1
|
Gorgey AS, Khalil RE, Carter W, Rivers J, Chen Q, Lesnefsky EJ. Skeletal muscle hypertrophy and enhanced mitochondrial bioenergetics following electrical stimulation exercises in spinal cord injury: a randomized clinical trial. Eur J Appl Physiol 2025; 125:1075-1089. [PMID: 39578309 PMCID: PMC11950031 DOI: 10.1007/s00421-024-05661-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2024] [Accepted: 11/12/2024] [Indexed: 11/24/2024]
Abstract
We examined the combined effects of neuromuscular electrical stimulation-resistance training (NMES-RT) and functional electrical stimulation-lower extremity cycling (FES-LEC) compared to passive movement training (PMT) and FES-LEC on mitochondrial electron transport chain (ETC) complexes and citrate synthase (CS) in adults with SCI. Thirty-two participants with chronic SCI were randomized to 24 weeks of NMES-RT + FES [n = 16 (14 males and 2 females) with an age range of 20-54 years old] or PMT + FES [n = 16 (12 males and 4 females) with an age range of 21-61 years old]. The NMES-RT + FES group underwent 12 weeks of surface NMES-RT using ankle weights followed by an additional 12 weeks of FES-LEC. The PMT + FES performed 12 weeks of passive leg extension movements followed by an additional 12 weeks of FES-LEC. Using repeated measures design, muscle biopsies of the vastus lateralis were performed at baseline (BL), post-intervention 1 (P1) and post-intervention 2 (P2). Spectrophotometer was used to measure ETC complexes (I-III) and CS using aliquots of the homogenized muscle tissue. Magnetic resonance imaging was used to measure skeletal muscle CSAs. A time effect was noted on CS (P = 0.001) with an interaction between both groups (P = 0.01). 46% of the participants per group had zero activities of CI without any changes following both interventions. A time effect was noted in CII (P = 0.023) following both interventions. Finally, NMES-RT + FES increased CIII at P1 compared to BL (P = 0.023) without additional changes in P2 or following PMT + FES intervention. Skeletal muscle hypertrophy may potentially enhance mitochondrial bioenergetics after SCI. NMES-RT is likely to enhance the activities of complex III in sedentary persons with SCI. Clinical trials # NCT02660073.
Collapse
Affiliation(s)
- Ashraf S Gorgey
- Spinal Cord Injury and Disorders, Spinal Cord Injury & Disorders Service, Richmond VA Medical Center, Richmond, VA, USA.
- Department of Physical Medicine & Rehabilitation, Virginia Commonwealth University, Richmond, VA, USA.
| | - Refka E Khalil
- Spinal Cord Injury and Disorders, Spinal Cord Injury & Disorders Service, Richmond VA Medical Center, Richmond, VA, USA
- Department of Physical Medicine & Rehabilitation, Virginia Commonwealth University, Richmond, VA, USA
| | - William Carter
- Department of Physical Medicine & Rehabilitation, Virginia Commonwealth University, Richmond, VA, USA
| | - Jeannie Rivers
- General Surgery, Richmond VA Medical Center, Richmond, VA, USA
| | - Qun Chen
- Division of Cardiology, Department of Medicine, Pauley Heart Center, Richmond, VA, USA
| | - Edward J Lesnefsky
- Department of Physiology and Biophysics, Richmond, VA, USA
- Division of Cardiology, Department of Medicine, Pauley Heart Center, Richmond, VA, USA
- Medical Service, Richmond VA Medical Center, Richmond, VA, USA
| |
Collapse
|
2
|
Mastropietro A, Peruzzo D, Taccogna MG, Sanna N, Casali N, Nossa R, Biffi E, Ambrosini E, Pedrocchi A, Rizzo G. Multiparametric MRI Assessment of Morpho-Functional Muscle Changes Following a 6-Month FES-Cycling Training Program: Pilot Study in People With a Complete Spinal Cord Injury. JMIR Rehabil Assist Technol 2025; 12:e64825. [PMID: 39819652 PMCID: PMC11756844 DOI: 10.2196/64825] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2024] [Revised: 11/11/2024] [Accepted: 11/12/2024] [Indexed: 01/19/2025] Open
Abstract
Background Spinal cord injuries (SCIs) cause debilitating secondary conditions such as severe muscle deterioration, cardiovascular, and metabolic dysfunctions, significantly impacting patients' quality of life. Functional electrical stimulation (FES) combined with cycling exercise (FES-cycling) has shown promise in improving muscle function and health in individuals with SCI. Objective This pilot study aimed to investigate the potential role of multiparametric magnetic resonance imaging (MRI) to assess muscle health during and after an FES-cycling rehabilitation program. Methods Four male participants with chronic SCI underwent a 6-month FES-cycling training program, consisting of two 30-minute sessions per week. MRI scans were performed at baseline (T0), after 3 months (T1), at the end of the training (T2), and 1-month posttraining (T3). The MRI protocol included T1-weighted imaging for volume quantification, Dixon imaging for fat fraction, multi-echo spin echo for T2 relaxation times, and diffusion tensor imaging to assess diffusion parameters. Results Muscle hypertrophy was observed, with an average increase in muscle volume of 22.3% at T1 and 36.7% at T2 compared with baseline. One month posttraining, muscle volume remained 23.2% higher than baseline. Fat fraction decreased from 11.1% at T0 to 9.1% at T2, with a rebound to 10.9% at T3. T2 relaxation times showed a reduction even though this was not consistent among participants. Diffusion tensor imaging parameters revealed subtle changes in muscle tissue microstructure, with a decrease in fractional anisotropy mainly associated to an increase of radial diffusivity. Conclusions Although preliminary, this study provides evidence that 6 months of low-intensity FES-bike training can increase muscle volume and decrease fat infiltration in individuals with SCI. The study demonstrates that the use of a multiparametric MRI provides comprehensive insights into both macroscopic and microscopic changes within muscle tissues, supporting its integration into clinical practice for assessing the efficacy of rehabilitation interventions.
Collapse
Affiliation(s)
- Alfonso Mastropietro
- Istituto di Sistemi e Tecnologie Industriali Intelligenti per il Manifatturiero Avanzato, Consiglio Nazionale delle Ricerche, via Alfonso Corti, 12, Milan, 20133, Italy, 39 02 2369 993
| | - Denis Peruzzo
- Neuroimaging Unit, Scientific Institute, IRCCS E. Medea, Bosisio Parini, Lecco, Italy
| | | | - Nicole Sanna
- Dipartimento di Ingegneria Meccanica, Politecnico di Milano, Milan, Italy
- WeCobot Lab, Polo Territoriale di Lecco, Politecnico di Milano, Lecco, Italy
| | - Nicola Casali
- Istituto di Sistemi e Tecnologie Industriali Intelligenti per il Manifatturiero Avanzato, Consiglio Nazionale delle Ricerche, via Alfonso Corti, 12, Milan, 20133, Italy, 39 02 2369 993
- Dipartimento di Elettronica, Informatica e Bioingegneria, Politecnico di Milano, Milan, Italy
| | - Roberta Nossa
- Laboratorio di Bioingegneria, Istituto di Ricovero e Cura a Carattere Scientifico Eugenio Medea, Bosisio Parini, Italy
| | - Emilia Biffi
- Bioengineering Lab, Scientific Institute, IRCCS E. Medea, Bosisio Parini, Lecco, Italy
| | - Emilia Ambrosini
- WeCobot Lab, Polo Territoriale di Lecco, Politecnico di Milano, Lecco, Italy
- Nearlab, Dipartimento di Elettronica, Informatica e Bioingegneria, Politecnico di Milano, Milan, Italy
| | - Alessandra Pedrocchi
- WeCobot Lab, Polo Territoriale di Lecco, Politecnico di Milano, Lecco, Italy
- Nearlab, Dipartimento di Elettronica, Informatica e Bioingegneria, Politecnico di Milano, Milan, Italy
| | - Giovanna Rizzo
- Istituto di Sistemi e Tecnologie Industriali Intelligenti per il Manifatturiero Avanzato, Consiglio Nazionale delle Ricerche, via Alfonso Corti, 12, Milan, 20133, Italy, 39 02 2369 993
| |
Collapse
|
3
|
Alharbi A, Li J, Womack E, Farrow M, Yarar-Fisher C. The Effect of Lower Limb Combined Neuromuscular Electrical Stimulation on Skeletal Muscle Cross-Sectional Area and Inflammatory Signaling. Int J Mol Sci 2024; 25:11095. [PMID: 39456876 PMCID: PMC11507577 DOI: 10.3390/ijms252011095] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2024] [Revised: 10/07/2024] [Accepted: 10/09/2024] [Indexed: 10/28/2024] Open
Abstract
In individuals with a spinal cord injury (SCI), rapid skeletal muscle atrophy and metabolic dysfunction pose profound rehabilitation challenges, often resulting in substantial loss of muscle mass and function. This study evaluates the effect of combined neuromuscular electrical stimulation (Comb-NMES) on skeletal muscle cross-sectional area (CSA) and inflammatory signaling within the acute phase of SCI. We applied a novel Comb-NMES regimen, integrating both high-frequency resistance and low-frequency aerobic protocols on the vastus lateralis muscle, to participants early post-SCI. Muscle biopsies were analyzed for CSA and inflammatory markers pre- and post-intervention. The results suggest a potential preservation of muscle CSA in the Comb-NMES group compared to a control group. Inflammatory signaling proteins such as TLR4 and Atrogin-1 were downregulated, whereas markers associated with muscle repair and growth were modulated beneficially in the Comb-NMES group. The study's findings suggest that early application of Comb-NMES post-SCI may attenuate inflammatory pathways linked to muscle atrophy and promote muscle repair. However, the small sample size and variability in injury characteristics emphasize the need for further research to corroborate these results across a more diverse and extensive SCI population.
Collapse
Affiliation(s)
- Amal Alharbi
- Department of Physical Therapy, College of Applied Medical Sciences, Qassim University, Buraydah 51452, Saudi Arabia
- Department of Physical Therapy, University of Alabama at Birmingham, Birmingham, AL 35233, USA
| | - Jia Li
- Department of Physical Medicine and Rehabilitation, Ohio State University, Columbus, OH 43210, USA; (J.L.); (M.F.)
| | - Erika Womack
- Department of Biochemistry, Molecular Biology, Entomology, and Plant Pathology, Mississippi State University, Starkville, MS 39762, USA;
| | - Matthew Farrow
- Department of Physical Medicine and Rehabilitation, Ohio State University, Columbus, OH 43210, USA; (J.L.); (M.F.)
| | - Ceren Yarar-Fisher
- Department of Physical Medicine and Rehabilitation, Ohio State University, Columbus, OH 43210, USA; (J.L.); (M.F.)
- Department of Neuroscience, Ohio State University, Columbus, OH 43210, USA
| |
Collapse
|
4
|
Hoekstra S, King JA, Fenton J, Kirk N, Willis SA, Phillips SM, Webborn N, Tolfrey K, Bosch JDVD, Goosey‐Tolfrey VL. The effect of home-based neuromuscular electrical stimulation-resistance training and protein supplementation on lean mass in persons with spinal cord injury: A pilot study. Physiol Rep 2024; 12:e70073. [PMID: 39358836 PMCID: PMC11446856 DOI: 10.14814/phy2.70073] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2024] [Revised: 09/19/2024] [Accepted: 09/20/2024] [Indexed: 10/04/2024] Open
Abstract
In persons with a spinal cord injury (SCI), resistance training using neuromuscular electrical stimulation (NMES-RT) increases lean mass in the lower limbs. However, whether protein supplementation in conjunction with NMES-RT further enhances this training effect is unknown. In this randomized controlled pilot trial, 15 individuals with chronic SCI engaged in 3 times/week NMES-RT, with (NMES+PRO, n = 8) or without protein supplementation (NMES, n = 7), for 12 weeks. Before and after the intervention, whole body and regional body composition (DXA) and fasting glucose and insulin concentrations were assessed in plasma. Adherence to the intervention components was ≥96%. Thigh lean mass was increased to a greater extent after NMES+PRO compared to NMES (0.3 (0.2, 0.4) kg; p < 0.001). Furthermore, fasting insulin concentration and Homeostatic Model Assessment for Insulin Resistance (HOMA-IR) were decreased similarly in both groups (fasting insulin: 1 [-9, 11] pmol∙L-1; HOMA-IR: 0.1 [-0.3, 0.5] AU; both p ≥ 0.617). Twelve weeks of home-based NMES-RT increased thigh lean mass, an effect that was potentiated by protein supplementation. In combination with the excellent adherence and apparent improvement in cardiometabolic health outcomes, these findings support further investigation through a full-scale randomized controlled trial.
Collapse
Affiliation(s)
- Sven Hoekstra
- Peter Harrison Centre for Disability Sport, School of Sport, Exercise and Health SciencesLoughborough UniversityLeicestershireUK
- Department of Exercise and Sport ScienceSt. Mary's UniversitySan AntonioTexasUSA
- Department of Rehabilitation MedicineUniversity of Texas Health Science Center at San AntonioSan AntonioTexasUSA
| | - James A. King
- School of Sport, Exercise and Health SciencesLoughborough UniversityLeicestershireUK
- National Institute for Health and Care Research (NIHR) Leicester Biomedical Research Centre, University Hospitals of Leicester NHS Trust and University of LeicesterLeicesterUK
| | - Jordan Fenton
- Peter Harrison Centre for Disability Sport, School of Sport, Exercise and Health SciencesLoughborough UniversityLeicestershireUK
- School of Sport, Exercise and Health SciencesLoughborough UniversityLeicestershireUK
| | - Natasha Kirk
- Peter Harrison Centre for Disability Sport, School of Sport, Exercise and Health SciencesLoughborough UniversityLeicestershireUK
- School of Sport, Exercise and Health SciencesLoughborough UniversityLeicestershireUK
| | - Scott A. Willis
- School of Sport, Exercise and Health SciencesLoughborough UniversityLeicestershireUK
- National Institute for Health and Care Research (NIHR) Leicester Biomedical Research Centre, University Hospitals of Leicester NHS Trust and University of LeicesterLeicesterUK
| | | | - Nick Webborn
- Peter Harrison Centre for Disability Sport, School of Sport, Exercise and Health SciencesLoughborough UniversityLeicestershireUK
| | - Keith Tolfrey
- Peter Harrison Centre for Disability Sport, School of Sport, Exercise and Health SciencesLoughborough UniversityLeicestershireUK
- School of Sport, Exercise and Health SciencesLoughborough UniversityLeicestershireUK
| | | | - Vicky L. Goosey‐Tolfrey
- Peter Harrison Centre for Disability Sport, School of Sport, Exercise and Health SciencesLoughborough UniversityLeicestershireUK
- School of Sport, Exercise and Health SciencesLoughborough UniversityLeicestershireUK
| |
Collapse
|
5
|
Alharbi A, Li J, Womack E, Farrow M, Yarar-Fisher C. The Effect of Lower Limb Combined Neuromuscular Electrical Stimulation on Skeletal Muscle Signaling for Glucose Utilization, Myofiber Distribution, and Metabolic Function after Spinal Cord Injury. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2023; 20:6958. [PMID: 37887696 PMCID: PMC10606374 DOI: 10.3390/ijerph20206958] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/28/2023] [Revised: 09/29/2023] [Accepted: 10/12/2023] [Indexed: 10/28/2023]
Abstract
Maintaining healthy myofiber type and metabolic function early after spinal cord injury (SCI) may prevent chronic metabolic disorders. This study compares the effects of a 2-5 week combined (aerobic + resistance) neuromuscular electrical stimulation (Comb-NMES) regimen versus a sham control treatment on muscle protein signaling for glucose uptake, myofiber type distribution, and metabolic function. Twenty participants (31 ± 9 years of age) with an SCI (C4-L1, AIS level A-C) within 14 days of the SCI were randomly assigned to control (N = 8) or Comb-NMES (N = 12). Sessions were given three times per week. Fasting blood samples and vastus lateralis muscle biopsies were collected 24-48 h before or after the last session. Western blots were performed to quantify proteins, immunohistochemical analyses determined muscle myofiber distribution, and enzymatic assays were performed to measure serum glucose, insulin, and lipids. Our main findings include a decrease in fasting glucose (p < 0.05) and LDL-C (p < 0.05) levels, an upregulation of CamKII and Hexokinase (p < 0.05), and an increase in type I (+9%) and a decrease in type IIx (-36%) myofiber distribution in response to Comb-NMES. Our findings suggest that maintaining healthy myofiber type and metabolic function may be achieved via early utilization of Comb-NMES.
Collapse
Affiliation(s)
- Amal Alharbi
- Department of Physical Therapy, University of Alabama at Birmingham, Birmingham, AL 35233, USA;
| | - Jia Li
- Department of Physical Medicine and Rehabilitation, Ohio State University, Columbus, OH 43210, USA; (J.L.); (M.F.)
| | - Erika Womack
- Department of Biochemistry, Molecular Biology, Entomology and Plant Pathology, Mississippi State University, Starkville, MS 39762, USA;
| | - Matthew Farrow
- Department of Physical Medicine and Rehabilitation, Ohio State University, Columbus, OH 43210, USA; (J.L.); (M.F.)
| | - Ceren Yarar-Fisher
- Department of Physical Medicine and Rehabilitation, Ohio State University, Columbus, OH 43210, USA; (J.L.); (M.F.)
