. RESULTS Twenty participants completed the pilot trial. A small effect for yellow marrow in the distal femur was indicated as increases following TT and decreases following TT + RT were observed. Another small effect was observed as the TT + RT group displayed greater increases in intermuscular fascia length than the TT arm. Distal femur trabecular changes for the TT + RT group were generally small in effect (decreased trabecular thickness variability, spacing, and spacing variability; increased network area). Medium effects were generally observed in the proximal tibia (increased plate width, trabecular thickness, and network area; decreased trabecular spacing and spacing variability). CONCLUSIONS This pilot suggests longer TT + RT interventions may be a viable rehabilitation technique to combat bone loss following SCI. CLINICAL TRIAL REGISTRATION Registered with clinicaltrials.gov : NCT01652040 (07/27/2012).
Collapse
Affiliation(s)
- M E Holman
- Spinal Cord Injury and Disorders, Hunter Holmes McGuire VAMC, Richmond, VA, 23249, USA
| | - G Chang
- Department of Radiology, NYU School of Medicine, New York, NY, 10016, USA
| | - M P Ghatas
- Spinal Cord Injury and Disorders, Hunter Holmes McGuire VAMC, Richmond, VA, 23249, USA
| | - P K Saha
- Department of Electrical and Computer Engineering, University of Iowa, Iowa City, IA, 52242, USA
- Department of Radiology, University of Iowa, Iowa City, IA, 52242, USA
| | - X Zhang
- Department of Electrical and Computer Engineering, University of Iowa, Iowa City, IA, 52242, USA
| | - M R Khan
- Department of Radiology, Hunter Holmes McGuire VAMC, Richmond, VA, 23249, USA
| | - A P Sima
- Department of Biostatistics, Virginia Commonwealth University, Richmond, VA, 23284, USA
| | - R A Adler
- Spinal Cord Injury and Disorders, Hunter Holmes McGuire VAMC, Richmond, VA, 23249, USA
| | - A S Gorgey
- Spinal Cord Injury and Disorders, Hunter Holmes McGuire VAMC, Richmond, VA, 23249, USA.
- Department of Physical Medicine & Rehabilitation, Virginia Commonwealth University, Richmond, VA, 23284, USA.
| |
Collapse
|
24
|
Barss TS, Sallis BWM, Miller DJ, Collins DF. Does increasing the number of channels during neuromuscular electrical stimulation reduce fatigability and produce larger contractions with less discomfort? Eur J Appl Physiol 2021; 121:2621-2633. [PMID: 34131798 DOI: 10.1007/s00421-021-04742-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2021] [Accepted: 06/08/2021] [Indexed: 11/27/2022]
Abstract
PURPOSE Neuromuscular electrical stimulation (NMES) is often delivered at frequencies that recruit motor units (MUs) at unphysiologically high rates, leading to contraction fatigability. Rotating NMES pulses between multiple electrodes recruits subpopulations of MUs from each site, reducing MU firing rates and fatigability. This study was designed to determine whether rotating pulses between an increasing number of stimulation channels (cathodes) reduces contraction fatigability and increases the ability to generate torque during NMES. A secondary outcome was perceived discomfort. METHODS Fifteen neurologically intact volunteers completed four sessions. NMES was delivered over the quadriceps through 1 (NMES1), 2 (NMES2), 4 (NMES4) or 8 (NMES8) channels. Fatigability was assessed over 100 contractions (1-s on/1-s off) at an initial contraction amplitude that was 20% of a maximal voluntary contraction. Torque-frequency relationships were characterized over six frequencies from 20 to 120 Hz. RESULTS NMES4 and NMES8 resulted in less decline in peak torque (42 and 41%) over the 100 contractions than NMES1 and NMES2 (53 and 50% decline). Increasing frequency from 20 to 120 Hz increased torque by 7, 13, 21 and 24% MVC, for NMES1, NMES2, NMES4 and NMES8, respectively. Perceived discomfort was highest during NMES8. CONCLUSION NMES4 and NMES8 reduced contraction fatigability and generated larger contractions across a range of frequencies than NMES1 and NMES2. NMES8 produced the most discomfort, likely due to small electrodes and high current density. During NMES, more is not better and rotating pulses between four channels may be optimal to reduce contraction fatigability and produce larger contractions with minimal discomfort compared to conventional NMES configurations.
Collapse
Affiliation(s)
- Trevor S Barss
- Human Neurophysiology Laboratory, Faculty of Kinesiology, Sport, and Recreation, University of Alberta, 4-219 Van Vliet Complex, Edmonton, AB, T6G 2H9, Canada.,Neuroscience and Mental Health Institute, University of Alberta, Edmonton, AB, Canada
| | - Bailey W M Sallis
- Human Neurophysiology Laboratory, Faculty of Kinesiology, Sport, and Recreation, University of Alberta, 4-219 Van Vliet Complex, Edmonton, AB, T6G 2H9, Canada.,Neuroscience and Mental Health Institute, University of Alberta, Edmonton, AB, Canada
| | - Dylan J Miller
- Human Neurophysiology Laboratory, Faculty of Kinesiology, Sport, and Recreation, University of Alberta, 4-219 Van Vliet Complex, Edmonton, AB, T6G 2H9, Canada.,Neuroscience and Mental Health Institute, University of Alberta, Edmonton, AB, Canada
| | - David F Collins
- Human Neurophysiology Laboratory, Faculty of Kinesiology, Sport, and Recreation, University of Alberta, 4-219 Van Vliet Complex, Edmonton, AB, T6G 2H9, Canada. .,Neuroscience and Mental Health Institute, University of Alberta, Edmonton, AB, Canada.
| |
Collapse
|
25
|
Goldsmith JA, Ennasr AN, Farkas GJ, Gater DR, Gorgey AS. Role of exercise on visceral adiposity after spinal cord injury: a cardiometabolic risk factor. Eur J Appl Physiol 2021; 121:2143-2163. [PMID: 33891156 DOI: 10.1007/s00421-021-04688-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2021] [Accepted: 04/10/2021] [Indexed: 12/30/2022]
Abstract
PURPOSE Visceral adipose tissue (VAT) is associated with cardiometabolic disease risk in able-bodied (AB) populations. However, the underlying mechanisms of VAT-induced disease risk are unknown in persons with spinal cord injury (SCI). Potential mechanisms of VAT-induced cardiometabolic dysfunction in persons with SCI include systemic inflammation, liver adiposity, mitochondrial dysfunction, and anabolic deficiency. Moreover, how exercise interventions impact these mechanisms associated with VAT-induced cardiometabolic dysfunction are still being explored. METHODS A search for relevant scientific literature about the effects of exercise on VAT and cardiometabolic health was conducted on the PubMed database. Literature from reference lists was also included when appropriate. RESULTS Both aerobic and resistance exercise training beneficially impact health and VAT mass via improving mitochondrial function, glucose effectiveness, and inflammatory signaling in SCI and AB populations. Specifically, aerobic exercise appears to also modulate cellular senescence in AB populations and animal models, while resistance exercise seems to augment anabolic signaling in persons with SCI. CONCLUSIONS The current evidence supports regular engagement in exercise to reduce VAT mass and the adverse effects on cardiometabolic health in persons with SCI. Future research is needed to further elucidate the precise mechanisms by which VAT negatively impacts health following SCI. This will likely facilitate the development of rehabilitation protocols that target VAT reduction in persons with SCI.
