1
|
Alberti D, Piña Marcos JN, Rakhshan S, Protti N, Altieri S, Nuez-Martínez M, Teixidor F, Viñas C, Geninatti Crich S. Cobaltabis(dicarbollide) [ o-COSAN] - loaded apoferritin: an innovative high-capacity boron delivery system to target tumour cells for BNCT applications. NANOSCALE 2025. [PMID: 40259777 DOI: 10.1039/d5nr00362h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/23/2025]
Abstract
This study describes an innovative apoferritin-based nanohybrid, Apo:[o-COSAN]-, as a high-capacity boron delivery system for potential application in boron neutron capture therapy (BNCT). The nanohybrid is characterized by a high boron content, stability, and the promotion of biological interactions of cobaltabis(dicarbollide) ([o-COSAN]-), encapsulated within the apoferritin protein cavity through an acid-induced dissociation and reassembly process. The Apo:[o-COSAN]- nanohybrid demonstrated enhanced boron uptake in MCF7 breast cancer and AB22 mesothelioma cell lines, with superior stability and biocompatibility under physiological conditions. Notably, AB22 cells treated with Apo:[o-COSAN]- showed significant cytotoxic effects following neutron irradiation, highlighting the potential of this system in BNCT. These findings underscore the versatility of apoferritin as a multifunctional nanocarrier for targeted cancer therapy, combining high boron payloads with selective tumour cell uptake.
Collapse
Affiliation(s)
- D Alberti
- Department of Molecular Biotechnology and Health Sciences, University of Torino, Via Nizza, 52, 10126, Turin, Italy.
| | - J N Piña Marcos
- Department of Molecular Biotechnology and Health Sciences, University of Torino, Via Nizza, 52, 10126, Turin, Italy.
| | - S Rakhshan
- Department of Molecular Biotechnology and Health Sciences, University of Torino, Via Nizza, 52, 10126, Turin, Italy.
| | - N Protti
- Department of Physics, University of Pavia, Via Agostino Bassi 6, 27100, Pavia, Italy
- Nuclear Physics National Institute (INFN), Unit of Pavia, Via Agostino Bassi 6, 27100, Pavia, Italy
| | - S Altieri
- Department of Physics, University of Pavia, Via Agostino Bassi 6, 27100, Pavia, Italy
- Nuclear Physics National Institute (INFN), Unit of Pavia, Via Agostino Bassi 6, 27100, Pavia, Italy
| | - M Nuez-Martínez
- Institut de Ciència de Materials de Barcelona (ICMAB-CSIC), Campus UAB, 08193 Bellaterra, Spain
| | - F Teixidor
- Institut de Ciència de Materials de Barcelona (ICMAB-CSIC), Campus UAB, 08193 Bellaterra, Spain
| | - C Viñas
- Institut de Ciència de Materials de Barcelona (ICMAB-CSIC), Campus UAB, 08193 Bellaterra, Spain
| | - S Geninatti Crich
- Department of Molecular Biotechnology and Health Sciences, University of Torino, Via Nizza, 52, 10126, Turin, Italy.
| |
Collapse
|
2
|
Reva M, Mendes M, Sousa JJ, Pais A, Vitorino C. boron neutron capture therapy for glioblastoma: The delivery dilemma. Life Sci 2025; 364:123435. [PMID: 39892861 DOI: 10.1016/j.lfs.2025.123435] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2024] [Revised: 01/16/2025] [Accepted: 01/27/2025] [Indexed: 02/04/2025]
Abstract
This review delves into boron neutron capture therapy (BNCT), a targeted alpha-particle radiotherapy that holds promise in oncology and has the potential to address concerns of efficacy and safety associated to conventional cancer therapies. Information was gathered from literature searches that used the keywords "boron neutron capture therapy," "clinical application," "nanotechnology," and "liposome" so as to analyze the clinical applications of BNCT in cancer over time. The methodology includes a thorough literature review, analysis of preclinical studies, and clinical trials to assess the viability of BNCT in treating glioblastoma (GB), as an example of a hard-to-treat cancer type. Firstly, the fundamental principles of BNCT are outlined, followed by an extensive exploration of the respective application in oncology, particularly emphasizing its synergy with nanotechnology advancements. A key focus is placed on evaluating whether third-generation nanoparticles show superior efficacy compared to conventional boron-delivering systems used in BNCT. Additionally, attention is drawn to the critical analysis of safety concerns surrounding nanotechnology, which are crucial for clinical translation. Noteworthy is the clinical application of liposomes (LPs) in GB, highlighting their potential and limitations in clinical settings. Overall, the collected evidence sheds light on the high potential of BNCT in the research and development of new treatment (and diagnosis) modalities for GB and other cancer types.
Collapse
Affiliation(s)
- Marina Reva
- Faculty of Pharmacy, University of Coimbra, 3000-548 Coimbra, Portugal
| | - Maria Mendes
- Faculty of Pharmacy, University of Coimbra, 3000-548 Coimbra, Portugal; Coimbra Chemistry Centre, Institute of Molecular Sciences - IMS, Department of Chemistry, University of Coimbra, 3000-535 Coimbra, Portugal
| | - João José Sousa
- Faculty of Pharmacy, University of Coimbra, 3000-548 Coimbra, Portugal; Coimbra Chemistry Centre, Institute of Molecular Sciences - IMS, Department of Chemistry, University of Coimbra, 3000-535 Coimbra, Portugal
| | - Alberto Pais
- Coimbra Chemistry Centre, Institute of Molecular Sciences - IMS, Department of Chemistry, University of Coimbra, 3000-535 Coimbra, Portugal
| | - Carla Vitorino
- Faculty of Pharmacy, University of Coimbra, 3000-548 Coimbra, Portugal; Coimbra Chemistry Centre, Institute of Molecular Sciences - IMS, Department of Chemistry, University of Coimbra, 3000-535 Coimbra, Portugal.