- Department of Neuroscience, Ohio State University, Columbus, OH 43210, USA
| |
Collapse
|
6
|
Gorgey AS, Khalil RE, Carter W, Ballance B, Gill R, Khan R, Goetz L, Lavis T, Sima AP, Adler RA. Effects of two different paradigms of electrical stimulation exercise on cardio-metabolic risk factors after spinal cord injury. A randomized clinical trial. Front Neurol 2023; 14:1254760. [PMID: 37808500 PMCID: PMC10556465 DOI: 10.3389/fneur.2023.1254760] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2023] [Accepted: 08/30/2023] [Indexed: 10/10/2023] Open
Abstract
Objective To examine the combined effects of neuromuscular electrical stimulation-resistance training (NMES-RT) and functional electrical stimulation-lower extremity cycling (FES-LEC) compared to passive movement training (PMT) and FES-LEC in adults with SCI on (1) oxygen uptake (VO2), insulin sensitivity and glucose disposal in adults with SCI; (2) Metabolic and inflammatory biomarkers; (3) skeletal muscle, intramuscular fat (IMF) and visceral adipose tissue (VAT) cross-sectional areas (CSAs). Materials and methods Thirty-three participants with chronic SCI (AIS A-C) were randomized to 24 weeks of NMES-RT + FES or PMT + FES. The NMES-RT + FES group underwent 12 weeks of evoked surface NMES-RT using ankle weights followed by an additional 12 weeks of progressive FES-LEC. The control group, PMT + FES performed 12 weeks of passive leg extension movements followed by an additional 12 weeks of FES-LEC. Measurements were performed at baseline (BL; week 0), post-intervention 1 (P1; week 13) and post-intervention 2 (P2; week 25) and included FES-VO2 measurements, insulin sensitivity and glucose effectiveness using the intravenous glucose tolerance test; anthropometrics and whole and regional body composition assessment using dual energy x-ray absorptiometry (DXA) and magnetic resonance imaging to measure muscle, IMF and VAT CSAs. Results Twenty-seven participants completed both phases of the study. NMES-RT + FES group showed a trend of a greater VO2 peak in P1 [p = 0.08; but not in P2 (p = 0.25)] compared to PMT + FES. There was a time effect of both groups in leg VO2 peak. Neither intervention elicited significant changes in insulin, glucose, or inflammatory biomarkers. There were modest changes in leg lean mass following PMT + FES group. Robust hypertrophy of whole thigh muscle CSA, absolute thigh muscle CSA and knee extensor CSA were noted in the NMES-RT + FES group compared to PMT + FES at P1. PMT + FES resulted in muscle hypertrophy at P2. NMES-RT + FES resulted in a decrease in total VAT CSA at P1. Conclusion NMES-RT yielded a greater peak leg VO2 and decrease in total VAT compared to PMT. The addition of 12 weeks of FES-LEC in both groups modestly impacted leg VO2 peak. The addition of FES-LEC to NMES-RT did not yield additional increases in muscle CSA, suggesting a ceiling effect on signaling pathways following NMES-RT. Clinical trial registration identifier NCT02660073.
Collapse
Affiliation(s)
- Ashraf S. Gorgey
- Spinal Cord Injury and Disorders, Richmond VA Medical Center, Richmond, VA, United States
- Department of Physical Medicine & Rehabilitation, Virginia Commonwealth University, Richmond, VA, United States
| | - Refka E. Khalil
- Spinal Cord Injury and Disorders, Richmond VA Medical Center, Richmond, VA, United States
| | - William Carter
- Department of Physical Medicine & Rehabilitation, Virginia Commonwealth University, Richmond, VA, United States
| | - Boyd Ballance
- Spinal Cord Injury and Disorders, Richmond VA Medical Center, Richmond, VA, United States
| | - Ranjodh Gill
- Endocrinology Service, Richmond VA Medical Center, Richmond, VA, United States
- Endocrine Division, School of Medicine, Virginia Commonwealth University, Richmond, VA, United States
| | - Rehan Khan
- Radiology Service, Richmond VA Medical Center, Richmond, VA, United States
| | - Lance Goetz
- Spinal Cord Injury and Disorders, Richmond VA Medical Center, Richmond, VA, United States
- Department of Physical Medicine & Rehabilitation, Virginia Commonwealth University, Richmond, VA, United States
| | - Timothy Lavis
- Spinal Cord Injury and Disorders, Richmond VA Medical Center, Richmond, VA, United States
- Department of Physical Medicine & Rehabilitation, Virginia Commonwealth University, Richmond, VA, United States
| | - Adam P. Sima
- Department of Biostatistics, School of Medicine, Virginia Commonwealth University, Richmond, VA, United States
| | - Robert A. Adler
- Endocrinology Service, Richmond VA Medical Center, Richmond, VA, United States
- Endocrine Division, School of Medicine, Virginia Commonwealth University, Richmond, VA, United States
| |
Collapse
|
7
|
Gorgey AS, Goldsmith JA, Khalil RE, Liu XH, Pan J, Cardozo C, Adler RA. Predictors of muscle hypertrophy responsiveness to electrically evoked resistance training after spinal cord injury. Eur J Appl Physiol 2023; 123:479-493. [PMID: 36305973 DOI: 10.1007/s00421-022-05069-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2022] [Accepted: 10/08/2022] [Indexed: 11/03/2022]
Abstract
The purpose of the study was to identify potential predictors of muscle hypertrophy responsiveness following neuromuscular electrical stimulation resistance training (NMES-RT) in persons with chronic spinal cord injury (SCI). Data for twenty individuals with motor complete SCI who completed twice weekly NMES-RT lasting 12-16 weeks as part of their participation in one of two separate clinical trials were pooled and retrospectively analyzed. Magnetic resonance imaging (MRI) was used to measure muscle cross-sectional area (CSA) of the whole thigh and knee extensor muscle before and after NMES-RT. Muscle biopsies and fasting biomarkers were also measured. Following the completion of the respective NMES-RT trials, participants were classified into either high-responders (n = 8; muscle CSA > 20%) or low-responders (n = 12; muscle CSA < 20%) based on whole thigh muscle CSA hypertrophy. Whole thigh muscle and knee extensors CSAs were significantly greater (P < 0.0001) in high-responders (29 ± 7% and 47 ± 15%, respectively) compared to low-responders (12 ± 3% and 19 ± 6%, respectively). There were no differences in total caloric intake or macronutrient intake between groups. Extensor spasticity was lower in the high-responders compared to the low-responders as was the dosage of baclofen. Prior to the intervention, the high-responders had greater body mass compared to the low-responders with SCI (87.8 ± 13.7 vs. 70.4 ± 15.8 kg; P = 0.012), body mass index (BMI: 27.6 ± 2.7 vs. 22.9 ± 6.0 kg/m2; P = 0.04), as well as greater percentage in whole body and regional fat mass (P < 0.05). Furthermore, high-responders had a 69% greater increase (P = 0.086) in total Akt protein expression than low-responders. High-responders also exhibited reduced circulating IGF-1 with a concomitant increase in IGFBP-3. Exploratory analyses revealed upregulation of mRNAs for muscle hypertrophy markers [IRS-1, Akt, mTOR] and downregulation of protein degradation markers [myostatin, MurF-1, and PDK4] in the high-responders compared to low-responders. The findings indicate that body composition, spasticity, baclofen usage, and multiple signaling pathways (anabolic and catabolic) are involved in the differential muscle hypertrophy response to NMES-RT in persons with chronic SCI.
Collapse
Affiliation(s)
- Ashraf S Gorgey
- Spinal Cord Injury and Disorders Service, Central Virginia VA Health Care System, Hunter Holmes McGuire VA Medical Center, Richmond, VA, USA.
- Physical Medicine and Rehabilitation, Virginia Commonwealth University, Richmond, VA, USA.
| | - Jacob A Goldsmith
- Spinal Cord Injury and Disorders Service, Central Virginia VA Health Care System, Hunter Holmes McGuire VA Medical Center, Richmond, VA, USA
| | - Refka E Khalil
- Spinal Cord Injury and Disorders Service, Central Virginia VA Health Care System, Hunter Holmes McGuire VA Medical Center, Richmond, VA, USA
| | - Xin-Hua Liu
- National Center for the Medical Consequences of Spinal Cord Injury and Medical and Surgical Service, James J Peters VA Medical Center, Bronx, NY, USA
- Department of Medicine, Icahn School of Medicine, New York, NY, USA
| | - Jiangping Pan
- National Center for the Medical Consequences of Spinal Cord Injury and Medical and Surgical Service, James J Peters VA Medical Center, Bronx, NY, USA
- Department of Medicine, Icahn School of Medicine, New York, NY, USA
| | - Christopher Cardozo
- National Center for the Medical Consequences of Spinal Cord Injury and Medical and Surgical Service, James J Peters VA Medical Center, Bronx, NY, USA
- Department of Medicine, Icahn School of Medicine, New York, NY, USA
| | - Robert A Adler
- Endocrinology Service, Hunter Holmes McGuire VA Medical Center, Richmond, VA, USA
- Endocrine Division, Virginia Commonwealth University School of Medicine, Richmond, VA, USA
| |
Collapse
|
8
|
Gibbs JC, Patsakos EM, Maltais DB, Wolfe DL, Gagnon DH, Craven BC. Rehabilitation interventions to modify endocrine-metabolic disease risk in individuals with chronic spinal cord injury living in the community (RIISC): A systematic search and review of prospective cohort and case-control studies. J Spinal Cord Med 2023; 46:6-25. [PMID: 33596167 PMCID: PMC9897753 DOI: 10.1080/10790268.2020.1863898] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
CONTEXT Endocrine-metabolic disease (EMD) is associated with functional disability, social isolation, hospitalization and even death in individuals living with a chronic spinal cord injury (SCI). There is currently very low-quality evidence that rehabilitation interventions can reduce EMD risk during chronic SCI. Non-randomized trials and alternative study designs are excluded from traditional knowledge synthesis. OBJECTIVE To characterize evidence from level 3-4 studies evaluating rehabilitation interventions for their effectiveness to improve EMD risk in community-dwelling adults with chronic SCI. METHODS Systematic searches of MEDLINE PubMed, EMBASE Ovid, CINAHL, Cochrane Database of Systematic Reviews, and PsychInfo were completed. All longitudinal trials, prospective cohort, case-control studies, and case series evaluating the effectiveness of rehabilitation/therapeutic interventions to modify/associate with EMD outcomes in adults with chronic SCI were eligible. Two authors independently selected studies and abstracted data. Mean changes from baseline were reported for EMD outcomes. The Downs and Black Checklist was used to rate evidence quality. RESULTS Of 489 articles identified, 44 articles (N = 842) were eligible for inclusion. Individual studies reported statistically significant effects of electrical stimulation-assisted training on lower-extremity bone outcomes, and the combined effects of exercise and dietary interventions to improve body composition and cardiometabolic biomarkers (lipid profiles, glucose regulation). In contrast, there were also reports of no clinically important changes in EMD outcomes, suggesting lower quality evidence (study bias, inconsistent findings). CONCLUSION Longitudinal multicentre pragmatic studies involving longer-term exercise and dietary intervention and follow-up periods are needed to fully understand the impact of these rehabilitation approaches to mitigate EMD risk. Our broad evaluation of prospective cohort and case-control studies provides new perspectives on alternative study designs, a multi-impairment paradigm approach of studying EMD outcomes, and knowledge gaps related to SCI rehabilitation.
Collapse
Affiliation(s)
- Jenna C. Gibbs
- Department of Kinesiology and Physical Education, Faculty of Education, McGill University, Montréal, QC, Canada
| | - Eleni M. Patsakos
- KITE, Toronto Rehabilitation Institute – University Health Network, Toronto, ON, Canada
| | - Desiree B. Maltais
- Department of Rehabilitation, Faculty of Medicine, Université Laval, Quebec City, QC, Canada
| | - Dalton L. Wolfe
- Parkwood Institute Research, Lawson Health Research Institute, London, ON, Canada
- Department of Physical Medicine and Rehabilitation, Western University, London, ON, Canada
| | - Dany H. Gagnon
- Centre intégré universitaire de santé et de services sociaux (CIUSSS) du Centre-Sud-de-l'Île-de-Montréal, Montréal, QC, Canada
- School of Rehabilitation, Faculty of Medicine, Université de Montréal, Montréal, QC, Canada
| | - B. Catharine Craven
- KITE, Toronto Rehabilitation Institute – University Health Network, Toronto, ON, Canada
- Division of Physical Therapy and Rehabilitation, Department of Medicine, University of Toronto, Toronto, ON, Canada
| |
Collapse
|
9
|
Employment of Neuromuscular Electrical Stimulation to Examine Muscle and Bone Qualities after Spinal Cord Injury. J Clin Med 2022; 11:jcm11226681. [PMID: 36431158 PMCID: PMC9696220 DOI: 10.3390/jcm11226681] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2022] [Revised: 11/03/2022] [Accepted: 11/09/2022] [Indexed: 11/13/2022] Open
Abstract
(1) Background: Resource intensive imaging tools have been employed to examine muscle and bone qualities after spinal cord injury (SCI). We tested the hypothesis that surface neuromuscular electrical stimulation (NMES) amplitude can be used to examine knee extensor muscle quality, distal femur and proximal tibia bone mineral density (BMD) in persons with SCI. (2) Methods: Seventeen persons (2 women) with chronic SCI participated in three weeks of NMES-resistance training twice weekly of 4 sets of 10 repetitions. Participants were classified according to the current amplitude (>100 mA) and the number of repetitions (>70 reps) of leg extension into greater (n = 8; 1 woman; group A) and lower (n = 9; 1 woman; group B) musculoskeletal qualities. Magnetic resonance imaging, dual energy x-ray absorptiometry, isometric peak torque, Modified Ashworth and Penn spasm frequency scales were conducted. (3) Results: In between group comparisons, current amplitude was lower (38−46%) in group A. Whole (27−32%; p = 0.02), absolute (26−33%, p = 0.02) thigh muscle and absolute knee extensor muscle cross-sectional areas (22−33%, p = 0.04) were greater in group A. Right distal femur (24%; p = 0.08) and proximal tibia (29%; p = 0.03) BMDs were lower in group B, and peak isometric torque (p < 0.01), extensor spasticity scorers (p = 0.04) and muscle spasm scores (p = 0.002) were significantly higher in group A. Regression models revealed that amplitude of current, repetitions and body weight can accurately predict musculoskeletal qualities in persons with SCI. (4) Conclusions: Surface NMES amplitude and repetitions of leg extension differentiated between SCI survivors with greater versus lower musculoskeletal qualities. The study may shed the light on the interplay between muscle and bone in persons with SCI.
Collapse
|
10
|
Gorgey AS, Khalil RE, Alrubaye M, Gill R, Rivers J, Goetz LL, Cifu DX, Castillo T, Caruso D, Lavis TD, Lesnefsky EJ, Cardozo CC, Adler RA. Testosterone and long pulse width stimulation (TLPS) for denervated muscles after spinal cord injury: a study protocol of randomised clinical trial. BMJ Open 2022; 12:e064748. [PMID: 36198461 PMCID: PMC9535184 DOI: 10.1136/bmjopen-2022-064748] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/03/2022] Open
Abstract
INTRODUCTION Long pulse width stimulation (LPWS; 120-150 ms) has the potential to stimulate denervated muscles and to restore muscle size in denervated people with spinal cord injury (SCI). We will determine if testosterone treatment (TT)+LPWS would increase skeletal muscle size, leg lean mass and improve overall metabolic health in persons with SCI with denervation. We hypothesise that the 1-year TT+LPWS will upregulate protein synthesis pathways, downregulate protein degradation pathways and increase overall mitochondrial health. METHODS AND ANALYSIS Twenty-four male participants (aged 18-70 years with chronic SCI) with denervation of both knee extensor muscles and tolerance to the LPWS paradigm will be randomised into either TT+neuromuscular electrical stimulation via telehealth or TT+LPWS. The training sessions will be twice weekly for 1 year. Measurements will be conducted 1 week prior training (baseline; week 0), 6 months following training (postintervention 1) and 1 week after the end of 1 year of training (postintervention 2). Measurements will include body composition assessment using anthropometry, dual X-ray absorptiometry and MRI to measure size of different muscle groups. Metabolic profile will include measuring of basal metabolic rate, followed by blood drawn to measure fasting biomarkers similar to hemoglobin A1c, lipid panels, C reactive protein, interleukin-6 and free fatty acids and then intravenous glucose tolerance test to test for insulin sensitivity and glucose effectiveness. Finally, muscle biopsy will be captured to measure protein expression and intracellular signalling; and mitochondrial electron transport chain function. The participants will fill out 3 days dietary record to monitor their energy intake on a weekly basis. ETHICS AND DISSEMINATION The study was approved by Institutional Review Board of the McGuire Research Institute (ID # 02189). Dissemination plans will include the Veteran Health Administration and its practitioners, the national SCI/D services office, the general healthcare community and the veteran population, as well as the entire SCI community via submitting quarterly letters or peer-review articles. TRIAL REGISTRATION NUMBER NCT03345576.