Collapse
Affiliation(s)
- Jacob A Goldsmith
- Spinal Cord Injury and Disorders Center, Central Virginia VA Health Care System, 1201 Broad Rock Boulevard, Richmond, VA, 23249, USA
| | - Areej N Ennasr
- Spinal Cord Injury and Disorders Center, Central Virginia VA Health Care System, 1201 Broad Rock Boulevard, Richmond, VA, 23249, USA
| | - Gary J Farkas
- Department of Physical Medicine and Rehabilitation, University of Miami Miller School of Medicine, Miami, FL, 33136, USA
| | - David R Gater
- Department of Physical Medicine and Rehabilitation, University of Miami Miller School of Medicine, Miami, FL, 33136, USA
| | - Ashraf S Gorgey
- Spinal Cord Injury and Disorders Center, Central Virginia VA Health Care System, 1201 Broad Rock Boulevard, Richmond, VA, 23249, USA. .,Department of Physical Medicine and Rehabilitation, Virginia Commonwealth University, Richmond, VA, 23298, USA.
| |
Collapse
|
26
|
Farrow M, Nightingale TE, Maher J, McKay CD, Thompson D, Bilzon JL. Effect of Exercise on Cardiometabolic Risk Factors in Adults With Chronic Spinal Cord Injury: A Systematic Review. Arch Phys Med Rehabil 2020; 101:2177-2205. [DOI: 10.1016/j.apmr.2020.04.020] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2019] [Revised: 03/27/2020] [Accepted: 04/11/2020] [Indexed: 12/14/2022]
|
27
|
Momeni K, Ramanujam A, Ravi M, Garbarini E, Forrest GF. Effects of Multi-Muscle Electrical Stimulation and Stand Training on Stepping for an Individual With SCI. Front Hum Neurosci 2020; 14:549965. [PMID: 33100994 PMCID: PMC7546792 DOI: 10.3389/fnhum.2020.549965] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2020] [Accepted: 08/28/2020] [Indexed: 11/13/2022] Open
Abstract
The objective of this study was to evaluate the biomechanical, neural, and functional outcomes during a 10-min treadmill stepping trial before and after two independent interventions with neuromuscular electrical stimulation (ES) in an individual with spinal cord injury (SCI). In this longitudinal study, a 34-year-old male with sensory- and motor-complete SCI (C5/C6) underwent two consecutive interventions: 61 h of supine lower limb ES (ES-alone) followed by 51 h of ES combined with stand training (ST) using an overhead body-weight support (BWS) system (ST + ES). In post ES-alone (unloaded), compared to baseline, the majority (∼60%) of lower extremity muscles decreased their peak surface electromyography (sEMG) amplitude, while in post ST + ES (loaded), compared to post ES-alone, there was a restoration in muscle activation that endured the continuous 10-min stepping. Temporal α-motor neuron activity patterns were observed for the SCI participant. In post ST + ES, there were increases in spinal activity patterns during mid-stance at spinal levels L5–S2 for the right and left limbs. Moreover, in post ES-alone, trunk stability increased with excursions from the midline of the base-of-support (50%) to the left (44.2%; Baseline: 54.2%) and right (66.4%; baseline: 77.5%). The least amount of trunk excursion observed post ST + ES, from midline to left (43%; AB: 22%) and right (64%; AB: 64%). Overall, in post ES-alone, there were gains in trunk independence with a decrease in lower limb muscle activation, whereas in post ST + ES, there were gains in trunk independence and increased muscle activation in both bilateral trunk muscles as well as lower limb muscles during the treadmill stepping paradigm. The results of the study illustrate the importance of loading during the stimulation for neural and mechanical gains.
Collapse
Affiliation(s)
- Kamyar Momeni
- Tim and Caroline Reynolds Center for Spinal Stimulation, Kessler Foundation, West Orange, NJ, United States.,Department of Physical Medicine and Rehabilitation, Rutgers New Jersey Medical School, Newark, NJ, United States
| | - Arvind Ramanujam
- Tim and Caroline Reynolds Center for Spinal Stimulation, Kessler Foundation, West Orange, NJ, United States
| | - Manikandan Ravi
- Tim and Caroline Reynolds Center for Spinal Stimulation, Kessler Foundation, West Orange, NJ, United States
| | - Erica Garbarini
- Tim and Caroline Reynolds Center for Spinal Stimulation, Kessler Foundation, West Orange, NJ, United States
| | - Gail F Forrest
- Tim and Caroline Reynolds Center for Spinal Stimulation, Kessler Foundation, West Orange, NJ, United States.,Department of Physical Medicine and Rehabilitation, Rutgers New Jersey Medical School, Newark, NJ, United States
| |
Collapse
|
28
|
Umutlu G, Demirci N, Erdoğan AT, Acar NE, Fidanci ŞB. Neuromuscular, hormonal and cardiovascular adaptations to eight-week HIIT and continuous aerobic training combined with neuromuscular electrical stimulation. J Sports Med Phys Fitness 2020; 60:510-519. [PMID: 32043342 DOI: 10.23736/s0022-4707.19.10277-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
BACKGROUND Whether high-or-low intensity exercise coupled with neuromuscular electrostimulation (NMES) affect IGF-1 and IGFBP-1 is unknown. The scope of this study was to test whether 8-week high-intensity interval training (HIIT) and continuous aerobic training (CA) combined with/without NMES performed at 65% and 120% of VO2max on a cycle ergometer induce different metabolic adaptations. METHODS A randomized controlled trial with a parallel groups study design was used. Thirty healthy untrained male participants (age: 21.33±1.24 years, height: 177.80±5.97 cm, weight: 73.74±7.90 kg, lean body mass: 64.29±5.11 kg, percent body fat: 12.43±5.34%) voluntarily participated in this study. Six participants were allocated to Control, six to HIIT, six to HIIT+NMES, six to CA, and six to CA+NMES. RESULTS Pre- to post-test IVO2max, blood lactate concentrations, O2 kinetics, peak torques at 60o/s and 180o/s were found statistically significant (P<0.05, P<0.001). IGF-1 pre 15 min in CA and IGF-1 post 30 min in HIIT group was found significantly higher compared to control group (16.93±8.40 vs. 6.05±4.25, P=0.024; 10.80±3.94 vs. 6.15±2.56, P=0.037), respectively. Additionally, IGFBP-1 were found significantly higher in CA+NMES group than HIIT group (0.95±0.67 vs. 1.23±0.56). Eight week post IGF-1/IGFBP-1 ratios were found higher in pre 15 min, post 30 min and post 24 h compared to baseline pre 15 min, post 30 min and post 24 h measurements in all groups (8.92±4.72 vs. 3.93±3.14; 9.41±3.72 vs. 3.99±1.76; 8.63±3.01 vs. 5.89±3.01, respectively). Also, IGFBP-1 post 30 min was significantly lower in HIIT+NMES while CA group showed significantly lower baseline and 24 h post IGFBP-1 compared to pre-test measurements (Z=-3.20, P=0.001; Z=-3.72, P=0.000; Z=-2.93, P=0.000). CONCLUSIONS HIIT and CA training induce different stimuli on IGF-1 and IGFBP-1 and NMES application combined with high-and-low intensity exercise is highly effective in improving athletic performance.
Collapse
Affiliation(s)
- Gökhan Umutlu
- School of Physical Education and Sports, Final International University, Kyrenia, Cyprus -
| | - Nevzat Demirci
- School of Physical Education and Sports, Mersin University, Mersin, Turkey
| | - Ayhan T Erdoğan
- School of Physical Education and Sports, Final International University, Kyrenia, Cyprus
| | - Nasuh E Acar
- School of Physical Education and Sports, Mersin University, Mersin, Turkey
| | - Şenay B Fidanci
- School of Medicine, Department of Medical Chemistry, Mersin University, Mersin, Turkey
| |
Collapse
|
29
|
Design of meta-heuristic computing paradigms for Hammerstein identification systems in electrically stimulated muscle models. Neural Comput Appl 2020. [DOI: 10.1007/s00521-020-04701-4] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
30
|
Holman ME, Gorgey AS. Testosterone and Resistance Training Improve Muscle Quality in Spinal Cord Injury. Med Sci Sports Exerc 2020; 51:1591-1598. [PMID: 30845047 DOI: 10.1249/mss.0000000000001975] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
PURPOSE Spinal cord injury (SCI) negatively impacts muscle quality and testosterone levels. Resistance training (RT) has been shown to increase muscle cross-sectional area (CSA) after SCI, whereas testosterone replacement therapy (TRT) has been shown to improve muscle quality in other populations. The purpose of this pilot study was to examine if the combined effects of these interventions, TRT + RT, may maximize the beneficial effects on muscle quality after SCI. METHODS Twenty-two SCI subjects randomized into either a TRT + RT (n = 11) or TRT (n = 11) intervention for 16 wk. Muscle quality measured by peak torque (PT) at speeds of 0°·s (PT-0°), 60°·s (PT-60°), 90°·s (PT-90°), and 180°·s (PT-180°), knee extensor CSA, specific tension, and contractile speed (rise time [RTi], and half-time to relaxation [½TiR]) was assessed for each limb at baseline and postintervention using 2 × 2 mixed models. RESULTS After 16 wk, subjects in the TRT + RT group increased PT-0° (48.4%, P = 0.017), knee extensor CSA (30.8%, P < 0.0001), and RTi (17.7%, P = 0.012); with no significant changes observed in the TRT group. Regardless of the intervention, changes to PT-60° (28.4%, P = 0.020), PT-90° (26.1%, P = 0.055), and PT-180° (20.6%, P = 0.09) for each group were similar. CONCLUSIONS The addition of mechanical stress via RT to TRT maximizes improvements to muscle quality after complete SCI when compared with TRT administered alone. Our evidence shows that this intervention increases muscle size and strength while also improving muscle contractile properties.