| |
Collapse
|
3
|
Hirose K, Sato M. Clinical Results and Prognostic Factors in Boron Neutron Capture Therapy for Recurrent Squamous Cell Carcinoma of the Head and Neck Under the Japan National Health Insurance System: A Retrospective Study of the Initial 47 Patients. Int J Radiat Oncol Biol Phys 2024; 120:796-804. [PMID: 38580084 DOI: 10.1016/j.ijrobp.2024.03.041] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2023] [Revised: 02/13/2024] [Accepted: 03/26/2024] [Indexed: 04/07/2024]
Abstract
PURPOSE Recurrent head and neck cancer presents a therapeutic challenge because of cumulative toxicity from initial radiation therapy, limiting reirradiation options. Boron neutron capture therapy (BNCT) offers a promising alternative, selectively delivering a radical dose to tumors while sparing adjacent normal tissue. This study investigates the initial clinical outcomes and prognostic factors associated with BNCT for recurrent squamous cell carcinoma of the head and neck. METHODS AND MATERIALS This retrospective analysis investigated the initial 47 patients treated with BNCT between May 2020 and February 2021 in Japan. All patients had received radiation therapy with a median dose of 70 Gy (range, 44-176) before BNCT. Median tumor size was 11 cm3 (range, 1-117 cm3), with 23% of tumors larger than 30 cm3, and 87% of patients had prior systemic therapy. The most common prescribed dose to the pharyngeal mucosa was 15 Gy-Eq (36%), followed by 18 Gy-Eq (34%). The minimum dose given to tumor was 27.4 Gy-Eq (range, 13.3-45.2). In 23 patients, 18F-fluoro-borono-phenylalanine positron emission tomography was performed within 1 week before BNCT, and the tumor-to-blood 10B ratio was 3.5 (range, 2.0-8.7). RESULTS Efficacy analysis revealed a 51% complete response rate and a 74% overall response rate. Disease-free survival rates at 1 and 2 years were 34.6% and 26.6%, respectively. Overall survival rates at 1 and 2 years were 86.1% and 66.5%, respectively. Multivariate analysis revealed that, among the patient characteristics, whether the lesion was mucosal had a significant effect on achieving complete response. CONCLUSIONS This study provided valuable insights into the early integration of BNCT into routine clinical practice, highlighting its efficacy and safety. Technical improvements are needed to ensure precise dose administration. Ongoing prospective studies, such as the phase II REBIVAL study, will further elucidate the role of BNCT in recurrent head and neck cancer.
Collapse
Affiliation(s)
- Katsumi Hirose
- Department of Radiation Oncology, Southern Tohoku BNCT Research Center, Koriyama, Fukushima, Japan; Department of Radiation Oncology, Hirosaki University Graduate School of Medicine, Hirosaki, Aomori, Japan.
| | - Mariko Sato
- Department of Radiation Oncology, Southern Tohoku BNCT Research Center, Koriyama, Fukushima, Japan; Department of Radiation Oncology, Hirosaki University Graduate School of Medicine, Hirosaki, Aomori, Japan
| |
Collapse
|
4
|
Sato M, Hirose K. A simple prediction model for the risk of boron neutron capture therapy-induced nausea and vomiting in head and neck cancer. Radiother Oncol 2024; 199:110464. [PMID: 39069086 DOI: 10.1016/j.radonc.2024.110464] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Revised: 07/21/2024] [Accepted: 07/24/2024] [Indexed: 07/30/2024]
Abstract
BACKGROUND AND PURPOSE Head and neck cancer patients undergoing boron neutron capture therapy (BNCT) often experience BNCT-induced nausea and vomiting (BINV). This study aimed to construct a BINV risk prediction model. MATERIALS AND METHODS In this retrospective study, 237 patients were randomly divided into a training and test cohort. In the training cohort, a univariate analysis was performed to identify factors associated with BINV. Multivariate analysis was used to identify factors and calculate coefficients for the model. The Hosmer-Lemeshow test was used to assess the goodness of fit, and receiver operating characteristic curves were plotted to evaluate the accuracy of the model. For both the training and test cohort, the predictive model was used to generate the scores and calculate the sensitivity and specificity. RESULTS The incidence of nausea and vomiting was 50% and 18%, respectively. Female sex, younger age, non-squamous cell carcinoma, no prior chemotherapy, and beam entry from the face/lateral region were associated with the occurrence of BINV. The prediction model showed a good fit (P = 0.96) and performance (area under the curve = 0.75). The sensitivity and specificity were 83% and45 % for the training cohort (n = 193) and 86% and 59% for the test cohort (n = 44), respectively. CONCLUSION We developed a simple model that predicts BINV. This will enable appropriate care to be implemented based on increased risk to prevent its occurrence.
Collapse
Affiliation(s)
- Mariko Sato
- Department of Radiation Oncology, Southern Tohoku BNCT Research Center, 7-10 Yatsuyamada, Koriyama, Fukushima 963-8052, Japan; Department of Radiation Oncology, Hirosaki University Graduate School of Medicine, 5 Zaifu-cho, Hirosaki, Aomori 036-8562, Japan
| | - Katsumi Hirose
- Department of Radiation Oncology, Southern Tohoku BNCT Research Center, 7-10 Yatsuyamada, Koriyama, Fukushima 963-8052, Japan; Department of Radiation Oncology, Hirosaki University Graduate School of Medicine, 5 Zaifu-cho, Hirosaki, Aomori 036-8562, Japan.
| |
Collapse
|
5
|
Sato M, Hirose K. Efficacy and safety of boron neutron capture therapy for Hypopharyngeal/Laryngeal cancer patients with previous head and neck irradiation. Radiother Oncol 2024; 198:110382. [PMID: 38880413 DOI: 10.1016/j.radonc.2024.110382] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2023] [Revised: 06/02/2024] [Accepted: 06/09/2024] [Indexed: 06/18/2024]
Abstract
BACKGROUND AND PURPOSE Patients with hypopharyngeal cancer (HPC)/laryngeal cancer (LCA) with a history of head and neck irradiation are often difficult to treat with conventional radiotherapy. This study aimed to clarify the efficacy and safety of boron neutron capture therapy (BNCT) for HPC/LCA. MATERIALS AND METHODS In this retrospective study, HPC/LCA with local lesions were analyzed, including both recurrent cases after treatment and second primary cases. The primary endpoints were tumor response and incidence of adverse events (AEs) after BNCT. The secondary endpoints were local control (LC), progression-free survival (PFS), and overall survival (OS). Evaluation of tumor response was terminated when any additional treatment was administered, and only survival data were collected. RESULTS The analysis included 25 and 11 cases of HPC and LCA, respectively. All had a history of head and neck irradiation, and median dose of prior radiotherapy was 70 Gy. The complete response (CR) rate was 72%, overall response rate was 84%, and the 1-year LC and PFS were 63.1% and 53.7%, respectively. The median survival time was 15.5 months, and the 2-year OS was 79.8%. Of the 27 patients with CR, 11 cases recurred at a median of 6.0 months. The acute G3 AEs were oral mucositis (6%), pharyngeal mucositis (3%), and soft tissue infection (3%). Acutely, there were no G4-5 AEs, except hyperamylasemia, and in the late phase, there were no G3 or higher AEs. CONCLUSION BNCT can be achieve good tumor response while preserving the larynx without severe AEs.