Collapse
Affiliation(s)
- Ashraf S Gorgey
- Spinal Cord Injury Service and Disorders, Hunter Holmes McGuire VA Medical Center, Richmond, Virginia, USA
| | - Refka E Khalil
- Spinal Cord Injury Service and Disorders, Hunter Holmes McGuire VA Medical Center, Richmond, Virginia, USA
| | - Malak Alrubaye
- Spinal Cord Injury Service and Disorders, Hunter Holmes McGuire VA Medical Center, Richmond, Virginia, USA
| | - Ranjodh Gill
- Endocrine Service, Hunter Holmes McGuire VA Medical Center, Richmond, Virginia, USA
| | - Jeannie Rivers
- Spinal Cord Injury Service and Disorders, Hunter Holmes McGuire VA Medical Center, Richmond, Virginia, USA
| | - Lance L Goetz
- Spinal Cord Injury Service and Disorders, Hunter Holmes McGuire VA Medical Center, Richmond, Virginia, USA
| | - David X Cifu
- Physical Medicine and Rehab, Commonwealth of Virginia, Richmond, Virginia, USA
| | - Teodoro Castillo
- Spinal Cord Injury Service and Disorders, Hunter Holmes McGuire VA Medical Center, Richmond, Virginia, USA
| | - Deborah Caruso
- Spinal Cord Injury Service and Disorders, Hunter Holmes McGuire VA Medical Center, Richmond, Virginia, USA
| | - Timothy D Lavis
- Spinal Cord Injury Service and Disorders, Hunter Holmes McGuire VA Medical Center, Richmond, Virginia, USA
| | - Edward J Lesnefsky
- Cardiology Service, Hunter Holmes McGuire VA Medical Center, Richmond, Virginia, USA
| | - Christopher C Cardozo
- National Center for the Medical Consequences of Spinal Cord Injury and Medical and Surgical Service, James J Peters VA Medical Center, Bronx, New York, USA
| | - Robert A Adler
- Endocrine Service, Hunter Holmes McGuire VA Medical Center, Richmond, Virginia, USA
| |
Collapse
|
11
|
Gelenitis K, Foglyano K, Lombardo L, McDaniel J, Triolo R. Motorless cadence control of standard and low duty cycle-patterned neural stimulation intensity extends muscle-driven cycling output after paralysis. J Neuroeng Rehabil 2022; 19:85. [PMID: 35945575 PMCID: PMC9360711 DOI: 10.1186/s12984-022-01064-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2022] [Accepted: 07/21/2022] [Indexed: 12/01/2022] Open
Abstract
Background Stimulation-driven exercise is often limited by rapid fatigue of the activated muscles. Selective neural stimulation patterns that decrease activated fiber overlap and/or duty cycle improve cycling exercise duration and intensity. However, unequal outputs from independently activated fiber populations may cause large discrepancies in power production and crank angle velocity among pedal revolutions. Enforcing a constant cadence through feedback control of stimulus levels may address this issue and further improve endurance by targeting a submaximal but higher than steady-state exercise intensity. Methods Seven participants with paralysis cycled using standard cadence-controlled stimulation (S-Cont). Four of those participants also cycled with a low duty cycle (carousel) cadence-controlled stimulation scheme (C-Cont). S-Cont and C-Cont patterns were compared with conventional maximal stimulation (S-Max). Outcome measures include total work (W), end power (Pend), power fluctuation (PFI), charge accumulation (Q) and efficiency (η). Physiological measurements of muscle oxygenation (SmO2) and heart rate were also collected with select participants. Results At least one cadence-controlled stimulation pattern (S-Cont or C-Cont) improved Pend over S-Max in all participants and increased W in three participants. Both controlled patterns increased Q and η and reduced PFI compared with S-Max and prior open-loop studies. S-Cont stimulation also delayed declines in SmO2 and increased heart rate in one participant compared with S-Max. Conclusions Cadence-controlled selective stimulation improves cycling endurance and increases efficiency over conventional stimulation by incorporating fiber groups only as needed to maintain a desired exercise intensity. Closed-loop carousel stimulation also successfully reduces power fluctuations relative to previous open-loop efforts, which will enable neuroprosthesis recipients to better take advantage of duty cycle reducing patterns.
Collapse
Affiliation(s)
- Kristen Gelenitis
- Louis Stokes Cleveland VA Medical Center, 10701 East Blvd, Cleveland, OH, 44106, USA.
| | - Kevin Foglyano
- Louis Stokes Cleveland VA Medical Center, 10701 East Blvd, Cleveland, OH, 44106, USA
| | - Lisa Lombardo
- Louis Stokes Cleveland VA Medical Center, 10701 East Blvd, Cleveland, OH, 44106, USA
| | - John McDaniel
- Louis Stokes Cleveland VA Medical Center, 10701 East Blvd, Cleveland, OH, 44106, USA.,Kent State University, 800 E Summit St, Kent, OH, 44240, USA
| | - Ronald Triolo
- Louis Stokes Cleveland VA Medical Center, 10701 East Blvd, Cleveland, OH, 44106, USA.,Case Western Reserve University, 10900 Euclid Ave, Cleveland, OH, 44106, USA
| |
Collapse
|
12
|
Bekhet AH, Jahan AM, Bochkezanian V, Musselman KE, Elsareih AA, Gorgey AS. Effects of Electrical Stimulation Training on Body Composition Parameters After Spinal Cord Injury: A Systematic Review. Arch Phys Med Rehabil 2022; 103:1168-1178. [PMID: 34687676 DOI: 10.1016/j.apmr.2021.09.004] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2021] [Revised: 08/10/2021] [Accepted: 09/05/2021] [Indexed: 11/19/2022]
Abstract
OBJECTIVE To determine the effects of neuromuscular electrical stimulation (NMES) or functional electrical stimulation (FES), or both, training on different body composition parameters in individuals with spinal cord injury. DATA SOURCES Three independent reviewers searched PubMed, Web of Science, Scopus, Cochrane Central, and Virtual Health Library until March 2020. STUDY SELECTION Studies were included if they applied NMES/FES on the lower limb muscles after spinal cord injury, reported stimulation parameters (frequency, pulse duration, and amplitude of current), and body composition parameters, which included muscle cross-sectional area (CSA), fat-free mass, lean mass (LM), fat mass, visceral adipose tissue, and intramuscular fat. DATA SYNTHESIS A total of 46 studies were included in the final analysis with a total sample size of 414 subjects. NMES loading exercise and FES cycling exercise were commonly used for training. Increases in muscle CSA ranged from 5.7-75%, with an average of 26% (n=33). Fifteen studies reported changes (both increase and decrease) in LM or fat-free mas ranged from -4% to 35%, with an average of less than 5%. Changes in fat mass (n=10) were modest. The effect on ectopic adipose tissue is inconclusive, with 2 studies showing an average reduction in intramuscular fat by 9.9%. Stimulation parameters ranged from 200-1000 μs for pulse duration, 2-60 Hz for the frequency, and 10-200 mA in amplitude. Finally, increase in weekly training volumes after NMES loading exercise resulted in a remarkable increase in percentage changes in LM or muscle CSA. CONCLUSIONS NMES/FES is an effective rehabilitation strategy for muscle hypertrophy and increasing LM. Weekly training volumes are associated with muscle hypertrophy after NMES loading exercise. Furthermore, positive muscle adaptations occur despite the applied stimulation parameters. Finally, the included studies reported wide range of stimulation parameters without reporting rationale for such selection.
Collapse
Affiliation(s)
| | - Alhadi M Jahan
- School of Rehabilitation Sciences, University of Ottawa, Ottawa, Canada
| | - Vanesa Bochkezanian
- Department of Exercise and Health Sciences, School of Health, Medical and Applied Sciences, Central Queensland University, Rockhampton, QLD, Australia
| | - Kristin E Musselman
- KITE, Toronto Rehabilitation Institute-University Health Network, Toronto, Canada; Department of Physical Therapy, Faculty of Medicine, University of Toronto, Toronto, Canada; Rehabilitation Sciences Institute, Faculty of Medicine, University of Toronto, Toronto, Canada
| | - Amr A Elsareih
- Faculty of Physical Therapy, Cairo University, Giza, Egypt
| | - Ashraf S Gorgey
- Faculty of Physical Therapy, Cairo University, Giza, Egypt; Spinal Cord Injury and Disorders Center, Hunter Holmes McGuire VAMC, 1201 Broad Rock Boulevard, Richmond, VA; Virginia Commonwealth University, Department of Physical Medicine & Rehabilitation, Richmond, VA.
| |
Collapse
|
13
|
Fenton JM, King JA, Hoekstra SP, Valentino SE, Phillips SM, Goosey-Tolfrey VL. Protocols aiming to increase muscle mass in persons with motor complete spinal cord injury: a systematic review. Disabil Rehabil 2022; 45:1433-1443. [PMID: 35465798 DOI: 10.1080/09638288.2022.2063420] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
PURPOSE The purpose of this review was to compare all intervention modalities aimed at increasing skeletal muscle mass (SMM) in the paralysed limbs of persons with chronic (>1-year post-injury), motor complete spinal cord injury (SCI). MATERIALS AND METHODS A systematic review of EMBASE, MEDLINE, Scopus, and SPORTDiscus databases was conducted from inception until December 2021. Published intervention studies aimed to increase SMM (measured by magnetic resonance imaging, computed tomography, ultrasound, muscle biopsy, or lean soft tissue mass by dual X-ray absorptiometry) in the paralysed limbs of adults (>18 years) with SCI were included. RESULTS Fifty articles were included that, overall, demonstrated a high risk of bias. Studies were categorised into six groups: neuromuscular electrical stimulation (NMES) with and without external resistance, functional electrical stimulation cycling, walking- and standing-based interventions, pharmacological treatments, and studies that compared or combined intervention modalities. Resistance training (RT) using NMES on the quadriceps produced the largest and most consistent increases in SMM of all intervention modalities. CONCLUSIONS Current evidence suggests that clinical practise aiming to increase SMM in the paralysed limbs of persons with motor complete SCI should perform NMES-RT. However, more high-quality randomised control trials are needed to determine how training variables, such as exercise volume and intensity, can be optimised for increasing SMM. Implications for rehabilitationPersons with spinal cord injury (SCI) experience severe reductions in skeletal muscle mass (SMM) post-injury, which may exacerbate their risk of obesity and metabolic disease.Out of all exercise and non-exercise-based interventions, this systematic review shows that neuromuscular electrical stimulation-based resistance training demonstrates the most robust and consistent evidence for increasing skeletal muscle mass in the paralysed limbs of adults with motor complete spinal cord injury.The findings from this review can be used to inform evidence-based practise for exercise practitioners, as well as direct future research focused on increasing muscle mass in this population.
Collapse
Affiliation(s)
- Jordan M. Fenton
- National Centre for Sport and Exercise Medicine, School of Sport, Exercise and Health Sciences, Loughborough University, Loughborough, UK
- Peter Harrison Centre for Disability Sport, Loughborough University, Loughborough, UK
| | - James A. King
- National Centre for Sport and Exercise Medicine, School of Sport, Exercise and Health Sciences, Loughborough University, Loughborough, UK
- National Institute for Health Research (NIHR) Leicester Biomedical Research Centre, University Hospitals of Leicester NHS Trust and University of Leicester, Leicester, UK
| | - Sven P. Hoekstra
- National Centre for Sport and Exercise Medicine, School of Sport, Exercise and Health Sciences, Loughborough University, Loughborough, UK
- Peter Harrison Centre for Disability Sport, Loughborough University, Loughborough, UK
| | | | - Stuart M. Phillips
- Department of Kinesiology, McMaster University, Hamilton, Ontario, Canada
| | - Victoria L. Goosey-Tolfrey
- National Centre for Sport and Exercise Medicine, School of Sport, Exercise and Health Sciences, Loughborough University, Loughborough, UK
- Peter Harrison Centre for Disability Sport, Loughborough University, Loughborough, UK
| |
Collapse
|
14
|
Lai RE, Holman ME, Chen Q, Rivers J, Lesnefsky EJ, Gorgey AS. Assessment of mitochondrial respiratory capacity using minimally invasive and noninvasive techniques in persons with spinal cord injury. PLoS One 2022; 17:e0265141. [PMID: 35275956 PMCID: PMC8916668 DOI: 10.1371/journal.pone.0265141] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2021] [Accepted: 02/16/2022] [Indexed: 11/19/2022] Open
Abstract
Purpose Muscle biopsies are the gold standard to assess mitochondrial respiration; however, biopsies are not always a feasible approach in persons with spinal cord injury (SCI). Peripheral blood mononuclear cells (PBMCs) and near-infrared spectroscopy (NIRS) may alternatively be predictive of mitochondrial respiration. The purpose of the study was to evaluate whether mitochondrial respiration of PBMCs and NIRS are predictive of respiration of permeabilized muscle fibers after SCI. Methods Twenty-two individuals with chronic complete and incomplete motor SCI between 18–65 years old were recruited to participate in the current trial. Using high-resolution respirometry, mitochondrial respiratory capacity was measured for PBMCs and muscle fibers of the vastus lateralis oxidizing complex I, II, and IV substrates. NIRS was used to assess mitochondrial capacity of the vastus lateralis with serial cuff occlusions and electrical stimulation. Results Positive relationships were observed between PBMC and permeabilized muscle fibers for mitochondrial complex IV (r = 0.86, P < 0.0001). Bland-Altman displayed agreement for complex IV (MD = 0.18, LOA = -0.86 to 1.21), between PBMCs and permeabilized muscles fibers. No significant relationships were observed between NIRS mitochondrial capacity and respiration in permeabilized muscle fibers. Conclusions This is the first study to explore and support the agreement of less invasive clinical techniques for assessing mitochondrial respiratory capacity in individuals with SCI. The findings will assist in the application of PBMCs as a viable alternative for assessing mitochondrial health in persons with SCI in future clinical studies.
Collapse
Affiliation(s)
- Raymond E. Lai
- Spinal Cord Injury and Disorders, Hunter Holmes McGuire VA Medical Center, Richmond, Virginia, United States of America
- Physical Medicine and Rehabilitation, Virginia Commonwealth University, Richmond, Virginia, United States of America
| | - Matthew E. Holman
- Spinal Cord Injury and Disorders, Hunter Holmes McGuire VA Medical Center, Richmond, Virginia, United States of America
- Physical Therapy, Virginia Commonwealth University, Richmond, VA, United States of America
| | - Qun Chen
- Division of Cardiology, Division of Internal Medicine, Pauley Heart Center, Department of Medicine, Virginia Commonwealth University, Richmond, VA, United States of America
| | - Jeannie Rivers
- Surgical Service, Hunter Holmes McGuire VA Medical Center, Richmond, VA, United States of America
| | - Edward J. Lesnefsky
- Division of Cardiology, Division of Internal Medicine, Pauley Heart Center, Department of Medicine, Virginia Commonwealth University, Richmond, VA, United States of America
- Medical Service, Hunter Holmes McGuire VA Medical Center, Richmond, VA, United States of America
| | - Ashraf S. Gorgey
- Spinal Cord Injury and Disorders, Hunter Holmes McGuire VA Medical Center, Richmond, Virginia, United States of America
- Physical Medicine and Rehabilitation, Virginia Commonwealth University, Richmond, Virginia, United States of America
- * E-mail:
| |
Collapse
|
15
|
Tefertiller C, Bartelt P, Stobelaar M, Charlifue S, Sevigny M, Vande Griend E, Rozwod M. Improving Upper Extremity Strength, Function, and Trunk Stability Using Wide-Pulse Functional Electrical Stimulation in Combination With Functional Task-Specific Practice. Top Spinal Cord Inj Rehabil 2022; 28:139-152. [PMID: 35521056 PMCID: PMC9009203 DOI: 10.46292/sci21-00004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Objectives To evaluate upper extremity (UE) function, strength, and dynamic sitting balance in individuals with spinal cord injury (SCI) who received an intensive outpatient therapy program focused on UE training augmented with wide pulse/high frequency functional electrical stimulation (WPHF-FES). Methods This prospective case series was conducted in an outpatient (OP) clinic in an SCI-specific rehabilitation hospital. Participants were a convenience sample (N = 50) of individuals with tetraplegia receiving OP therapy focused on UE recovery. Individuals participated in 60 minutes of UE functional task-specific practice (FTP) in combination with WPHF-FES 5 times/week for an average of 72 sessions. The primary outcome for this analysis was the Capabilities of Upper Extremity Test (CUE-T). Secondary outcomes include UE motor score (UEMS) and the modified functional reach (MFR). Results Fifty individuals (13 motor complete; 37 motor incomplete SCI) completed an OP UE training program incorporating WPHF-FES and were included in this analysis. On average, participants demonstrated significant improvements in the total CUE-T score of 14.1 (SD = 10.0, p < .0001) points; significant changes were also noted in UEMS and MFR, improving an average of 4.6 (SD = 5.2, p < .0001) points and 13.6 (SD = 15.8, p < .0001) cm, respectively. Conclusion Individuals with tetraplegia demonstrated significant improvements in UE strength, function, and dynamic sitting trunk balance after receiving UE training augmented with WPHF-FES. Future comparative effectiveness studies need to be completed to guide efficacious treatment interventions in OP therapy.
Collapse
Affiliation(s)
| | - Patricia Bartelt
- Department of Physical Therapy, Craig Hospital, Englewood, Colorado
| | - Maureen Stobelaar
- Department of Occupational Therapy, Craig Hospital, Englewood, Colorado
| | | | - Mitch Sevigny
- Research Department, Craig Hospital, Englewood, Colorado
| | | | - Meghan Rozwod
- Department of Physical Therapy, Craig Hospital, Englewood, Colorado
| |
Collapse
|
16
|
Farkas GJ, Gordon PS, Trewick N, Gorgey AS, Dolbow DR, Tiozzo E, Berg AS, Gater DR. Comparison of Various Indices in Identifying Insulin Resistance and Diabetes in Chronic Spinal Cord Injury. J Clin Med 2021; 10:5591. [PMID: 34884295 PMCID: PMC8658352 DOI: 10.3390/jcm10235591] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2021] [Revised: 11/18/2021] [Accepted: 11/22/2021] [Indexed: 02/07/2023] Open
Abstract
The purpose of this screening and diagnostic study was to examine the accord among indices of glucose metabolism, including the Homeostatic Model Assessment for Insulin Resistance (HOMA), HOMA2, Matsuda Index, Quantitative Insulin-sensitivity Check Index (QUICKI), hemoglobin A1C (HbA1C), and fasting plasma glucose (FPG) against intravenous glucose tolerance test-measured insulin sensitivity (Si) in individuals with chronic motor complete SCI. Persons with chronic (≥12-months post-injury) SCI (n = 29; 79% men; age 42.2 ± 11.4; body mass index 28.6 ± 6.4 kg/m2; C4-T10) were included. Measures were compared using adjusted R2 from linear regression models with Akaike information criterion (AIC, a measure of error). QUICKI had the greatest agreement with Si (adjusted R2 = 0.463, AIC = 91.1, p = 0.0001), followed by HOMA (adjusted R2 = 0.378, AIC = 95.4, p = 0.0008), HOMA2 (adjusted R2 = 0.256, AIC = 99.7, p = 0.0030), and the Matsuda Index (adjusted R2 = 0.356, AIC = 95.5, p = 0.0004). FPG (adjusted R2 = 0.056, AIC = 107.5, p = 0.1799) and HbA1C (adjusted R2 = 0.1, AIC = 106.1, p = 0.0975) had poor agreement with Si. While HbA1C and FPG are commonly used for evaluating disorders of glucose metabolism, QUICKI demonstrates the best accord with Si compared to the other measures.