Collapse
Affiliation(s)
- Matthew E Holman
- Spinal Cord Injury and Disorders, Hunter Holmes McGuire VA Medical Center, Richmond, VA
| | | |
Collapse
|
31
|
Chandrasekaran S, Davis J, Bersch I, Goldberg G, Gorgey AS. Electrical stimulation and denervated muscles after spinal cord injury. Neural Regen Res 2020; 15:1397-1407. [PMID: 31997798 PMCID: PMC7059583 DOI: 10.4103/1673-5374.274326] [Citation(s) in RCA: 42] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
Spinal cord injury (SCI) population with injury below T10 or injury to the cauda equina region is characterized by denervated muscles, extensive muscle atrophy, infiltration of intramuscular fat and formation of fibrous tissue. These morphological changes may put individuals with SCI at higher risk for developing other diseases such as various cardiovascular diseases, diabetes, obesity and osteoporosis. Currently, there is no available rehabilitation intervention to rescue the muscles or restore muscle size in SCI individuals with lower motor neuron denervation. We, hereby, performed a review of the available evidence that supports the use of electrical stimulation in restoration of denervated muscle following SCI. Long pulse width stimulation (LPWS) technique is an upcoming method of stimulating denervated muscles. Our primary objective is to explore the best stimulation paradigms (stimulation parameters, stimulation technique and stimulation wave) to achieve restoration of the denervated muscle. Stimulation parameters, such as the pulse duration, need to be 100–1000 times longer than in innervated muscles to achieve desirable excitability and contraction. The use of electrical stimulation in animal and human models induces muscle hypertrophy. Findings in animal models indicate that electrical stimulation, with a combination of exercise and pharmacological interventions, have proven to be effective in improving various aspects like relative muscle weight, muscle cross sectional area, number of myelinated regenerated fibers, and restoring some level of muscle function. Human studies have shown similar outcomes, identifying the use of LPWS as an effective strategy in increasing muscle cross sectional area, the size of muscle fibers, and improving muscle function. Therefore, displaying promise is an effective future stimulation intervention. In summary, LPWS is a novel stimulation technique for denervated muscles in humans with SCI. Successful studies on LPWS of denervated muscles will help in translating this stimulation technique to the clinical level as a rehabilitation intervention after SCI.
Collapse
Affiliation(s)
| | - John Davis
- Spinal Cord Injury and Disorders, Hunter Holmes McGuire VA Medical Center, Richmond, VA, USA
| | - Ines Bersch
- Swiss Paraplegic Centre, Nottwil, Switzerland; Institute of Clinical Sciences, Department of Orthopedics at the University of Gothenburg, Gothenburg, Sweden
| | - Gary Goldberg
- Department of Physical Medicine and Rehabilitation, Virginia Commonwealth University; Electrodiagnostic Center, Hunter Holmes McGuire VA Medical Center, Richmond, VA, USA
| | - Ashraf S Gorgey
- Spinal Cord Injury and Disorders, Hunter Holmes McGuire VA Medical Center; Department of Physical Medicine and Rehabilitation, Virginia Commonwealth University, Richmond, VA, USA
| |
Collapse
|
32
|
Mehmood A, Zameer A, Chaudhary NI, Raja MAZ. Backtracking search heuristics for identification of electrical muscle stimulation models using Hammerstein structure. Appl Soft Comput 2019. [DOI: 10.1016/j.asoc.2019.105705] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
33
|
A secondary analysis of testosterone and electrically evoked resistance training versus testosterone only (TEREX-SCI) on untrained muscles after spinal cord injury: a pilot randomized clinical trial. Spinal Cord 2019; 58:298-308. [PMID: 31641203 PMCID: PMC7065941 DOI: 10.1038/s41393-019-0364-3] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2019] [Revised: 09/10/2019] [Accepted: 09/30/2019] [Indexed: 11/09/2022]
Abstract
STUDY DESIGN Secondary analysis of a clinical trial. OBJECTIVES To perform a secondary analysis on the effects of neuromuscular electrical stimulation resistance training (RT) combined with testosterone replacement therapy (TRT) compared with TRT on the untrained muscles after spinal cord injury (SCI). SETTING Medical research center. METHODS Twenty-two men with chronic motor complete SCI were randomized into TRT + RT group (n = 11) or TRT group (n = 11). Both groups received 16 weeks of TRT (2-6 mg/day) via testosterone patches. The TRT + RT group received twice weekly progressive RT of the knee extensor muscles using electrical stimulation and ankle weights. Magnetic resonance images were captured to measure cross-sectional areas (CSAs) of trunk, glutei, and leg muscles. RESULTS Total and absolute gluteus maximus m. (14%, P = 0.003 and 16%, P = 0.001), gluteus medius m. (10%; P = 0.008 and 14%; P = 0.02), and total glutei m. (8%, P = 0.01 and 11%, P = 0.005) CSAs increased overtime for the TRT + RT group. Mean between-group differences of 2.86 (95% CI: 0.30, 5.4), 1.89 (95% CI: 0.23, 3.58) and 5.27 (95% CI: 0.90, 9.69) cm2 were noted for absolute gluteus maximus, total gluteus medius and total glutei CSAs, respectively (P < 0.05). Trunk muscle CSAs showed a trend towards an interaction between groups. CONCLUSIONS RT combined with low-dose TRT results in significant hypertrophy compared with TRT only on the adjacent untrained glutei muscles. Trunk muscles may require direct stimulation to evoke hypertrophy. These exploratory findings may be of clinical relevance in the reduction of incidence and severity of pelvic pressure injuries.
Collapse
|
34
|
Gorgey AS, Khalil RE, Gill R, Gater DR, Lavis TD, Cardozo CP, Adler RA. Low-Dose Testosterone and Evoked Resistance Exercise after Spinal Cord Injury on Cardio-Metabolic Risk Factors: An Open-Label Randomized Clinical Trial. J Neurotrauma 2019; 36:2631-2645. [PMID: 30794084 DOI: 10.1089/neu.2018.6136] [Citation(s) in RCA: 48] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
The purpose of the work is to investigate the effects of low-dose testosterone replacement therapy (TRT) and evoked resistance training (RT) on body composition and metabolic variables after spinal cord injury (SCI). Twenty-two individuals with chronic motor complete SCI (ages 18-50 years) were randomly assigned to either TRT+RT (n = 11) or TRT (n = 11) for 16 weeks following a 4 -week delayed entry period. TRT+RT men underwent twice weekly progressive RT using electrical stimulation with ankle weights. TRT was administered via testosterone patches (2-6 mg/day). Body composition was tested using anthropometrics, dual energy x-ray absorptiometry, and magnetic resonance imaging. After an overnight fast, basal metabolic rate (BMR), lipid panel, serum testosterone, adiponectin, inflammatory and anabolic biomarkers (insulin-like growth factor-1 and insulin-like growth factor-binding protein 3 [IGFBP-3]), glucose effectiveness (Sg), and insulin sensitivity (Si) were measured. Total body lean mass (LM; 2.7 kg, p < 0.0001), whole muscle (p < 0.0001), and whole muscle knee extensor cross-sectional areas (CSAs; p < 0.0001) increased in the TRT+RT group, with no changes in the TRT group. Visceral adiposity decreased (p = 0.049) in the TRT group, with a trend in the TRT+RT (p = 0.07) group. There was a trend (p = 0.050) of a 14-17% increase in BMR following TRT+RT. Sg showed a trend (p = 0.07) to improvement by 28.5-31.5% following both interventions. IGFBP-3 increased (p = 0.0001) while IL-6 decreased (p = 0.039) following both interventions, and TRT+RT suppressed adiponectin (p = 0.024). TRT+RT resulted in an increase in LM and whole thigh and knee extensor muscle CSAs, with an increase in BMR and suppressed adiponectin. Low-dose TRT may mediate modest effects on visceral adipose tissue, Sg, IGFBP-3, and IL-6, independent of changes in LM.
