1
|
Potts CA, Williamson RA, Jacob JD, Kantak SS, Buxbaum LJ. Reaching the cognitive-motor interface: effects of cognitive load on arm choice and motor performance after stroke. Exp Brain Res 2024; 242:2785-2797. [PMID: 39395059 PMCID: PMC11869378 DOI: 10.1007/s00221-024-06939-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2024] [Accepted: 09/25/2024] [Indexed: 10/14/2024]
Abstract
A vexing characteristic of motor disability after stroke is that many individuals fail to use their affected arm effectively despite having the capacity to do so, a phenomenon termed arm nonuse. Based on the hypothesis that nonuse is influenced by the competing cognitive demands of many daily activities, we examined the effects of cognitive load on arm choice and motor performance in individuals with stroke using a novel virtual reality paradigm that mimics the demands of real-life visual search, object selection, and reaching to targets. Twenty individuals with single left or right hemispheric chronic stroke (11 left cerebrovascular accident; 9 right cerebrovascular accident) and 10 age-matched neurotypical participants completed the Virtual Reality Arm Choice task, in which they reached for target objects in an array under varied cognitive demand. To manipulate cognitive demand, we varied the semantic similarity of objects in the reaching space and the presence or absence of a secondary task. The results showed reduced use of the paretic arm under increased demand. Under cognitive load, participants with stroke also showed slower reach initiation, slower movements, increased reach curvature, and increased performance differences between the paretic and non-paretic arms. The arm choice of neurotypical individuals was also modulated under cognitive load. These data indicate that cognitive factors influence arm choice and motor performance in naturalistic reaching tasks in individuals with chronic stroke. Performance decrements under cognitive load may in turn influence reduced paretic arm use during daily activities.
Collapse
Affiliation(s)
- Cory A Potts
- Department of Psychology, State University of New York Plattsburgh, 101 Broad Street, Plattsburgh, NY, 12901, USA.
- Moss Rehabilitation Research Institute, Elkins Park, PA, USA.
| | | | - Joshua D Jacob
- Moss Rehabilitation Research Institute, Elkins Park, PA, USA
| | - Shailesh S Kantak
- Moss Rehabilitation Research Institute, Elkins Park, PA, USA
- Department of Physical Therapy, Arcadia University, Elkins Park, PA, USA
- Department of Rehabilitation Medicine, Thomas Jefferson University, Philadelphia, PA, USA
- Pathokinesiology Laboratory, Rancho Research Institute, Downey, CA, USA
| | - Laurel J Buxbaum
- Moss Rehabilitation Research Institute, Elkins Park, PA, USA
- Department of Rehabilitation Medicine, Thomas Jefferson University, Philadelphia, PA, USA
| |
Collapse
|
2
|
Yamada M, Jacob J, Hesling J, Johnson T, Wittenberg G, Kantak S. Goal conceptualization has distinct effects on spatial and temporal bimanual coordination after left- and right- hemisphere stroke. Hum Mov Sci 2024; 94:103196. [PMID: 38402657 PMCID: PMC10939720 DOI: 10.1016/j.humov.2024.103196] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2023] [Revised: 02/15/2024] [Accepted: 02/17/2024] [Indexed: 02/27/2024]
Abstract
Perception of task goal influences motor performance and coordination. In bimanual actions, it is unclear how one's perception of task goals influences bimanual coordination and performance in individuals with unilateral stroke. We characterized inter-limb coordination differences in individuals with chronic right- and left-hemisphere damaged (RCVA: n = 24, LCVA: n = 24) stroke and age-matched neurotypical controls (n = 24) as they completed bimanual reaching tasks under distinct goal conditions. In the dual-goal condition, participants reached to move two virtual bricks (cursors) assigned to each hand toward independent targets. In the common-goal condition, they moved a central common virtual brick representing both hands to a single, central target. Spatial and temporal coordination (cross-correlation coefficients of hand velocity and their time-lag), the redundant axis deviations (the hand deviations in the axis orthogonal to the axis along the cursor-target direction), and the contribution ratio of the paretic hand were measured. Compared to the dual-goal condition, reaching actions to the common-goal demonstrated better spatial bimanual coordination in all three participant groups. Temporal coordination was better during common-goal than dual-goal actions only for the LCVA group. Additionally, and novel to this field, sex, as a biological variable, differently influenced movement time and redundant axis deviation in participants with stroke under the common-goal condition. Specifically, female stroke survivors showed larger movements in the redundant axes and, consequently, longer movement times, which was more prominent in the LCVA group. Our results indicate that perception of task goals influences bimanual coordination, with common goal improving spatial coordination in neurotypical individuals and individuals with unilateral stroke and providing additional advantage for temporal coordination in those with LCVA. Sex influences bimanual performance in stroke survivors and needs to be considered in future investigations.
Collapse
Affiliation(s)
- Masahiro Yamada
- Neuroplasticity and Motor Behavior Lab, Moss Rehabilitation Research Institute, Elkins Park, PA, United States of America; Department of Kinesiology, Whittier College, Science & Learning Center 304, Whittier, CA, United States of America
| | - Joshua Jacob
- Neuroplasticity and Motor Behavior Lab, Moss Rehabilitation Research Institute, Elkins Park, PA, United States of America
| | - Jessica Hesling
- Neuroplasticity and Motor Behavior Lab, Moss Rehabilitation Research Institute, Elkins Park, PA, United States of America
| | - Tessa Johnson
- Neuroplasticity and Motor Behavior Lab, Moss Rehabilitation Research Institute, Elkins Park, PA, United States of America; Department of Health and Rehabilitation Sciences, Temple University, Philadelphia, United States of America
| | - George Wittenberg
- Department of Neurology, Physical Medicine & Rehabilitation, and Bioengineering, University of Pittsburgh, Geriatrics Research, Education and Clinical Center, Human Engineering Research Laboratory, VA Pittsburgh Healthcare System, United States of America
| | - Shailesh Kantak
- Neuroplasticity and Motor Behavior Lab, Moss Rehabilitation Research Institute, Elkins Park, PA, United States of America; Department of Physical Therapy, Arcadia University, Glenside, PA, United States of America.
| |
Collapse
|
3
|
Garcea FE, Buxbaum LJ. Mechanisms and neuroanatomy of response selection in tool and non-tool action tasks: Evidence from left-hemisphere stroke. Cortex 2023; 167:335-350. [PMID: 37598647 PMCID: PMC10543550 DOI: 10.1016/j.cortex.2023.06.012] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Revised: 04/19/2023] [Accepted: 06/18/2023] [Indexed: 08/22/2023]
Abstract
The ability to select between potential actions is central to the complex process of tool use. After left hemisphere stroke, individuals with limb apraxia make more hand action errors when gesturing the use of tools with conflicting hand actions for grasping-to-move and use (e.g., screwdriver) relative to tools that are grasped-to-move and used with the same hand action (e.g., hammer). Prior research indicates that this grasp-use interference effect is driven by abnormalities in the competitive action selection process. The goal of this project was to determine whether common mechanisms and neural substrates support the competitive selection of task-appropriate responses in both tool and non-tool domains. If so, the grasp-use interference effect in a tool use gesturing task should be correlated with response interference effects in the classic Eriksen flanker and Simon tasks, and at least partly overlapping neural regions should subserve the 3 tasks. Sixty-four left hemisphere stroke survivors (33 with apraxia) participated in the tool- and non-tool interference tasks and underwent T1 anatomical MRI. There were robust grasp-use interference effects (grasp-use conflict test) and response interference effects (Eriksen flanker and Simon tasks), but these effects were not correlated. Lesion-symptom mapping analyses showed that lesions to the left inferior parietal lobule, ventral premotor cortex, and insula were associated with grasp-use interference. Lesions to the left inferior parietal lobule, postcentral gyrus, insula, caudate, and putamen were associated with response interference in the Eriksen flanker task. Lesions to the left caudate and putamen were also associated with response interference in the Simon task. Our results suggest that the selection of hand posture for tool use is mediated by distinct cognitive mechanisms and partly distinct neuroanatomic substrates from those mapping a stimulus to an appropriate motor response in non-tool domains.
Collapse
Affiliation(s)
- Frank E Garcea
- Department of Neurosurgery, University of Rochester Medical Center, Rochester, NY, USA; Department of Neuroscience, University of Rochester Medical Center, Rochester, NY, USA; Del Monte Institute for Neuroscience, University of Rochester Medical Center, Rochester, NY, USA.
| | - Laurel J Buxbaum
- Moss Rehabilitation Research Institute, Elkins Park, PA, USA; Department of Rehabilitation Medicine, Jefferson University, Philadelphia, PA, USA
| |
Collapse
|
4
|
Krason A, Vigliocco G, Mailend ML, Stoll H, Varley R, Buxbaum LJ. Benefit of visual speech information for word comprehension in post-stroke aphasia. Cortex 2023; 165:86-100. [PMID: 37271014 PMCID: PMC10850036 DOI: 10.1016/j.cortex.2023.04.011] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2022] [Revised: 03/13/2023] [Accepted: 04/22/2023] [Indexed: 06/06/2023]
Abstract
Aphasia is a language disorder that often involves speech comprehension impairments affecting communication. In face-to-face settings, speech is accompanied by mouth and facial movements, but little is known about the extent to which they benefit aphasic comprehension. This study investigated the benefit of visual information accompanying speech for word comprehension in people with aphasia (PWA) and the neuroanatomic substrates of any benefit. Thirty-six PWA and 13 neurotypical matched control participants performed a picture-word verification task in which they indicated whether a picture of an animate/inanimate object matched a subsequent word produced by an actress in a video. Stimuli were either audiovisual (with visible mouth and facial movements) or auditory-only (still picture of a silhouette) with audio being clear (unedited) or degraded (6-band noise-vocoding). We found that visual speech information was more beneficial for neurotypical participants than PWA, and more beneficial for both groups when speech was degraded. A multivariate lesion-symptom mapping analysis for the degraded speech condition showed that lesions to superior temporal gyrus, underlying insula, primary and secondary somatosensory cortices, and inferior frontal gyrus were associated with reduced benefit of audiovisual compared to auditory-only speech, suggesting that the integrity of these fronto-temporo-parietal regions may facilitate cross-modal mapping. These findings provide initial insights into our understanding of the impact of audiovisual information on comprehension in aphasia and the brain regions mediating any benefit.
Collapse
Affiliation(s)
- Anna Krason
- Experimental Psychology, University College London, UK; Moss Rehabilitation Research Institute, Elkins Park, PA, USA.
| | - Gabriella Vigliocco
- Experimental Psychology, University College London, UK; Moss Rehabilitation Research Institute, Elkins Park, PA, USA
| | - Marja-Liisa Mailend
- Moss Rehabilitation Research Institute, Elkins Park, PA, USA; Department of Special Education, University of Tartu, Tartu Linn, Estonia
| | - Harrison Stoll
- Moss Rehabilitation Research Institute, Elkins Park, PA, USA; Applied Cognitive and Brain Science, Drexel University, Philadelphia, PA, USA
| | | | - Laurel J Buxbaum
- Moss Rehabilitation Research Institute, Elkins Park, PA, USA; Department of Rehabilitation Medicine, Thomas Jefferson University, Philadelphia, PA, USA
| |
Collapse
|
5
|
Dresang HC, Wong AL, Buxbaum LJ. Shared and distinct routes in speech and gesture imitation: Evidence from stroke. Cortex 2023; 162:81-95. [PMID: 37018891 PMCID: PMC10106441 DOI: 10.1016/j.cortex.2023.01.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2022] [Revised: 10/25/2022] [Accepted: 01/09/2023] [Indexed: 03/08/2023]
Abstract
Dual-route models of high-level (praxis) actions distinguish between an "indirect" semantic route mediating meaningful gesture imitation, and a "direct" sensory-motor route mediates meaningless gesture imitation. Similarly, dual-route language models distinguish between an indirect route mediating production and repetition of words, and a direct route mediating non-word repetition. Although aphasia and limb apraxia frequently co-occur following left-hemisphere cerebrovascular accident (LCVA), it is unclear which aspects of these functional-neuroanatomic dual-route architectures are shared across praxis and language domains. This study focused on gesture imitation to test the hypothesis that semantic information (and portions of the indirect route) are shared across domains, whereas two distinct dorsal routes mediate sensory-motor mapping. Forty chronic LCVA and 17 neurotypical controls completed semantic memory and language tasks and imitated 3 types of gesture stimuli: (1) labeled/"named" meaningful, (2) unnamed meaningful, and (3) meaningless gestures. The comparison of accuracy between meaningless versus unnamed meaningful gestures examined the benefits of semantic information, while the comparison of unnamed meaningful versus named meaningful imitation examined additional benefits of linguistic cueing. Mixed-effects models examined group by task interaction effects on gesture ability. We found that for patients with LCVA, unnamed meaningful gestures were imitated more accurately than meaningless gestures, suggesting that semantic information was beneficial, but there was no benefit of labeling. Reduced benefit of semantic information on gesture accuracy was associated with lesions to inferior frontal and posterior temporal regions as well as semantic memory performance on a pictorial (non-gesture) task. In contrast, there was no relationship between meaningless gesture imitation and nonword repetition, indicating that measures of direct route performance are not associated across language and action. These results provide preliminary evidence that portions of the indirect semantic route are shared across the language and action domains, while two direct sensory-motor mapping routes mediate word repetition and gesture imitation.