Collapse
Affiliation(s)
- Mariko Sato
- Department of Radiation Oncology, Southern Tohoku BNCT Research Center, 7-10 Yatsuyamada, Koriyama, Fukushima, 963-8052, Japan; Department of Radiation Oncology, Hirosaki University Graduate School of Medicine, 5 Zaifu-cho, Hirosaki, Aomori, 036-8562, Japan
| | - Katsumi Hirose
- Department of Radiation Oncology, Southern Tohoku BNCT Research Center, 7-10 Yatsuyamada, Koriyama, Fukushima, 963-8052, Japan; Department of Radiation Oncology, Hirosaki University Graduate School of Medicine, 5 Zaifu-cho, Hirosaki, Aomori, 036-8562, Japan.
| |
Collapse
|
6
|
Chang CH, Chen FH, Wang LW, Chiang CS. Circulating M-MDSC Levels as an Assessment Marker for Post-Treatment Tumor Progression in Recurrent HNC Patients Following Radiation Therapy: A Case Series. J Clin Med 2024; 13:5130. [PMID: 39274343 PMCID: PMC11396399 DOI: 10.3390/jcm13175130] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2024] [Revised: 08/16/2024] [Accepted: 08/22/2024] [Indexed: 09/16/2024] Open
Abstract
Background: In advanced head and neck cancer (HNC) patients, 50-60% experience loco-regional relapse and distant metastasis. Boron neutron capture therapy (BNCT) has shown remarkable therapeutic response in recurrent HNC, but there is still a 70% chance of local recurrence. This study aimed to identify a suitable liquid biomarker to assess patient response following BNCT. Myeloid-derived suppressor cells (MDSCs) are immune-suppressive cells that inhibit cytotoxic T cells. Circulating MDSC levels have been linked to the clinical stage and prognosis in HNSCC. Methods: Five patients with recurrent head and neck cancer underwent a treatment regimen that commenced with BNCT, followed by fractionated image-guided intensity-modulated radiotherapy (IG-IMRT). Liquid biopsy analysis via flow cytometry and tumor volume analysis by clinical imaging were conducted at three stages: before BNCT, before the first fraction of IG-IMRT, and one month after the last fraction of IG-IMRT. Results: Compared to other MDSC subtypes, monocytic MDSCs (M-MDSCs) exhibited a notable correlation with tumor volume. This strong correlation was observed at all testing time points except one month after BNCT treatment. Conclusions: This case series highlights a strong link between tumor size and circulating M-MDSC levels before BNCT and one month after the last IG-IMRT treatment in recurrent head and neck cancer patients. These results suggest that the level of circulating M-MDSCs could be a marker for monitoring tumor progression in recurrent HNC patients following radiation therapy, including BNCT.
Collapse
Affiliation(s)
- Chun-Hsiang Chang
- Department of Biomedical Engineering and Environment Sciences, National Tsing Hua University, Hsinchu 300044, Taiwan
| | - Fang-Hsin Chen
- Institute of Nuclear Engineering and Science, National Tsing Hua University, Hsinchu 300044, Taiwan
| | - Ling-Wei Wang
- Department of Heavy Ion and Radiation Oncology, Taipei Veterans General Hospital, Taipei 112304, Taiwan
- School of Medicine, National Yang-Ming Chiao Tung University, Taipei 30010, Taiwan
| | - Chi-Shiun Chiang
- Department of Biomedical Engineering and Environment Sciences, National Tsing Hua University, Hsinchu 300044, Taiwan
- Institute of Nuclear Engineering and Science, National Tsing Hua University, Hsinchu 300044, Taiwan
- Boron Neutron Capture Therapy Center, National Tsing Hua University, Hsinchu 300044, Taiwan
| |
Collapse
|
7
|
Barth RF, Wu G, Vicente MDGH, Grecula JC, Gupta N. Boron neutron capture therapy of cancer: where do we stand now? Cancer Commun (Lond) 2024; 44:889-892. [PMID: 38973667 PMCID: PMC11337919 DOI: 10.1002/cac2.12581] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2024] [Revised: 06/09/2024] [Accepted: 06/13/2024] [Indexed: 07/09/2024] Open
Affiliation(s)
- Rolf F. Barth
- Department of PathologyThe Ohio State UniversityColumbusOhioUSA
| | - Gong Wu
- Mass Spectrometry and Proteomics FacilityThe Ohio State UniversityColumbusOhioUSA
| | | | - John C Grecula
- Department of Radiation OncologyThe Ohio State UniversityColumbusOhioUSA
| | - Nilendu Gupta
- Department of Radiation OncologyThe Ohio State UniversityColumbusOhioUSA
| |
Collapse
|
8
|
Fujikawa Y, Kawabata S, Tsujino K, Yamada H, Kashiwagi H, Yagi R, Hiramatsu R, Nonoguchi N, Takami T, Sasaki A, Hu N, Takata T, Tanaka H, Suzuki M, Wanibuchi M. Boron neutron capture therapy delays the decline in neurological function in a mouse model of metastatic spinal tumors. Cancer Sci 2024; 115:2774-2785. [PMID: 38860412 PMCID: PMC11309935 DOI: 10.1111/cas.16245] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2024] [Revised: 05/16/2024] [Accepted: 05/31/2024] [Indexed: 06/12/2024] Open
Abstract
Metastatic spinal tumors are increasingly prevalent due to advancements in cancer treatment, leading to prolonged survival rates. This rising prevalence highlights the need for developing more effective therapeutic approaches to address this malignancy. Boron neutron capture therapy (BNCT) offers a promising solution by delivering targeted doses to tumors while minimizing damage to normal tissue. In this study, we evaluated the efficacy and safety of BNCT as a potential therapeutic option for spine metastases in mouse models induced by A549 human lung adenocarcinoma cells. The animal models were randomly allocated into three groups: untreated (n = 10), neutron irradiation only (n = 9), and BNCT (n = 10). Each mouse was administered 4-borono-L-phenylalanine (250 mg/kg) intravenously, followed by measurement of boron concentrations 2.5 h later. Overall survival, neurological function of the hindlimb, and any adverse events were assessed post irradiation. The tumor-to-normal spinal cord and blood boron concentration ratios were 3.6 and 2.9, respectively, with no significant difference observed between the normal and compressed spinal cord tissues. The BNCT group exhibited significantly prolonged survival rates compared with the other groups (vs. untreated, p = 0.0015; vs. neutron-only, p = 0.0104, log-rank test). Furthermore, the BNCT group demonstrated preserved neurological function relative to the other groups (vs. untreated, p = 0.0004; vs. neutron-only, p = 0.0051, multivariate analysis of variance). No adverse events were observed post irradiation. These findings indicate that BNCT holds promise as a novel treatment modality for metastatic spinal tumors.