Collapse
Affiliation(s)
- Ashraf S Gorgey
- Spinal Cord Injury and Disorders Center, Hunter Holmes McGuire VA Medical Center, Richmond, Virginia
- Department of Physical Medicine and Rehabilitation, Virginia Commonwealth University, Richmond, Virginia
| | - Refka E Khalil
- Spinal Cord Injury and Disorders Center, Hunter Holmes McGuire VA Medical Center, Richmond, Virginia
| | - Ranjodh Gill
- Endocrinology Service, Hunter Holmes McGuire VA Medical Center, Richmond, Virginia
- Endocrine Division, Virginia Commonwealth University, Richmond, Virginia
| | - David R Gater
- Department of Physical Medicine and Rehabilitation, Penn State Milton S. Hershey Medical Center, Hershey, Pennsylvania
| | - Timothy D Lavis
- Spinal Cord Injury and Disorders Center, Hunter Holmes McGuire VA Medical Center, Richmond, Virginia
- Department of Physical Medicine and Rehabilitation, Virginia Commonwealth University, Richmond, Virginia
| | - Christopher P Cardozo
- National Center for the Medical Consequences of Spinal Cord Injury, James J. Peters VA Medical Center, Bronx, New York
- Icahn School of Medicine at Mt. Sinai, New York, New York
| | - Robert A Adler
- Endocrinology Service, Hunter Holmes McGuire VA Medical Center, Richmond, Virginia
- Endocrine Division, Virginia Commonwealth University, Richmond, Virginia
| |
Collapse
|
35
|
Gorgey AS, Khalil RE, Davis JC, Carter W, Gill R, Rivers J, Khan R, Goetz LL, Castillo T, Lavis T, Sima AP, Lesnefsky EJ, Cardozo CC, Adler RA. Skeletal muscle hypertrophy and attenuation of cardio-metabolic risk factors (SHARC) using functional electrical stimulation-lower extremity cycling in persons with spinal cord injury: study protocol for a randomized clinical trial. Trials 2019; 20:526. [PMID: 31443727 PMCID: PMC6708188 DOI: 10.1186/s13063-019-3560-8] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2019] [Accepted: 07/06/2019] [Indexed: 12/16/2022] Open
Abstract
Background Persons with spinal cord injury (SCI) are at heightened risks of developing unfavorable cardiometabolic consequences due to physical inactivity. Functional electrical stimulation (FES) and surface neuromuscular electrical stimulation (NMES)-resistance training (RT) have emerged as effective rehabilitation methods that can exercise muscles below the level of injury and attenuate cardio-metabolic risk factors. Our aims are to determine the impact of 12 weeks of NMES + 12 weeks of FES-lower extremity cycling (LEC) compared to 12 weeks of passive movement + 12 weeks of FES-LEC on: (1) oxygen uptake (VO2), insulin sensitivity, and glucose disposal in adults with SCI; (2) skeletal muscle size, intramuscular fat (IMF), and visceral adipose tissue (VAT); and (3) protein expression of energy metabolism, protein molecules involved in insulin signaling, muscle hypertrophy, and oxygen uptake and electron transport chain (ETC) activities. Methods/Design Forty-eight persons aged 18–65 years with chronic (> 1 year) SCI/D (AIS A-C) at the C5-L2 levels, equally sub-grouped by cervical or sub-cervical injury levels and time since injury, will be randomized into either the NMES + FES group or Passive + FES (control group). The NMES + FES group will undergo 12 weeks of evoked RT using twice-weekly NMES and ankle weights followed by twice-weekly progressive FES-LEC for an additional 12 weeks. The control group will undergo 12 weeks of passive movement followed by 12 weeks of progressive FES-LEC. Measurements will be performed at baseline (B; week 0), post-intervention 1 (P1; week 13), and post-intervention 2 (P2; week 25), and will include: VO2 measurements, insulin sensitivity, and glucose effectiveness using intravenous glucose tolerance test; magnetic resonance imaging to measure muscle, IMF, and VAT areas; muscle biopsy to measure protein expression and intracellular signaling; and mitochondrial ETC function. Discussion Training through NMES + RT may evoke muscle hypertrophy and positively impact oxygen uptake, insulin sensitivity, and glucose effectiveness. This may result in beneficial outcomes on metabolic activity, body composition profile, mitochondrial ETC, and intracellular signaling related to insulin action and muscle hypertrophy. In the future, NMES-RT may be added to FES-LEC to improve the workloads achieved in the rehabilitation of persons with SCI and further decrease muscle wasting and cardio-metabolic risks. Trial registration ClinicalTrials.gov, NCT02660073. Registered on 21 Jan 2016.
Collapse
Affiliation(s)
- Ashraf S Gorgey
- Spinal Cord Injury & Disorders Service, Hunter Holmes McGuire VA Medical Center, Richmond, VA, USA. .,Department of Physical Medicine & Rehabilitation, Virginia Commonwealth University, Richmond, VA, USA.
| | - Refka E Khalil
- Spinal Cord Injury & Disorders Service, Hunter Holmes McGuire VA Medical Center, Richmond, VA, USA
| | - John C Davis
- Spinal Cord Injury & Disorders Service, Hunter Holmes McGuire VA Medical Center, Richmond, VA, USA
| | - William Carter
- Department of Physical Medicine & Rehabilitation, Virginia Commonwealth University, Richmond, VA, USA
| | - Ranjodh Gill
- Endocrinology Service, Hunter Holmes McGuire VA Medical Center, Richmond, VA, USA.,Endocrine Division, School of Medicine Virginia Commonwealth University, Richmond, VA, USA
| | - Jeannie Rivers
- Endocrine Division, School of Medicine Virginia Commonwealth University, Richmond, VA, USA
| | - Rehan Khan
- Radiology Service, Hunter Holmes McGuire VA Medical Center, Richmond, VA, USA
| | - Lance L Goetz
- Spinal Cord Injury & Disorders Service, Hunter Holmes McGuire VA Medical Center, Richmond, VA, USA.,Department of Physical Medicine & Rehabilitation, Virginia Commonwealth University, Richmond, VA, USA
| | - Teodoro Castillo
- Spinal Cord Injury & Disorders Service, Hunter Holmes McGuire VA Medical Center, Richmond, VA, USA.,Department of Physical Medicine & Rehabilitation, Virginia Commonwealth University, Richmond, VA, USA
| | - Timothy Lavis
- Spinal Cord Injury & Disorders Service, Hunter Holmes McGuire VA Medical Center, Richmond, VA, USA.,Department of Physical Medicine & Rehabilitation, Virginia Commonwealth University, Richmond, VA, USA
| | - Adam P Sima
- Department of Biostatistics, School of Medicine Virginia Commonwealth University, Richmond, VA, USA
| | - Edward J Lesnefsky
- Cardiology Service, Hunter Holmes McGuire VA Medical Center, Richmond, VA, USA.,Division of Cardiology, Department of Internal Medicine, Pauley Heart Center Virginia Commonwealth University, Richmond, VA, USA
| | - Christopher C Cardozo
- Center for the Medical Consequences of Spinal Cord Injury, James J Peters VA Medical Center, Bronx, NY, USA.,Departments of Medicine and Rehabilitation Medicine, Icahn School of Medicine, New York, NY, USA
| | - Robert A Adler
- Endocrinology Service, Hunter Holmes McGuire VA Medical Center, Richmond, VA, USA.,Endocrine Division, School of Medicine Virginia Commonwealth University, Richmond, VA, USA
| |
Collapse
|
36
|
Momeni K, Ramanujam A, Garbarini EL, Forrest GF. Multi-muscle electrical stimulation and stand training: Effects on standing. J Spinal Cord Med 2019; 42:378-386. [PMID: 29447105 PMCID: PMC6522918 DOI: 10.1080/10790268.2018.1432311] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/18/2022] Open
Abstract
OBJECTIVE To examine the biomechanical and neuromuscular effects of a longitudinal multi-muscle electrical stimulation (submaximal intensities) training of the lower limbs combined with/without activity-based stand training, on the recovery of stability and function for one individual with spinal cord injury (SCI). DESIGN Single-subject, longitudinal study. SETTING Neuroplasticity laboratory. PARTICIPANT A 34-year-old male, with sensory- and motor-complete SCI (C5/C6). INTERVENTIONS Two consecutive interventions: 61 hours of supine, lower-limb ES (ES-alone) and 51 hours of ES combined with stand training using an overhead body-weight support system (ST + ES). OUTCOME MEASURES Clinical measures, trunk stability, and muscle activity were assessed and compared across time points. Trunk Stability Limit (TSL) determined improvements in trunk independence. RESULTS Functional clinical values increased after both interventions, with further increases post ST + ES. Post ES-alone, trunk stability was maintained at 81% body-weight (BW) loading before failure; post ST + ES, BW loading increased to 95%. TSL values decreased post ST + ES (TSLA/P=54.0 kg.cm, TSLM/L=14.5 kg.cm), compared to ES-alone (TSLA/P=8.5 kg.cm, TSLM/L=3.9 kg.cm). Trunk muscle activity decreased post ST + ES training, compared to ES-alone. CONCLUSION Neuromuscular and postural trunk control dramatically improved following the multi-muscle ES of the lower limbs with stand training. Multi-muscle ES training paradigm of the lower limb, using traditional parameters, may contribute to the functional recovery of the trunk.