Collapse
Affiliation(s)
- Haley C Dresang
- Moss Rehabilitation Research Institute, Elkins Park, PA, USA; University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA.
| | - Aaron L Wong
- Moss Rehabilitation Research Institute, Elkins Park, PA, USA
| | - Laurel J Buxbaum
- Moss Rehabilitation Research Institute, Elkins Park, PA, USA; Department of Rehabilitation Medicine, Thomas Jefferson University, Philadelphia, PA, USA
| |
Collapse
|
6
|
Johnson T, Ridgeway G, Luchmee D, Jacob J, Kantak S. Bimanual coordination during reach-to-grasp actions is sensitive to task goal with distinctions between left- and right-hemispheric stroke. Exp Brain Res 2022; 240:2359-2373. [PMID: 35869986 PMCID: PMC10077867 DOI: 10.1007/s00221-022-06419-2] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2021] [Accepted: 07/06/2022] [Indexed: 11/30/2022]
Abstract
The perceptual feature of a task such as how a task goal is perceived influences performance and coordination of bimanual actions in neurotypical adults. To assess how bimanual task goal modifies paretic and non-paretic arm performance and bimanual coordination in individuals with stroke affecting left and right hemispheres, 30 participants with hemispheric stroke (15 right-hemisphere damage-RHD); 15 left-hemisphere damage-LHD) and 10 age-matched controls performed reach-to-grasp and pick-up actions under bimanual common-goal (i.e., two physically coupled dowels), bimanual independent-goal (two physically uncoupled dowels), and unimanual conditions. Reach-to-grasp time and peak grasp aperture indexed motor performance, while time lags between peak reach velocities, peak grasp apertures, and peak pick-up velocities of the two hands characterized reach, grasp, and pick-up coordination, respectively. Compared to unimanual actions, bimanual actions significantly slowed non-paretic arm speed to match paretic arm speed, thus affording no benefit to paretic arm performance. Detriments in non-paretic arm performance during bimanual actions was more pronounced in the RHD group. Under common-goal conditions, movements were faster with smaller peak grasp apertures compared to independent-goal conditions for all groups. Compared to controls, individuals with stroke demonstrated poor grasp and pick-up coordination. Of the patient groups, patients with LHD showed more pronounced deficits in grasp coordination between hands. Finally, grasp coordination deficits related to paretic arm motor deficits (upper extremity Fugl-Meyer score) for LHD group, and to Trail-Making Test performance for RHD group. Findings suggest that task goal and distinct clinical deficits influence bimanual performance and coordination in patients with left- and right-hemispheric stroke.
Collapse
Affiliation(s)
- Tessa Johnson
- Neuroplasticity and Motor Behavior Laboratory, Moss Rehabilitation Research Institute, Elkins Park, PA, 19027, USA
- Department of Health and Rehabilitation Sciences, Temple University, Philadelphia, PA, USA
| | - Gordon Ridgeway
- College of Medicine, Drexel University, Philadelphia, PA, USA
| | - Dustin Luchmee
- Neuroplasticity and Motor Behavior Laboratory, Moss Rehabilitation Research Institute, Elkins Park, PA, 19027, USA
| | - Joshua Jacob
- Neuroplasticity and Motor Behavior Laboratory, Moss Rehabilitation Research Institute, Elkins Park, PA, 19027, USA
| | - Shailesh Kantak
- Neuroplasticity and Motor Behavior Laboratory, Moss Rehabilitation Research Institute, Elkins Park, PA, 19027, USA.
- Department of Physical Therapy, Arcadia University, Glenside, PA, USA.
| |
Collapse
|
7
|
Duff MC, Morrow EL, Edwards M, McCurdy R, Clough S, Patel N, Walsh K, Covington NV. The Value of Patient Registries to Advance Basic and Translational Research in the Area of Traumatic Brain Injury. Front Behav Neurosci 2022; 16:846919. [PMID: 35548696 PMCID: PMC9082794 DOI: 10.3389/fnbeh.2022.846919] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2021] [Accepted: 03/29/2022] [Indexed: 01/16/2023] Open
Abstract
The number of individuals affected by traumatic brain injury (TBI) is growing globally. TBIs may cause a range of physical, cognitive, and psychiatric deficits that can negatively impact employment, academic attainment, community independence, and interpersonal relationships. Although there has been a significant decrease in the number of injury related deaths over the past several decades, there has been no corresponding reduction in injury related disability over the same time period. We propose that patient registries with large, representative samples and rich multidimensional and longitudinal data have tremendous value in advancing basic and translational research and in capturing, characterizing, and predicting individual differences in deficit profile and outcomes. Patient registries, together with recent theoretical and methodological advances in analytic approaches and neuroscience, provide powerful tools for brain injury research and for leveraging the heterogeneity that has traditionally been cited as a barrier inhibiting progress in treatment research and clinical practice. We report on our experiences, and challenges, in developing and maintaining our own patient registry. We conclude by pointing to some future opportunities for discovery that are afforded by a registry model.
Collapse
Affiliation(s)
- Melissa C. Duff
- Department of Hearing and Speech Sciences, Vanderbilt University Medical Center, Nashville, TN, United States
- Meharry Medical College, Nashville, TN, United States
| | - Emily L. Morrow
- Department of Hearing and Speech Sciences, Vanderbilt University Medical Center, Nashville, TN, United States
| | - Malcolm Edwards
- Department of Hearing and Speech Sciences, Vanderbilt University Medical Center, Nashville, TN, United States
- Meharry Medical College, Nashville, TN, United States
| | - Ryan McCurdy
- Department of Hearing and Speech Sciences, Vanderbilt University Medical Center, Nashville, TN, United States
| | - Sharice Clough
- Department of Hearing and Speech Sciences, Vanderbilt University Medical Center, Nashville, TN, United States
| | - Nirav Patel
- Department of Hearing and Speech Sciences, Vanderbilt University Medical Center, Nashville, TN, United States
| | - Kimberly Walsh
- Department of Hearing and Speech Sciences, Vanderbilt University Medical Center, Nashville, TN, United States
| | - Natalie V. Covington
- Department of Speech-Language-Hearing Sciences, University of Minnesota, Minneapolis, MN, United States
| |
Collapse
|
8
|
Single-case disconnectome lesion-symptom mapping: Identifying two subtypes of limb apraxia. Neuropsychologia 2022; 170:108210. [DOI: 10.1016/j.neuropsychologia.2022.108210] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2021] [Revised: 02/05/2022] [Accepted: 03/08/2022] [Indexed: 11/18/2022]
|
9
|
Isaacs MW, Buxbaum LJ, Wong AL. Proprioception-based movement goals support imitation and are disrupted in apraxia. Cortex 2022; 147:140-156. [PMID: 35033899 PMCID: PMC8852218 DOI: 10.1016/j.cortex.2021.11.010] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2021] [Revised: 08/17/2021] [Accepted: 11/05/2021] [Indexed: 02/03/2023]
Abstract
The ability to imitate observed actions serves as an efficient method for learning novel movements and is specifically impaired (without concomitant gross motor impairments) in the neurological disorder of limb apraxia, a disorder common after left hemisphere stroke. Research with apraxic patients has advanced our understanding of how people imitate. However, the role of proprioception in imitation has been rarely assessed directly. Prior work has proposed that proprioceptively sensed body position is transformed into a visual format, supporting the attainment of a desired imitation goal represented visually (i.e., how the movement should look when performed). In contrast, we hypothesized a more direct role for proprioception: we suggest that movement goals are also represented proprioceptively (i.e., how a desired movement should feel when performed), and the ability to represent or access such proprioceptive goals is deficient in apraxia. Using a novel imitation task in which a robot cued meaningless trajectories proprioceptively or visually, we probed the role of each sensory modality. We found that patients with left hemisphere stroke were disproportionately worse than controls at imitating when cued proprioceptively versus visually. This proprioceptive versus visual disparity was associated with apraxia severity as assessed by a traditional imitation task, but could not be explained by general proprioceptive impairment or speed-accuracy trade-offs. These data suggest that successful imitation depends in part on the ability to represent movement goals in terms of how those movements should feel, and that deficits in this ability contribute to imitation impairments in patients with apraxia.
Collapse
Affiliation(s)
| | | | - Aaron L Wong
- Moss Rehabilitation Research Institute, Elkins Park, PA, USA.
| |
Collapse
|
10
|
Harvey DY, Parchure S, Hamilton RH. Factors predicting long-term recovery from post-stroke aphasia. APHASIOLOGY 2021; 36:1351-1372. [PMID: 36685216 PMCID: PMC9855303 DOI: 10.1080/02687038.2021.1966374] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/17/2020] [Accepted: 08/05/2021] [Indexed: 06/17/2023]
Abstract
BACKGROUND It remains widely accepted that spontaneous recovery from aphasia is largely limited to the first related factors. This has direct implications for acute and chronic interventions for aphasia. few months following stroke. A few recent studies challenge this view, revealing that some individuals' language abilities improve even during the chronic stage. AIMS To identify prognostic indicators of long-term aphasia recovery. METHODS & PROCEDURES Eighteen people with aphasia initially evaluated in the chronic stage were retested at least one year later. The Western Aphasia Battery-Revised (WAB-R) Aphasia Quotient (AQ) was used to quantify changes in language impairment. Prognostic factors included those related to the patient (demographic, psychosocial), stroke (lesion volume and location), and treatment (medical, rehabilitative). OUTCOMES & RESULTS Twelve participants improved and 6 remained stable or declined. Linear regression analysis revealed that lesion volume predicted long-term language gains, with smaller lesions yielding greater improvements. Individuals who did not improve were more likely to have lesions encompassing critical frontal and temporoparietal cortical regions and interconnecting white matter pathways. Exploratory regression analysis of psychosocial and treatment-related factors revealed a positive relationship between improvement and satisfaction with life participation, and a negative relationship between improvement and perceived impairment severity. Critically, psychosocial and treatment-related factors significantly improved model fit over lesion volume, suggesting that these factors add predictive value to determining long-term aphasia prognosis. CONCLUSIONS Long-term aphasia recovery is multidetermined by a combination of stroke-, psychosocial-, and treatment-related factors. This has direct implications for acute and chronic interventions for aphasia.