Collapse
Affiliation(s)
- Yoshiki Fujikawa
- Department of NeurosurgeryOsaka Medical and Pharmaceutical UniversityOsakaJapan
| | - Shinji Kawabata
- Department of NeurosurgeryOsaka Medical and Pharmaceutical UniversityOsakaJapan
| | - Kohei Tsujino
- Department of NeurosurgeryOsaka Medical and Pharmaceutical UniversityOsakaJapan
| | - Hironori Yamada
- Department of NeurosurgeryOsaka Medical and Pharmaceutical UniversityOsakaJapan
| | - Hideki Kashiwagi
- Department of NeurosurgeryOsaka Medical and Pharmaceutical UniversityOsakaJapan
| | - Ryokichi Yagi
- Department of NeurosurgeryOsaka Medical and Pharmaceutical UniversityOsakaJapan
| | - Ryo Hiramatsu
- Department of NeurosurgeryOsaka Medical and Pharmaceutical UniversityOsakaJapan
| | - Naosuke Nonoguchi
- Department of NeurosurgeryOsaka Medical and Pharmaceutical UniversityOsakaJapan
| | - Toshihiro Takami
- Department of NeurosurgeryOsaka Medical and Pharmaceutical UniversityOsakaJapan
| | - Akinori Sasaki
- Kansai BNCT Medical CenterOsaka Medical and Pharmaceutical UniversityOsakaJapan
| | - Naonori Hu
- Kansai BNCT Medical CenterOsaka Medical and Pharmaceutical UniversityOsakaJapan
| | - Takushi Takata
- Institute for Integrated Radiation and Nuclear ScienceKyoto UniversityOsakaJapan
| | - Hiroki Tanaka
- Institute for Integrated Radiation and Nuclear ScienceKyoto UniversityOsakaJapan
| | - Minoru Suzuki
- Institute for Integrated Radiation and Nuclear ScienceKyoto UniversityOsakaJapan
| | - Masahiko Wanibuchi
- Department of NeurosurgeryOsaka Medical and Pharmaceutical UniversityOsakaJapan
| |
Collapse
|
9
|
Forma A, Grunwald A, Zembala P, Januszewski J, Brachet A, Zembala R, Świątek K, Baj J. Micronutrient Status and Breast Cancer: A Narrative Review. Int J Mol Sci 2024; 25:4968. [PMID: 38732186 PMCID: PMC11084730 DOI: 10.3390/ijms25094968] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2024] [Revised: 04/28/2024] [Accepted: 04/30/2024] [Indexed: 05/13/2024] Open
Abstract
Breast cancer is one of the most common cancers worldwide, at the same time being one of the most prevalent causes of women's death. Many factors such as alcohol, weight fluctuations, or hormonal replacement therapy can potentially contribute to breast cancer development and progression. Another important factor in breast cancer onset includes micronutrient status. In this narrative review, we analyzed 23 micronutrients and their possible influence on breast cancer onset and progression. Further, the aim of this study was to investigate the impact of micronutrient status on the prevention of breast cancer and its possible influence on various therapeutic pathways. We researched meta-analyses, systemic and narrative reviews, retrospective studies, as well as original studies on human and animal models. The results of these studies indicate a possible correlation between the different levels of micronutrients and a decreased risk of breast cancer as well as a better survival rate. However, further studies are necessary to establish adequate doses of supplementation of the chosen micronutrients and the exact mechanisms of micronutrient impact on breast cancer therapy.
Collapse
Affiliation(s)
- Alicja Forma
- Chair and Department of Forensic Medicine, Medical University of Lublin, Jaczewskiego 8b, 20-090 Lublin, Poland; (A.G.); (A.B.)
| | - Arkadiusz Grunwald
- Chair and Department of Forensic Medicine, Medical University of Lublin, Jaczewskiego 8b, 20-090 Lublin, Poland; (A.G.); (A.B.)
| | - Patryk Zembala
- Faculty of Medicine, Medical University of Warsaw, Banacha 1A, 02-097 Warsaw, Poland;
| | - Jacek Januszewski
- Department of Correct, Clinical and Imaging Anatomy, Chair of Fundamental Sciences, Medical University of Lublin, Jaczewskiego 4, 20-090 Lublin, Poland; (J.J.); (K.Ś.); (J.B.)
| | - Adam Brachet
- Chair and Department of Forensic Medicine, Medical University of Lublin, Jaczewskiego 8b, 20-090 Lublin, Poland; (A.G.); (A.B.)
| | - Roksana Zembala
- Faculty of Medicine, Cardinal Stefan Wyszynski University in Warsaw, Wóycickiego 1/3, 01-938 Warsaw, Poland;
| | - Kamila Świątek
- Department of Correct, Clinical and Imaging Anatomy, Chair of Fundamental Sciences, Medical University of Lublin, Jaczewskiego 4, 20-090 Lublin, Poland; (J.J.); (K.Ś.); (J.B.)
| | - Jacek Baj
- Department of Correct, Clinical and Imaging Anatomy, Chair of Fundamental Sciences, Medical University of Lublin, Jaczewskiego 4, 20-090 Lublin, Poland; (J.J.); (K.Ś.); (J.B.)
| |
Collapse
|
10
|
Ma W, Wang Y, Xue Y, Wang M, Lu C, Guo W, Liu YH, Shu D, Shao G, Xu Q, Tu D, Yan H. Molecular engineering of AIE-active boron clustoluminogens for enhanced boron neutron capture therapy. Chem Sci 2024; 15:4019-4030. [PMID: 38487248 PMCID: PMC10935674 DOI: 10.1039/d3sc06222h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2023] [Accepted: 02/01/2024] [Indexed: 03/17/2024] Open
Abstract
The development of boron delivery agents bearing an imaging capability is crucial for boron neutron capture therapy (BNCT), yet it has been rarely explored. Here we present a new type of boron delivery agent that integrates aggregation-induced emission (AIE)-active imaging and a carborane cluster for the first time. In doing so, the new boron delivery agents have been rationally designed by incorporating a high boron content unit of a carborane cluster, an erlotinib targeting unit towards lung cancer cells, and a donor-acceptor type AIE unit bearing naphthalimide. The new boron delivery agents demonstrate both excellent AIE properties for imaging purposes and highly selective accumulation in tumors. For example, at a boron delivery agent dose of 15 mg kg-1, the boron amount reaches over 20 μg g-1, and both tumor/blood (T/B) and tumor/normal cell (T/N) ratios reach 20-30 times higher than those required by BNCT. The neutron irradiation experiments demonstrate highly efficient tumor growth suppression without any observable physical tissue damage and abnormal behavior in vivo. This study not only expands the application scopes of both AIE-active molecules and boron clusters, but also provides a new molecular engineering strategy for a deep-penetrating cancer therapeutic protocol based on BNCT.