Collapse
Affiliation(s)
- Kamyar Momeni
- Human Performance and Engineering Research, Kessler Foundation, New Jersey, USA,Department of Physical Medicine and Rehabilitation, Rutgers New Jersey Medical School, New Jersey, USA
| | - Arvind Ramanujam
- Human Performance and Engineering Research, Kessler Foundation, New Jersey, USA
| | - Erica L. Garbarini
- Human Performance and Engineering Research, Kessler Foundation, New Jersey, USA
| | - Gail F. Forrest
- Human Performance and Engineering Research, Kessler Foundation, New Jersey, USA,Department of Physical Medicine and Rehabilitation, Rutgers New Jersey Medical School, New Jersey, USA,Correspondence to: Gail F. Forrest, Ph.D., Human Performance and Engineering Research, Kessler Foundation, 1199 Pleasant Valley Way, West Orange, NJ07052, USA.
| |
Collapse
|
37
|
Kim DI, Taylor JA, Tan CO, Park H, Kim JY, Park SY, Chung KM, Lee YH, Lee BS, Jeon JY. A pilot randomized controlled trial of 6-week combined exercise program on fasting insulin and fitness levels in individuals with spinal cord injury. EUROPEAN SPINE JOURNAL : OFFICIAL PUBLICATION OF THE EUROPEAN SPINE SOCIETY, THE EUROPEAN SPINAL DEFORMITY SOCIETY, AND THE EUROPEAN SECTION OF THE CERVICAL SPINE RESEARCH SOCIETY 2019; 28:1082-1091. [DOI: 10.1007/s00586-019-05885-7] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/07/2018] [Accepted: 01/13/2019] [Indexed: 10/27/2022]
|
38
|
Gorgey AS, Witt O, O’Brien L, Cardozo C, Chen Q, Lesnefsky EJ, Graham ZA. Mitochondrial health and muscle plasticity after spinal cord injury. Eur J Appl Physiol 2018; 119:315-331. [DOI: 10.1007/s00421-018-4039-0] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2018] [Accepted: 11/22/2018] [Indexed: 01/15/2023]
|
39
|
Mettler JA, Magee DM, Doucet BM. Low-frequency electrical stimulation with variable intensity preserves torque. J Electromyogr Kinesiol 2018; 42:49-56. [DOI: 10.1016/j.jelekin.2018.06.007] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2017] [Revised: 05/22/2018] [Accepted: 06/14/2018] [Indexed: 01/05/2023] Open
|
40
|
BOCHKEZANIAN VANESA, NEWTON ROBERTU, TRAJANO GABRIELS, BLAZEVICH ANTHONYJ. Effects of Neuromuscular Electrical Stimulation in People with Spinal Cord Injury. Med Sci Sports Exerc 2018; 50:1733-1739. [DOI: 10.1249/mss.0000000000001637] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
|
41
|
Li J, Polston KFL, Eraslan M, Bickel CS, Windham ST, McLain AB, Oster RA, Bamman MM, Yarar‐Fisher C. A high-protein diet or combination exercise training to improve metabolic health in individuals with long-standing spinal cord injury: a pilot randomized study. Physiol Rep 2018; 6:e13813. [PMID: 30156033 PMCID: PMC6113133 DOI: 10.14814/phy2.13813] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2018] [Accepted: 07/02/2018] [Indexed: 11/24/2022] Open
Abstract
We compared the effects of an 8-week iso-caloric high-protein (HP) diet versus a combined exercise regimen (Comb-Ex) in individuals with long-standing spinal cord injury (SCI). Effects on metabolic profiles, markers of inflammation, and signaling proteins associated with glucose transporter 4 (GLUT-4) translocation in muscles were evaluated. Eleven participants with SCI completed the study (HP diet: n = 5; Comb-Ex: n = 6; 46 ± 8 years; C5-T12 levels; American Spinal Injury Association Impairment Scale A or B). The Comb-Ex regimen included upper body resistance training (RT) and neuromuscular electrical stimulation-induced-RT for paralytic quadriceps muscles, interspersed with high-intensity (80-90% VO2 peak) arm cranking exercises 3 days/week. The HP diet included ~30% total energy as protein (carbohydrate to protein ratio <1.5, ~30% energy from fat). Oral glucose tolerance tests and muscle biopsies of the vastus lateralis (VL) and deltoid muscles were performed before and after the trial. Fasting plasma glucose levels decreased in the Comb-Ex (P < 0.05) group compared to the HP-diet group. A decrease in areas under the curve for insulin and TNF-α concentrations was observed for all participants regardless of group assignment (time effect, P < 0.05). Although both groups exhibited a quantitative increase in insulin sensitivity as measured by the Matsuda Index, the change was clinically meaningful only in the HP diet group (HP diet: pre, 4.6; post, 11.6 vs. Comb-Ex: pre, 3.3; post, 4.6). No changes were observed in proteins associated with GLUT-4 translocation in VL or deltoid muscles. Our results suggest that the HP-diet and Comb-Ex regimen may improve insulin sensitivity and decrease TNF-α concentrations in individuals with SCI.
Collapse
Affiliation(s)
- Jia Li
- Physical Medicine and RehabilitationUniversity of Alabama at BirminghamBirminghamAlabama
| | - Keith F. L. Polston
- University of Tennessee Health Science Center College of MedicineMemphisTennessee
| | - Mualla Eraslan
- Physical Medicine and RehabilitationUniversity of Alabama at BirminghamBirminghamAlabama
| | - C. Scott Bickel
- Physical Therapy and RehabilitationSamford UniversityBirminghamAlabama
| | - Samuel T. Windham
- Department of SurgeryUniversity of Alabama at BirminghamBirminghamAlabama
- UAB Center for Exercise MedicineUniversity of Alabama at BirminghamBirminghamAlabama
| | - Amie B. McLain
- Physical Medicine and RehabilitationUniversity of Alabama at BirminghamBirminghamAlabama
- UAB Center for Exercise MedicineUniversity of Alabama at BirminghamBirminghamAlabama
| | - Robert A. Oster
- Division of Preventive MedicineDepartment of MedicineUniversity of Alabama at BirminghamBirminghamAlabama
| | - Marcas M. Bamman
- UAB Center for Exercise MedicineUniversity of Alabama at BirminghamBirminghamAlabama
- Department of Cell, Developmental, and Integrative BiologyUniversity of Alabama at BirminghamBirminghamAlabama
- Geriatric Research, Education, and Clinical CenterBirmingham VA Medical CenterBirminghamAlabama
| | - Ceren Yarar‐Fisher
- Physical Medicine and RehabilitationUniversity of Alabama at BirminghamBirminghamAlabama
- UAB Center for Exercise MedicineUniversity of Alabama at BirminghamBirminghamAlabama
| |
Collapse
|
42
|
Yarar-Fisher C, Polston KFL, Eraslan M, Henley KY, Kinikli GI, Bickel CS, Windham ST, McLain AB, Oster RA, Bamman MM. Paralytic and nonparalytic muscle adaptations to exercise training versus high-protein diet in individuals with long-standing spinal cord injury. J Appl Physiol (1985) 2018; 125:64-72. [PMID: 29494292 PMCID: PMC6086973 DOI: 10.1152/japplphysiol.01029.2017] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2017] [Revised: 01/31/2018] [Accepted: 02/28/2018] [Indexed: 02/08/2023] Open
Abstract
This study compares the effects of an 8-wk isocaloric high-protein (HP) diet versus a combination exercise (Comb-Ex) regimen on paralytic vastus lateralis (VL) and nonparalytic deltoid muscle in individuals with long-standing spinal cord injury (SCI). Fiber-type distribution, cross-sectional area (CSA), levels of translation initiation signaling proteins (Erk-1/2, Akt, p70S6K1, 4EBP1, RPS6, and FAK), and lean thigh mass were analyzed at baseline and after the 8-wk interventions. A total of 11 participants (C5-T12 levels, 21.8 ± 6.3 yr postinjury; 6 Comb-Ex and 5 HP diet) completed the study. Comb-Ex training occurred 3 days/wk and consisted of upper body resistance training (RT) in addition to neuromuscular electrical stimulation (NMES)-induced-RT for paralytic VL muscle. Strength training was combined with high-intensity arm-cranking exercises (1-min intervals at 85-90%, V̇o2peak) for improving cardiovascular endurance. For the HP diet intervention, protein and fat each comprised 30%, and carbohydrate comprised 40% of total energy. Clinical tests and muscle biopsies were performed 24 h before and after the last exercise or diet session. The Comb-Ex intervention increased Type IIa myofiber distribution and CSA in VL muscle and Type I and IIa myofiber CSA in deltoid muscle. In addition, Comb-Ex increased lean thigh mass, V̇o2peak, and upper body strength ( P < 0.05). These results suggest that exercise training is required to promote favorable changes in paralytic and nonparalytic muscles in individuals with long-standing SCI, and adequate dietary protein consumption alone may not be sufficient to ameliorate debilitating effects of paralysis. NEW & NOTEWORTHY This study is the first to directly compare the effects of an isocaloric high-protein diet and combination exercise training on clinical and molecular changes in paralytic and nonparalytic muscles of individuals with long-standing spinal cord injury. Our results demonstrated that muscle growth and fiber-type alterations can best be achieved when the paralyzed muscle is sufficiently loaded via neuromuscular electrical stimulation-induced resistance training.