Collapse
Affiliation(s)
- Denise Y. Harvey
- Department of Neurology, University of Pennsylvania, Philadelphia, PA
- Moss Rehabilitation Research Institute, Elkins Park, PA
| | - Shreya Parchure
- Department of Neurology, University of Pennsylvania, Philadelphia, PA
| | - Roy H. Hamilton
- Department of Neurology, University of Pennsylvania, Philadelphia, PA
| |
Collapse
|
11
|
Stoll H, de Wit MM, Middleton EL, Buxbaum LJ. Treating limb apraxia via action semantics: a preliminary study. Neuropsychol Rehabil 2021; 31:1145-1162. [PMID: 32429797 PMCID: PMC7674248 DOI: 10.1080/09602011.2020.1762672] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2019] [Accepted: 04/15/2020] [Indexed: 10/24/2022]
Abstract
Limb apraxia is evident in approximately 50% of patients after left hemisphere cerebral vascular accident (LCVA) and increases disability and caregiver dependence. Individuals with apraxia exhibit abnormalities in spatio-temporal aspects of gesture production and/or in knowledge of tool-related actions (action semantics). This preliminary study of three LCVA participants aimed to (i) explore the efficacy of a novel Action Network Treatment (ANT) that focused on improving the semantic association between tool actions and other types of tool knowledge, an intervention inspired by successful semantic network treatments in aphasia (e.g., Edmonds et al., 2009), and (ii) explore whether there are individuals with apraxia who benefit from ANT relative to a version of a comparatively well-studied existing apraxia treatment (Smania et al., 2006; Smania et al., 2000) that shapes gesture via focus on practicing the spatio-temporal aspects of gesture production (Tool Use Treatment or TUT). One participant demonstrated treatment benefits from both ANT and TUT, while another only benefited from TUT. These findings indicate that our novel semantic network strengthening approach to gesture training may be efficacious in at least some individuals with apraxia, and provide a foundation for future study of the characteristics of people with apraxia who benefit from each approach.
Collapse
Affiliation(s)
| | | | | | - Laurel J. Buxbaum
- Moss Rehabilitation Research Institute, Elkins Park, PA
- Department of Rehabilitation Medicine, Thomas Jefferson University, Philadelphia, PA
| |
Collapse
|
12
|
Therrien AS, Howard C, Buxbaum LJ. Aberrant activity in an intact residual muscle is associated with phantom limb pain in above-knee amputees. J Neurophysiol 2021; 125:2135-2143. [PMID: 33949884 DOI: 10.1152/jn.00482.2020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Many individuals who undergo limb amputation experience persistent phantom limb pain (PLP), but the underlying mechanisms of PLP are unknown. The traditional hypothesis was that PLP resulted from maladaptive plasticity in sensorimotor cortex that degrades the neural representation of the missing limb. However, a recent study of individuals with upper limb amputations has shown that PLP is correlated with aberrant electromyographic (EMG) activity in residual muscles, posited to reflect a retargeting of efferent projections from a preserved representation of a missing limb. Here, we assessed EMG activity in a residual thigh muscle (vastus lateralis, VL) in patients with transfemoral amputations during cyclical movements of a phantom foot. VL activity on the amputated side was compared to that recorded on patients' intact side while they moved both the phantom and intact feet synchronously. VL activity in the patient group was also compared to a sample of control participants with no amputation. We show that phantom foot movement is associated with greater VL activity in the amputated leg than that seen in the intact leg as well as that exhibited by controls. The magnitude of residual VL activity was also positively related to ratings of PLP. These results show that phantom limb movement is associated with aberrant activity in a residual muscle after lower-limb amputation and provide evidence of a positive relationship between this activity and phantom limb pain.NEW & NOTEWORTHY This study is the first to assess residual muscle activity during movement of a phantom limb in individuals with lower limb amputations. We find that phantom foot movement is associated with aberrant recruitment of a residual thigh muscle and that this aberrant activity is related to phantom limb pain.
Collapse
Affiliation(s)
| | - Cortney Howard
- Duke Center for Cognitive Neuroscience, Duke Universitygrid.26009.3d, Durham, North Carolina
| | - Laurel J Buxbaum
- Moss Rehabilitation Research Institute, Elkins Park, Pennsylvania.,Department of Rehabilitation Medicine, Thomas Jefferson University, Philadelphia, Pennsylvania
| |
Collapse
|
13
|
Vigliocco G, Krason A, Stoll H, Monti A, Buxbaum LJ. Multimodal comprehension in left hemisphere stroke patients. Cortex 2020; 133:309-327. [PMID: 33161278 PMCID: PMC8105917 DOI: 10.1016/j.cortex.2020.09.025] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2019] [Revised: 08/10/2020] [Accepted: 09/22/2020] [Indexed: 12/11/2022]
Abstract
Hand gestures, imagistically related to the content of speech, are ubiquitous in face-to-face communication. Here we investigated people with aphasia's (PWA) processing of speech accompanied by gestures using lesion-symptom mapping. Twenty-nine PWA and 15 matched controls were shown a picture of an object/action and then a video-clip of a speaker producing speech and/or gestures in one of the following combinations: speech-only, gesture-only, congruent speech-gesture, and incongruent speech-gesture. Participants' task was to indicate, in different blocks, whether the picture and the word matched (speech task), or whether the picture and the gesture matched (gesture task). Multivariate lesion analysis with Support Vector Regression Lesion-Symptom Mapping (SVR-LSM) showed that benefit for congruent speech-gesture was associated with 1) lesioned voxels in anterior fronto-temporal regions including inferior frontal gyrus (IFG), and sparing of posterior temporal cortex and lateral temporal-occipital regions (pTC/LTO) for the speech task, and 2) conversely, lesions to pTC/LTO and sparing of anterior regions for the gesture task. The two tasks did not share overlapping voxels. Costs from incongruent speech-gesture pairings were associated with lesioned voxels in these same anterior (for the speech task) and posterior (for the gesture task) regions, but crucially, also shared voxels in superior temporal gyrus (STG) and middle temporal gyrus (MTG), including the anterior temporal lobe. These results suggest that IFG and pTC/LTO contribute to extracting semantic information from speech and gesture, respectively; however, they are not causally involved in integrating information from the two modalities. In contrast, regions in anterior STG/MTG are associated with performance in both tasks and may thus be critical to speech-gesture integration. These conclusions are further supported by associations between performance in the experimental tasks and performance in tests assessing lexical-semantic processing and gesture recognition.
Collapse
Affiliation(s)
- Gabriella Vigliocco
- Experimental Psychology, University College London, UK; Cognition and Action Laboratory, Moss Rehabilitation Research Institute, Elkins Park, PA, USA.
| | - Anna Krason
- Experimental Psychology, University College London, UK
| | - Harrison Stoll
- Cognition and Action Laboratory, Moss Rehabilitation Research Institute, Elkins Park, PA, USA
| | | | - Laurel J Buxbaum
- Cognition and Action Laboratory, Moss Rehabilitation Research Institute, Elkins Park, PA, USA
| |
Collapse
|
14
|
Buxbaum LJ, Varghese R, Stoll H, Winstein CJ. Predictors of Arm Nonuse in Chronic Stroke: A Preliminary Investigation. Neurorehabil Neural Repair 2020; 34:512-522. [PMID: 32476616 DOI: 10.1177/1545968320913554] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Background. Nonuse (NU) after stroke is characterized by failure to use the contralesional arm despite adequate capacity. It has been suggested that NU is a consequence of the greater effort and/or attention required to use the affected limb, but such accounts have not been directly tested, and we have poor understanding of the predictors of NU. Objective. We aimed to provide preliminary evidence regarding demographic, neuropsychological (ie, apraxia, attention/arousal, neglect), and psychological (ie, self-efficacy) factors that may influence NU in chronic stroke. Methods. Twenty chronic stroke survivors with mild to moderate sensory-motor impairment characterized by the Upper-Extremity Fugl-Meyer (UEFM) were assessed for NU with a modified version of the Actual Amount of Use Test (AAUT), which measures the disparity between amount of use in spontaneous versus forced conditions. Participants were also assessed with measures of limb apraxia, spatial neglect, attention/arousal, and self-efficacy. Using stepwise multiple regression, we determined which variables predicted AAUT NU scores. Results. Scores on the UEFM as well as attention/arousal predicted the degree of NU (P < .05). Attention/arousal predicted NU above and beyond UEFM (P < .05). Conclusions. The results are consistent with the importance of attention and engagement necessary to fully incorporate the paretic limb into daily activities. Larger-scale studies that include additional behavioral (eg, sensation, proprioception, spasticity, pain, mental health, motivation) and neuroanatomical measures (eg, lesion volume and white matter connectivity) will be important for future investigations.
Collapse
Affiliation(s)
- Laurel J Buxbaum
- Moss Rehabilitation Research Institute, Elkins Park, PA, USA.,Thomas Jefferson University, Philadelphia, PA, USA
| | - Rini Varghese
- University of Southern California, Los Angeles, CA, USA
| | - Harrison Stoll
- Moss Rehabilitation Research Institute, Elkins Park, PA, USA
| | | |
Collapse
|
15
|
Howard CM, Smith LL, Coslett HB, Buxbaum LJ. The role of conflict, feedback, and action comprehension in monitoring of action errors: Evidence for internal and external routes. Cortex 2019; 115:184-200. [PMID: 30831536 DOI: 10.1016/j.cortex.2019.01.032] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2018] [Revised: 12/10/2018] [Accepted: 01/16/2019] [Indexed: 11/19/2022]
Abstract
The mechanisms and brain regions underlying error monitoring in complex action are poorly understood, yet errors and impaired error correction in these tasks are hallmarks of apraxia, a common disorder associated with left hemisphere stroke. Accounts of monitoring of language posit an internal route by which production planning or competition between candidate representations provide predictive signals that monitoring is required to prevent error, and an external route in which output is monitored using the comprehension system. Abnormal reliance on the external route has been associated with damage to brain regions critical for sensory-motor transformation and a pattern of gradual error 'clean-up' called conduite d'approche (CD). Action pantomime data from 67 participants with left hemisphere stroke were consistent with versions of internal route theories positing that competition signals monitoring requirements. Support Vector Regression Lesion Symptom Mapping (SVR-LSM) showed that lesions in the inferior parietal, posterior temporal, and arcuate fasciculus/superior longitudinal fasciculus predicted action conduite d'approche, overlapping the regions previously observed in the language domain. A second experiment with 12 patients who produced substantial action CD assessed whether factors impacting the internal route (action production ability, competition) versus external route (vision of produced actions, action comprehension) influenced correction attempts. In these 'high CD' patients, vision of produced actions and integrity of gesture comprehension interacted to determine successful error correction, supporting external route theories. Viewed together, these and other data suggest that skilled actions are monitored both by an internal route in which conflict aids in detection and correction of errors during production planning, and an external route that detects mismatches between produced actions and stored knowledge of action appearance. The parallels between language and action monitoring mechanisms and neuroanatomical networks pave the way for further exploration of common and distinct processes across these domains.
Collapse
Affiliation(s)
| | - Louisa L Smith
- Moss Rehabilitation Research Institute, Elkins Park, PA, USA
| | | | | |
Collapse
|
16
|
Watson CE, Gotts SJ, Martin A, Buxbaum LJ. Bilateral functional connectivity at rest predicts apraxic symptoms after left hemisphere stroke. Neuroimage Clin 2018; 21:101526. [PMID: 30612063 PMCID: PMC6319198 DOI: 10.1016/j.nicl.2018.08.033] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2018] [Revised: 06/22/2018] [Accepted: 08/31/2018] [Indexed: 12/11/2022]
Abstract
Increasing evidence indicates that focal lesions following stroke cause alterations in connectivity among functional brain networks. Functional connectivity between hemispheres has been shown to be particularly critical for predicting stroke-related behavioral deficits and recovery of motor function and attention. Much less is known, however, about the relevance of interhemispheric functional connectivity for cognitive abilities like praxis that rely on strongly lateralized brain networks. In the current study, we examine correlations between symptoms of apraxia-a disorder of skilled action that cannot be attributed to lower-level sensory or motor impairments-and spontaneous, resting brain activity in functional MRI in chronic left hemisphere stroke patients and neurologically-intact control participants. Using a data-driven approach, we identified 32 regions-of-interest in which pairwise functional connectivity correlated with two distinct measures of apraxia, even when controlling for age, head motion, lesion volume, and other artifacts: overall ability to pantomime the typical use of a tool, and disproportionate difficulty pantomiming the use of tools associated with different, competing use and grasp-to-move actions (e.g., setting a kitchen timer versus picking it up). Better performance on both measures correlated with stronger interhemispheric functional connectivity. Relevant regions in the right hemisphere were often homologous to left hemisphere areas associated with tool use and action. Additionally, relative to overall pantomime accuracy, disproportionate difficulty pantomiming the use of tools associated with competing use and grasp actions was associated with weakened functional connectivity among a more strongly left-lateralized and peri-Sylvian set of brain regions. Finally, patient performance on both measures of apraxia was best predicted by a model that incorporated information about lesion location and functional connectivity, and functional connectivity continued to explain unique variance in behavior even after accounting for lesion loci. These results indicate that interhemispheric functional connectivity is relevant even for a strongly lateralized cognitive ability like praxis and emphasize the importance of the right hemisphere in skilled action.