Collapse
Affiliation(s)
- Wenli Ma
- State Key Laboratory of Coordination Chemistry, Jiangsu Key Laboratory of Advanced Organic Materials, School of Chemistry and Chemical Engineering, Nanjing University Nanjing 210023 China
| | - Yanyang Wang
- Department of Nuclear Medicine, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University Nanjing 210008 China
| | - Yilin Xue
- Department of Nuclear Medicine, Nanjing First Hospital, Nanjing Medical University Nanjing 210033 China
| | - Mengmeng Wang
- State Key Laboratory of Coordination Chemistry, Jiangsu Key Laboratory of Advanced Organic Materials, School of Chemistry and Chemical Engineering, Nanjing University Nanjing 210023 China
| | - Changsheng Lu
- State Key Laboratory of Coordination Chemistry, Jiangsu Key Laboratory of Advanced Organic Materials, School of Chemistry and Chemical Engineering, Nanjing University Nanjing 210023 China
| | - Wanhua Guo
- Department of Nuclear Medicine, Nanjing Tongren Hospital, the Affiliated Hospital of Southeast University Medical School Nanjing 210033 China
| | - Yuan-Hao Liu
- Neuboron Therapy System Ltd. Xiamen 361028 China
- Nanjing University of Aeronautics and Astronautics Nanjing 210016 China
- Neuboron Medtech Ltd. Nanjing 211112 China
| | - Diyun Shu
- Neuboron Therapy System Ltd. Xiamen 361028 China
- Nanjing University of Aeronautics and Astronautics Nanjing 210016 China
- Neuboron Medtech Ltd. Nanjing 211112 China
| | - Guoqiang Shao
- Department of Nuclear Medicine, Nanjing First Hospital, Nanjing Medical University Nanjing 210033 China
| | - Qinfeng Xu
- Department of Nuclear Medicine, Jiangsu Province Hospital of Chinese Medicine, Affiliated Hospital of Nanjing University of Chinese Medicine Nanjing 210029 China
| | - Deshuang Tu
- State Key Laboratory of Coordination Chemistry, Jiangsu Key Laboratory of Advanced Organic Materials, School of Chemistry and Chemical Engineering, Nanjing University Nanjing 210023 China
| | - Hong Yan
- State Key Laboratory of Coordination Chemistry, Jiangsu Key Laboratory of Advanced Organic Materials, School of Chemistry and Chemical Engineering, Nanjing University Nanjing 210023 China
| |
Collapse
|
11
|
Sato M, Hirose K, Takeno S, Aihara T, Nihei K, Takai Y, Hayashi T, Bando K, Kimura H, Tsurumi K, Ono K. Safety of Boron Neutron Capture Therapy with Borofalan( 10B) and Its Efficacy on Recurrent Head and Neck Cancer: Real-World Outcomes from Nationwide Post-Marketing Surveillance. Cancers (Basel) 2024; 16:869. [PMID: 38473231 PMCID: PMC10931064 DOI: 10.3390/cancers16050869] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2024] [Revised: 02/01/2024] [Accepted: 02/12/2024] [Indexed: 03/14/2024] Open
Abstract
BACKGROUND This study was conducted to evaluate the real-world safety and efficacy of boron neutron capture therapy (BNCT) with borofalan(10B) in Japanese patients with locally advanced or locally recurrent head and neck cancer (LA/LR-HNC). METHODS This prospective, multicenter observational study was initiated in Japan in May 2020 and enrolled all patients who received borofalan(10B) as directed by regulatory authorities. Patient enrollment continued until at least 150 patients were enrolled, and adverse events attributable to drugs, treatment devices, and BNCT were evaluated. The patients with LA/LR-HNC were systematically evaluated to determine efficacy. RESULTS The 162 patients enrolled included 144 patients with squamous cell carcinoma of the head and neck (SCCHN), 17 patients with non-SCCHN (NSCCHN), and 1 patient with glioblastoma. Treatment-related adverse events (TRAEs) were hyperamylasemia (84.0%), stomatitis (51.2%), sialoadenitis (50.6%), and alopecia (49.4%) as acute TRAEs and dysphagia (4.5%), thirst (2.6%), and skin disorder (1.9%) as more common late TRAEs. One- and two-year OS rates in patients with recurrent SCCHN were 78.8% and 60.7%, respectively. CONCLUSIONS This post-marketing surveillance confirmed the safety and efficacy of BNCT with borofalan(10B) in patients with LA/LR-HNC in a real-world setting.
Collapse
Affiliation(s)
- Mariko Sato
- Department of Radiation Oncology, Hirosaki University Graduate School of Medicine, 5 Zaifu-cho, Hirosaki 036-8562, Japan;
- Department of Radiation Oncology, Southern Tohoku BNCT Research Center, 7-10 Yatsuyamada, Koriyama 963-8052, Japan;
| | - Katsumi Hirose
- Department of Radiation Oncology, Hirosaki University Graduate School of Medicine, 5 Zaifu-cho, Hirosaki 036-8562, Japan;
- Department of Radiation Oncology, Southern Tohoku BNCT Research Center, 7-10 Yatsuyamada, Koriyama 963-8052, Japan;
| | - Satoshi Takeno
- Kansai BNCT Medical Center, Osaka Medical and Pharmaceutical University, 2-7 Daigaku-machi, Takatsuki 569-8686, Japan; (S.T.); (T.A.); (K.N.)
- Department of Radiation Oncology, Osaka Medical and Pharmaceutical University, 2-7 Daigaku-machi, Takatsuki 569-8686, Japan
| | - Teruhito Aihara
- Kansai BNCT Medical Center, Osaka Medical and Pharmaceutical University, 2-7 Daigaku-machi, Takatsuki 569-8686, Japan; (S.T.); (T.A.); (K.N.)
- Department of Otolaryngology Head and Neck Surgery, Osaka Medical and Pharmaceutical University, 2-7 Daigaku-machi, Takatsuki 569-8686, Japan
| | - Keiji Nihei
- Kansai BNCT Medical Center, Osaka Medical and Pharmaceutical University, 2-7 Daigaku-machi, Takatsuki 569-8686, Japan; (S.T.); (T.A.); (K.N.)
- Department of Radiation Oncology, Osaka Medical and Pharmaceutical University, 2-7 Daigaku-machi, Takatsuki 569-8686, Japan
| | - Yoshihiro Takai
- Department of Radiation Oncology, Southern Tohoku BNCT Research Center, 7-10 Yatsuyamada, Koriyama 963-8052, Japan;
| | - Toshimitsu Hayashi
- Stella Pharma Corporation, ORIX Kouraibashi Building, 3-2-7 Kouraibashi, Chuo-ku, Osaka 541-0043, Japan; (T.H.); (K.B.); (H.K.)
| | - Kosuke Bando
- Stella Pharma Corporation, ORIX Kouraibashi Building, 3-2-7 Kouraibashi, Chuo-ku, Osaka 541-0043, Japan; (T.H.); (K.B.); (H.K.)
| | - Hitomi Kimura
- Stella Pharma Corporation, ORIX Kouraibashi Building, 3-2-7 Kouraibashi, Chuo-ku, Osaka 541-0043, Japan; (T.H.); (K.B.); (H.K.)