Collapse
Affiliation(s)
- Gary J. Farkas
- Department of Physical Medicine and Rehabilitation, University of Miami Miller School of Medicine, Miami, FL 33136, USA; (E.T.); (D.R.G.)
| | - Phillip S. Gordon
- Hackensack Meridian JFK Johnson Rehabilitation Institute, Edison, NJ 08820, USA;
| | - Nareka Trewick
- University of Miami Miller School of Medicine, Miami, FL 33136, USA;
| | - Ashraf S. Gorgey
- Spinal Cord Injury and Disorders Center, Hunter Holmes McGuire VA Medical Center, Richmond, VA 23249, USA;
| | - David R. Dolbow
- Department of Physical Therapy, William Carey University, Hattiesburg, MI 39401, USA;
- College of Osteopathic Medicine, William Carey University, Hattiesburg, MI 39401, USA
| | - Eduard Tiozzo
- Department of Physical Medicine and Rehabilitation, University of Miami Miller School of Medicine, Miami, FL 33136, USA; (E.T.); (D.R.G.)
| | - Arthur S. Berg
- Department of Public Health Sciences, Penn State College of Medicine, Hershey, PA 17033, USA;
| | - David R. Gater
- Department of Physical Medicine and Rehabilitation, University of Miami Miller School of Medicine, Miami, FL 33136, USA; (E.T.); (D.R.G.)
- The Miami Project to Cure Paralysis, University of Miami Miller School of Medicine, Miami, FL 33136, USA
| |
Collapse
|
17
|
Invasive and Non-Invasive Approaches of Electrical Stimulation to Improve Physical Functioning after Spinal Cord Injury. J Clin Med 2021; 10:jcm10225356. [PMID: 34830637 PMCID: PMC8625266 DOI: 10.3390/jcm10225356] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2021] [Revised: 11/09/2021] [Accepted: 11/12/2021] [Indexed: 12/13/2022] Open
Abstract
This review of literature provides the latest evidence involving invasive and non-invasive uses of electrical stimulation therapies that assist in restoring functional abilities and the enhancement of quality of life in those with spinal cord injuries. The review includes neuromuscular electrical stimulation and functional electrical stimulation activities that promote improved body composition changes and increased muscular strength, which have been shown to improve abilities in activities of daily living. Recommendations for optimizing electrical stimulation parameters are also reported. Electrical stimulation is also used to enhance the skills of reaching, grasping, standing, and walking, among other activities of daily living. Additionally, we report on the use of invasive and non-invasive neuromodulation techniques targeting improved mobility, including standing, postural control, and assisted walking. We attempt to summarize the effects of epidural stimulation on cardiovascular performance and provide a mechanistic explanation to the current research findings. Future trends such as the combination of epidural stimulation and exoskeletal-assisted walking are also discussed.
Collapse
|
18
|
Gorgey AS, Khalil RE, Gill R, Khan R, Adler RA. Effects of dose de-escalation following testosterone treatment and evoked resistance exercise on body composition, metabolic profile, and neuromuscular parameters in persons with spinal cord injury. Physiol Rep 2021; 9:e15089. [PMID: 34713983 PMCID: PMC8554770 DOI: 10.14814/phy2.15089] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2021] [Revised: 09/29/2021] [Accepted: 10/06/2021] [Indexed: 11/24/2022] Open
Abstract
The dose de-escalation (DD) effects of testosterone and evoked resistance training (RT) on body composition, cardiometabolic, and neuromuscular variables were investigated. Thirteen men with chronic complete spinal cord injury (SCI) were followed for additional 16 weeks after receiving either testosterone treatment only (TT) or TT+RT. During the 16-week DD period, the TT+RT group underwent a program of once weekly electrical stimulation with gradually decreasing ankle weights and testosterone patches of 2 mg day-1 (TT+RT group). The TT only group did not receive any intervention throughout the detraining period (no-TT group). Body composition was tested using anthropometrics, dual energy X-ray absorptiometry, and magnetic resonance imaging. After an overnight fast, basal metabolic rate (BMR), lipid panel, serum testosterone, inflammatory biomarkers, glucose effectiveness, and insulin sensitivity were measured. Finally, peak isometric and isokinetic torques were measured only in the TT+RT group. All measurements were conducted at the beginning and at the end of DD. Absolute thigh muscle cross-sectional areas (CSAs) demonstrated interaction effects (p < 0.05) between the TT+RT (-8.15%, -6.5%) and no-TT (2.3%, 4.4%) groups. Similarly, absolute knee extensor muscle CSA demonstrated interaction effects (p < 0.05) between the TT+RT (-11%, -7.0%) and no-TT (2.6%, 3.8%) groups. There was a trend (p = 0.07) of increasing visceral adipose tissue (VAT) CSAs in the TT+RT (18%) and in the no-TT (16% cm2 ) groups. There was an interaction (p = 0.005) between TT+RT (decreased by 3.7%) and no-TT groups (increased by 9.0%) in BMR. No interactions were evident between groups over time for biomarkers related to carbohydrate, lipid metabolism, or inflammation. Finally, there were no changes (p > 0.05) in peak isometric or isokinetic torques and rise time following 16 weeks of the DD period in the TT+RT group. TT+RT during 16 weeks of DD was minimally effective at preventing detraining relative to no-TT on muscle size, BMR, and VAT. However, neuromuscular gains were successfully maintained.
Collapse
Affiliation(s)
- Ashraf S. Gorgey
- Spinal Cord Injury and Disorders CenterHunter Holmes McGuire VAMCRichmondVirginiaUSA
- Department of Physical Medicine & RehabilitationVirginia Commonwealth UniversityRichmondVirginiaUSA
| | - Refka E. Khalil
- Spinal Cord Injury and Disorders CenterHunter Holmes McGuire VAMCRichmondVirginiaUSA
| | - Ranjodh Gill
- Endocrinology ServiceHunter Holmes McGuire VA Medical CenterRichmondVirginiaUSA
- Endocrine DivisionVirginia Commonwealth University School of MedicineRichmondVirginiaUSA
| | - Rehan Khan
- Radiology ServiceHunter Holmes McGuire VA Medical CenterRichmondVirginiaUSA
| | - Robert A. Adler
- Endocrinology ServiceHunter Holmes McGuire VA Medical CenterRichmondVirginiaUSA
- Endocrine DivisionVirginia Commonwealth University School of MedicineRichmondVirginiaUSA
| |
Collapse
|
19
|
Atkins KD, Bickel CS. Effects of functional electrical stimulation on muscle health after spinal cord injury. Curr Opin Pharmacol 2021; 60:226-231. [PMID: 34464934 DOI: 10.1016/j.coph.2021.07.025] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2021] [Revised: 07/16/2021] [Accepted: 07/26/2021] [Indexed: 10/20/2022]
Abstract
Spinal cord injury is a devastating condition interrupting voluntary movement and motor control. In response to unloading, skeletal muscle undergoes numerous adaptations, including rapid and profound atrophy, intramuscular fat accumulation, impaired muscular glucose metabolism and decreased force generation and muscle performance. Functional electrical stimulation (FES) involves electrically stimulating affected muscles to contract in a coordinated manner to create a functional movement or task. Effects of FES-cycling, rowing and resistance training on muscle health are described here. Briefly, FES-cycling and resistance training may slow muscle atrophy or facilitate muscle hypertrophy, and all modalities benefit muscle composition and performance to some extent. These interventions show promise as future rehabilitative tools after spinal cord injury.
Collapse
Affiliation(s)
- Kelly D Atkins
- Department of Physical Therapy, Samford University, Birmingham, AL, USA
| | - C Scott Bickel
- Department of Physical Therapy, Samford University, Birmingham, AL, USA.
| |
Collapse
|
20
|
Figoni SF, Dolbow DR, Crawford EC, White ML, Pattanaik S. Does aerobic exercise benefit persons with tetraplegia from spinal cord injury? A systematic review. J Spinal Cord Med 2021; 44:690-703. [PMID: 32043944 PMCID: PMC8477928 DOI: 10.1080/10790268.2020.1722935] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
CONTEXT This review synthesizes the findings of previous research studies on the cardiovascular and metabolic benefits of aerobic exercise for individuals with tetraplegia secondary to spinal cord injury. They are often less active due to muscular paralysis, sensory loss, and sympathetic nervous system dysfunction that result from injury. Consequently, these persons are at higher risk for exercise intolerance and secondary health conditions. OBJECTIVE To evaluate the evidence concerning efficacy of aerobic exercise training for improving health and exercise performance in persons with tetraplegia from cervical injury. METHODS The search engines PubMed and Google Scholar were used to locate published research. The final 75 papers were selected on the basis of inclusion criteria. The studies were then rank-ordered using Physiotherapy Evidence Database. RESULTS Studies combining individuals with tetraplegia and paraplegia show that voluntary arm-crank training can increase mean peak power output by 33%. Functional electrical stimulation leg cycling was shown to induce higher peak cardiac output and stroke volume than arm-crank exercise. A range of peak oxygen uptake (VO2peak) values have been reported (0.57-1.32 L/min). Both VO2peak and cardiac output may be enhanced via increased muscle pump in the legs and venous return to the heart. Hybrid exercise (arm-crank and functional electrical stimulation leg cycling) can result in greater peak oxygen uptake and cardiovascular responses. CONCLUSION Evidence gathered from this systematic review of literature is inconclusive due to the lack of research focusing on those with tetraplegia. Higher power studies (level 1-3) are needed with the focus on those with tetraplegia.
Collapse
Affiliation(s)
- Stephen F Figoni
- Spinal Cord Injury/Disorders Healthcare Group (128), Tibor Rubin VA Medical Center, Long Beach, California, USA
| | - David R Dolbow
- Physical Therapy Program, William Carey University, Hattiesburg, Mississippi, USA
| | - Edwin C Crawford
- Physical Therapy Program, William Carey University, Hattiesburg, Mississippi, USA
| | - Margaret L White
- Physical Therapy Program, William Carey University, Hattiesburg, Mississippi, USA
| | - Sambit Pattanaik
- College of Osteopathic Medicine, William Carey University, Hattiesburg, Mississippi, USA
| |
Collapse
|
21
|
Lai RE, Gorgey AS. Low-dose testosterone replacement therapy and electrically evoked resistance training enhance muscle quality after spinal cord injury. Neural Regen Res 2021; 16:1544-1545. [PMID: 33433474 PMCID: PMC8323675 DOI: 10.4103/1673-5374.303026] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2020] [Revised: 11/03/2020] [Accepted: 11/20/2020] [Indexed: 11/16/2022] Open
Affiliation(s)
- Raymond E. Lai
- Spinal Cord Injury and Disorders, Hunter Holmes McGuire VA Medical Center; Physical Medicine and Rehabilitation, Virginia Commonwealth University, Richmond, VI, USA
| | - Ashraf S. Gorgey
- Spinal Cord Injury and Disorders, Hunter Holmes McGuire VA Medical Center; Physical Medicine and Rehabilitation, Virginia Commonwealth University, Richmond, VI, USA
| |
Collapse
|
22
|
Gelenitis K, Foglyano K, Lombardo L, Triolo R. Selective neural stimulation methods improve cycling exercise performance after spinal cord injury: a case series. J Neuroeng Rehabil 2021; 18:117. [PMID: 34301286 PMCID: PMC8301730 DOI: 10.1186/s12984-021-00912-5] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2021] [Accepted: 07/15/2021] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Exercise after paralysis can help prevent secondary health complications, but achieving adequate exercise volumes and intensities is difficult with loss of motor control. Existing electrical stimulation-driven cycling systems involve the paralyzed musculature but result in rapid force decline and muscle fatigue, limiting their effectiveness. This study explores the effects of selective stimulation patterns delivered through multi-contact nerve cuff electrodes on functional exercise output, with the goal of increasing work performed and power maintained within each bout of exercise. METHODS Three people with spinal cord injury and implanted stimulation systems performed cycling trials using conventional (S-Max), low overlap (S-Low), low duty cycle (C-Max), and/or combined low overlap and low duty cycle (C-Low) stimulation patterns. Outcome measures include total work (W), end power (Pend), power fluctuation indices (PFI), charge accumulation (Q), and efficiency (η). Mann-Whitney tests were used for statistical comparisons of W and Pend between a selective pattern and S-Max. Welch's ANOVAs were used to evaluate differences in PFIs among all patterns tested within a participant (n ≥ 90 per stimulation condition). RESULTS At least one selective pattern significantly (p < 0.05) increased W and Pend over S-Max in each participant. All selective patterns also reduced Q and increased η compared with S-Max for all participants. C-Max significantly (p < 0.01) increased PFI, indicating a decrease in ride smoothness with low duty cycle patterns. CONCLUSIONS Selective stimulation patterns can increase work performed and power sustained by paralyzed muscles prior to fatigue with increased stimulation efficiency. While still effective, low duty cycle patterns can cause inconsistent power outputs each pedal stroke, but this can be managed by utilizing optimized stimulation levels. Increasing work and sustained power each exercise session has the potential to ultimately improve the physiological benefits of stimulation-driven exercise.
Collapse
Affiliation(s)
- Kristen Gelenitis
- Case Western Reserve University, 10900 Euclid Ave, Cleveland, OH, 44106, USA.
| | - Kevin Foglyano
- Louis Stokes Cleveland VA Medical Center, 10701 East Blvd, Cleveland, OH, 44106, USA
| | - Lisa Lombardo
- Louis Stokes Cleveland VA Medical Center, 10701 East Blvd, Cleveland, OH, 44106, USA
| | - Ronald Triolo
- Case Western Reserve University, 10900 Euclid Ave, Cleveland, OH, 44106, USA
- Louis Stokes Cleveland VA Medical Center, 10701 East Blvd, Cleveland, OH, 44106, USA
| |
Collapse
|
23
|
Bolsterlee B, Bye EA, Eguchi J, Thom J, Herbert RD. MRI-based Measurement of Effects of Strength Training on Intramuscular Fat in People with and without Spinal Cord Injury. Med Sci Sports Exerc 2021; 53:1270-1275. [PMID: 33986231 DOI: 10.1249/mss.0000000000002568] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
INTRODUCTION The accurate quantification of the proportion of fat in human muscles could help monitor disease status and test effectiveness of interventions in people with neurological conditions whose skeletal muscles are frequently infiltrated with fat. METHODS We compared two commonly used magnetic resonance imaging methods to quantify fat in muscles. Measurements were obtained before and after 6 or 8 wk of strength training in a total of 116 muscles spanning the range of intramuscular fat proportions observed in able-bodied young adults and people with spinal cord injury. RESULTS We successfully measured fat proportions in all muscles using the mDixon method but were unable to obtain plausible measurements with the T1-weighted method from muscles of able-bodied individuals or from the leaner 23% of muscles of people with spinal cord injury (muscles with less than approximately 8% fat). In muscles with more fat, measurements obtained with the two methods agreed well (intraclass correlation coefficient, 0.88; mean absolute difference, 5%). We also found that, compared with the T1-weighted method, the mDixon method provides a more detailed characterization of fat infiltration in muscle and a less variable measurement of the effect of training on the proportion of fat. The mDixon method showed that 6 or 8 wk of strength training did not appreciably change the proportion of intramuscular fat in either people with spinal cord injury or able-bodied people. CONCLUSION On the basis of these findings, we recommend the use of mDixon methods in preference to T1-weighted methods to determine the effectiveness of interventions aimed at reducing intramuscular fat.
Collapse
|
24
|
Gorgey AS, Lai RE, Khalil RE, Rivers J, Cardozo C, Chen Q, Lesnefsky EJ. Neuromuscular electrical stimulation resistance training enhances oxygen uptake and ventilatory efficiency independent of mitochondrial complexes after spinal cord injury: a randomized clinical trial. J Appl Physiol (1985) 2021; 131:265-276. [PMID: 33982590 DOI: 10.1152/japplphysiol.01029.2020] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
The purpose of the study was to determine whether neuromuscular electrical stimulation resistance training (NMES-RT)-evoked muscle hypertrophy is accompanied by increased V̇o2 peak, ventilatory efficiency, and mitochondrial respiration in individuals with chronic spinal cord injury (SCI). Thirty-three men and women with chronic, predominantly traumatic SCI were randomized to either NMES-RT (n = 20) or passive movement training (PMT; n = 13). Functional electrical stimulation-lower extremity cycling (FES-LEC) was used to test the leg V̇o2 peak, V̇E/V̇co2 ratio, and substrate utilization pre- and postintervention. Magnetic resonance imaging was used to measure muscle cross-sectional area (CSA). Finally, muscle biopsy was performed to measure mitochondrial complexes and respiration. The NMES-RT group showed a significant increase in postintervention V̇o2 peak compared with baseline (ΔV̇o2 = 14%, P < 0.01) with no changes in the PMT group (ΔV̇o2 = 1.6%, P = 0.47). Similarly, thigh (ΔCSAthigh = 19%) and knee extensor (ΔCSAknee = 30.4%, P < 0.01) CSAs increased following NMES-RT but not after PMT. The changes in thigh and knee extensor muscle CSAs were positively related with the change in V̇o2 peak. Neither NMES-RT nor PMT changed mitochondrial complex tissue levels; however, changes in peak V̇o2 were related to complex I. In conclusion, in persons with SCI, NMES-RT-induced skeletal muscle hypertrophy was accompanied by increased peak V̇o2 consumption which may partially be explained by enhanced activity of mitochondrial complex I.NEW & NOTEWORTHY Leg oxygen uptake (V̇o2) and ventilatory efficiency (V̇E/V̇co2 ratio) were measured during functional electrical stimulation cycling testing following 12-16 wk of either electrically evoked resistance training or passive movement training, and the respiration of mitochondrial complexes. Resistance training increased thigh muscle area and leg V̇o2 peak but decreased V̇E/V̇co2 ratio without changes in mitochondrial complex levels. Leg V̇o2 peak was associated with muscle hypertrophy and mitochondrial respiration of complex I following training.