Collapse
Affiliation(s)
| | - Stephen J Gotts
- Laboratory of Brain and Cognition, National Institute of Mental Health, NIH, Bethesda, MD 20892, USA
| | - Alex Martin
- Laboratory of Brain and Cognition, National Institute of Mental Health, NIH, Bethesda, MD 20892, USA
| | - Laurel J Buxbaum
- Moss Rehabilitation Research Institute, Elkins Park, PA 19027, USA.
| |
Collapse
|
17
|
Botezatu MR, Mirman D. Impaired Lexical Selection and Fluency in Post-Stroke Aphasia. APHASIOLOGY 2018; 33:667-688. [PMID: 31598028 PMCID: PMC6785054 DOI: 10.1080/02687038.2018.1508637] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/26/2018] [Accepted: 07/26/2018] [Indexed: 06/10/2023]
Abstract
BACKGROUND Deficits in fluent language production are a hallmark of aphasia and may arise from impairments at different levels in the language system. It has been proposed that difficulty resolving lexical competition contributes to fluency deficits. AIMS The present study tested this hypothesis in a novel way: by examining whether narrative speech production fluency is associated with difficulty resolving lexical competition in spoken word recognition as measured by sensitivity to phonological neighborhood density. METHODS & PROCEDURES Nineteen participants with aphasia and 15 neurologically intact older adults identified spoken words that varied in phonological neighborhood density and were presented in moderate noise. OUTCOMES & RESULTS Neurologically intact participants exhibited the standard inhibitory effect of phonological neighborhood density on response times: slower recognition of spoken words from denser neighborhoods. Among participants with aphasia, the inhibitory effect of phonological neighborhood density (less accurate recognition of spoken words from denser neighborhoods) was smaller for participants with greater fluency. The neighborhood effect was larger for participants with greater receptive vocabulary knowledge, indicating that the fluency effect was not a result of general lexical deficits. CONCLUSIONS These results are consistent with the hypothesis that impaired lexical selection is a contributing factor in fluency deficits in post-stroke aphasia.
Collapse
Affiliation(s)
- Mona Roxana Botezatu
- Department of Communication Science and Disorders, University of Missouri, Columbia, MO, 65211, USA, ,
| | - Daniel Mirman
- Department of Psychology, University of Alabama, Birmingham, AL, 35294, USA, ;
- Moss Rehabilitation Research Institute, Elkins Park, PA, 19027, USA
| |
Collapse
|
18
|
Abstract
OBJECTIVES Adaptive interaction with the environment requires the ability to predict both human and non-biological motion trajectories. Prior accounts of the neurocognitive basis for prediction of these two motion classes may generally be divided into those that posit that non-biological motion trajectories are predicted using the same motor planning and/or simulation mechanisms used for human actions, and those that posit distinct mechanisms for each. Using brain lesion patients and healthy controls, this study examined critical neural substrates and behavioral correlates of human and non-biological motion prediction. METHODS Twenty-seven left hemisphere stroke patients and 13 neurologically intact controls performed a visual occlusion task requiring prediction of pantomimed tool use, real tool use, and non-biological motion videos. Patients were also assessed with measures of motor strength and speed, praxis, and action recognition. RESULTS Prediction impairment for both human and non-biological motion was associated with limb apraxia and, weakly, with the severity of motor production deficits, but not with action recognition ability. Furthermore, impairment for human and non-biological motion prediction was equivalently associated with lesions in the left inferior parietal cortex, left dorsal frontal cortex, and the left insula. CONCLUSIONS These data suggest that motor planning mechanisms associated with specific loci in the sensorimotor network are critical for prediction of spatiotemporal trajectory information characteristic of both human and non-biological motions. (JINS, 2017, 23, 171-184).
Collapse
|
19
|
Durisko C, McCue M, Doyle PJ, Dickey MW, Fiez JA. A Flexible and Integrated System for the Remote Acquisition of Neuropsychological Data in Stroke Research. Telemed J E Health 2016; 22:1032-1040. [PMID: 27214198 PMCID: PMC5165659 DOI: 10.1089/tmj.2015.0235] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2015] [Revised: 03/22/2016] [Accepted: 03/24/2016] [Indexed: 11/13/2022] Open
Abstract
BACKGROUND Neuropsychological testing is a central aspect of stroke research because it provides critical information about the cognitive-behavioral status of stroke survivors, as well as the diagnosis and treatment of stroke-related disorders. Standard neuropsychological methods rely upon face-to-face interactions between a patient and researcher, which creates geographic and logistical barriers that impede research progress and treatment advances. INTRODUCTION To overcome these barriers, we created a flexible and integrated system for the remote acquisition of neuropsychological data (RAND). The system we developed has a secure architecture that permits collaborative videoconferencing. The system supports shared audiovisual feeds that can provide continuous virtual interaction between a participant and researcher throughout a testing session. Shared presentation and computing controls can be used to deliver auditory and visual test items adapted from standard face-to-face materials or execute computer-based assessments. Spoken and manual responses can be acquired, and the components of the session can be recorded for offline data analysis. MATERIALS AND METHODS To evaluate its feasibility, our RAND system was used to administer a speech-language test battery to 16 stroke survivors with a variety of communication, sensory, and motor impairments. The sessions were initiated virtually without prior face-to-face instruction in the RAND technology or test battery. RESULTS Neuropsychological data were successfully acquired from all participants, including those with limited technology experience, and those with a communication, sensory, or motor impairment. Furthermore, participants indicated a high level of satisfaction with the RAND system and the remote assessment that it permits. CONCLUSIONS The results indicate the feasibility of using the RAND system for virtual home-based neuropsychological assessment without prior face-to-face contact between a participant and researcher. Because our RAND system architecture uses off-the-shelf technology and software, it can be duplicated without specialized expertise or equipment. In sum, our RAND system offers a readily available and promising alternative to face-to-face neuropsychological assessment in stroke research.
Collapse
Affiliation(s)
- Corrine Durisko
- Learning Research and Development Center, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Michael McCue
- Department of Rehabilitation Science and Technology, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Patrick J. Doyle
- Geriatric Research, Education, and Clinical Center, VA Pittsburgh Healthcare System, Pittsburgh, Pennsylvania
- Department of Communication Science and Disorders, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Michael Walsh Dickey
- Geriatric Research, Education, and Clinical Center, VA Pittsburgh Healthcare System, Pittsburgh, Pennsylvania
- Department of Communication Science and Disorders, University of Pittsburgh, Pittsburgh, Pennsylvania
- Department of Psychology, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Julie A. Fiez
- Learning Research and Development Center, University of Pittsburgh, Pittsburgh, Pennsylvania
- Department of Communication Science and Disorders, University of Pittsburgh, Pittsburgh, Pennsylvania
- Department of Psychology, University of Pittsburgh, Pittsburgh, Pennsylvania
- Center for the Neural Basis of Cognition, University of Pittsburgh, Pittsburgh, Pennsylvania
| |
Collapse
|
20
|
Kalénine S, Buxbaum LJ. Thematic knowledge, artifact concepts, and the left posterior temporal lobe: Where action and object semantics converge. Cortex 2016; 82:164-178. [PMID: 27389801 DOI: 10.1016/j.cortex.2016.06.008] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2015] [Revised: 03/21/2016] [Accepted: 06/11/2016] [Indexed: 02/04/2023]
Abstract
Converging evidence supports the existence of functionally and neuroanatomically distinct taxonomic (similarity-based; e.g., hammer-screwdriver) and thematic (event-based; e.g., hammer-nail) semantic systems. Processing of thematic relations between objects has been shown to selectively recruit the left posterior temporoparietal cortex. Similar posterior regions have also been shown to be critical for knowledge of relationships between actions and manipulable human-made objects (artifacts). Based on the hypothesis that thematic relationships for artifacts rely, at least in part, on action relationships, we assessed the prediction that the same regions of the left posterior temporoparietal cortex would be critical for conceptual processing of artifact-related actions and thematic relations for artifacts. To test this hypothesis, we evaluated processing of taxonomic and thematic relations for artifacts and natural objects as well as artifact action knowledge (gesture recognition) abilities in a large sample of 48 stroke patients with a range of lesion foci in the left hemisphere. Like control participants, patients identified thematic relations faster than taxonomic relations for artifacts, whereas they identified taxonomic relations faster than thematic relations for natural objects. Moreover, response times (RTs) for identifying thematic relations for artifacts selectively predicted performance in gesture recognition. Whole brain Voxel-based Lesion-Symptom Mapping (VLSM) analyses and Region of Interest (ROI) regression analyses further demonstrated that lesions to the left posterior temporal cortex, overlapping with LTO and visual motion area hMT+, were associated both with relatively slower RTs in identifying thematic relations for artifacts and poorer artifact action knowledge in patients. These findings provide novel insights into the functional role of left posterior temporal cortex in thematic knowledge, and suggest that the close association between thematic relations for artifacts and action representations may reflect their common dependence on visual motion and manipulation information.
Collapse
Affiliation(s)
- Solène Kalénine
- Moss Rehabilitation Research Institute, Elkins Park, PA, USA; Univ. Lille, CNRS, CHU Lille, UMR 9193 SCALab - Sciences Cognitives et Sciences Affectives, Lille, France.
| | | |
Collapse
|
21
|
Nozari N, Mirman D, Thompson-Schill SL. The ventrolateral prefrontal cortex facilitates processing of sentential context to locate referents. BRAIN AND LANGUAGE 2016; 157-158:1-13. [PMID: 27148817 PMCID: PMC4974818 DOI: 10.1016/j.bandl.2016.04.006] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/23/2015] [Revised: 04/03/2016] [Accepted: 04/10/2016] [Indexed: 05/24/2023]
Abstract
Left ventrolateral prefrontal cortex (VLPFC) has been implicated in both integration and conflict resolution in sentence comprehension. Most evidence in favor of the integration account comes from processing ambiguous or anomalous sentences, which also poses a demand for conflict resolution. In two eye-tracking experiments we studied the role of VLPFC in integration when demands for conflict resolution were minimal. Two closely-matched groups of individuals with chronic post-stroke aphasia were tested: the Anterior group had damage to left VLPFC, whereas the Posterior group had left temporo-parietal damage. In Experiment 1 a semantic cue (e.g., "She will eat the apple") uniquely marked the target (apple) among three distractors that were incompatible with the verb. In Experiment 2 phonological cues (e.g., "She will see an eagle."/"She will see a bear.") uniquely marked the target among three distractors whose onsets were incompatible with the cue (e.g., all consonants when the target started with a vowel). In both experiments, control conditions had a similar format, but contained no semantic or phonological contextual information useful for target integration (e.g., the verb "see", and the determiner "the"). All individuals in the Anterior group were slower in using both types of contextual information to locate the target than were individuals in the Posterior group. These results suggest a role for VLPFC in integration beyond conflict resolution. We discuss a framework that accommodates both integration and conflict resolution.