| | - Keisuke Tsurumi
- Sumitomo Heavy Industries, Ltd., 5-2 Soubirakichou, Niihama 792-0001, Japan;
| | - Koji Ono
- BNCT Joint Clinical Institute, Osaka Medical and Pharmaceutical University, 2-7 Daigaku-machi, Takatsuki 569-8686, Japan;
| |
Collapse
|
12
|
Nishikawa M, Yu J, Kang HG, Suzuki M, Komatsu N. Rational Design, Multistep Synthesis and in Vitro Evaluation of Poly(glycerol) Functionalized Nanodiamond Conjugated with Boron-10 Cluster and Active Targeting Moiety for Boron Neutron Capture Therapy. Chemistry 2023; 29:e202302073. [PMID: 37589488 DOI: 10.1002/chem.202302073] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Revised: 08/08/2023] [Accepted: 08/15/2023] [Indexed: 08/18/2023]
Abstract
Boron neutron capture therapy (BNCT), advanced cancer treatment utilizing nuclear fission of 10 B atom in cancer cells, is attracting increasing attention. As 10 B delivery agent, sodium borocaptate (10 BSH, 10 B12 H11 SH ⋅ 2Na), has been used in clinical studies along with L-boronophenylalanine. Recently, this boron cluster has been conjugated with lipids, polymers or nanoparticles to increase selectivity to and retentivity in tumor. In this work, anticancer nanoformulations for BNCT are designed, consisting of poly(glycerol) functionalized detonation nanodiamonds (DND-PG) as a hydrophilic nanocarrier, the boron cluster moiety (10 B12 H11 2- ) as a dense boron-10 source, and phenylboronic acid or RGD peptide as an active targeting moiety. Some hydroxy groups in PG were oxidized to carboxy groups (DND-PG-COOH) to conjugate the active targeting moiety. Some hydroxy groups in DND-PG-COOH were then transformed to azide to conjugate 10 B12 H11 2- through click chemistry. The nanodrugs were evaluated in vitro using B16 murine melanoma cells in terms of cell viability, BNCT efficacy and cellular uptake. As a result, the 10 B12 H11 2- moiety is found to facilitate cellular uptake probably due to its negative charge. Upon thermal neutron irradiation, the nanodrugs with 10 B12 H11 2- moiety exhibited good anticancer efficacies with slight differences with and without targeting moiety.
Collapse
Affiliation(s)
- Masahiro Nishikawa
- Graduate School of Human and Environmental Studies, Kyoto University, Sakyo-ku, 606-8501, Kyoto, Japan
- Innovation and Business Development Headquarters, Daicel Corporation, 1239, Shinzaike, Aboshi-ku, 671-1283, Himeji, Hyogo, Japan
| | - Jie Yu
- Graduate School of Human and Environmental Studies, Kyoto University, Sakyo-ku, 606-8501, Kyoto, Japan
| | - Heon Gyu Kang
- Graduate School of Human and Environmental Studies, Kyoto University, Sakyo-ku, 606-8501, Kyoto, Japan
| | - Minoru Suzuki
- Institute for Integrated Radiation and Nuclear Science, Kyoto University, 2-1010, Asashiro-nishi, Kumatori-cho, 590-0494, Sennan-gun, Osaka, Japan
| | - Naoki Komatsu
- Graduate School of Human and Environmental Studies, Kyoto University, Sakyo-ku, 606-8501, Kyoto, Japan
| |
Collapse
|
13
|
Zhang Y, Kang HG, Xu HZ, Luo H, Suzuki M, Lan Q, Chen X, Komatsu N, Zhao L. Tumor Eradication by Boron Neutron Capture Therapy with 10 B-enriched Hexagonal Boron Nitride Nanoparticles Grafted with Poly(Glycerol). ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2023; 35:e2301479. [PMID: 37243974 DOI: 10.1002/adma.202301479] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/15/2023] [Revised: 05/08/2023] [Indexed: 05/29/2023]
Abstract
Boron neutron capture therapy (BNCT) has emerged as a treatment modality with high precision and efficacy of intractable tumors. At the core of effective tumor BNCT are 10 B carriers with facile preparation as well as advantageous pharmacokinetic and therapeutic profiles. Herein, the design and preparation of sub-10 nm 10 B-enriched hexagonal boron nitride nanoparticles grafted with poly(glycerol) (h-10 BN-PG), and their application to cancer treatment by BNCT are reported. By virtue of their small particle size and outstanding stealth property, h-10 BN-PG nanoparticles accumulate efficiently in murine CT26 colon tumors with a high intratumor 10 B concentration of 8.8%ID g-1 or 102.1 µg g-1 at 12 h post-injection. Moreover, h-10 BN-PG nanoparticles penetrate into the inside of the tumor parenchyma and then are taken up by the tumor cells. BNCT comprising a single bolus injection of h-10 BN-PG nanoparticles and subsequent one-time neutron irradiation results in significant shrinkage of subcutaneous CT26 tumors. h-10 BN-PG-mediated BNCT not only causes direct DNA damage to the tumor cells, but also triggers pronounced inflammatory immune response in the tumor tissues, which contributes to long-lasting tumor suppression after the neutron irradiation. Thus, the h-10 BN-PG nanoparticles are promising BNCT agents to eradicate tumor through highly efficient 10 B accumulation.
Collapse
Affiliation(s)
- Yucai Zhang
- State Key Laboratory of Radiation Medicine and Protection, School of Radiation Medicine and Protection & School for Radiological and Interdisciplinary Sciences (RAD-X), Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions, Soochow University, Suzhou, Jiangsu, 215123, China
| | - Heon Gyu Kang
- Graduate School of Human and Environmental Studies, Kyoto University, Sakyo-ku, Kyoto, 606-8501, Japan
| | - Hua-Zhen Xu
- Department of Pharmacology, School of Basic Medical Sciences, Hubei Provincial Key Laboratory of Developmentally Originated Disease, Wuhan University, Donghu Avenue No.185, Wuhan, 430072, China
| | - Honghui Luo
- State Key Laboratory of Radiation Medicine and Protection, School of Radiation Medicine and Protection & School for Radiological and Interdisciplinary Sciences (RAD-X), Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions, Soochow University, Suzhou, Jiangsu, 215123, China
| | - Minoru Suzuki
- Institute for Integrated Radiation and Nuclear Science, Kyoto University, 2-1010 Asashiro-nishi, Kumatori-cho, Sennan-gun, Osaka, 590-0494, Japan
| | - Qing Lan
- Department of Neurosurgery, The Second Affiliated Hospital of Soochow University, Suzhou, 215004, China
| | - Xiao Chen
- Department of Pharmacology, School of Basic Medical Sciences, Hubei Provincial Key Laboratory of Developmentally Originated Disease, Wuhan University, Donghu Avenue No.185, Wuhan, 430072, China
| | - Naoki Komatsu
- Graduate School of Human and Environmental Studies, Kyoto University, Sakyo-ku, Kyoto, 606-8501, Japan
| | - Li Zhao
- State Key Laboratory of Radiation Medicine and Protection, School of Radiation Medicine and Protection & School for Radiological and Interdisciplinary Sciences (RAD-X), Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions, Soochow University, Suzhou, Jiangsu, 215123, China
| |
Collapse
|
14
|
Laird M, Matsumoto K, Higashi Y, Komatsu A, Raitano A, Morrison K, Suzuki M, Tamanoi F. Organosilica nanoparticles containing sodium borocaptate (BSH) provide new prospects for boron neutron capture therapy (BNCT): efficient cellular uptake and enhanced BNCT efficacy. NANOSCALE ADVANCES 2023; 5:2537-2546. [PMID: 37143818 PMCID: PMC10153076 DOI: 10.1039/d2na00839d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/24/2022] [Accepted: 03/20/2023] [Indexed: 05/06/2023]
Abstract
Boron neutron capture therapy (BNCT), a method based on the fission of boron-10 upon neutron irradiation, has emerged as an attractive option for radiation therapy. To date, the main drugs used in BNCT are 4-boronophenylalanine (BPA) and sodium borocaptate (BSH). While BPA has been extensively tested in clinical trials, the use of BSH has been limited, mainly due to its poor cellular uptake. Here, we describe a novel type of mesoporous silica-based nanoparticle containing BSH covalently attached to a nanocarrier. Synthesis and characterization of these nanoparticles (BSH-BPMO) are presented. The synthetic strategy involves a click thiol-ene reaction with the boron cluster, providing hydrolytically stable linkage with the BSH in four steps. The BSH-BPMO nanoparticles were efficiently taken up into cancer cells and accumulated in the perinuclear region. Inductively coupled plasma (ICP) measurements of boron uptake in cells highlight the important role of the nanocarrier in the enhancement of boron internalization. BSH-BPMO nanoparticles were also taken up and distributed throughout tumour spheroids. BNCT efficacy was examined by the neutron exposure of the tumour spheroids. BSH-BPMO loaded spheroids were completely destroyed upon neutron irradiation. In contrast, neutron irradiation of tumour spheroids loaded with BSH or BPA resulted in significantly less spheroid shrinkage. The significant difference in BNCT efficacy of the BSH-BPMO was correlated with the improved boron uptake via the nanocarrier. Overall, these results demonstrate the critical role of the nanocarrier in BSH internalization and the enhanced BNCT efficacy of the BSH-BPMO compared with BSH and BPA, two drugs used in BNCT clinical trials.