Collapse
Affiliation(s)
- Ashraf S Gorgey
- Spinal Cord Injury and Disorders Hunter Holmes McGuire VA Medical Center, Richmond, Virginia.,Department of Physical Medicine and Rehabilitation, Virginia Commonwealth University, Richmond, Virginia
| | - Raymond E Lai
- Spinal Cord Injury and Disorders Hunter Holmes McGuire VA Medical Center, Richmond, Virginia.,Department of Physical Medicine and Rehabilitation, Virginia Commonwealth University, Richmond, Virginia
| | - Refka E Khalil
- Spinal Cord Injury and Disorders Hunter Holmes McGuire VA Medical Center, Richmond, Virginia
| | - Jeannie Rivers
- Surgical Service, Hunter Holmes McGuire VA Medical Center, Richmond, Virginia
| | - Christopher Cardozo
- National Center for the Medical Consequences of Spinal Cord Injury and Medical and Surgical Service, James J Peters VA Medical Center, Bronx, New York.,Department of Medicine, Icahn School of Medicine, New York City, New York.,Department Rehabilitation Medicine, Icahn School of Medicine, New York City, New York
| | - Qun Chen
- Medical Service, Hunter Holmes McGuire VA Medical Center, Richmond, Virginia.,Division of Cardiology, Pauley Heart Center, Department of Medicine, Virginia Commonwealth University, Richmond, Virginia
| | - Edward J Lesnefsky
- Medical Service, Hunter Holmes McGuire VA Medical Center, Richmond, Virginia.,Division of Cardiology, Pauley Heart Center, Department of Medicine, Virginia Commonwealth University, Richmond, Virginia
| |
Collapse
|
25
|
Graham ZA, Lavin KM, O'Bryan SM, Thalacker-Mercer AE, Buford TW, Ford KM, Broderick TJ, Bamman MM. Mechanisms of exercise as a preventative measure to muscle wasting. Am J Physiol Cell Physiol 2021; 321:C40-C57. [PMID: 33950699 DOI: 10.1152/ajpcell.00056.2021] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Skeletal muscle is the most abundant tissue in healthy individuals and it has important roles in health beyond voluntary movement. The overall mass and energy requirements of skeletal muscle require it to be metabolically active and flexible to multiple energy substrates. The tissue has evolved to be largely load dependent and it readily adapts in a number of positive ways to repetitive overload, such as various forms of exercise training. However, unloading from extended bed rest and/or metabolic derangements in response to trauma, acute illness, or severe pathology, commonly results in rapid muscle wasting. Decline in muscle mass contributes to multimorbidity, reduces function, and exerts a substantial, negative impact on the quality of life. The principal mechanisms controlling muscle mass have been well described and these cellular processes are intricately regulated by exercise. Accordingly, exercise has shown great promise and efficacy in preventing or slowing muscle wasting through changes in molecular physiology, organelle function, cell signaling pathways, and epigenetic regulation. In this review, we focus on the role of exercise in altering the molecular landscape of skeletal muscle in a manner that improves or maintains its health and function in the presence of unloading or disease.epigenetics; exercise; muscle wasting; resistance training; skeletal muscle.
Collapse
Affiliation(s)
- Zachary A Graham
- Birmingham VA Medical Center, Birmingham, Alabama.,Florida Institute for Human and Machine Cognition, Pensacola, Florida.,Department of Cell, Developmental, and Integrative Biology, The University of Alabama at Birmingham, Birmingham, Alabama.,UAB Center for Exercise Medicine, The University of Alabama at Birmingham, Birmingham, Alabama
| | - Kaleen M Lavin
- Florida Institute for Human and Machine Cognition, Pensacola, Florida.,Department of Cell, Developmental, and Integrative Biology, The University of Alabama at Birmingham, Birmingham, Alabama.,UAB Center for Exercise Medicine, The University of Alabama at Birmingham, Birmingham, Alabama
| | - Samia M O'Bryan
- Department of Cell, Developmental, and Integrative Biology, The University of Alabama at Birmingham, Birmingham, Alabama.,UAB Center for Exercise Medicine, The University of Alabama at Birmingham, Birmingham, Alabama
| | - Anna E Thalacker-Mercer
- Department of Cell, Developmental, and Integrative Biology, The University of Alabama at Birmingham, Birmingham, Alabama.,UAB Center for Exercise Medicine, The University of Alabama at Birmingham, Birmingham, Alabama
| | - Thomas W Buford
- UAB Center for Exercise Medicine, The University of Alabama at Birmingham, Birmingham, Alabama.,Division of Gerontology, Geriatrics and Palliative Care, Department of Medicine, The University of Alabama at Birmingham, Birmingham, Alabama.,Nathan Shock Center, The University of Alabama at Birmingham, Birmingham, Alabama
| | - Kenneth M Ford
- Florida Institute for Human and Machine Cognition, Pensacola, Florida
| | | | - Marcas M Bamman
- Florida Institute for Human and Machine Cognition, Pensacola, Florida.,Department of Cell, Developmental, and Integrative Biology, The University of Alabama at Birmingham, Birmingham, Alabama.,UAB Center for Exercise Medicine, The University of Alabama at Birmingham, Birmingham, Alabama.,Division of Gerontology, Geriatrics and Palliative Care, Department of Medicine, The University of Alabama at Birmingham, Birmingham, Alabama
| |
Collapse
|
26
|
Hanna R, Gosalia J, Demalis A, Hobson Z, McCully KK, Irving BA, Mookerjee S, Vairo GL, Proctor DN. Bilateral NIRS measurements of muscle mitochondrial capacity: Feasibility and repeatability. Physiol Rep 2021; 9:e14826. [PMID: 33945230 PMCID: PMC8095363 DOI: 10.14814/phy2.14826] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2021] [Accepted: 03/05/2021] [Indexed: 01/26/2023] Open
Abstract
Background Non‐invasive determination of mitochondrial capacity via near infrared spectroscopy (NIRS) typically involves voluntary exercise of a single muscle group followed by as many as 26 brief ischemic cuff occlusions to determine a single recovery rate constant (k). Purpose To determine the within‐ and between‐visit repeatability of a shortened bilateral NIRS protocol, and to establish the feasibility of hamstring k measurements. Methods Sixteen young (eight women, eight men; 22 ± 3 years) active adults underwent a bilateral electrical stimulation protocol in which multiple (n = 4) measurements of k for the vastus lateralis (VL) and medial hamstring (MH) muscles were determined on two visits. Repeatability (CV% and intraclass correlations, ICC) and equivalency across visits were assessed for both muscles. Results Mean k values in the VL were consistent with published values and within‐visit ICCs were moderately high for both muscles in both sexes. In men, average k values on visit 2 were within 1% (VL muscle) and 5% (MH muscle) of the values on visit 1 (all p > 0.78). In women, average k values were 10%–15% lower on visit 2 (p = 0.01 and p = 0.15 for MH and VL) with the largest between‐visit differences in a subset of participants with the most days between visits. Conclusions This bilateral NIRS protocol is time efficient and provides valid estimates of k in both sexes and muscle groups with acceptable within‐visit repeatability. Lower than expected between‐visit repeatability in some participants reinforces the need for further investigation of this newly developed protocol to identify and control for experimental and behavioral sources of variation.
Collapse
|
27
|
Goldsmith JA, Ennasr AN, Farkas GJ, Gater DR, Gorgey AS. Role of exercise on visceral adiposity after spinal cord injury: a cardiometabolic risk factor. Eur J Appl Physiol 2021; 121:2143-2163. [PMID: 33891156 DOI: 10.1007/s00421-021-04688-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2021] [Accepted: 04/10/2021] [Indexed: 12/30/2022]
Abstract
PURPOSE Visceral adipose tissue (VAT) is associated with cardiometabolic disease risk in able-bodied (AB) populations. However, the underlying mechanisms of VAT-induced disease risk are unknown in persons with spinal cord injury (SCI). Potential mechanisms of VAT-induced cardiometabolic dysfunction in persons with SCI include systemic inflammation, liver adiposity, mitochondrial dysfunction, and anabolic deficiency. Moreover, how exercise interventions impact these mechanisms associated with VAT-induced cardiometabolic dysfunction are still being explored. METHODS A search for relevant scientific literature about the effects of exercise on VAT and cardiometabolic health was conducted on the PubMed database. Literature from reference lists was also included when appropriate. RESULTS Both aerobic and resistance exercise training beneficially impact health and VAT mass via improving mitochondrial function, glucose effectiveness, and inflammatory signaling in SCI and AB populations. Specifically, aerobic exercise appears to also modulate cellular senescence in AB populations and animal models, while resistance exercise seems to augment anabolic signaling in persons with SCI. CONCLUSIONS The current evidence supports regular engagement in exercise to reduce VAT mass and the adverse effects on cardiometabolic health in persons with SCI. Future research is needed to further elucidate the precise mechanisms by which VAT negatively impacts health following SCI. This will likely facilitate the development of rehabilitation protocols that target VAT reduction in persons with SCI.
Collapse
Affiliation(s)
- Jacob A Goldsmith
- Spinal Cord Injury and Disorders Center, Central Virginia VA Health Care System, 1201 Broad Rock Boulevard, Richmond, VA, 23249, USA
| | - Areej N Ennasr
- Spinal Cord Injury and Disorders Center, Central Virginia VA Health Care System, 1201 Broad Rock Boulevard, Richmond, VA, 23249, USA
| | - Gary J Farkas
- Department of Physical Medicine and Rehabilitation, University of Miami Miller School of Medicine, Miami, FL, 33136, USA
| | - David R Gater
- Department of Physical Medicine and Rehabilitation, University of Miami Miller School of Medicine, Miami, FL, 33136, USA
| | - Ashraf S Gorgey
- Spinal Cord Injury and Disorders Center, Central Virginia VA Health Care System, 1201 Broad Rock Boulevard, Richmond, VA, 23249, USA. .,Department of Physical Medicine and Rehabilitation, Virginia Commonwealth University, Richmond, VA, 23298, USA.
| |
Collapse
|
28
|
Gordon PS, Farkas GJ, Gater DR. Neurogenic Obesity-Induced Insulin Resistance and Type 2 Diabetes Mellitus in Chronic Spinal Cord Injury. Top Spinal Cord Inj Rehabil 2021; 27:36-56. [PMID: 33814882 DOI: 10.46292/sci20-00063] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
The population with SCI is at a significant risk for both insulin resistance and type 2 diabetes mellitus (T2DM) secondary to neurogenic obesity. The prevalence of insulin resistance and T2DM in persons with SCI suggests that disorders of carbohydrate metabolism are at epidemic proportions within the population. However, the true frequency of such disorders may be underestimated because biomarkers of insulin resistance and T2DM used from the population without SCI remain nonspecific and may in fact fail to identify true cases that would benefit from intervention. Furthermore, diet and exercise have been used to help mitigate neurogenic obesity, but results on disorders of carbohydrate metabolism remain inconsistent, likely because of the various ways carbohydrate metabolism is assessed. The objective of this article is to review current literature on the prevalence and likely mechanisms driving insulin resistance and T2DM in persons with SCI. This article also explores the various assessments and diagnostic criteria used for insulin resistance and T2DM and briefly discusses the effects of exercise and/or diet to mitigate disorders of carbohydrate metabolism brought on by neurogenic obesity.
Collapse
Affiliation(s)
- Phillip S Gordon
- Department of Physical Medicine and Rehabilitation, University of Miami Miller School of Medicine, Miami, Florida
| | - Gary J Farkas
- Department of Physical Medicine and Rehabilitation, University of Miami Miller School of Medicine, Miami, Florida
| | - David R Gater
- Department of Physical Medicine and Rehabilitation, University of Miami Miller School of Medicine, Miami, Florida
| |
Collapse
|
29
|
Farrow M, Nightingale TE, Maher J, McKay CD, Thompson D, Bilzon JL. Effect of Exercise on Cardiometabolic Risk Factors in Adults With Chronic Spinal Cord Injury: A Systematic Review. Arch Phys Med Rehabil 2020; 101:2177-2205. [DOI: 10.1016/j.apmr.2020.04.020] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2019] [Revised: 03/27/2020] [Accepted: 04/11/2020] [Indexed: 12/14/2022]
|
30
|
Kortianou EA, Papafilippou EK, Karagkounis A. Respiratory, cardiac and metabolic responses during electrical muscle stimulation in quadriceps muscle versus comparable voluntary muscle contractions. Scandinavian Journal of Clinical and Laboratory Investigation 2020; 81:12-17. [PMID: 33215943 DOI: 10.1080/00365513.2020.1846210] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Abstract
Electrical Muscle Stimulation (EMS) and voluntary muscle contraction (VMC) are both acceptable rehabilitative modalities to preserve muscle strength loss. The study aimed to compare respiratory, metabolic, and cardiac parameters during quadriceps muscle contraction (QMC) using either EMS or VMC with comparable generated low intensity muscle force. Thirty healthy non-smoker males, age 20-58 years with normal BMI and low to moderate physical activity, underwent two 20-min sessions of comparable QMC using EMS vs VMC at the same day. The BIODEX III isokinetic dynamometer was used to assess maximum isometric force and the comparable force generated during each condition (EMS vs VMC), while the METAMAX 3B portable metabolic system was used to measure continuously the physiological parameters. Tolerable EMS was used (mean: 33 ± 1.5 mA, at 75 Hz). Each contraction lasted 10 sec followed by 20 sec rest. Paired t-tests were used for comparisons between sessions. A relatively low proportion of maximum isometric force (EMS: 8.5% vs VMC: 8.6%) and torque (EMS: 16 ± 1.3 vs VMC: 16 ± 1.1 Nm) were generated during each session. Mean minute ventilation (EMS: 10.8 L vs VMC: 9.8 L), tidal volume (EMS: 0.6 L vs VMC: 0.5 L), O2 uptake (EMS: 0.31 L/min vs VMC: 0.26 L/min) and O2 pulse (EMS: 3.9 ml/beat vs VMC: 3.6 ml/beat) were different between sessions (p ≤ .05); while heart rate (EMS: 72 beats/min vs VMC: 71 beats/min) was equal. Quadriceps muscle EMS induces higher respiratory and metabolic responses compared to equal magnitude VMC in healthy males.
Collapse
Affiliation(s)
- Eleni A Kortianou
- Clinical Exercise Physiology and Rehabilitation Laboratory, Department of Physiotherapy, School of Health Sciences, University of Thessaly, Lamia, Greece
| | - Evangelia K Papafilippou
- Clinical Exercise Physiology and Rehabilitation Laboratory, Department of Physiotherapy, School of Health Sciences, University of Thessaly, Lamia, Greece
| | - Andonis Karagkounis
- Clinical Exercise Physiology and Rehabilitation Laboratory, Department of Physiotherapy, School of Health Sciences, University of Thessaly, Lamia, Greece
| |
Collapse
|
31
|
Momeni K, Ramanujam A, Ravi M, Garbarini E, Forrest GF. Effects of Multi-Muscle Electrical Stimulation and Stand Training on Stepping for an Individual With SCI. Front Hum Neurosci 2020; 14:549965. [PMID: 33100994 PMCID: PMC7546792 DOI: 10.3389/fnhum.2020.549965] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2020] [Accepted: 08/28/2020] [Indexed: 11/13/2022] Open
Abstract
The objective of this study was to evaluate the biomechanical, neural, and functional outcomes during a 10-min treadmill stepping trial before and after two independent interventions with neuromuscular electrical stimulation (ES) in an individual with spinal cord injury (SCI). In this longitudinal study, a 34-year-old male with sensory- and motor-complete SCI (C5/C6) underwent two consecutive interventions: 61 h of supine lower limb ES (ES-alone) followed by 51 h of ES combined with stand training (ST) using an overhead body-weight support (BWS) system (ST + ES). In post ES-alone (unloaded), compared to baseline, the majority (∼60%) of lower extremity muscles decreased their peak surface electromyography (sEMG) amplitude, while in post ST + ES (loaded), compared to post ES-alone, there was a restoration in muscle activation that endured the continuous 10-min stepping. Temporal α-motor neuron activity patterns were observed for the SCI participant. In post ST + ES, there were increases in spinal activity patterns during mid-stance at spinal levels L5–S2 for the right and left limbs. Moreover, in post ES-alone, trunk stability increased with excursions from the midline of the base-of-support (50%) to the left (44.2%; Baseline: 54.2%) and right (66.4%; baseline: 77.5%). The least amount of trunk excursion observed post ST + ES, from midline to left (43%; AB: 22%) and right (64%; AB: 64%). Overall, in post ES-alone, there were gains in trunk independence with a decrease in lower limb muscle activation, whereas in post ST + ES, there were gains in trunk independence and increased muscle activation in both bilateral trunk muscles as well as lower limb muscles during the treadmill stepping paradigm. The results of the study illustrate the importance of loading during the stimulation for neural and mechanical gains.
Collapse
Affiliation(s)
- Kamyar Momeni
- Tim and Caroline Reynolds Center for Spinal Stimulation, Kessler Foundation, West Orange, NJ, United States.,Department of Physical Medicine and Rehabilitation, Rutgers New Jersey Medical School, Newark, NJ, United States
| | - Arvind Ramanujam
- Tim and Caroline Reynolds Center for Spinal Stimulation, Kessler Foundation, West Orange, NJ, United States
| | - Manikandan Ravi
- Tim and Caroline Reynolds Center for Spinal Stimulation, Kessler Foundation, West Orange, NJ, United States
| | - Erica Garbarini
- Tim and Caroline Reynolds Center for Spinal Stimulation, Kessler Foundation, West Orange, NJ, United States
| | - Gail F Forrest
- Tim and Caroline Reynolds Center for Spinal Stimulation, Kessler Foundation, West Orange, NJ, United States.,Department of Physical Medicine and Rehabilitation, Rutgers New Jersey Medical School, Newark, NJ, United States
| |
Collapse
|
32
|
Association between muscle aerobic capacity and whole-body peak oxygen uptake. Eur J Appl Physiol 2020; 120:2029-2036. [PMID: 32596752 DOI: 10.1007/s00421-020-04402-9] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2019] [Accepted: 05/19/2020] [Indexed: 10/24/2022]
Abstract
PURPOSE Decline in skeletal muscle mitochondrial oxidative capacity (MOC) is associated with reduced aerobic capacity and increased risk of cardiovascular and metabolic disease. Measuring skeletal muscle MOC may be an alternative method to assess aerobic capacity, especially for individuals unable to perform a whole-body maximum oxygen uptake protocol. In this study, linear regression analysis in two leg muscles was performed to determine whether MOC values could be used to predict whole-body peak oxygen uptake. METHODS MOC was measured with near infrared spectroscopy (NIRS) in the medial gastrocnemius (MG) and vastus lateralis (VL) muscles of 26 participants (age, 27.1 ± 5.8 years old). Whole-body peak oxygen uptake (VO2 peak) was determined by indirect calorimetry during a continuous ramp protocol on a cycle ergometer. RESULTS VO2 peak values were significantly correlated with the muscle recovery rate constant (k) of the MG (kMG, r = 0.59; p < 0.01) and VL (kVL, r = 0.63; p < 0.01) muscles. Summing recovery rate constants of both muscles together (kMG + kVL) improved the strength of the correlation with VO2 peak (r = 0.78; p < 0.0001) and could explain a majority of the variance (R2 = 0.61) between the two measurements. CONCLUSION Data suggest that NIRS can provide reliable MOC measurements on two leg muscles that correlate well with whole-body peak oxygen uptake.