Collapse
Affiliation(s)
- Nazbanou Nozari
- Department of Neurology, Johns Hopkins University School of Medicine, United States; Department of Cognitive Science, Johns Hopkins University, United States.
| | - Daniel Mirman
- Department of Psychology, Drexel University, United States; Moss Rehabilitation Research Institute, United States
| | | |
Collapse
|
22
|
Hall LN, Ficker LJ, Chadiha LA, Green CR, Jackson JS, Lichtenberg PA. Promoting Retention: African American Older Adults in a Research Volunteer Registry. Gerontol Geriatr Med 2016; 2:2333721416677469. [PMID: 28138501 PMCID: PMC5117259 DOI: 10.1177/2333721416677469] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2016] [Revised: 08/25/2016] [Accepted: 10/05/2016] [Indexed: 11/30/2022] Open
Abstract
Objectives: The objectives of this study were to evaluate the capability of a research volunteer registry to retain community-dwelling African American older adults, and to explore demographic and health factors associated with retention. Method: A logistic regression model was used to determine the influence of demographics, health factors, and registry logic model activities on retention in a sample of 1,730 older African American adults. Results: Almost 80% of participants active in the volunteer research registry between January 2012 and June 2015 were retained. Employment, being referred to research studies, a higher number of medical conditions, and more follow-up contacts were associated with an increased likelihood of retention. Older age, more months in the registry, and more mobility problems decreased the likelihood of retention. Discussion: These results suggest the Michigan Center for Urban African American Aging Research logic model promotes retention through involving older African American adults in research through study referrals and intensive follow-up. The loss of participants due to age- and mobility-related issues indicate the registry may be losing its most vulnerable participants.
Collapse
|
23
|
Zhang Y, Kimberg DY, Coslett HB, Schwartz MF, Wang Z. Support vector regression based multivariate lesion-symptom mapping. ANNUAL INTERNATIONAL CONFERENCE OF THE IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. ANNUAL INTERNATIONAL CONFERENCE 2015; 2014:5599-602. [PMID: 25571264 DOI: 10.1109/embc.2014.6944896] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
A novel multivariate lesion-symptom mapping (LSM) methodology was developed in this study. Lesion analysis is a classic model for studying brain functions. Using lesion data, focal brain-behavior associations have been widely assessed using the massive voxel-based lesion symptom mapping (VLSM) method. Assessing each voxel independently, VLSM suffers from low sensitivity after correcting for the enormous number of comparisons. It is also incapable for assessing a spatially distributed association pattern though the brain-behavior associations generally involve a collection of functionally related voxels. To solve these two outstanding problems, we carried out the first multivariate lesion symptom mapping (MLSM) in this study using support vector regression (SVR). In the so dubbed SVR-LSM, the symptom relation to the entire lesion map rather than each isolated voxel is modeled using a non-linear function, so the inter-voxel correlations are intrinsically considered, resulting in a potentially more sensitive way to examine lesion-symptom relationships. Evaluations using synthetic data and real data showed that SVR-LSM gained a much better performance (in terms of sensitivity and specificity) for detecting brain-behavior relations than VLSM. While the method was designed for lesion analysis, extending it to neuroimaging data will be straightforward.
Collapse
|
24
|
Converging evidence from fMRI and aphasia that the left temporoparietal cortex has an essential role in representing abstract semantic knowledge. Cortex 2015; 69:104-20. [PMID: 26026619 DOI: 10.1016/j.cortex.2015.04.021] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2014] [Revised: 01/30/2015] [Accepted: 04/25/2015] [Indexed: 11/20/2022]
Abstract
While the neural underpinnings of concrete semantic knowledge have been studied extensively, abstract conceptual knowledge remains enigmatic. We present two experiments that provide converging evidence for the involvement of key regions in the temporoparietal cortex (TPC) in abstract semantic representations. First, we carried out a neuroimaging study in which participants thought deeply about abstract and concrete words. A functional connectivity analysis revealed a cortical network, including portions of the TPC, that showed coordinated activity specific to abstract word processing. In a second experiment, we tested participants with lesions involving the left TPC on a spoken-to-written word matching task using abstract and concrete target words presented in arrays of related or unrelated distractors. The results revealed an interaction between concreteness and relatedness: participants with TPC lesions were significantly less accurate for abstract words presented in related arrays than in unrelated arrays, but exhibited no effect of relatedness for concrete words. These results confirm that the TPC plays an important role in abstract concept representation and that it is part of a larger network of functionally cooperative regions needed for abstract word processing.
Collapse
|
25
|
Predictors of adolescents' consent to use health records for research and results from data collection in a Swedish twin cohort. Twin Res Hum Genet 2015; 18:256-65. [PMID: 25900713 DOI: 10.1017/thg.2015.21] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
INTRODUCTION Non-random selection into a study population due to differences between consenters and non-consenters may introduce participation bias. Past investigations of factors predicting consent to collection of medical health records for research imply that age, sex, health status, and education are of importance for participation, but disagree on the direction of effects. Very little is known about influences on consent from adolescents. METHODS Two cohorts of Swedish 15-year-old twins (total n = 4,611) previously invited to the Child and Adolescent Twin Study in Sweden (CATSS) responded to a questionnaire with information on sex, individual's health, height, weight, and parental factors. The questionnaire included a question for consent to collection of medical health records. Predictors for consent were analyzed using logistic regression. Additionally, regional differences in the collection of health records of consenters were evaluated. RESULTS Males were significantly less likely to consent compared to females (OR 0.74, 95% CI 0.64-0.85). The twin siblings' decision to consent was strongly associated with consent (OR 10.9, 95% CI 8.76-13.5), and individuals whose parents had responded to the original CATSS study were more likely to consent to record collection at age 15 (OR 2.2, 95% CI 1.81-2.75). Results of the subsequent collection of consenters' medical health records varied between geographical regions of Sweden. CONCLUSION We identified several predictors for adolescents' consent to collection of their medical health records. Further selection was introduced through the subsequent record collection. Whether this will induce participation bias in future studies depends on the research questions' relationship to the identified predictors.
Collapse
|
26
|
Visual context modulates potentiation of grasp types during semantic object categorization. Psychon Bull Rev 2015; 21:645-51. [PMID: 24186270 DOI: 10.3758/s13423-013-0536-7] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Substantial evidence suggests that conceptual processing of manipulable objects is associated with potentiation of action. Such data have been viewed as evidence that objects are recognized via access to action features. Many objects, however, are associated with multiple actions. For example, a kitchen timer may be clenched with a power grip to move it but pinched with a precision grip to use it. The present study tested the hypothesis that action evocation during conceptual object processing is responsive to the visual scene in which objects are presented. Twenty-five healthy adults were asked to categorize object pictures presented in different naturalistic visual contexts that evoke either move- or use-related actions. Categorization judgments (natural vs. artifact) were performed by executing a move- or use-related action (clench vs. pinch) on a response device, and response times were assessed as a function of contextual congruence. Although the actions performed were irrelevant to the categorization judgment, responses were significantly faster when actions were compatible with the visual context. This compatibility effect was largely driven by faster pinch responses when objects were presented in use-compatible, as compared with move-compatible, contexts. The present study is the first to highlight the influence of visual scene on stimulus-response compatibility effects during semantic object processing. These data support the hypothesis that action evocation during conceptual object processing is biased toward context-relevant actions.
Collapse
|
27
|
A distributed network critical for selecting among tool-directed actions. Cortex 2015; 65:65-82. [PMID: 25681649 DOI: 10.1016/j.cortex.2015.01.007] [Citation(s) in RCA: 67] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2014] [Revised: 12/11/2014] [Accepted: 01/13/2015] [Indexed: 11/22/2022]
Abstract
Tools pose a challenge to the need to select actions appropriate for task goals and environmental constraints. For many tools (e.g., calculator), actions for "using" and "grasping-to-move" conflict with each other and may compete during selection. To date, little is known about the mechanisms that enable selection between possible tool actions or their neural substrates. The study of patients with chronic left hemisphere stroke, many of whom are deficient in tool-use action (apraxic), provides an opportunity to elucidate these issues. Here, 31 such patients pantomimed or recognized tool use actions for "conflict" and "non-conflict" tools. Voxel-based lesion-symptom mapping (VLSM), lesion subtraction, and tractographic overlap analyses were used to determine brain regions necessary for selecting among tool-directed actions. Lesions to posterior middle temporal gyrus (pMTG) and anterior intraparietal sulcus (aIPS) tended to impair production of use actions similarly for both conflict and non-conflict tools. By contrast, lesions to the supramarginal gyrus (SMG), inferior frontal gyrus (IFG)/anterior insula, and superior longitudinal fasciculus (SLF) specifically impaired production of use actions for conflict tools. Patients' errors on conflict tools suggested inappropriate selection of grasping actions and difficulty selecting single actions. Use/grasp conflict had no effect on action recognition. We suggest that the SMG/SLF/IFG pathway implements biased competition between possible tool actions, while aIPS and pMTG compute the structure-based and skilled use actions, respectively, that constitute input to this competitive process. This is the first study to demonstrate a reliable link between a characteristic of single tools (i.e., their association with different use and grasp actions) and action selection difficulties. Additionally, the data allow us to posit an SMG-involved subtype of apraxia characterized by an inability to resolve action competition.
Collapse
|
28
|
Disrupted structural connectome is associated with both psychometric and real-world neuropsychological impairment in diffuse traumatic brain injury. J Int Neuropsychol Soc 2014; 20:887-96. [PMID: 25287217 PMCID: PMC4275544 DOI: 10.1017/s1355617714000812] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Traumatic brain injury (TBI) is likely to disrupt structural network properties due to diffuse white matter pathology. The present study aimed to detect alterations in structural network topology in TBI and relate them to cognitive and real-world behavioral impairment. Twenty-two people with moderate to severe TBI with mostly diffuse pathology and 18 demographically matched healthy controls were included in the final analysis. Graph theoretical network analysis was applied to diffusion tensor imaging (DTI) data to characterize structural connectivity in both groups. Neuropsychological functions were assessed by a battery of psychometric tests and the Frontal Systems Behavior Scale (FrSBe). Local connection-wise analysis demonstrated reduced structural connectivity in TBI arising from subcortical areas including thalamus, caudate, and hippocampus. Global network metrics revealed that shortest path length in participants with TBI was longer compared to controls, and that this reduced network efficiency was associated with worse performance in executive function and verbal learning. The shortest path length measure was also correlated with family-reported FrSBe scores. These findings support the notion that the diffuse form of neuropathology caused by TBI results in alterations in structural connectivity that contribute to cognitive and real-world behavioral impairment.
Collapse
|
29
|
Jax SA, Rosa-Leyra DL, Buxbaum LJ. Conceptual- and production-related predictors of pantomimed tool use deficits in apraxia. Neuropsychologia 2014; 62:194-201. [PMID: 25107676 DOI: 10.1016/j.neuropsychologia.2014.07.014] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2013] [Revised: 07/01/2014] [Accepted: 07/14/2014] [Indexed: 10/24/2022]
Abstract
Apraxia following left hemisphere stroke disrupts pantomimed tool use (PTU), a task that requires the integrity of a number of cognitive and motor processes. Although previous studies have identified that apraxics have deficits in (1) the integrity of/access to stored tool-use gesture representations, (2) deficits in intrinsic (body-based) coordinate control, and (3) abnormal reliance on visual feedback, no study to date has simultaneously tested the relative contribution of these three deficits to poor PTU performance. In this study we assessed 38 chronic left hemisphere stroke survivors on tests of PTU and the 3 component processes. We then attempted to predict PTU with the component scores using hierarchical regression to control for overall stroke severity and the possibility of correlated component scores. Results showed that over half of the variability in PTU was predictable, with the strongest independent predictor being a test of intrinsic coordinate control without visual feedback. A test of the integrity of/access to stored representations also predicted PTU. These results confirm and extend previous claims that conceptual- and production-related factors affect PTU, even after considering that deficits in both factors are commonly observed to varying degrees in apraxic patients.