Collapse
Affiliation(s)
- Mathilde Laird
- Institute for Integrated Cell-Material Sciences, Institute for Advanced Study, Kyoto University Kyoto 606-8501 Japan
| | - Kotaro Matsumoto
- Institute for Integrated Cell-Material Sciences, Institute for Advanced Study, Kyoto University Kyoto 606-8501 Japan
| | - Yuya Higashi
- Institute for Integrated Cell-Material Sciences, Institute for Advanced Study, Kyoto University Kyoto 606-8501 Japan
| | - Aoi Komatsu
- Institute for Integrated Cell-Material Sciences, Institute for Advanced Study, Kyoto University Kyoto 606-8501 Japan
| | - Art Raitano
- TAE Life Sciences, Drug Development Division Santa Monica CA 90404 USA
| | - Kendall Morrison
- TAE Life Sciences, Drug Development Division Santa Monica CA 90404 USA
| | - Minoru Suzuki
- Institute for Integrated Radiation and Nuclear Science, Kyoto University Kumatori 590-0494 Japan
| | - Fuyuhiko Tamanoi
- Institute for Integrated Cell-Material Sciences, Institute for Advanced Study, Kyoto University Kyoto 606-8501 Japan
- Department of Microbiology, Immunology and Molecular Genetics, University of California Los Angeles USA
| |
Collapse
|
15
|
Flieger S, Takagaki M, Kondo N, Lutz MR, Gupta Y, Ueda H, Sakurai Y, Moran G, Kempaiah P, Hosmane N, Suzuki M, Becker DP. Carborane-Containing Hydroxamate MMP Ligands for the Treatment of Tumors Using Boron Neutron Capture Therapy (BNCT): Efficacy without Tumor Cell Entry. Int J Mol Sci 2023; 24:6973. [PMID: 37108137 PMCID: PMC10139035 DOI: 10.3390/ijms24086973] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2022] [Revised: 03/30/2023] [Accepted: 04/05/2023] [Indexed: 04/29/2023] Open
Abstract
New carborane-bearing hydroxamate matrix metalloproteinase (MMP) ligands have been synthesized for boron neutron capture therapy (BNCT) with nanomolar potency against MMP-2, -9 and -13. New analogs are based on MMP inhibitor CGS-23023A, and two previously reported MMP ligands 1 (B1) and 2 (B2) were studied in vitro for BNCT activity. The boronated MMP ligands 1 and 2 showed high in vitro tumoricidal effects in an in vitro BNCT assay, exhibiting IC50 values for 1 and 2 of 2.04 × 10-2 mg/mL and 2.67 × 10-2 mg/mL, respectively. The relative killing effect of 1 to L-boronophenylalanine (BPA) is 0.82/0.27 = 3.0, and that of 2 is 0.82/0.32 = 2.6, whereas the relative killing effect of 4 is comparable to boronophenylalanine (BPA). The survival fraction of 1 and 2 in a pre-incubation boron concentration at 0.143 ppm 10B and 0.101 ppm 10B, respectively, were similar, and these results suggest that 1 and 2 are actively accumulated through attachment to the Squamous cell carcinoma (SCC)VII cells. Compounds 1 and 2 very effectively killed glioma U87 delta EGFR cells after BNCT. This study is noteworthy in demonstrating BNCT efficacy through binding to MMP enzymes overexpressed at the surface of the tumor cell without tumor cell penetration.
Collapse
Affiliation(s)
- Sebastian Flieger
- Department of Chemistry and Biochemistry, Loyola University Chicago, Chicago, IL 60660, USA; (S.F.); (G.M.)
| | - Mao Takagaki
- Research Center for Nuclear Physics, Osaka University, 10-1 Mihoga-oka, Ibaraki-City 567-0047, Osaka, Japan;
| | - Natsuko Kondo
- Particle Radiation Oncology Research Center, Institute for Integrated Radiation and Nuclear Science, Kyoto University, 2-1010 Asashiro-Nishi, Kumatori, Sennan-gun 590-0494, Osaka, Japan; (N.K.)
| | - Marlon R. Lutz
- Department of Chemistry and Biochemistry, Loyola University Chicago, Chicago, IL 60660, USA; (S.F.); (G.M.)
| | - Yash Gupta
- Department of Medicine, Infectious Diseases, Mayo Clinic, Jacksonville, FL 32224, USA; (Y.G.); (P.K.)
| | - Hiroki Ueda
- Particle Radiation Oncology Research Center, Institute for Integrated Radiation and Nuclear Science, Kyoto University, 2-1010 Asashiro-Nishi, Kumatori, Sennan-gun 590-0494, Osaka, Japan; (N.K.)
| | - Yoshinori Sakurai
- Particle Radiation Oncology Research Center, Institute for Integrated Radiation and Nuclear Science, Kyoto University, 2-1010 Asashiro-Nishi, Kumatori, Sennan-gun 590-0494, Osaka, Japan; (N.K.)