Collapse
|
33
|
Gorgey AS, Graham ZA, Chen Q, Rivers J, Adler RA, Lesnefsky EJ, Cardozo CP. Sixteen weeks of testosterone with or without evoked resistance training on protein expression, fiber hypertrophy and mitochondrial health after spinal cord injury. J Appl Physiol (1985) 2020; 128:1487-1496. [PMID: 32352341 DOI: 10.1152/japplphysiol.00865.2019] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
We investigated the effects of testosterone replacement therapy (TRT) with and without evoked resistance training (RT) on protein expression of key metabolic and hypertrophy regulators, muscle fiber cross-sectional area (CSA), and markers of mitochondrial health after spinal cord injury (SCI). Twenty-two men with chronic motor complete SCI were randomly assigned to either TRT + RT (n = 11) or TRT (n = 11) for 16 wk. TRT + RT men underwent twice weekly progressive RT using electrical stimulation with ankle weights. TRT was administered via testosterone patches (2-6 mg/day). Muscle biopsies were obtained before and after 16 wk from the right vastus lateralis. Expression of proteins associated with oxidative muscles and mechanical loading (PGC-1α and FAK), muscle hypertrophy (total and phosphorylated Akt, total and phosphorylated mTOR), and cellular metabolism (total and phosphorylated AMPK and GLUT4) were evaluated. Immunohistochemistry analysis was performed to measure fiber CSA and succinate dehydrogenase (SDH) activity as well as mitochondrial citrate synthase (CS) activity and complex III (CIII) activities. TRT + RT demonstrated a robust 27.5% increase in average fiber CSA compared with a -9% decrease following TRT only (P = 0.01). GLUT4 protein expression was elevated in the TRT + RT group compared with TRT only (P = 0.005). Total Akt (P = 0.06) and phosphorylated Akt Ser389 (P = 0.049) were also elevated in the TRT + RT group. Mitochondrial activity of SDH (P = 0.03) and CS (P = 0.006) increased in the TRT + RT group, with no changes in the TRT-only group. Sixteen weeks of TRT with RT resulted in fiber hypertrophy and beneficial changes in markers of skeletal muscle health and function.NEW & NOTEWORTHY Fiber cross-sectional area (CSA), protein expression, mitochondrial citrate synthase (CS), and succinate dehydrogenase (SDH) were measured following 16 wk of low-dose testosterone replacement therapy (TRT) with and without electrically evoked resistance training (RT) in men with spinal cord injury (SCI). Fiber CSA and protein expression of total GLUT4, total Akt, and phosphorylated Akt increased following TRT + RT but not in the TRT-only group. Mitochondrial CS and SDH increased after TRT + RT but not in TRT-only group.
Collapse
Affiliation(s)
- Ashraf S Gorgey
- Spinal Cord Injury and Disorders Center, Hunter Holmes McGuire Veterans Affairs Medical Center, Richmond, Virginia.,Virginia Commonwealth University, Department of Physical Medicine and Rehabilitation, Richmond, Virginia
| | - Zachary A Graham
- Birmingham Veterans Affairs Medical Center, Birmingham, Alabama.,Department of Cell, Developmental, and Integrative Biology, University of Alabama-Birmingham, Birmingham, Alabama
| | - Qun Chen
- Medical Service, Hunter Holmes McGuire Veterans Affairs Medical Center, Richmond, Virginia.,Division of Cardiology, Department of Internal Medicine, Pauley Heart Center Virginia Commonwealth University, Richmond, Virginia
| | - Jeannie Rivers
- Surgery Service, Hunter Holmes McGuire Veterans Affairs Medical Center, Richmond, Virginia
| | - Robert A Adler
- Endocrinology Service, Hunter Holmes McGuire Veterans Affairs Medical Center, Richmond, Virginia.,Endocrine Division, Virginia Commonwealth University School of Medicine¸ Richmond, Virginia
| | - Edward J Lesnefsky
- Medical Service, Hunter Holmes McGuire Veterans Affairs Medical Center, Richmond, Virginia.,Division of Cardiology, Department of Internal Medicine, Pauley Heart Center Virginia Commonwealth University, Richmond, Virginia
| | - Christopher P Cardozo
- Center for the Medical Consequences of Spinal Cord Injury, James J. Peters Veterans Affairs Medical Center, Bronx, New York.,Icahn School of Medicine at Mt. Sinai, New York, New York
| |
Collapse
|
34
|
Holman ME, Gorgey AS. Testosterone and Resistance Training Improve Muscle Quality in Spinal Cord Injury. Med Sci Sports Exerc 2020; 51:1591-1598. [PMID: 30845047 DOI: 10.1249/mss.0000000000001975] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
PURPOSE Spinal cord injury (SCI) negatively impacts muscle quality and testosterone levels. Resistance training (RT) has been shown to increase muscle cross-sectional area (CSA) after SCI, whereas testosterone replacement therapy (TRT) has been shown to improve muscle quality in other populations. The purpose of this pilot study was to examine if the combined effects of these interventions, TRT + RT, may maximize the beneficial effects on muscle quality after SCI. METHODS Twenty-two SCI subjects randomized into either a TRT + RT (n = 11) or TRT (n = 11) intervention for 16 wk. Muscle quality measured by peak torque (PT) at speeds of 0°·s (PT-0°), 60°·s (PT-60°), 90°·s (PT-90°), and 180°·s (PT-180°), knee extensor CSA, specific tension, and contractile speed (rise time [RTi], and half-time to relaxation [½TiR]) was assessed for each limb at baseline and postintervention using 2 × 2 mixed models. RESULTS After 16 wk, subjects in the TRT + RT group increased PT-0° (48.4%, P = 0.017), knee extensor CSA (30.8%, P < 0.0001), and RTi (17.7%, P = 0.012); with no significant changes observed in the TRT group. Regardless of the intervention, changes to PT-60° (28.4%, P = 0.020), PT-90° (26.1%, P = 0.055), and PT-180° (20.6%, P = 0.09) for each group were similar. CONCLUSIONS The addition of mechanical stress via RT to TRT maximizes improvements to muscle quality after complete SCI when compared with TRT administered alone. Our evidence shows that this intervention increases muscle size and strength while also improving muscle contractile properties.
Collapse
Affiliation(s)
- Matthew E Holman
- Spinal Cord Injury and Disorders, Hunter Holmes McGuire VA Medical Center, Richmond, VA
| | | |
Collapse
|
35
|
Chandrasekaran S, Davis J, Bersch I, Goldberg G, Gorgey AS. Electrical stimulation and denervated muscles after spinal cord injury. Neural Regen Res 2020; 15:1397-1407. [PMID: 31997798 PMCID: PMC7059583 DOI: 10.4103/1673-5374.274326] [Citation(s) in RCA: 40] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
Spinal cord injury (SCI) population with injury below T10 or injury to the cauda equina region is characterized by denervated muscles, extensive muscle atrophy, infiltration of intramuscular fat and formation of fibrous tissue. These morphological changes may put individuals with SCI at higher risk for developing other diseases such as various cardiovascular diseases, diabetes, obesity and osteoporosis. Currently, there is no available rehabilitation intervention to rescue the muscles or restore muscle size in SCI individuals with lower motor neuron denervation. We, hereby, performed a review of the available evidence that supports the use of electrical stimulation in restoration of denervated muscle following SCI. Long pulse width stimulation (LPWS) technique is an upcoming method of stimulating denervated muscles. Our primary objective is to explore the best stimulation paradigms (stimulation parameters, stimulation technique and stimulation wave) to achieve restoration of the denervated muscle. Stimulation parameters, such as the pulse duration, need to be 100–1000 times longer than in innervated muscles to achieve desirable excitability and contraction. The use of electrical stimulation in animal and human models induces muscle hypertrophy. Findings in animal models indicate that electrical stimulation, with a combination of exercise and pharmacological interventions, have proven to be effective in improving various aspects like relative muscle weight, muscle cross sectional area, number of myelinated regenerated fibers, and restoring some level of muscle function. Human studies have shown similar outcomes, identifying the use of LPWS as an effective strategy in increasing muscle cross sectional area, the size of muscle fibers, and improving muscle function. Therefore, displaying promise is an effective future stimulation intervention. In summary, LPWS is a novel stimulation technique for denervated muscles in humans with SCI. Successful studies on LPWS of denervated muscles will help in translating this stimulation technique to the clinical level as a rehabilitation intervention after SCI.
Collapse
Affiliation(s)
| | - John Davis
- Spinal Cord Injury and Disorders, Hunter Holmes McGuire VA Medical Center, Richmond, VA, USA
| | - Ines Bersch
- Swiss Paraplegic Centre, Nottwil, Switzerland; Institute of Clinical Sciences, Department of Orthopedics at the University of Gothenburg, Gothenburg, Sweden
| | - Gary Goldberg
- Department of Physical Medicine and Rehabilitation, Virginia Commonwealth University; Electrodiagnostic Center, Hunter Holmes McGuire VA Medical Center, Richmond, VA, USA
| | - Ashraf S Gorgey
- Spinal Cord Injury and Disorders, Hunter Holmes McGuire VA Medical Center; Department of Physical Medicine and Rehabilitation, Virginia Commonwealth University, Richmond, VA, USA
| |
Collapse
|
36
|
Morse LR, Biering-Soerensen F, Carbone LD, Cervinka T, Cirnigliaro CM, Johnston TE, Liu N, Troy KL, Weaver FM, Shuhart C, Craven BC. Bone Mineral Density Testing in Spinal Cord Injury: 2019 ISCD Official Position. J Clin Densitom 2019; 22:554-566. [PMID: 31501005 DOI: 10.1016/j.jocd.2019.07.012] [Citation(s) in RCA: 55] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/25/2019] [Accepted: 07/29/2019] [Indexed: 02/06/2023]
Abstract
Spinal cord injury (SCI) causes rapid osteoporosis that is most severe below the level of injury. More than half of those with motor complete SCI will experience an osteoporotic fracture at some point following their injury, with most fractures occurring at the distal femur and proximal tibia. These fractures have devastating consequences, including delayed union or nonunion, cellulitis, skin breakdown, lower extremity amputation, and premature death. Maintaining skeletal integrity and preventing fractures is imperative following SCI to fully benefit from future advances in paralysis cure research and robotic-exoskeletons, brain computer interfaces and other evolving technologies. Clinical care has been previously limited by the lack of consensus derived guidelines or standards regarding dual-energy X-ray absorptiometry-based diagnosis of osteoporosis, fracture risk prediction, or monitoring response to therapies. The International Society of Clinical Densitometry convened a task force to establish Official Positions for bone density assessment by dual-energy X-ray absorptiometry in individuals with SCI of traumatic or nontraumatic etiology. This task force conducted a series of systematic reviews to guide the development of evidence-based position statements that were reviewed by an expert panel at the 2019 Position Development Conference in Kuala Lumpur, Malaysia. The resulting the International Society of Clinical Densitometry Official Positions are intended to inform clinical care and guide the diagnosis of osteoporosis as well as fracture risk management of osteoporosis following SCI.
Collapse
Affiliation(s)
- Leslie R Morse
- Department of Rehabilitation Medicine, University of Minnesota School of Medicine, Minneapolis, MN, USA.
| | - Fin Biering-Soerensen
- Clinic for Spinal Cord Injuries, Neuroscience Centre, Rigshospitalet, University of Copenhagen, Copenhagen, Denmark
| | - Laura D Carbone
- Charlie Norwood Veterans Affairs Medical Center, Augusta, GA, USA; Department of Medicine, Medical College of Georgia, Augusta University, Augusta, GA, USA
| | - Tomas Cervinka
- Department of Physiotherapy and Rehabilitation, Faculty of Health and Welfare, Satakunta University of Applied Sciences, Pori, Finland
| | - Christopher M Cirnigliaro
- Department of Veterans Affairs Rehabilitation Research & Development Service National Center for the Medical Consequences of Spinal Cord Injury, James J. Peters Veterans Affairs Medical Center, Bronx, NY, USA
| | - Therese E Johnston
- Department of Physical Therapy, Jefferson College of Rehabilitation Sciences, Thomas Jefferson University, Philadelphia, PA
| | - Nan Liu
- Department of Rehabilitation Medicine and Osteoporosis and Metabolic Bone Disease Center, Peking University Third Hospital, Beijing, China
| | - Karen L Troy
- Department of Biomedical Engineering, Worcester Polytechnic Institute, Worcester, MA, USA
| | - Frances M Weaver
- Center of Innovation for Complex Chronic Healthcare (CINCCH), Health Services Research & Development, Department of Veterans Affairs, Hines VA Hospital, Hines, IL, USA; Department of Public Health Sciences, Stritch School of Medicine, Loyola University, Maywood, IL, USA
| | - Christopher Shuhart
- Swedish Bone Health and Osteoporosis Center, Swedish Medical Group, Seattle WA, USA
| | - Beverley C Craven
- Neural Engineering and Therapeutics Team, KITE Research Institute - University Health Network, Department of Medicine, University of Toronto, Toronto, Ontario Canada
| |
Collapse
|
37
|
Gorgey AS, Khalil RE, Gill R, Gater DR, Lavis TD, Cardozo CP, Adler RA. Low-Dose Testosterone and Evoked Resistance Exercise after Spinal Cord Injury on Cardio-Metabolic Risk Factors: An Open-Label Randomized Clinical Trial. J Neurotrauma 2019; 36:2631-2645. [PMID: 30794084 DOI: 10.1089/neu.2018.6136] [Citation(s) in RCA: 48] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
The purpose of the work is to investigate the effects of low-dose testosterone replacement therapy (TRT) and evoked resistance training (RT) on body composition and metabolic variables after spinal cord injury (SCI). Twenty-two individuals with chronic motor complete SCI (ages 18-50 years) were randomly assigned to either TRT+RT (n = 11) or TRT (n = 11) for 16 weeks following a 4 -week delayed entry period. TRT+RT men underwent twice weekly progressive RT using electrical stimulation with ankle weights. TRT was administered via testosterone patches (2-6 mg/day). Body composition was tested using anthropometrics, dual energy x-ray absorptiometry, and magnetic resonance imaging. After an overnight fast, basal metabolic rate (BMR), lipid panel, serum testosterone, adiponectin, inflammatory and anabolic biomarkers (insulin-like growth factor-1 and insulin-like growth factor-binding protein 3 [IGFBP-3]), glucose effectiveness (Sg), and insulin sensitivity (Si) were measured. Total body lean mass (LM; 2.7 kg, p < 0.0001), whole muscle (p < 0.0001), and whole muscle knee extensor cross-sectional areas (CSAs; p < 0.0001) increased in the TRT+RT group, with no changes in the TRT group. Visceral adiposity decreased (p = 0.049) in the TRT group, with a trend in the TRT+RT (p = 0.07) group. There was a trend (p = 0.050) of a 14-17% increase in BMR following TRT+RT. Sg showed a trend (p = 0.07) to improvement by 28.5-31.5% following both interventions. IGFBP-3 increased (p = 0.0001) while IL-6 decreased (p = 0.039) following both interventions, and TRT+RT suppressed adiponectin (p = 0.024). TRT+RT resulted in an increase in LM and whole thigh and knee extensor muscle CSAs, with an increase in BMR and suppressed adiponectin. Low-dose TRT may mediate modest effects on visceral adipose tissue, Sg, IGFBP-3, and IL-6, independent of changes in LM.