Collapse
Affiliation(s)
- S A Jax
- Moss Rehabilitation Research Institute, 50 Township Line Road, Elkins Park, PA 19027, USA.
| | - D L Rosa-Leyra
- Moss Rehabilitation Research Institute, 50 Township Line Road, Elkins Park, PA 19027, USA
| | - L J Buxbaum
- Moss Rehabilitation Research Institute, 50 Township Line Road, Elkins Park, PA 19027, USA
| |
Collapse
|
30
|
Zhang Y, Kimberg DY, Coslett HB, Schwartz MF, Wang Z. Multivariate lesion-symptom mapping using support vector regression. Hum Brain Mapp 2014; 35:5861-76. [PMID: 25044213 DOI: 10.1002/hbm.22590] [Citation(s) in RCA: 213] [Impact Index Per Article: 19.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2013] [Revised: 06/06/2014] [Accepted: 07/08/2014] [Indexed: 11/10/2022] Open
Abstract
Lesion analysis is a classic approach to study brain functions. Because brain function is a result of coherent activations of a collection of functionally related voxels, lesion-symptom relations are generally contributed by multiple voxels simultaneously. Although voxel-based lesion-symptom mapping (VLSM) has made substantial contributions to the understanding of brain-behavior relationships, a better understanding of the brain-behavior relationship contributed by multiple brain regions needs a multivariate lesion-symptom mapping (MLSM). The purpose of this artilce was to develop an MLSM using a machine learning-based multivariate regression algorithm: support vector regression (SVR). In the proposed SVR-LSM, the symptom relation to the entire lesion map as opposed to each isolated voxel is modeled using a nonlinear function, so the intervoxel correlations are intrinsically considered, resulting in a potentially more sensitive way to examine lesion-symptom relationships. To explore the relative merits of VLSM and SVR-LSM we used both approaches in the analysis of a synthetic dataset. SVR-LSM showed much higher sensitivity and specificity for detecting the synthetic lesion-behavior relations than VLSM. When applied to lesion data and language measures from patients with brain damages, SVR-LSM reproduced the essential pattern of previous findings identified by VLSM and showed higher sensitivity than VLSM for identifying the lesion-behavior relations. Our data also showed the possibility of using lesion data to predict continuous behavior scores.
Collapse
Affiliation(s)
- Yongsheng Zhang
- Department of Psychiatry, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania
| | | | | | | | | |
Collapse
|
31
|
Lee CI, Mirman D, Buxbaum LJ. Abnormal dynamics of activation of object use information in apraxia: evidence from eyetracking. Neuropsychologia 2014; 59:13-26. [PMID: 24746946 DOI: 10.1016/j.neuropsychologia.2014.04.004] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2013] [Revised: 04/04/2014] [Accepted: 04/08/2014] [Indexed: 10/25/2022]
Abstract
Action representations associated with object use may be incidentally activated during visual object processing, and the time course of such activations may be influenced by lexical-semantic context (e.g., Lee, Middleton, Mirman, Kalénine, & Buxbaum (2012). Journal of Experimental Psychology: Human Perception and Performance, 39(1), 257-270). In this study we used the "visual world" eye-tracking paradigm to examine whether a deficit in producing skilled object-use actions (apraxia) is associated with abnormalities in incidental activation of action information, and assessed the neuroanatomical substrates of any such deficits. Twenty left hemisphere stroke patients, ten of whom were apraxic, performed a task requiring identification of a named object in a visual display containing manipulation-related and unrelated distractor objects. Manipulation relationships among objects were not relevant to the identification task. Objects were cued with neutral ("S/he saw the…."), or action-relevant ("S/he used the….") sentences. Non-apraxic participants looked at use-related non-target objects significantly more than at unrelated non-target objects when cued both by neutral and action-relevant sentences, indicating that action information is incidentally activated. In contrast, apraxic participants showed delayed activation of manipulation-based action information during object identification when cued by neutral sentences. The magnitude of delayed activation in the neutral sentence condition was reliably predicted by lower scores on a test of gesture production to viewed objects, as well as by lesion loci in the inferior parietal and posterior temporal lobes. However, when cued by a sentence containing an action verb, apraxic participants showed fixation patterns that were statistically indistinguishable from non-apraxic controls. In support of grounded theories of cognition, these results suggest that apraxia and temporal-parietal lesions may be associated with abnormalities in incidental activation of action information from objects. Further, they suggest that the previously-observed facilitative role of action verbs in the retrieval of object-related action information extends to participants with apraxia.
Collapse
Affiliation(s)
- Chia-Iin Lee
- Graduate Institute of Linguistics, Department of Psychology, Graduate Institute of Brain and Mind Sciences, and Neurobiology and Cognitive Neuroscience Center, National Taiwan University, Taipei, Taiwan.
| | - Daniel Mirman
- Moss Rehabilitation Research Institute, Philadelphia, PA, USA; Department of Psychology, Drexel University, PA, USA
| | | |
Collapse
|
32
|
Korngut L, MacKean G, Casselman L, Johnston M, Day L, Lam D, Lorenzetti D, Warner J, Jetté N, Pringsheim T. Perspectives on neurological patient registries: a literature review and focus group study. BMC Med Res Methodol 2013; 13:135. [PMID: 24209392 PMCID: PMC4225768 DOI: 10.1186/1471-2288-13-135] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2012] [Accepted: 10/30/2013] [Indexed: 11/23/2022] Open
Abstract
Background Patient registries represent a well-established methodology for prospective data collection with a wide array of applications for clinical research and health care administration. An examination and synthesis of registry stakeholder perspectives has not been previously reported in the literature. Methods To inform the development of future neurological registries we examined stakeholder perspectives about such registries through a literature review followed by 3 focus groups comprised of a total of 15 neurological patients and 12 caregivers. Results (1) Literature review: We identified 6,435 abstracts after duplicates were removed. Of these, 410 articles underwent full text review with 24 deemed relevant to perspectives about neurological and non-neurological registries and were included in the final synthesis. From a patient perspective the literature supports altruism, responsible use of data and advancement of research, among others, as motivating factors for participating in a patient registry. Barriers to participation included concerns about privacy and participant burden (i.e. extra clinic visits and associated costs). (2) Focus groups: The focus groups identified factors that would encourage participation such as: having a clear purpose; low participant burden; and being well-managed among others. Conclusions We report the first examination and synthesis of stakeholder perspectives on registries broadly with a specific focus on neurological patient registries. The findings of the broad literature review were congruent with the neurological patient and caregiver focus groups. We report common themes across the literature and the focus groups performed. Stakeholder perspectives need to be considered when designing and operating patient registries. Emphasizing factors that promote participation and mitigating barriers may enhance patient recruitment.
Collapse
Affiliation(s)
- Lawrence Korngut
- Department of Clinical Neurosciences and Hotchkiss Brain Institute, University of Calgary, Clinical Neurosciences, South Health Campus, 4448 Front Street SE, Calgary, Alberta T3M 1M4, Canada.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
33
|
Mirman D, Britt AE, Chen Q. Effects of phonological and semantic deficits on facilitative and inhibitory consequences of item repetition in spoken word comprehension. Neuropsychologia 2013; 51:1848-56. [PMID: 23770302 DOI: 10.1016/j.neuropsychologia.2013.06.005] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2013] [Revised: 05/31/2013] [Accepted: 06/06/2013] [Indexed: 11/28/2022]
Abstract
Repeating a word can have both facilitative and inhibitory effects on subsequent processing. The present study investigated these dynamics by examining the facilitative and inhibitory consequences of different kinds of item repetition in two individuals with aphasia and a group of neurologically intact control participants. The two individuals with aphasia were matched on overall aphasia severity, but had deficits at different levels of processing: one with a phonological deficit and spared semantic processing, the other with a semantic deficit and spared phonological processing. Participants completed a spoken word-to-picture matching task in which they had to pick which of four object images matched the spoken word. The trials were grouped into pairs such that exactly two objects from the first trial in a pair were present on screen during the second trial in the pair. When the second trial's target was the same as the first trial's target, compared to control participants, both participants with aphasia exhibited equally larger repetition priming effects. When the second trial's target was one of the new items, the participant with a phonological deficit exhibited a significantly more negative effect (i.e., second trial response slower than first trial response) than the control participants and the participant with a semantic deficit. Simulations of a computational model confirmed that this pattern of results could arise from (1) normal residual activation being functionally more significant when overall lexical processing is slower and (2) residual phonological activation of the previous trial's target having a particularly strong inhibitory effect specifically when phonological processing is impaired because the task was phonologically-driven (the spoken input specified the target). These results provide new insights into perseveration errors and lexical access deficits in aphasia.
Collapse
Affiliation(s)
- Daniel Mirman
- Moss Rehabilitation Research Institute, 50 Township Line Rd., Elkins Park, PA 19027, USA.
| | | | | |
Collapse
|
34
|
Kalénine S, Shapiro AD, Buxbaum LJ. Dissociations of action means and outcome processing in left-hemisphere stroke. Neuropsychologia 2013; 51:1224-33. [PMID: 23566892 DOI: 10.1016/j.neuropsychologia.2013.03.017] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2012] [Revised: 03/14/2013] [Accepted: 03/26/2013] [Indexed: 10/27/2022]
Abstract
Previous evidence suggests that distinct fronto-parietal regions may be involved in representing action kinematics (means) and action results (outcome) during action observation. However, the evidence is contradictory with respect to the precise regions that are critical for each type of representation. Additionally unknown is the degree to which ability to detect action means and outcome during observation is related to action production performance. We used a behavioral task to evaluate the ability of healthy and left-hemisphere stroke participants to detect differences between pairs of videos that dissociated object-related action means (e.g., wiping with circular or straight movement) and/or outcome (e.g., applying or removing detergent). We expected that deficits in detecting action means would be associated with spatiomotor gesture production deficits, whereas deficits in detecting action outcome would predict impairments in complex naturalistic action. We also hypothesized a posterior to anterior gradient in the regions critical for each type of representation, disproportionately affecting means and outcome encoding, respectively. Results indicated that outcome--but not means--detection predicted naturalistic action performance in stroke participants. Regression and voxel lesion-symptom mapping analyses of lesion data revealed that means--but not outcome--coding relies on the integrity of the left inferior parietal lobe, whereas no selective critical brain region could be identified for outcome detection. Thus, means and outcome representations are dissociable at both the behavioral and neuroanatomical levels. Furthermore, the data are consistent with a degree of parallelism between action perception and production tasks. Finally, they reinforce the evidence for a critical role of the left inferior parietal lobule in the representation of action means, whereas action outcome may rely on a more distributed neural circuit.
Collapse
Affiliation(s)
- Solène Kalénine
- Moss Rehabilitation Research Institute, 50 Township Line Road, Elkins Park, PA 19027, United States.
| | | | | |
Collapse
|
35
|
Zuckerman SL, Kuhn A, Dewan MC, Morone PJ, Forbes JA, Solomon GS, Sills AK. Structural brain injury in sports-related concussion. Neurosurg Focus 2012. [DOI: 10.3171/2012.10.focus12279] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Object
Sports-related concussions (SRCs) represent a significant and growing public health concern. The vast majority of SRCs produce mild symptoms that resolve within 1–2 weeks and are not associated with imaging-documented changes. On occasion, however, structural brain injury occurs, and neurosurgical management and intervention is appropriate.
Methods
A literature review was performed to address the epidemiology of SRC with a targeted focus on structural brain injury in the last half decade. MEDLINE and PubMed databases were searched to identify all studies pertaining to structural head injury in sports-related head injuries.
Results
The literature review yielded a variety of case reports, several small series, and no prospective cohort studies.
Conclusions
The authors conclude that reliable incidence and prevalence data related to structural brain injuries in SRC cannot be offered at present. A prospective registry collecting incidence, management, and follow-up data after structural brain injuries in the setting of SRC would be of great benefit to the neurosurgical community.