Collapse
Affiliation(s)
- Ceren Yarar-Fisher
- Physical Medicine and Rehabilitation, University of Alabama at Birmingham , Birmingham, Alabama
- University of Alabama at Birmingham Center for Exercise Medicine, University of Alabama at Birmingham , Birmingham, Alabama
| | - Keith F L Polston
- University of Tennessee Health Science Center College of Medicine , Memphis, Tennessee
| | - Mualla Eraslan
- Physical Medicine and Rehabilitation, University of Alabama at Birmingham , Birmingham, Alabama
| | - Kathryn Y Henley
- Physical Medicine and Rehabilitation, University of Alabama at Birmingham , Birmingham, Alabama
| | - Gizem I Kinikli
- Physical Therapy and Rehabilitation, Hacettepe University , Ankara , Turkey
| | - C Scott Bickel
- Physical Therapy and Rehabilitation, Samford University , Birmingham, Alabama
| | - Samuel T Windham
- Department of Surgery, University of Alabama at Birmingham , Birmingham, Alabama
- University of Alabama at Birmingham Center for Exercise Medicine, University of Alabama at Birmingham , Birmingham, Alabama
| | - Amie B McLain
- Physical Medicine and Rehabilitation, University of Alabama at Birmingham , Birmingham, Alabama
- University of Alabama at Birmingham Center for Exercise Medicine, University of Alabama at Birmingham , Birmingham, Alabama
| | - Robert A Oster
- Department of Medicine/Division of Preventive Medicine, University of Alabama at Birmingham , Birmingham, Alabama
| | - Marcas M Bamman
- Department of Cell, Developmental, and Integrative Biology, University of Alabama at Birmingham , Birmingham, Alabama
- University of Alabama at Birmingham Center for Exercise Medicine, University of Alabama at Birmingham , Birmingham, Alabama
- Geriatric Research, Education, and Clinical Center, Birmingham VA Medical Center , Birmingham, Alabama
| |
Collapse
|
43
|
Frank LR, Roynard PFP. Veterinary Neurologic Rehabilitation: The Rationale for a Comprehensive Approach. Top Companion Anim Med 2018; 33:49-57. [PMID: 30236409 DOI: 10.1053/j.tcam.2018.04.002] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2018] [Revised: 04/07/2018] [Accepted: 04/18/2018] [Indexed: 12/30/2022]
Abstract
The increase in client willingness to pursue surgical procedures, the heightened perceived value of veterinary patients, and the desire to provide comprehensive medical care have driven the recent demand of using an integrative treatment approach in veterinary rehabilitation. Physical therapy following neurologic injury has been the standard of care in human medicine for decades, whereas similar rehabilitation techniques have only recently been adapted and utilized in veterinary medicine. Spinal cord injury is the most common neurologic disease currently addressed by veterinary rehabilitation specialists and will be the primary focus of this review; however, research in other neurologic conditions will also be discussed. Of particular interest, to clients and veterinarians are techniques and modalities used to promote functional recovery after neurologic injury, which can mean the difference between life and death for many veterinary patients. The trend in human neurologic rehabilitation, often regardless of etiology, is a multimodal approach to therapy. Evidence supports faster and improved recoveries in people after neurologic injury using a combination of rehabilitation techniques. Although the primary neurological disorders researched tend to be spinal cord injury, peripheral neuropathies, allodynia, multiple sclerosis, and strokes-many correlations can be made to common veterinary neurological disorders. Such comprehensive protocols entail gait training activities in combination with neuromuscular electrical stimulation and directed exercises. Additionally, pain-relieving and functional benefits are bolstered when acupuncture is used in addition to rehabilitation. Studies, both laboratory and clinical, support the use of acupuncture in the management of neurologic conditions in small animals, specifically in cases of intervertebral disc disease, other myelopathies, and neuropathic pain conditions. Acupuncture's ability to promote analgesia, stimulate trophic factors, and decrease inflammation, including neuroinflammation, make it an alluring adjunct therapy after neurologic injury. Although there is limited research in veterinary medicine on physical techniques that expedite recovery after neurologic injury, there are sparse publications on clinical veterinary research suggesting the benefits of acupuncture, rehabilitation, and LASER in dogs with intervertebral disk disease. Accordingly, due to the relative lack of evidence-based studies in veterinary neurologic rehabilitation, much of the data available is human or laboratory-animal based, however, evidence supports the utilization of an early, comprehensive treatment protocol for optimal neurologic recovery. The rationale for why an integrative approach is critical will be detailed in this review; in addition, literature on specific physical rehabilitation techniques that have evidence of improved recoveries after neurologic injury, will be addressed.
Collapse
Affiliation(s)
- Lauren R Frank
- Physical Rehabilitation and Acupuncture Service, Long Island Veterinary Specialists, Plainview, NY, USA
| | - Patrick F P Roynard
- Neurology/Neurosurgery Department, Long Island Veterinary Specialists, Plainview, NY, USA; Fipapharm, Mont-Saint-Aignan, France.
| |
Collapse
|
44
|
Bochkezanian V, Newton RU, Trajano GS, Vieira A, Pulverenti TS, Blazevich AJ. Effect of tendon vibration during wide-pulse neuromuscular electrical stimulation (NMES) on muscle force production in people with spinal cord injury (SCI). BMC Neurol 2018; 18:17. [PMID: 29433467 PMCID: PMC5809925 DOI: 10.1186/s12883-018-1020-9] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2017] [Accepted: 02/02/2018] [Indexed: 12/13/2022] Open
Abstract
Background Neuromuscular electrical stimulation (NMES) is commonly used in skeletal muscles in people with spinal cord injury (SCI) with the aim of increasing muscle recruitment and thus muscle force production. NMES has been conventionally used in clinical practice as functional electrical stimulation (FES), using low levels of evoked force that cannot optimally stimulate muscular strength and mass improvements, and thus trigger musculoskeletal changes in paralysed muscles. The use of high intensity intermittent NMES training using wide-pulse width and moderate-intensity as a strength training tool could be a promising method to increase muscle force production in people with SCI. However, this type of protocol has not been clinically adopted because it may generate rapid muscle fatigue and thus prevent the performance of repeated high-intensity muscular contractions in paralysed muscles. Moreover, superimposing patellar tendon vibration onto the wide-pulse width NMES has been shown to elicit further increases in impulse or, at least, reduce the rate of fatigue in repeated contractions in able-bodied populations, but there is a lack of evidence to support this argument in people with SCI. Methods Nine people with SCI received two NMES protocols with and without superimposing patellar tendon vibration on different days (i.e. STIM and STIM+vib), which consisted of repeated 30 Hz trains of 58 wide-pulse width (1000 μs) symmetric biphasic pulses (0.033-s inter-pulse interval; 2 s stimulation train; 2-s inter-train interval) being delivered to the dominant quadriceps femoris. Starting torque was 20% of maximal doublet-twitch torque and stimulations continued until torque declined to 50% of the starting torque. Total knee extensor impulse was calculated as the primary outcome variable. Results Total knee extensor impulse increased in four subjects when patellar tendon vibration was imposed (59.2 ± 15.8%) but decreased in five subjects (− 31.3 ± 25.7%). However, there were no statistically significant differences between these sub-groups or between conditions when the data were pooled. Conclusions Based on the present results there is insufficient evidence to conclude that patellar tendon vibration provides a clear benefit to muscle force production or delays muscle fatigue during wide-pulse width, moderate-intensity NMES in people with SCI. Trial registration ACTRN12618000022268. Date: 11/01/2018. Retrospectively registered.