Collapse
Affiliation(s)
- Ashraf S Gorgey
- Spinal Cord Injury and Disorders Center, Hunter Holmes McGuire VA Medical Center, Richmond, Virginia
- Department of Physical Medicine and Rehabilitation, Virginia Commonwealth University, Richmond, Virginia
| | - Refka E Khalil
- Spinal Cord Injury and Disorders Center, Hunter Holmes McGuire VA Medical Center, Richmond, Virginia
| | - Ranjodh Gill
- Endocrinology Service, Hunter Holmes McGuire VA Medical Center, Richmond, Virginia
- Endocrine Division, Virginia Commonwealth University, Richmond, Virginia
| | - David R Gater
- Department of Physical Medicine and Rehabilitation, Penn State Milton S. Hershey Medical Center, Hershey, Pennsylvania
| | - Timothy D Lavis
- Spinal Cord Injury and Disorders Center, Hunter Holmes McGuire VA Medical Center, Richmond, Virginia
- Department of Physical Medicine and Rehabilitation, Virginia Commonwealth University, Richmond, Virginia
| | - Christopher P Cardozo
- National Center for the Medical Consequences of Spinal Cord Injury, James J. Peters VA Medical Center, Bronx, New York
- Icahn School of Medicine at Mt. Sinai, New York, New York
| | - Robert A Adler
- Endocrinology Service, Hunter Holmes McGuire VA Medical Center, Richmond, Virginia
- Endocrine Division, Virginia Commonwealth University, Richmond, Virginia
| |
Collapse
|
38
|
Gorgey AS, Khalil RE, Davis JC, Carter W, Gill R, Rivers J, Khan R, Goetz LL, Castillo T, Lavis T, Sima AP, Lesnefsky EJ, Cardozo CC, Adler RA. Skeletal muscle hypertrophy and attenuation of cardio-metabolic risk factors (SHARC) using functional electrical stimulation-lower extremity cycling in persons with spinal cord injury: study protocol for a randomized clinical trial. Trials 2019; 20:526. [PMID: 31443727 PMCID: PMC6708188 DOI: 10.1186/s13063-019-3560-8] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2019] [Accepted: 07/06/2019] [Indexed: 12/16/2022] Open
Abstract
Background Persons with spinal cord injury (SCI) are at heightened risks of developing unfavorable cardiometabolic consequences due to physical inactivity. Functional electrical stimulation (FES) and surface neuromuscular electrical stimulation (NMES)-resistance training (RT) have emerged as effective rehabilitation methods that can exercise muscles below the level of injury and attenuate cardio-metabolic risk factors. Our aims are to determine the impact of 12 weeks of NMES + 12 weeks of FES-lower extremity cycling (LEC) compared to 12 weeks of passive movement + 12 weeks of FES-LEC on: (1) oxygen uptake (VO2), insulin sensitivity, and glucose disposal in adults with SCI; (2) skeletal muscle size, intramuscular fat (IMF), and visceral adipose tissue (VAT); and (3) protein expression of energy metabolism, protein molecules involved in insulin signaling, muscle hypertrophy, and oxygen uptake and electron transport chain (ETC) activities. Methods/Design Forty-eight persons aged 18–65 years with chronic (> 1 year) SCI/D (AIS A-C) at the C5-L2 levels, equally sub-grouped by cervical or sub-cervical injury levels and time since injury, will be randomized into either the NMES + FES group or Passive + FES (control group). The NMES + FES group will undergo 12 weeks of evoked RT using twice-weekly NMES and ankle weights followed by twice-weekly progressive FES-LEC for an additional 12 weeks. The control group will undergo 12 weeks of passive movement followed by 12 weeks of progressive FES-LEC. Measurements will be performed at baseline (B; week 0), post-intervention 1 (P1; week 13), and post-intervention 2 (P2; week 25), and will include: VO2 measurements, insulin sensitivity, and glucose effectiveness using intravenous glucose tolerance test; magnetic resonance imaging to measure muscle, IMF, and VAT areas; muscle biopsy to measure protein expression and intracellular signaling; and mitochondrial ETC function. Discussion Training through NMES + RT may evoke muscle hypertrophy and positively impact oxygen uptake, insulin sensitivity, and glucose effectiveness. This may result in beneficial outcomes on metabolic activity, body composition profile, mitochondrial ETC, and intracellular signaling related to insulin action and muscle hypertrophy. In the future, NMES-RT may be added to FES-LEC to improve the workloads achieved in the rehabilitation of persons with SCI and further decrease muscle wasting and cardio-metabolic risks. Trial registration ClinicalTrials.gov, NCT02660073. Registered on 21 Jan 2016.
Collapse
Affiliation(s)
- Ashraf S Gorgey
- Spinal Cord Injury & Disorders Service, Hunter Holmes McGuire VA Medical Center, Richmond, VA, USA. .,Department of Physical Medicine & Rehabilitation, Virginia Commonwealth University, Richmond, VA, USA.
| | - Refka E Khalil
- Spinal Cord Injury & Disorders Service, Hunter Holmes McGuire VA Medical Center, Richmond, VA, USA
| | - John C Davis
- Spinal Cord Injury & Disorders Service, Hunter Holmes McGuire VA Medical Center, Richmond, VA, USA
| | - William Carter
- Department of Physical Medicine & Rehabilitation, Virginia Commonwealth University, Richmond, VA, USA
| | - Ranjodh Gill
- Endocrinology Service, Hunter Holmes McGuire VA Medical Center, Richmond, VA, USA.,Endocrine Division, School of Medicine Virginia Commonwealth University, Richmond, VA, USA
| | - Jeannie Rivers
- Endocrine Division, School of Medicine Virginia Commonwealth University, Richmond, VA, USA
| | - Rehan Khan
- Radiology Service, Hunter Holmes McGuire VA Medical Center, Richmond, VA, USA
| | - Lance L Goetz
- Spinal Cord Injury & Disorders Service, Hunter Holmes McGuire VA Medical Center, Richmond, VA, USA.,Department of Physical Medicine & Rehabilitation, Virginia Commonwealth University, Richmond, VA, USA
| | - Teodoro Castillo
- Spinal Cord Injury & Disorders Service, Hunter Holmes McGuire VA Medical Center, Richmond, VA, USA.,Department of Physical Medicine & Rehabilitation, Virginia Commonwealth University, Richmond, VA, USA
| | - Timothy Lavis
- Spinal Cord Injury & Disorders Service, Hunter Holmes McGuire VA Medical Center, Richmond, VA, USA.,Department of Physical Medicine & Rehabilitation, Virginia Commonwealth University, Richmond, VA, USA
| | - Adam P Sima
- Department of Biostatistics, School of Medicine Virginia Commonwealth University, Richmond, VA, USA
| | - Edward J Lesnefsky
- Cardiology Service, Hunter Holmes McGuire VA Medical Center, Richmond, VA, USA.,Division of Cardiology, Department of Internal Medicine, Pauley Heart Center Virginia Commonwealth University, Richmond, VA, USA
| | - Christopher C Cardozo
- Center for the Medical Consequences of Spinal Cord Injury, James J Peters VA Medical Center, Bronx, NY, USA.,Departments of Medicine and Rehabilitation Medicine, Icahn School of Medicine, New York, NY, USA
| | - Robert A Adler
- Endocrinology Service, Hunter Holmes McGuire VA Medical Center, Richmond, VA, USA.,Endocrine Division, School of Medicine Virginia Commonwealth University, Richmond, VA, USA
| |
Collapse
|
39
|
Rahimi M, Torkaman G, Ghabaee M, Ghasem-Zadeh A. Advanced weight-bearing mat exercises combined with functional electrical stimulation to improve the ability of wheelchair-dependent people with spinal cord injury to transfer and attain independence in activities of daily living: a randomized controlled trial. Spinal Cord 2019; 58:78-85. [PMID: 31312016 DOI: 10.1038/s41393-019-0328-7] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2019] [Revised: 07/01/2019] [Accepted: 07/03/2019] [Indexed: 11/09/2022]
Abstract
STUDY DESIGN Randomized controlled trial. OBJECTIVE To determine the effects of advanced weight-bearing mat exercises (AWMEs) with/without functional electrical stimulation (FES) of the quadriceps and gastrocnemius muscles on the ability of wheelchair-dependent people with spinal cord injury (SCI) to transfer and attain independence in activities of daily living (ADLs). SETTING An outpatient clinic, Iran. METHODS People with traumatic chronic paraplegia (N = 16) were randomly allocated to three groups. The exercise group (EX; N = 5) performed AWMEs of quadruped unilateral reaching and tall-kneeling for 24 weeks (3 days/week). Sessions were increased from 10 min to 54 min over the 24-week period. The exercise-FES group (EX + FES; N = 5) performed AWMEs simultaneously with FES of the quadriceps and gastrocnemius muscles. The control group performed no exercise and no FES (N = 6). The primary outcomes were the total Spinal Cord Independence Measure-III (SCIM-III) to reflect independence with ADL, and the sum of the four SCIM-III transfer items to reflect ability to transfer. There were six other outcomes. RESULTS The mean (95% CI) between-group differences of the four transfer items of the SCIM-III for the EX vs. control group was 1.8 points (0.2-3.4), and for the EX + FES vs. control group was 2 points (0.4-3.6). The equivalent differences for the total SCIM-III scores were 2.7 points (-0.6-6.0) and 4.1 points (0.8-7.4), respectively. There were no significant between-group differences for any other outcomes. CONCLUSIONS Advanced weight-bearing mat exercises improve the ability of wheelchair-dependent people with SCI to transfer and attain independence in ADL.
Collapse
Affiliation(s)
- Mostafa Rahimi
- Department of Physiotherapy, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran
| | - Giti Torkaman
- Department of Physiotherapy, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran.
| | - Mojdeh Ghabaee
- Iranian Center of Neurological Research, Neuroscience Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Ali Ghasem-Zadeh
- Departments of Medicine and Endocrinology, Austin Health, The University of Melbourne, Melbourne, VIC, Australia
| |
Collapse
|
40
|
Berenpas F, Weerdesteyn V, Geurts AC, van Alfen N. Long-term use of implanted peroneal functional electrical stimulation for stroke-affected gait: the effects on muscle and motor nerve. J Neuroeng Rehabil 2019; 16:86. [PMID: 31292003 PMCID: PMC6621964 DOI: 10.1186/s12984-019-0556-2] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2019] [Accepted: 06/21/2019] [Indexed: 12/13/2022] Open
Abstract
BACKGROUND Peripheral changes to muscle and motor nerves occur following stroke, which may further impair functional capacity. We investigated whether a year-long use of an implanted peroneal FES system reverses stroke-related changes in muscles and motor nerves in people with foot drop in the chronic phase after supratentorial stroke. METHODS Thirteen persons with a chronic stroke (mean age 56.1 years, median Fugl-Meyer Assessment leg score 71%) were included and received an implanted peroneal FES system (ActiGait®). Quantitative muscle ultrasound (QMUS) images were obtained bilaterally from three leg muscles (i.e. tibialis anterior, rectus femoris, gastrocnemius). Echogenicity (muscle ultrasound gray value) and muscle thickness were assessed over a one-year follow-up and compared to age-, sex-, height- and weight-corrected reference values. Compound motor action potentials (CMAPs) and motor evoked potentials (MEPs) were obtained from the tibialis anterior muscle. Generalized estimated equation modeling was used to assess changes in QMUS, CMAPs and MEPs outcomes over the follow-up period. RESULTS Echogenicity of the tibialis anterior decreased significantly during the follow-up on the paretic side. Z-scores changed from 0.88 at baseline to - 0.15 after 52 weeks. This was accompanied by a significant increase in muscle thickness on the paretic side, where z-scores changed from - 0.32 at baseline to 0.48 after 52 weeks. Echogenicity of the rectus femoris normalized on both the paretic and non-paretic side (z-scores changed from - 1.09 and - 1.51 to 0.14 and - 0.49, respectively). Amplitudes of CMAP and MEP (normalized to CMAP) were reduced during follow-up, particularly on the paretic side (ΔCMAP = 20% and ΔMEP = 14%). CONCLUSIONS We show that the structural changes to muscles following stroke are reversible with FES and that these changes might not be limited to electrically stimulated muscles. No evidence for improvement of the motor nerves was found.
Collapse
Affiliation(s)
- Frank Berenpas
- Department of Rehabilitation, Donders Institute for Brain, Cognition and Behaviour, Radboud University Medical Center, P.O. Box 9101, 6500, HB, Nijmegen, The Netherlands
| | - Vivian Weerdesteyn
- Department of Rehabilitation, Donders Institute for Brain, Cognition and Behaviour, Radboud University Medical Center, P.O. Box 9101, 6500, HB, Nijmegen, The Netherlands
| | - Alexander C Geurts
- Department of Rehabilitation, Donders Institute for Brain, Cognition and Behaviour, Radboud University Medical Center, P.O. Box 9101, 6500, HB, Nijmegen, The Netherlands.
| | - Nens van Alfen
- Department of Neurology and Clinical Neurophysiology, Donders Institute for Brain, Cognition and Behaviour, Radboud University Medical Center, P.O. Box 9101, 6500, HB, Nijmegen, The Netherlands
| |
Collapse
|
41
|
Momeni K, Ramanujam A, Garbarini EL, Forrest GF. Multi-muscle electrical stimulation and stand training: Effects on standing. J Spinal Cord Med 2019; 42:378-386. [PMID: 29447105 PMCID: PMC6522918 DOI: 10.1080/10790268.2018.1432311] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/18/2022] Open
Abstract
OBJECTIVE To examine the biomechanical and neuromuscular effects of a longitudinal multi-muscle electrical stimulation (submaximal intensities) training of the lower limbs combined with/without activity-based stand training, on the recovery of stability and function for one individual with spinal cord injury (SCI). DESIGN Single-subject, longitudinal study. SETTING Neuroplasticity laboratory. PARTICIPANT A 34-year-old male, with sensory- and motor-complete SCI (C5/C6). INTERVENTIONS Two consecutive interventions: 61 hours of supine, lower-limb ES (ES-alone) and 51 hours of ES combined with stand training using an overhead body-weight support system (ST + ES). OUTCOME MEASURES Clinical measures, trunk stability, and muscle activity were assessed and compared across time points. Trunk Stability Limit (TSL) determined improvements in trunk independence. RESULTS Functional clinical values increased after both interventions, with further increases post ST + ES. Post ES-alone, trunk stability was maintained at 81% body-weight (BW) loading before failure; post ST + ES, BW loading increased to 95%. TSL values decreased post ST + ES (TSLA/P=54.0 kg.cm, TSLM/L=14.5 kg.cm), compared to ES-alone (TSLA/P=8.5 kg.cm, TSLM/L=3.9 kg.cm). Trunk muscle activity decreased post ST + ES training, compared to ES-alone. CONCLUSION Neuromuscular and postural trunk control dramatically improved following the multi-muscle ES of the lower limbs with stand training. Multi-muscle ES training paradigm of the lower limb, using traditional parameters, may contribute to the functional recovery of the trunk.
Collapse
Affiliation(s)
- Kamyar Momeni
- Human Performance and Engineering Research, Kessler Foundation, New Jersey, USA,Department of Physical Medicine and Rehabilitation, Rutgers New Jersey Medical School, New Jersey, USA
| | - Arvind Ramanujam
- Human Performance and Engineering Research, Kessler Foundation, New Jersey, USA
| | - Erica L. Garbarini
- Human Performance and Engineering Research, Kessler Foundation, New Jersey, USA
| | - Gail F. Forrest
- Human Performance and Engineering Research, Kessler Foundation, New Jersey, USA,Department of Physical Medicine and Rehabilitation, Rutgers New Jersey Medical School, New Jersey, USA,Correspondence to: Gail F. Forrest, Ph.D., Human Performance and Engineering Research, Kessler Foundation, 1199 Pleasant Valley Way, West Orange, NJ07052, USA.
| |
Collapse
|
42
|
Barstow TJ. Understanding near infrared spectroscopy and its application to skeletal muscle research. J Appl Physiol (1985) 2019; 126:1360-1376. [PMID: 30844336 DOI: 10.1152/japplphysiol.00166.2018] [Citation(s) in RCA: 256] [Impact Index Per Article: 42.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Near infrared spectroscopy (NIRS) is a powerful noninvasive tool with which to study the matching of oxygen delivery to oxygen utilization and the number of new publications utilizing this technique has increased exponentially in the last 20 yr. By measuring the state of oxygenation of the primary heme compounds in skeletal muscle (hemoglobin and myoglobin), greater understanding of the underlying control mechanisms that couple perfusive and diffusive oxygen delivery to oxidative metabolism can be gained from the laboratory to the athletic field to the intensive care unit or emergency room. However, the field of NIRS has been complicated by the diversity of instrumentation, the inherent limitations of some of these technologies, the associated diversity of terminology, and a general lack of standardization of protocols. This Cores of Reproducibility in Physiology (CORP) will describe in basic but important detail the most common methodologies of NIRS, their strengths and limitations, and discuss some of the potential confounding factors that can affect the quality and reproducibility of NIRS data. Recommendations are provided to reduce the variability and errors in data collection, analysis, and interpretation. The goal of this CORP is to provide readers with a greater understanding of the methodology, limitations, and best practices so as to improve the reproducibility of NIRS research in skeletal muscle.
Collapse
Affiliation(s)
- Thomas J Barstow
- Department of Kinesiology, Kansas State University , Manhattan, Kansas
| |
Collapse
|
43
|
Gorgey AS, Witt O, O’Brien L, Cardozo C, Chen Q, Lesnefsky EJ, Graham ZA. Mitochondrial health and muscle plasticity after spinal cord injury. Eur J Appl Physiol 2018; 119:315-331. [DOI: 10.1007/s00421-018-4039-0] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2018] [Accepted: 11/22/2018] [Indexed: 01/15/2023]
|
44
|
BOCHKEZANIAN VANESA, NEWTON ROBERTU, TRAJANO GABRIELS, BLAZEVICH ANTHONYJ. Effects of Neuromuscular Electrical Stimulation in People with Spinal Cord Injury. Med Sci Sports Exerc 2018; 50:1733-1739. [DOI: 10.1249/mss.0000000000001637] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
|
45
|
Li J, Polston KFL, Eraslan M, Bickel CS, Windham ST, McLain AB, Oster RA, Bamman MM, Yarar‐Fisher C. A high-protein diet or combination exercise training to improve metabolic health in individuals with long-standing spinal cord injury: a pilot randomized study. Physiol Rep 2018; 6:e13813. [PMID: 30156033 PMCID: PMC6113133 DOI: 10.14814/phy2.13813] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2018] [Accepted: 07/02/2018] [Indexed: 11/24/2022] Open
Abstract
We compared the effects of an 8-week iso-caloric high-protein (HP) diet versus a combined exercise regimen (Comb-Ex) in individuals with long-standing spinal cord injury (SCI). Effects on metabolic profiles, markers of inflammation, and signaling proteins associated with glucose transporter 4 (GLUT-4) translocation in muscles were evaluated. Eleven participants with SCI completed the study (HP diet: n = 5; Comb-Ex: n = 6; 46 ± 8 years; C5-T12 levels; American Spinal Injury Association Impairment Scale A or B). The Comb-Ex regimen included upper body resistance training (RT) and neuromuscular electrical stimulation-induced-RT for paralytic quadriceps muscles, interspersed with high-intensity (80-90% VO2 peak) arm cranking exercises 3 days/week. The HP diet included ~30% total energy as protein (carbohydrate to protein ratio <1.5, ~30% energy from fat). Oral glucose tolerance tests and muscle biopsies of the vastus lateralis (VL) and deltoid muscles were performed before and after the trial. Fasting plasma glucose levels decreased in the Comb-Ex (P < 0.05) group compared to the HP-diet group. A decrease in areas under the curve for insulin and TNF-α concentrations was observed for all participants regardless of group assignment (time effect, P < 0.05). Although both groups exhibited a quantitative increase in insulin sensitivity as measured by the Matsuda Index, the change was clinically meaningful only in the HP diet group (HP diet: pre, 4.6; post, 11.6 vs. Comb-Ex: pre, 3.3; post, 4.6). No changes were observed in proteins associated with GLUT-4 translocation in VL or deltoid muscles. Our results suggest that the HP-diet and Comb-Ex regimen may improve insulin sensitivity and decrease TNF-α concentrations in individuals with SCI.