Collapse
Affiliation(s)
- Scott L. Zuckerman
- 1Department of Neurological Surgery, Vanderbilt Sports Concussion Center, Vanderbilt University School of Medicine, Nashville, Tennessee; and
| | - Andrew Kuhn
- 2College of Arts and Sciences, Boston University, Boston, Massachusetts
| | - Michael C. Dewan
- 1Department of Neurological Surgery, Vanderbilt Sports Concussion Center, Vanderbilt University School of Medicine, Nashville, Tennessee; and
| | - Peter J. Morone
- 1Department of Neurological Surgery, Vanderbilt Sports Concussion Center, Vanderbilt University School of Medicine, Nashville, Tennessee; and
| | - Jonathan A. Forbes
- 1Department of Neurological Surgery, Vanderbilt Sports Concussion Center, Vanderbilt University School of Medicine, Nashville, Tennessee; and
| | - Gary S. Solomon
- 1Department of Neurological Surgery, Vanderbilt Sports Concussion Center, Vanderbilt University School of Medicine, Nashville, Tennessee; and
| | - Allen K. Sills
- 1Department of Neurological Surgery, Vanderbilt Sports Concussion Center, Vanderbilt University School of Medicine, Nashville, Tennessee; and
| |
Collapse
|
36
|
Kim J, Whyte J, Patel S, Europa E, Slattery J, Coslett HB, Detre JA. A perfusion fMRI study of the neural correlates of sustained-attention and working-memory deficits in chronic traumatic brain injury. Neurorehabil Neural Repair 2012; 26:870-80. [PMID: 22357634 PMCID: PMC5650500 DOI: 10.1177/1545968311434553] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
BACKGROUND Given that traumatic brain injury (TBI) results in chronic alteration of baseline cerebral perfusion, a perfusion functional MRI (fMRI) method that dissociates resting- and task-related cerebral blood flow (CBF) changes can be useful in noninvasively investigating the neural correlates of cognitive dysfunction and recovery in TBI. OBJECTIVE The authors used continuous arterial spin-labeled (ASL) perfusion fMRI to characterize CBF at rest and during sustained-attention and working-memory tasks. METHODS A total of 18 to 21 individuals with moderate to severe TBI and 14 to 18 demographically matched healthy controls completed 3 continuous 6-minute perfusion fMRI scans (resting, visual sustained attention, and 2-back working memory). RESULTS For both tasks, TBI participants showed worse behavioral performance than controls. Voxelwise neuroimaging analysis of the 2-back task found that group differences in task-induced CBF changes were localized to bilateral superior occipital cortices and the left superior temporal cortex. Whereas controls deactivated these areas during task performance, TBI participants tended to activate these same areas. These regions were among those found to be disproportionately hypoperfused at rest after TBI. For both tasks, the control and TBI groups showed different patterns of correlation between performance and task-related CBF changes. CONCLUSIONS ASL perfusion fMRI demonstrated differences between individuals with TBI and healthy controls in resting perfusion and in task-evoked CBF changes as well as different patterns of performance-activation correlation. These results are consistent with the notion that sensory/attentional modulation deficits contribute to higher cognitive dysfunction in TBI.
Collapse
Affiliation(s)
- Junghoon Kim
- Moss Rehabilitation Research Institute, Albert Einstein Healthcare Network, Elkins Park, PA 19027, USA.
| | | | | | | | | | | | | |
Collapse
|
37
|
Methylphenidate modulates sustained attention and cortical activation in survivors of traumatic brain injury: a perfusion fMRI study. Psychopharmacology (Berl) 2012; 222:47-57. [PMID: 22203319 PMCID: PMC3369011 DOI: 10.1007/s00213-011-2622-8] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/24/2011] [Accepted: 12/13/2011] [Indexed: 10/14/2022]
Abstract
RATIONALE Methylphenidate (MPH), the most widely prescribed psychostimulant to treat many neuropsychiatric conditions, is reported to improve attention and speed of processing in survivors of traumatic brain injury (TBI). The neural correlate of this efficacy, however, remains unclear. OBJECTIVE Using perfusion functional magnetic resonance imaging (fMRI) as a biomarker of regional neural activity, the current study aimed to examine the neural correlates of single-dose (0.3 mg/kg) MPH administration in a randomized double-blind placebo-controlled crossover study design. METHODS Twenty-three individuals with moderate to severe TBI were tested on two occasions approximately 1 week apart. Perfusion fMRI scanning was carried out at rest and while participants performed cognitive tasks requiring sustained attention and working memory. RESULTS Behaviorally, MPH significantly improved both accuracy and reaction time (RT) in the sustained attention task but only RT in the working memory task. A trend of global reduction of cerebral blood flow by MPH was observed in all task conditions including resting. Voxel-wise whole-brain analysis revealed an interaction effect of drug by condition (MPH-placebo X task-rest) for the sustained attention task in the left posterior superior parietal cortex and parieto-occipital junction (BA 7/19). The magnitude of drug-related deactivation of this area during task performance was correlated with improvement in RT. CONCLUSION Suppression of activity in this area during task performance may reflect a compensatory mechanism by which MPH ameliorates attention impairments in TBI.
Collapse
|
38
|
Mirman D, Graziano KM. Damage to temporo-parietal cortex decreases incidental activation of thematic relations during spoken word comprehension. Neuropsychologia 2012; 50:1990-7. [PMID: 22571932 PMCID: PMC3389203 DOI: 10.1016/j.neuropsychologia.2012.04.024] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2012] [Revised: 04/25/2012] [Accepted: 04/28/2012] [Indexed: 11/22/2022]
Abstract
Both taxonomic and thematic semantic relations have been studied extensively in behavioral studies and there is an emerging consensus that the anterior temporal lobe plays a particularly important role in the representation and processing of taxonomic relations, but the neural basis of thematic semantics is less clear. We used eye tracking to examine incidental activation of taxonomic and thematic relations during spoken word comprehension in participants with aphasia. Three groups of participants were tested: neurologically intact control participants (N=14), individuals with aphasia resulting from lesions in left hemisphere BA 39 and surrounding temporo-parietal cortex regions (N=7), and individuals with the same degree of aphasia severity and semantic impairment and anterior left hemisphere lesions (primarily inferior frontal gyrus and anterior temporal lobe) that spared BA 39 (N=6). The posterior lesion group showed reduced and delayed activation of thematic relations, but not taxonomic relations. In contrast, the anterior lesion group exhibited longer-lasting activation of taxonomic relations and did not differ from control participants in terms of activation of thematic relations. These results suggest that taxonomic and thematic semantic knowledge are functionally and neuroanatomically distinct, with the temporo-parietal cortex playing a particularly important role in thematic semantics.
Collapse
Affiliation(s)
- Daniel Mirman
- Moss Rehabilitation Research Institute, 50 Township Line Rd, Elkins Park, PA 19027, USA.
| | | |
Collapse
|
39
|
Linking language and categorization: evidence from aphasia. Cortex 2012; 49:1187-94. [PMID: 22846462 DOI: 10.1016/j.cortex.2012.06.006] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2011] [Revised: 02/15/2012] [Accepted: 06/20/2012] [Indexed: 11/22/2022]
Abstract
In addition to its use in communication, language appears to have a variety of extra-communicative functions; disrupting language disrupts performance in seemingly non-linguistic tasks. Previous work has specifically linked linguistic impairments to categorization impairments. Here, we systematically tested this link by comparing categorization performance in a group of 12 participants with aphasia and 12 age- and education-matched control participants. Participants were asked to choose all of the objects that fit a specified criterion from sets of 20 pictured objects. The criterion was either "high-dimensional" (i.e., the objects shared many features, such as "farm animals") or "low-dimensional" (i.e., the objects shared one or a few features, such as "things that are green"). Participants with aphasia were selectively impaired on low-dimensional categorization. This selective impairment was correlated with the severity of their naming impairment and not with the overall severity of their aphasia, semantic impairment, lesion size, or lesion location. These results indicate that linguistic impairment impacts categorization specifically when that categorization requires focusing attention and isolating individual features--a task that requires a larger degree of cognitive control than high-dimensional categorization. The results offer some support for the hypothesis that language supports cognitive functioning, particularly the ability to select task-relevant stimulus features.
Collapse
|
40
|
Kalénine S, Mirman D, Buxbaum LJ. A combination of thematic and similarity-based semantic processes confers resistance to deficit following left hemisphere stroke. Front Hum Neurosci 2012; 6:106. [PMID: 22586383 PMCID: PMC3343702 DOI: 10.3389/fnhum.2012.00106] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2011] [Accepted: 04/10/2012] [Indexed: 11/13/2022] Open
Abstract
Semantic knowledge may be organized in terms of similarity relations based on shared features and/or complementary relations based on co-occurrence in events. Thus, relationships between manipulable objects such as tools may be defined by their functional properties (what the objects are used for) or thematic properties (e.g., what the objects are used with or on). A recent study from our laboratory used eye-tracking to examine incidental activation of semantic relations in a word–picture matching task and found relatively early activation of thematic relations (e.g., broom–dustpan), later activation of general functional relations (e.g., broom–sponge), and an intermediate pattern for specific functional relations (e.g., broom–vacuum cleaner). Combined with other recent studies, these results suggest that there are distinct semantic systems for thematic and similarity-based knowledge and that the “specific function” condition drew on both systems. This predicts that left hemisphere stroke that damages either system (but not both) may spare specific function processing. The present experiment tested these hypotheses using the same experimental paradigm with participants with left hemisphere lesions (N = 17). The results revealed that, compared to neurologically intact controls (N = 12), stroke participants showed later activation of thematic and general function relations, but activation of specific function relations was spared and was significantly earlier for stroke participants than controls. Across the stroke participants, activation of thematic and general function relations was negatively correlated, further suggesting that damage tended to affect either one semantic system or the other. These results support the distinction between similarity-based and complementarity-based semantic relations and suggest that relations that draw on both systems are relatively more robust to damage.
Collapse
Affiliation(s)
- Solène Kalénine
- Moss Rehabilitation Research Institute Philadelphia, PA, USA
| | | | | |
Collapse
|
41
|
Walker GM, Schwartz MF. Short-form Philadelphia naming test: rationale and empirical evaluation. AMERICAN JOURNAL OF SPEECH-LANGUAGE PATHOLOGY 2012; 21:S140-53. [PMID: 22294412 PMCID: PMC3397242 DOI: 10.1044/1058-0360(2012/11-0089)] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/09/2023]
Abstract
PURPOSE To create two matched short forms of the Philadelphia Naming Test (PNT; Roach, Schwartz, Martin, Grewal, & Brecher, 1996) that yield similar results to the PNT for measuring anomia. METHOD In Study 1, archived naming data from 94 individuals with aphasia were used to identify which PNT items should be included in the short forms. The 2 constructed sets of 30 items, PNT30-A and PNT30-B, were validated using archived data from a separate group of 56 individuals with aphasia. In Study 2, the reliability of the PNT, PNT30-A, and PNT30-B across independent test administrations was evaluated with a new group of 25 individuals with aphasia who were selected to represent the full range of naming impairment. RESULTS In Study 1, PNT30-A and PNT30-B were found to be internally consistent, and accuracy scores on these subsets of items were highly correlated with the full PNT. In Study 2, PNT accuracy was extremely reliable over the span of 1 week, and independent administrations of PNT30-A and PNT30-B produced similar results to the PNT and to each other. CONCLUSION The short forms of the PNT can be used to reliably estimate PNT performance, and the results can be compared to the provided norms. The 2 matched tests allow for the measurement of change in an individual's naming ability.
Collapse
Affiliation(s)
- Grant M Walker
- Moss Rehabilitation Research Institute, Elkins Park, PA, USA
| | | |
Collapse
|
42
|
Thothathiri M, Kimberg DY, Schwartz MF. The neural basis of reversible sentence comprehension: evidence from voxel-based lesion symptom mapping in aphasia. J Cogn Neurosci 2011; 24:212-22. [PMID: 21861679 DOI: 10.1162/jocn_a_00118] [Citation(s) in RCA: 98] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Abstract
We explored the neural basis of reversible sentence comprehension in a large group of aphasic patients (n = 79). Voxel-based lesion symptom mapping revealed a significant association between damage in temporo-parietal cortex and impaired sentence comprehension. This association remained after we controlled for phonological working memory. We hypothesize that this region plays an important role in the thematic or what-where processing of sentences. In contrast, we detected weak or no association between reversible sentence comprehension and the ventrolateral pFC, which includes Broca's area, even for syntactically complex sentences. This casts doubt on theories that presuppose a critical role for this region in syntactic computations.