Collapse
Affiliation(s)
- Vanesa Bochkezanian
- Department of Exercise and Health Sciences, School of Health, Medical and Applied Sciences, Central Queensland University, Building 34.1.02, Bruce Highway, North Rockhampton, Qld, 4702, Australia. .,Exercise Medicine Research Clinic, Edith Cowan University, Perth, Australia. .,Centre for Sports and Exercise Science, School of Medical and Health Sciences, Edith Cowan University, Joondalup, Australia.
| | - Robert U Newton
- Exercise Medicine Research Clinic, Edith Cowan University, Perth, Australia.,Centre for Sports and Exercise Science, School of Medical and Health Sciences, Edith Cowan University, Joondalup, Australia.,UQ Centre for Clinical Research, The University of Queensland, Brisbane, Australia
| | - Gabriel S Trajano
- School of Exercise and Nutrition Sciences, Institute of Health and Biomedical Innovation, Queensland University of Technology (QUT), Brisbane, Australia
| | | | - Timothy S Pulverenti
- Centre for Sports and Exercise Science, School of Medical and Health Sciences, Edith Cowan University, Joondalup, Australia
| | - Anthony J Blazevich
- Centre for Sports and Exercise Science, School of Medical and Health Sciences, Edith Cowan University, Joondalup, Australia
| |
Collapse
|
45
|
Gorgey AS, Khalil RE, Lester RM, Dudley GA, Gater DR. Paradigms of Lower Extremity Electrical Stimulation Training After Spinal Cord Injury. J Vis Exp 2018:57000. [PMID: 29443103 PMCID: PMC5912427 DOI: 10.3791/57000] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
Skeletal muscle atrophy, increased adiposity and reduced physical activity are key changes observed after spinal cord injury (SCI) and are associated with numerous cardiometabolic health consequences. These changes are likely to increase the risk of developing chronic secondary conditions and impact the quality of life in persons with SCI. Surface neuromuscular electrical stimulation evoked resistance training (NMES-RT) was developed as a strategy to attenuate the process of skeletal muscle atrophy, decrease ectopic adiposity, improve insulin sensitivity and enhance mitochondrial capacity. However, NMES-RT is limited to only a single muscle group. Involving multiple muscle groups of the lower extremities may maximize the health benefits of training. Functional electrical stimulation-lower extremity cycling (FES-LEC) allows for the activation of 6 muscle groups, which is likely to evoke greater metabolic and cardiovascular adaptation. Appropriate knowledge of the stimulation parameters is key to maximizing the outcomes of electrical stimulation training in persons with SCI. Adopting strategies for long-term use of NMES-RT and FES-LEC during rehabilitation may maintain the integrity of the musculoskeletal system, a pre-requisite for clinical trials aiming to restore walking after injury. The current manuscript presents a combined protocol using NMES-RT prior to FES-LEC. We hypothesize that muscles conditioned for 12 weeks prior to cycling will be capable of generating greater power, cycle against higher resistance and result in greater adaptation in persons with SCI.
Collapse
Affiliation(s)
- Ashraf S Gorgey
- Spinal Cord Injury and Disorders Service, Hunter Holmes McGuire VAMC; Department of Physical Medicine and Rehabilitation, Virginia Commonwealth University;
| | - Refka E Khalil
- Spinal Cord Injury and Disorders Service, Hunter Holmes McGuire VAMC
| | - Robert M Lester
- Spinal Cord Injury and Disorders Service, Hunter Holmes McGuire VAMC
| | - Gary A Dudley
- Deceased, Department of Kinesiology, The University of Georgia
| | - David R Gater
- Department of Physical Medicine and Rehabilitation, Penn State Milton S. Hershey Medical Center
| |
Collapse
|
46
|
Laubacher M, Aksöz EA, Bersch I, Hunt KJ. The road to Cybathlon 2016 - Functional electrical stimulation cycling Team IRPT/SPZ. Eur J Transl Myol 2017; 27:7086. [PMID: 29299220 PMCID: PMC5745389 DOI: 10.4081/ejtm.2017.7086] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2016] [Revised: 11/21/2017] [Accepted: 11/17/2017] [Indexed: 01/27/2023] Open
Abstract
Functional electrical stimulation (FES) provides a good possibility to activate paralysed muscles and it has been shown to elicit substantial physiological and health benefits. For successful application of FES, a perfect symbiosis of the bike and the pilot has to be achieved. The road to the Cybathlon 2016 describes the different pieces needed for FES cycling in spinal cord injury. The systematic optimisation of the stimulation parameters and the Cybatrike, and sophisticated training contributed to the team’s success as the fastest surface-electrode team in the competition.
Collapse
Affiliation(s)
- Marco Laubacher
- Institute for Rehabilitation and Performance Technology, Division of Mechanical Engineering, Department of Engineering and Information Technology, Bern University of Applied Sciences, Burgdorf, Switzerland.,Sensory Motor Systems Lab, ETH Zurich, Zürich, Switzerland
| | - Efe Anil Aksöz
- Institute for Rehabilitation and Performance Technology, Division of Mechanical Engineering, Department of Engineering and Information Technology, Bern University of Applied Sciences, Burgdorf, Switzerland.,Sensory Motor Systems Lab, ETH Zurich, Zürich, Switzerland
| | - Ines Bersch
- Swiss Paraplegic Centre Nottwil, Switzerland
| | - Kenneth James Hunt
- Institute for Rehabilitation and Performance Technology, Division of Mechanical Engineering, Department of Engineering and Information Technology, Bern University of Applied Sciences, Burgdorf, Switzerland
| |
Collapse
|
47
|
Taylor MJ, Fornusek C, Ruys AJ, Bijak M, Bauman AE. The Vienna FES Interview Protocol - A mixed-methods protocol to elucidate the opinions of various individuals responsible for the provision of FES exercise. Eur J Transl Myol 2017; 27:6604. [PMID: 29118956 PMCID: PMC5656807 DOI: 10.4081/ejtm.2017.6604] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2016] [Revised: 08/23/2017] [Accepted: 08/25/2017] [Indexed: 02/08/2023] Open
Abstract
Functional Electrical Stimulation (FES) is the production of electrically elicited muscle contractions to perform a function or task. It has been used as a method to regain lost body functions or support weak body functions, and as such, has been clinically available since the early seventies. Some methods are applied routinely while others have not been translated to the bedside, or are still largely restricted to laboratory use. Progress in this field might be achieved by a strong cooperation of patients, clinicians, therapists and engineers. A better insight into multiple perspectives may help in understanding the shortcomings of current FES technology. This will help direct future research efforts into design of systems and potential application in relevant populations. In addition, these findings can assist with the translation of FES technology into a community context. We outline an interview protocol designed for use at the 12th Vienna International Workshop on Functional Electrical Stimulation where the mentioned experts from the field of FES met.