Collapse
Affiliation(s)
- Jia Li
- Physical Medicine and RehabilitationUniversity of Alabama at BirminghamBirminghamAlabama
| | - Keith F. L. Polston
- University of Tennessee Health Science Center College of MedicineMemphisTennessee
| | - Mualla Eraslan
- Physical Medicine and RehabilitationUniversity of Alabama at BirminghamBirminghamAlabama
| | - C. Scott Bickel
- Physical Therapy and RehabilitationSamford UniversityBirminghamAlabama
| | - Samuel T. Windham
- Department of SurgeryUniversity of Alabama at BirminghamBirminghamAlabama
- UAB Center for Exercise MedicineUniversity of Alabama at BirminghamBirminghamAlabama
| | - Amie B. McLain
- Physical Medicine and RehabilitationUniversity of Alabama at BirminghamBirminghamAlabama
- UAB Center for Exercise MedicineUniversity of Alabama at BirminghamBirminghamAlabama
| | - Robert A. Oster
- Division of Preventive MedicineDepartment of MedicineUniversity of Alabama at BirminghamBirminghamAlabama
| | - Marcas M. Bamman
- UAB Center for Exercise MedicineUniversity of Alabama at BirminghamBirminghamAlabama
- Department of Cell, Developmental, and Integrative BiologyUniversity of Alabama at BirminghamBirminghamAlabama
- Geriatric Research, Education, and Clinical CenterBirmingham VA Medical CenterBirminghamAlabama
| | - Ceren Yarar‐Fisher
- Physical Medicine and RehabilitationUniversity of Alabama at BirminghamBirminghamAlabama
- UAB Center for Exercise MedicineUniversity of Alabama at BirminghamBirminghamAlabama
| |
Collapse
|
46
|
Yarar-Fisher C, Polston KFL, Eraslan M, Henley KY, Kinikli GI, Bickel CS, Windham ST, McLain AB, Oster RA, Bamman MM. Paralytic and nonparalytic muscle adaptations to exercise training versus high-protein diet in individuals with long-standing spinal cord injury. J Appl Physiol (1985) 2018; 125:64-72. [PMID: 29494292 PMCID: PMC6086973 DOI: 10.1152/japplphysiol.01029.2017] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2017] [Revised: 01/31/2018] [Accepted: 02/28/2018] [Indexed: 02/08/2023] Open
Abstract
This study compares the effects of an 8-wk isocaloric high-protein (HP) diet versus a combination exercise (Comb-Ex) regimen on paralytic vastus lateralis (VL) and nonparalytic deltoid muscle in individuals with long-standing spinal cord injury (SCI). Fiber-type distribution, cross-sectional area (CSA), levels of translation initiation signaling proteins (Erk-1/2, Akt, p70S6K1, 4EBP1, RPS6, and FAK), and lean thigh mass were analyzed at baseline and after the 8-wk interventions. A total of 11 participants (C5-T12 levels, 21.8 ± 6.3 yr postinjury; 6 Comb-Ex and 5 HP diet) completed the study. Comb-Ex training occurred 3 days/wk and consisted of upper body resistance training (RT) in addition to neuromuscular electrical stimulation (NMES)-induced-RT for paralytic VL muscle. Strength training was combined with high-intensity arm-cranking exercises (1-min intervals at 85-90%, V̇o2peak) for improving cardiovascular endurance. For the HP diet intervention, protein and fat each comprised 30%, and carbohydrate comprised 40% of total energy. Clinical tests and muscle biopsies were performed 24 h before and after the last exercise or diet session. The Comb-Ex intervention increased Type IIa myofiber distribution and CSA in VL muscle and Type I and IIa myofiber CSA in deltoid muscle. In addition, Comb-Ex increased lean thigh mass, V̇o2peak, and upper body strength ( P < 0.05). These results suggest that exercise training is required to promote favorable changes in paralytic and nonparalytic muscles in individuals with long-standing SCI, and adequate dietary protein consumption alone may not be sufficient to ameliorate debilitating effects of paralysis. NEW & NOTEWORTHY This study is the first to directly compare the effects of an isocaloric high-protein diet and combination exercise training on clinical and molecular changes in paralytic and nonparalytic muscles of individuals with long-standing spinal cord injury. Our results demonstrated that muscle growth and fiber-type alterations can best be achieved when the paralyzed muscle is sufficiently loaded via neuromuscular electrical stimulation-induced resistance training.
Collapse
Affiliation(s)
- Ceren Yarar-Fisher
- Physical Medicine and Rehabilitation, University of Alabama at Birmingham , Birmingham, Alabama
- University of Alabama at Birmingham Center for Exercise Medicine, University of Alabama at Birmingham , Birmingham, Alabama
| | - Keith F L Polston
- University of Tennessee Health Science Center College of Medicine , Memphis, Tennessee
| | - Mualla Eraslan
- Physical Medicine and Rehabilitation, University of Alabama at Birmingham , Birmingham, Alabama
| | - Kathryn Y Henley
- Physical Medicine and Rehabilitation, University of Alabama at Birmingham , Birmingham, Alabama
| | - Gizem I Kinikli
- Physical Therapy and Rehabilitation, Hacettepe University , Ankara , Turkey
| | - C Scott Bickel
- Physical Therapy and Rehabilitation, Samford University , Birmingham, Alabama
| | - Samuel T Windham
- Department of Surgery, University of Alabama at Birmingham , Birmingham, Alabama
- University of Alabama at Birmingham Center for Exercise Medicine, University of Alabama at Birmingham , Birmingham, Alabama
| | - Amie B McLain
- Physical Medicine and Rehabilitation, University of Alabama at Birmingham , Birmingham, Alabama
- University of Alabama at Birmingham Center for Exercise Medicine, University of Alabama at Birmingham , Birmingham, Alabama
| | - Robert A Oster
- Department of Medicine/Division of Preventive Medicine, University of Alabama at Birmingham , Birmingham, Alabama
| | - Marcas M Bamman
- Department of Cell, Developmental, and Integrative Biology, University of Alabama at Birmingham , Birmingham, Alabama
- University of Alabama at Birmingham Center for Exercise Medicine, University of Alabama at Birmingham , Birmingham, Alabama
- Geriatric Research, Education, and Clinical Center, Birmingham VA Medical Center , Birmingham, Alabama
| |
Collapse
|
47
|
Gorgey AS, Khalil RE, Lester RM, Dudley GA, Gater DR. Paradigms of Lower Extremity Electrical Stimulation Training After Spinal Cord Injury. J Vis Exp 2018:57000. [PMID: 29443103 PMCID: PMC5912427 DOI: 10.3791/57000] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
Skeletal muscle atrophy, increased adiposity and reduced physical activity are key changes observed after spinal cord injury (SCI) and are associated with numerous cardiometabolic health consequences. These changes are likely to increase the risk of developing chronic secondary conditions and impact the quality of life in persons with SCI. Surface neuromuscular electrical stimulation evoked resistance training (NMES-RT) was developed as a strategy to attenuate the process of skeletal muscle atrophy, decrease ectopic adiposity, improve insulin sensitivity and enhance mitochondrial capacity. However, NMES-RT is limited to only a single muscle group. Involving multiple muscle groups of the lower extremities may maximize the health benefits of training. Functional electrical stimulation-lower extremity cycling (FES-LEC) allows for the activation of 6 muscle groups, which is likely to evoke greater metabolic and cardiovascular adaptation. Appropriate knowledge of the stimulation parameters is key to maximizing the outcomes of electrical stimulation training in persons with SCI. Adopting strategies for long-term use of NMES-RT and FES-LEC during rehabilitation may maintain the integrity of the musculoskeletal system, a pre-requisite for clinical trials aiming to restore walking after injury. The current manuscript presents a combined protocol using NMES-RT prior to FES-LEC. We hypothesize that muscles conditioned for 12 weeks prior to cycling will be capable of generating greater power, cycle against higher resistance and result in greater adaptation in persons with SCI.
Collapse
Affiliation(s)
- Ashraf S Gorgey
- Spinal Cord Injury and Disorders Service, Hunter Holmes McGuire VAMC; Department of Physical Medicine and Rehabilitation, Virginia Commonwealth University;
| | - Refka E Khalil
- Spinal Cord Injury and Disorders Service, Hunter Holmes McGuire VAMC
| | - Robert M Lester
- Spinal Cord Injury and Disorders Service, Hunter Holmes McGuire VAMC
| | - Gary A Dudley
- Deceased, Department of Kinesiology, The University of Georgia
| | - David R Gater
- Department of Physical Medicine and Rehabilitation, Penn State Milton S. Hershey Medical Center
| |
Collapse
|
48
|
O'Brien LC, Chen Q, Savas J, Lesnefsky EJ, Gorgey AS. Skeletal muscle mitochondrial mass is linked to lipid and metabolic profile in individuals with spinal cord injury. Eur J Appl Physiol 2017; 117:2137-2147. [PMID: 28864949 DOI: 10.1007/s00421-017-3687-9] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2017] [Accepted: 07/25/2017] [Indexed: 02/07/2023]
Abstract
PURPOSE Changes in metabolism and body composition after spinal cord injury (SCI) predispose individuals to obesity, type II diabetes, and cardiovascular disease. A link between lean mass and skeletal muscle mitochondrial mass has been reported but it is unknown how skeletal muscle mitochondrial mass and activity impact metabolic health. This study examined the relationship between skeletal muscle mitochondrial mass, activity and metabolic profile in individuals with chronic SCI. METHODS Twenty-two men with motor complete SCI participated in the study. Citrate synthase (CS) and complex III (CIII) activity was measured in vastus lateralis biopsies. Metabolic profile was assessed by intravenous glucose tolerance test, basal metabolic rate (BMR), maximum oxygen uptake (VO2 peak) and blood lipid profile. RESULTS Skeletal muscle CS activity was negatively related to the cholesterol:high density lipoprotein cholesterol (HDL-C) ratio and triglycerides (r = -0.60, p = 0.009; r = -0.64, p = 0.004, respectively). CS activity was positively related to insulin sensitivity and BMR (r = 0.67, p = 0.006; r = 0.64, p = 0.005, respectively). Similar relationships were found for CIII and metabolic profile, but not CIII normalized to CS. Many of the relationships between CS and metabolism remained significant when age, level of injury, or time since injury were accounted for. They also remained significant when CS activity was normalized to total lean mass. CONCLUSIONS These results suggest that an increase in skeletal muscle mitochondrial mass is associated with improved metabolic health independent of age, level of injury, or time since injury in individuals with chronic SCI. This highlights the importance of maintaining and improving mitochondrial health in individuals with SCI.
Collapse
Affiliation(s)
- Laura C O'Brien
- Spinal Cord Injury Research, Spinal Cord Injury and Disorders Service, Hunter Holmes McGuire VA Medical Center, 1201 Broad Rock Blvd, Richmond, VA, 23249, USA
- Department of Physiology and Biophysics, Virginia Commonwealth University, Richmond, VA, USA
| | - Qun Chen
- Division of Cardiology, Department of Medicine, Pauley Heart Center, Virginia Commonwealth University, Richmond, VA, USA
| | - Jeannie Savas
- Surgery, Hunter Holmes McGuire VA Medical Center, Richmond, VA, USA
- Department of Surgery, Virginia Commonwealth University, Richmond, VA, USA
| | - Edward J Lesnefsky
- Department of Physiology and Biophysics, Virginia Commonwealth University, Richmond, VA, USA
- Division of Cardiology, Department of Medicine, Pauley Heart Center, Virginia Commonwealth University, Richmond, VA, USA
- Medical Services, Hunter Holmes McGuire VA Medical Center, Richmond, VA, USA
- Department of Biochemistry and Molecular Biology, Virginia Commonwealth University, Richmond, VA, USA
| | - Ashraf S Gorgey
- Spinal Cord Injury Research, Spinal Cord Injury and Disorders Service, Hunter Holmes McGuire VA Medical Center, 1201 Broad Rock Blvd, Richmond, VA, 23249, USA.
- Department of Physical Medicine and Rehabilitation, Virginia Commonwealth University, Richmond, VA, USA.
| |
Collapse
|
49
|
Gorgey AS, Lester RM, Wade RC, Khalil RE, Khan RK, Anderson ML, Castillo T. A feasibility pilot using telehealth videoconference monitoring of home-based NMES resistance training in persons with spinal cord injury. Spinal Cord Ser Cases 2017; 3:17039. [PMID: 29021917 PMCID: PMC5633749 DOI: 10.1038/scsandc.2017.39] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2017] [Revised: 05/23/2017] [Accepted: 05/30/2017] [Indexed: 12/22/2022] Open
Abstract
INTRODUCTION The objective of the study was to investigate the feasibility and initial efficacy of telehealth communication in conjunction with surface neuromuscular electrical stimulation (NMES) resistance training (RT) to induce muscle hypertrophy. MATERIALS AND METHODS This was a home-based setting of within-subject control design of trained vs controlled limbs. Five men with chronic (>1 year postinjury) motor-complete spinal cord injury (SCI) participated in a twice-weekly telehealth videoconference program using home-based NMES-RT for 8 weeks. Stimulation was applied to the knee extensor muscle group of the trained leg, while the untrained leg served as a control. Participants received real-time feedback to ensure a proper setup of electrodes and stimulator to monitor subject safety throughout the entire training session. Magnetic resonance imaging was used to measure cross-sectional areas (CSAs) and intramuscular fat (IMF) of the whole thigh and individual muscle groups. Average two-way travel time, distance traveled in miles and total cost of gas per mile were calculated. RESULTS Participants had 100% compliance. Trained whole and absolute knee extensor muscle CSA increased by 13% (P=0.002) and 18% (P=0.0002), with no changes in the controlled limb. Absolute knee flexor and adductor CSAs increased by 3% (P=0.02) and 13% (P=0.0001), respectively. Absolute whole thigh and knee extensor IMF CSAs decreased significantly in the trained limb by 14% (P=0.01) and 36% (P=0.0005), respectively, with no changes in controlled limb. DISCUSSION The pilot work documented that using telehealth communication is a safe, feasible and potentially cost-reducing approach for monitoring home-based NMES-RT in persons with chronic SCI. All trained muscles showed detectable muscle hypertrophy with concomitant decrease in ectopic adipose tissue.
Collapse
Affiliation(s)
- Ashraf S Gorgey
- Spinal Cord Injury and Disorders Service, Department of Veterans Affairs, Hunter Holmes McGuire VAMC, Richmond, VA, USA
- Department of Physical Medicine and Rehabilitation, Virginia Commonwealth University, Richmond, VA, USA
| | - Robert M Lester
- Spinal Cord Injury and Disorders Service, Department of Veterans Affairs, Hunter Holmes McGuire VAMC, Richmond, VA, USA
| | - Rodney C Wade
- Spinal Cord Injury and Disorders Service, Department of Veterans Affairs, Hunter Holmes McGuire VAMC, Richmond, VA, USA
- Department of Physical Medicine and Rehabilitation, Virginia Commonwealth University, Richmond, VA, USA
- Radiology Service, Hunter Holmes McGuire VA Medical Center, Richmond, VA, USA
| | - Refka E Khalil
- Spinal Cord Injury and Disorders Service, Department of Veterans Affairs, Hunter Holmes McGuire VAMC, Richmond, VA, USA
| | - Rehan K Khan
- Radiology Service, Hunter Holmes McGuire VA Medical Center, Richmond, VA, USA
| | - Melodie L Anderson
- Spinal Cord Injury and Disorders Service, Department of Veterans Affairs, Hunter Holmes McGuire VAMC, Richmond, VA, USA
| | - Teodoro Castillo
- Spinal Cord Injury and Disorders Service, Department of Veterans Affairs, Hunter Holmes McGuire VAMC, Richmond, VA, USA
| |
Collapse
|
50
|
Erickson ML, Ryan TE, Backus D, McCully KK. Endurance neuromuscular electrical stimulation training improves skeletal muscle oxidative capacity in individuals with motor-complete spinal cord injury. Muscle Nerve 2017; 55:669-675. [PMID: 27576602 DOI: 10.1002/mus.25393] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2016] [Revised: 08/22/2016] [Accepted: 08/29/2016] [Indexed: 12/25/2022]
Abstract
INTRODUCTION Spinal cord injury (SCI) results in skeletal muscle atrophy, increases in intramuscular fat, and reductions in skeletal muscle oxidative capacity. Endurance training elicited with neuromuscular electrical stimulation (NMES) may reverse these changes and lead to improvement in muscle metabolic health. METHODS Fourteen participants with complete SCI performed 16 weeks of home-based endurance NMES training of knee extensor muscles. Skeletal muscle oxidative capacity, muscle composition, and blood metabolic and lipid profiles were assessed pre- and post-training. RESULTS There was an increase in number of contractions performed throughout the duration of training. The average improvement in skeletal muscle oxidative capacity was 119%, ranging from -14% to 387% (P = 0.019). There were no changes in muscle composition or blood metabolic and lipid profiles. CONCLUSION Endurance training improved skeletal muscle oxidative capacity, but endurance NMES of knee extensor muscles did not change blood metabolic and lipid profiles. Muscle Nerve 55: 669-675, 2017.
Collapse
Affiliation(s)
- Melissa L Erickson
- Department of Kinesiology, University of Georgia, 330 River Road, Athens, Georgia, 30602, USA
| | - Terence E Ryan
- Brody School of Medicine, East Carolina University, Greenville, North Carolina, USA
| | - Deborah Backus
- Crawford Research Institute, Shepherd Center Hospital, Atlanta, Georgia, USA
| | - Kevin K McCully
- Department of Kinesiology, University of Georgia, 330 River Road, Athens, Georgia, 30602, USA
| |
Collapse
|