Collapse
|
43
|
Walker GM, Schwartz MF, Kimberg DY, Faseyitan O, Brecher A, Dell GS, Coslett HB. Support for anterior temporal involvement in semantic error production in aphasia: new evidence from VLSM. BRAIN AND LANGUAGE 2011; 117:110-22. [PMID: 20961612 PMCID: PMC3037437 DOI: 10.1016/j.bandl.2010.09.008] [Citation(s) in RCA: 89] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 01/17/2010] [Revised: 08/11/2010] [Accepted: 09/18/2010] [Indexed: 05/09/2023]
Abstract
Semantic errors in aphasia (e.g., naming a horse as "dog") frequently arise from faulty mapping of concepts onto lexical items. A recent study by our group used voxel-based lesion-symptom mapping (VLSM) methods with 64 patients with chronic aphasia to identify voxels that carry an association with semantic errors. The strongest associations were found in the left anterior temporal lobe (L-ATL), in the mid- to anterior MTG region. The absence of findings in Wernicke's area was surprising, as were indications that ATL voxels made an essential contribution to the post-semantic stage of lexical access. In this follow-up study, we sought to validate these results by re-defining semantic errors in a manner that was less theory dependent and more consistent with prior lesion studies. As this change also increased the robustness of the dependent variable, it made it possible to perform additional statistical analyses that further refined the interpretation. The results strengthen the evidence for a causal relationship between ATL damage and lexically-based semantic errors in naming and lend confidence to the conclusion that chronic lesions in Wernicke's area are not causally implicated in semantic error production.
Collapse
Affiliation(s)
- Grant M Walker
- Moss Rehabilitation Research Institute, Philadelphia, PA, USA.
| | | | | | | | | | | | | |
Collapse
|
44
|
Neuroanatomical dissociation for taxonomic and thematic knowledge in the human brain. Proc Natl Acad Sci U S A 2011; 108:8520-4. [PMID: 21540329 DOI: 10.1073/pnas.1014935108] [Citation(s) in RCA: 193] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
It is thought that semantic memory represents taxonomic information differently from thematic information. This study investigated the neural basis for the taxonomic-thematic distinction in a unique way. We gathered picture-naming errors from 86 individuals with poststroke language impairment (aphasia). Error rates were determined separately for taxonomic errors ("pear" in response to apple) and thematic errors ("worm" in response to apple), and their shared variance was regressed out of each measure. With the segmented lesions normalized to a common template, we carried out voxel-based lesion-symptom mapping on each error type separately. We found that taxonomic errors localized to the left anterior temporal lobe and thematic errors localized to the left temporoparietal junction. This is an indication that the contribution of these regions to semantic memory cleaves along taxonomic-thematic lines. Our findings show that a distinction long recognized in the psychological sciences is grounded in the structure and function of the human brain.
Collapse
|
45
|
Kim J, Whyte J, Patel S, Avants B, Europa E, Wang J, Slattery J, Gee JC, Coslett HB, Detre JA. Resting cerebral blood flow alterations in chronic traumatic brain injury: an arterial spin labeling perfusion FMRI study. J Neurotrauma 2010; 27:1399-411. [PMID: 20528163 DOI: 10.1089/neu.2009.1215] [Citation(s) in RCA: 99] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Non-invasive measurement of resting state cerebral blood flow (CBF) may reflect alterations of brain structure and function after traumatic brain injury (TBI). However, previous imaging studies of resting state brain in chronic TBI have been limited by several factors, including measurement in relative rather than absolute units, use of crude spatial registration methods, exclusion of subjects with substantial focal lesions, and exposure to ionizing radiation, which limits repeated assessments. This study aimed to overcome those obstacles by measuring absolute CBF with an arterial spin labeling perfusion fMRI technique, and using an image preprocessing protocol that is optimized for brains with mixed diffuse and focal injuries characteristic of moderate and severe TBI. Resting state CBF was quantified in 27 individuals with moderate to severe TBI in the chronic stage, and 22 demographically matched healthy controls. In addition to global CBF reductions in the TBI subjects, more prominent regional hypoperfusion was found in the posterior cingulate cortices, the thalami, and multiple locations in the frontal cortices. Diffuse injury, as assessed by tensor-based morphometry, was mainly associated with reduced CBF in the posterior cingulate cortices and the thalami, where the greatest volume losses were detected. Hypoperfusion in superior and middle frontal cortices, in contrast, was associated with focal lesions. These results suggest that structural lesions, both focal and diffuse, are the main contributors to the absolute CBF alterations seen in chronic TBI, and that CBF may serve as a tool to assess functioning neuronal volume. We also speculate that resting reductions in posterior cingulate perfusion may reflect alterations in the default-mode network, and may contribute to the attentional deficits common in TBI.
Collapse
Affiliation(s)
- Junghoon Kim
- Moss Rehabilitation Research Institute, Albert Einstein Healthcare Network, Elkins Park, Pennsylvania 19027, USA.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
46
|
Mirman D, Strauss TJ, Brecher A, Walker GM, Sobel P, Dell GS, Schwartz MF. A large, searchable, web-based database of aphasic performance on picture naming and other tests of cognitive function. Cogn Neuropsychol 2010; 27:495-504. [PMID: 21714742 PMCID: PMC3162111 DOI: 10.1080/02643294.2011.574112] [Citation(s) in RCA: 63] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
Many research questions in aphasia can only be answered through access to substantial numbers of patients and to their responses on individual test items. Since such data are often unavailable to individual researchers and institutions, we have developed and made available the Moss Aphasia Psycholinguistics Project Database: a large, searchable, web-based database of patient performance on psycholinguistic and neuropsychological tests. The database contains data from over 240 patients covering a wide range of aphasia subtypes and severity, some of whom were tested multiple times. The core of the archive consists of a detailed record of individual-trial performance on the Philadelphia (picture) Naming Test. The database also contains basic demographic information about the patients and patients' overall performance on neuropsychological assessments as well as tests of speech perception, semantics, short-term memory, and sentence comprehension. The database is available at http://www.mappd.org/ .
Collapse
Affiliation(s)
- Daniel Mirman
- Moss Rehabilitation Research Institute, Elkins Park, PA 191027, USA
| | | | | | | | | | | | | |
Collapse
|
47
|
Kalénine S, Buxbaum LJ, Coslett HB. Critical brain regions for action recognition: lesion symptom mapping in left hemisphere stroke. ACTA ACUST UNITED AC 2010; 133:3269-80. [PMID: 20805101 DOI: 10.1093/brain/awq210] [Citation(s) in RCA: 186] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
A number of conflicting claims have been advanced regarding the role of the left inferior frontal gyrus, inferior parietal lobe and posterior middle temporal gyrus in action recognition, driven in part by an ongoing debate about the capacities of putative mirror systems that match observed and planned actions. We report data from 43 left hemisphere stroke patients in two action recognition tasks in which they heard and saw an action word ('hammering') and selected from two videoclips the one corresponding to the word. In the spatial recognition task, foils contained errors of body posture or movement amplitude/timing. In the semantic recognition task, foils were semantically related (sawing). Participants also performed a comprehension control task requiring matching of the same verbs to objects (hammer). Using regression analyses controlling for both the comprehension control task and lesion volume, we demonstrated that performance in the semantic gesture recognition task was predicted by per cent damage to the posterior temporal lobe, whereas the spatial gesture recognition task was predicted by per cent damage to the inferior parietal lobule. A whole-brain voxel-based lesion symptom-mapping analysis suggested that the semantic and spatial gesture recognition tasks were associated with lesioned voxels in the posterior middle temporal gyrus and inferior parietal lobule, respectively. The posterior middle temporal gyrus appears to serve as a central node in the association of actions and meanings. The inferior parietal lobule, held to be a homologue of the monkey parietal mirror neuron system, is critical for encoding object-related postures and movements, a relatively circumscribed aspect of gesture recognition. The inferior frontal gyrus, on the other hand, was not predictive of performance in any task, suggesting that previous claims regarding its role in action recognition may require refinement.
Collapse
Affiliation(s)
- Solène Kalénine
- Moss Rehabilitation Research Institute, Medical Arts Building, 50 Township Line Rd, Elkins Park, PA 19027, USA.
| | | | | |
Collapse
|
48
|
Newby G, Groom C. Evaluating the usability of a single UK community acquired brain injury (ABI) rehabilitation service website: Implications for research methodology and website design. Neuropsychol Rehabil 2010; 20:264-88. [DOI: 10.1080/09602010903175034] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
49
|
Barde LHF, Schwartz MF, Chrysikou EG, Thompson-Schill SL. Reduced short-term memory span in aphasia and susceptibility to interference: contribution of material-specific maintenance deficits. Neuropsychologia 2010; 48:909-20. [PMID: 19925813 PMCID: PMC2828523 DOI: 10.1016/j.neuropsychologia.2009.11.010] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2009] [Revised: 11/04/2009] [Accepted: 11/11/2009] [Indexed: 11/17/2022]
Abstract
Semantic short-term memory (STM) deficits have been traditionally defined as an inability to maintain semantic representations over a delay (Martin et al., 1994b). Yet some patients with semantic STM deficits make numerous intrusions of items from previously presented lists, thus presenting an interesting paradox: why should an inability to maintain semantic representations produce an increase in intrusions from earlier lists? In this study, we investigated the relationship between maintenance deficits and susceptibility to interference in a group of 20 aphasic patients characterized with weak semantic or weak phonological STM. Patients and matched control participants performed a modified item-recognition task designed to elicit semantic or phonological interference from list items located one, two, or three trials back (Hamilton & Martin, 2007). Controls demonstrated significant effects of interference in both versions of the task. Interference in patients was predicted by the type and severity of their STM deficit; that is, shorter semantic spans were associated with greater semantic interference and shorter phonological spans were associated with greater phonological interference. We interpret these results through a new perspective, the reactivation hypothesis, and we discuss their importance for accounts emphasizing the contribution of maintenance mechanisms for STM impairments in aphasia as well as susceptibility to interference.
Collapse
Affiliation(s)
- Laura H F Barde
- Moss Rehabilitation Research Institute, Philadelphia, PA, United States; University of Pennsylvania, Philadelphia, PA, United States.
| | | | | | | |
Collapse
|
50
|
Schwartz MF, Kimberg DY, Walker GM, Faseyitan O, Brecher A, Dell GS, Coslett HB. Anterior temporal involvement in semantic word retrieval: voxel-based lesion-symptom mapping evidence from aphasia. Brain 2010; 132:3411-27. [PMID: 19942676 DOI: 10.1093/brain/awp284] [Citation(s) in RCA: 253] [Impact Index Per Article: 16.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Analysis of error types provides useful information about the stages and processes involved in normal and aphasic word production. In picture naming, semantic errors (horse for goat) generally result from something having gone awry in lexical access such that the right concept was mapped to the wrong word. This study used the new lesion analysis technique known as voxel-based lesion-symptom mapping to investigate the locus of lesions that give rise to semantic naming errors. Semantic errors were obtained from 64 individuals with post-stroke aphasia, who also underwent high-resolution structural brain scans. Whole brain voxel-based lesion-symptom mapping was carried out to determine where lesion status predicted semantic error rate. The strongest associations were found in the left anterior to mid middle temporal gyrus. This area also showed strong and significant effects in further analyses that statistically controlled for deficits in pre-lexical, conceptualization processes that might have contributed to semantic error production. This study is the first to demonstrate a specific and necessary role for the left anterior temporal lobe in mapping concepts to words in production. We hypothesize that this role consists in the conveyance of fine-grained semantic distinctions to the lexical system. Our results line up with evidence from semantic dementia, the convergence zone framework and meta-analyses of neuroimaging studies on word production. At the same time, they cast doubt on the classical linkage of semantic error production to lesions in and around Wernicke's area.
Collapse
Affiliation(s)
- Myrna F Schwartz
- Moss Rehabilitation Research Institute, MossRehab 4th fl. Sley, 1200 West Tabor Road, Philadelphia, PA 19141, USA.
| | | | | | | | | | | | | |
Collapse
|