Collapse
Affiliation(s)
| | - Ché Fornusek
- Faculty of Health Sciences, University of Sydney, Lidcombe, Australia
| | - Andrew J Ruys
- Faculty of Engineering and IT, University of Sydney, Camperdown, Australia
| | - Manfred Bijak
- Centre for Medical Physics and Biomedical Engineering, Medical University of Vienna, Vienna, Austria
| | | |
Collapse
|
48
|
Woelfel JR, Kimball AL, Yen CL, Shields RK. Low-Force Muscle Activity Regulates Energy Expenditure after Spinal Cord Injury. Med Sci Sports Exerc 2017; 49:870-878. [PMID: 28009786 DOI: 10.1249/mss.0000000000001187] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Reduced physical activity is a primary risk factor for increased morbidity and mortality. People with spinal cord injury (SCI) have reduced activity for a lifetime, as they cannot volitionally activate affected skeletal muscles. We explored whether low-force and low-frequency stimulation is a viable strategy to enhance systemic energy expenditure in people with SCI. PURPOSE This study aimed to determine the effects of low stimulation frequency (1 and 3 Hz) and stimulation intensity (50 and 100 mA) on energy expenditure in people with SCI. We also examined the relationship between body mass index and visceral adipose tissue on energy expenditure during low-frequency stimulation. METHODS Ten individuals with complete SCI underwent oxygen consumption monitoring during electrical activation of the quadriceps and hamstrings at 1 and 3 Hz and at 50 and 100 mA. We calculated the difference in energy expenditure between stimulation and rest and estimated the number of days that would be necessary to burn 1 lb of body fat (3500 kcal) for each stimulation protocol (1 vs 3 Hz). RESULTS Both training frequencies induced a significant increase in oxygen consumption above a resting baseline level (P < 0.05). Energy expenditure positively correlated with stimulus intensity (muscle recruitment) and negatively correlated with adiposity (reflecting the insulating properties of adipose tissue). We estimated that 1 lb of body fat could be burned more quickly with 1 Hz training (58 d) as compared with 3 Hz training (87 d) if an identical number of pulses were delivered. CONCLUSION Low-frequency stimulation increased energy expenditure per pulse and may be a feasible option to subsidize physical activity to improve metabolic status after SCI.
Collapse
Affiliation(s)
- Jessica R Woelfel
- 1Carver College of Medicine, University of Iowa, Iowa City, IA; and 2Department of Physical Therapy and Rehabilitation Science, Carver College of Medicine, University of Iowa, Iowa City, IA
| | | | | | | |
Collapse
|
49
|
Dolbow DR, Gorgey AS, Khalil RK, Gater DR. Effects of a fifty-six month electrical stimulation cycling program after tetraplegia: case report. J Spinal Cord Med 2017; 40:485-488. [PMID: 27808003 PMCID: PMC5537967 DOI: 10.1080/10790268.2016.1234750] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/17/2023] Open
Abstract
BACKGROUND Functional electrical stimulation cycling is a common clinical treatment for individuals with spinal cord injury and other paralytic conditions, however, the long term effects of home-based functional electrical stimulation cycling remains unreported. OBJECTIVE To determine the effectiveness of a long-term home-based functional electrical stimulation lower extremities cycling (FES-LEC) program on body composition. PARTICIPANT An adult male 52.7 years of age at pre-intervention and 57.3 years of age at post-intervention with chronic C4 spinal cord injury and American Spinal Injury Association Impairment Scale C. METHODS Dual-energy X-ray absorptiometry scans were performed on the participant before and after the FES cycling program to determine body composition changes. An RT300 FES cycle was issued to the participant with the recommendation to cycle three times per week for general conditioning and the maintenance of physical health. RESULTS Total body lean mass (LM) increased from 39.13 kg to 46.35 kg, an 18.5% increase while total body fat mass (FM) increased by just 3.7% from 20.85 kg to 21.64 kg. Legs LM increased by 10.9% (10.93 kg to 12.12 kg). There was a negligible decrease in total body bone mineral content (BMC) with a pre-training measure of 2.09 kg compared to a post-training measure of 1.98 kg. Lower extremities FM increased by less than 1% from 3.51 kg to 3.54 kg. CONCLUSION Natural limitations of a single subject case report disallow a causal conclusion. However, for this particular older adult with chronic tetraplegia, home-based FES-LEC appears to have resulted in cardio-metabolic protective body composition changes.
Collapse
Affiliation(s)
- David R. Dolbow
- School of Kinesiology, University of Southern Mississippi, Hattiesburg, MS, USA,Correspondence to: David Dolbow, School of Kinesiology, University of Southern Mississippi, 118 College Drive, # 5142, Hattiesburg, MS 39401.
| | - Ashraf S. Gorgey
- Spinal Cord Injury and Disorders Center, McGuire VAMC, Richmond, VA, USA,Department of Physical Medicine and Rehabilitation, Virginia Commonwealth University, Richmond, VA, USA
| | - Refka K. Khalil
- Spinal Cord Injury and Disorders Center, McGuire VAMC, Richmond, VA, USA
| | - David R. Gater
- Department of Physical Medicine and Rehabilitation, Pennsylvania State University, College of Medicine, Hershey, PA, USA,Penn State Hershey Medical Center and Health System, Hershey, PA, USA
| |
Collapse
|
50
|
Gorgey AS, Lester RM, Wade RC, Khalil RE, Khan RK, Anderson ML, Castillo T. A feasibility pilot using telehealth videoconference monitoring of home-based NMES resistance training in persons with spinal cord injury. Spinal Cord Ser Cases 2017; 3:17039. [PMID: 29021917 PMCID: PMC5633749 DOI: 10.1038/scsandc.2017.39] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2017] [Revised: 05/23/2017] [Accepted: 05/30/2017] [Indexed: 12/22/2022] Open
Abstract
INTRODUCTION The objective of the study was to investigate the feasibility and initial efficacy of telehealth communication in conjunction with surface neuromuscular electrical stimulation (NMES) resistance training (RT) to induce muscle hypertrophy. MATERIALS AND METHODS This was a home-based setting of within-subject control design of trained vs controlled limbs. Five men with chronic (>1 year postinjury) motor-complete spinal cord injury (SCI) participated in a twice-weekly telehealth videoconference program using home-based NMES-RT for 8 weeks. Stimulation was applied to the knee extensor muscle group of the trained leg, while the untrained leg served as a control. Participants received real-time feedback to ensure a proper setup of electrodes and stimulator to monitor subject safety throughout the entire training session. Magnetic resonance imaging was used to measure cross-sectional areas (CSAs) and intramuscular fat (IMF) of the whole thigh and individual muscle groups. Average two-way travel time, distance traveled in miles and total cost of gas per mile were calculated. RESULTS Participants had 100% compliance. Trained whole and absolute knee extensor muscle CSA increased by 13% (P=0.002) and 18% (P=0.0002), with no changes in the controlled limb. Absolute knee flexor and adductor CSAs increased by 3% (P=0.02) and 13% (P=0.0001), respectively. Absolute whole thigh and knee extensor IMF CSAs decreased significantly in the trained limb by 14% (P=0.01) and 36% (P=0.0005), respectively, with no changes in controlled limb. DISCUSSION The pilot work documented that using telehealth communication is a safe, feasible and potentially cost-reducing approach for monitoring home-based NMES-RT in persons with chronic SCI. All trained muscles showed detectable muscle hypertrophy with concomitant decrease in ectopic adipose tissue.
Collapse
Affiliation(s)
- Ashraf S Gorgey
- Spinal Cord Injury and Disorders Service, Department of Veterans Affairs, Hunter Holmes McGuire VAMC, Richmond, VA, USA
- Department of Physical Medicine and Rehabilitation, Virginia Commonwealth University, Richmond, VA, USA
| | - Robert M Lester
- Spinal Cord Injury and Disorders Service, Department of Veterans Affairs, Hunter Holmes McGuire VAMC, Richmond, VA, USA
| | - Rodney C Wade
- Spinal Cord Injury and Disorders Service, Department of Veterans Affairs, Hunter Holmes McGuire VAMC, Richmond, VA, USA
- Department of Physical Medicine and Rehabilitation, Virginia Commonwealth University, Richmond, VA, USA
- Radiology Service, Hunter Holmes McGuire VA Medical Center, Richmond, VA, USA
| | - Refka E Khalil
- Spinal Cord Injury and Disorders Service, Department of Veterans Affairs, Hunter Holmes McGuire VAMC, Richmond, VA, USA
| | - Rehan K Khan
- Radiology Service, Hunter Holmes McGuire VA Medical Center, Richmond, VA, USA
| | - Melodie L Anderson
- Spinal Cord Injury and Disorders Service, Department of Veterans Affairs, Hunter Holmes McGuire VAMC, Richmond, VA, USA
| | - Teodoro Castillo
- Spinal Cord Injury and Disorders Service, Department of Veterans Affairs, Hunter Holmes McGuire VAMC, Richmond, VA, USA
| |
Collapse
|