| | - Graham Moran
- Department of Chemistry and Biochemistry, Loyola University Chicago, Chicago, IL 60660, USA; (S.F.); (G.M.)
| | - Prakasha Kempaiah
- Department of Medicine, Infectious Diseases, Mayo Clinic, Jacksonville, FL 32224, USA; (Y.G.); (P.K.)
| | - Narayan Hosmane
- Department of Chemistry and Biochemistry, Northern Illinois University, DeKalb, IL 60115, USA;
| | - Minoru Suzuki
- Particle Radiation Oncology Research Center, Institute for Integrated Radiation and Nuclear Science, Kyoto University, 2-1010 Asashiro-Nishi, Kumatori, Sennan-gun 590-0494, Osaka, Japan; (N.K.)
| | - Daniel P. Becker
- Department of Chemistry and Biochemistry, Loyola University Chicago, Chicago, IL 60660, USA; (S.F.); (G.M.)
| |
Collapse
|
16
|
Moghaddasi L, Bezak E. An Integrated Monte Carlo Model for Heterogeneous Glioblastoma Treated with Boron Neutron Capture Therapy. Cancers (Basel) 2023; 15:1550. [PMID: 36900341 PMCID: PMC10001318 DOI: 10.3390/cancers15051550] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2023] [Revised: 02/16/2023] [Accepted: 02/27/2023] [Indexed: 03/06/2023] Open
Abstract
BACKGROUND Glioblastomas (GBMs) are notorious for their aggressive features, e.g., intrinsic radioresistance, extensive heterogeneity, hypoxia, and highly infiltrative behaviours. The prognosis has remained poor despite recent advances in systemic and modern X-ray radiotherapy. Boron neutron capture therapy (BNCT) represents an alternative radiotherapy technique for GBM. Previously, a Geant4 BNCT modelling framework was developed for a simplified model of GBM. PURPOSE The current work expands on the previous model by applying a more realistic in silico GBM model with heterogeneous radiosensitivity and anisotropic microscopic extensions (ME). METHODS Each cell within the GBM model was assigned an α/β value associated with different GBM cell lines and a 10B concentration. Dosimetry matrices corresponding to various MEs were calculated and combined to evaluate cell survival fractions (SF) using clinical target volume (CTV) margins of 2.0 & 2.5 cm. SFs for the BNCT simulation were compared with external X-ray radiotherapy (EBRT) SFs. RESULTS The SFs within the beam region decreased by more than two times compared to EBRT. It was demonstrated that BNCT results in markedly reduced SFs for both CTV margins compared to EBRT. However, the SF reduction as a result of the CTV margin extension using BNCT was significantly lower than using X-ray EBRT for one MEP distribution, while it remained similar for the other two MEP models. CONCLUSIONS Although the efficiency of BNCT in terms of cell kill is superior to EBRT, the extension of the CTV margin by 0.5 cm may not increase the BNCT treatment outcome significantly.
Collapse
Affiliation(s)
- Leyla Moghaddasi
- Radiation Oncology, Royal North Shore Hospital, Sydney, NSW 2065, Australia
- School of Physical Sciences, University of Adelaide, Adelaide, SA 5005, Australia
| | - Eva Bezak
- Cancer Research Institute, University of South Australia, Adelaide, SA 5000, Australia
| |
Collapse
|
17
|
Fluorescent nanodiamond for nanotheranostic applications. Mikrochim Acta 2022; 189:447. [DOI: 10.1007/s00604-022-05545-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2022] [Accepted: 10/18/2022] [Indexed: 11/16/2022]
|
18
|
Wang Y, Reina G, Kang HG, Chen X, Zou Y, Ishikawa Y, Suzuki M, Komatsu N. Polyglycerol Functionalized 10 B Enriched Boron Carbide Nanoparticle as an Effective Bimodal Anticancer Nanosensitizer for Boron Neutron Capture and Photothermal Therapies. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2022; 18:e2204044. [PMID: 35983628 DOI: 10.1002/smll.202204044] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/01/2022] [Indexed: 06/15/2023]
Abstract
Boron neutron capture therapy (BNCT) is a non-invasive cancer treatment with little adverse effect utilizing nuclear fission of 10 B upon neutron irradiation. While neutron source has been developed from a nuclear reactor to a compact accelerator, only two kinds of drugs, boronophenylalanine and sodium borocaptate, have been clinically used for decades despite their low tumor specificity and/or retentivity. To overcome these challenges, various boron-containing nanomaterials, or "nanosensitizers", have been designed based on micelles, (bio)polymers and inorganic nanoparticles. Among them, inorganic nanoparticles such as boron carbide can include a much higher 10 B content, but successful in vivo applications are very limited. Additionally, recent reports on the photothermal effect of boron carbide are motivating for the addition of another modality of photothermal therapy. In this study, 10 B enriched boron carbide (10 B4 C) nanoparticle is functionalized with polyglycerol (PG), giving 10 B4 C-PG with enough dispersibility in a physiological environment. Pharmacokinetic experiments show that 10 B4 C-PG fulfills the following three requirements for BNCT; 1) low intrinsic toxicity, 2) 10 B in tumor/tumor tissue (wt/wt) ≥ 20 ppm, and 3) 10 B concentrations in tumor/blood ≥ 3. In vivo study reveals that neutron irradiation after intravenous administration of 10 B4 C-PG suppresses cancer growth significantly and eradicates cancer with the help of near-infrared light irradiation.
Collapse
Affiliation(s)
- Yuquan Wang
- Graduate School of Human and Environmental Studies, Kyoto University, Sakyo-ku, Kyoto, 606-8501, Japan
| | - Giacomo Reina
- Graduate School of Human and Environmental Studies, Kyoto University, Sakyo-ku, Kyoto, 606-8501, Japan
| | - Heon Gyu Kang
- Graduate School of Human and Environmental Studies, Kyoto University, Sakyo-ku, Kyoto, 606-8501, Japan
| | - Xiaoxiao Chen
- Graduate School of Human and Environmental Studies, Kyoto University, Sakyo-ku, Kyoto, 606-8501, Japan
| | - Yajuan Zou
- Graduate School of Human and Environmental Studies, Kyoto University, Sakyo-ku, Kyoto, 606-8501, Japan
| | - Yoshie Ishikawa
- National Institute of Advanced Industrial Science and Technology, Research Institute for Advanced Electronics and Photonics, Central 5, 1-1-1 Higashi, Tsukuba, Ibaraki, 305-8565, Japan
| | - Minoru Suzuki
- Particle Radiation Oncology Research Center, Institute for Integrated Radiation and Nuclear Science, Kyoto University, 2-1010, Asashiro-nishi, Kumatori-cho, Sennan-gun, Osaka, 590-0494, Japan
| | - Naoki Komatsu
- Graduate School of Human and Environmental Studies, Kyoto University, Sakyo-ku, Kyoto, 606-8501, Japan
| |
Collapse
|
19
|
Matović J, Järvinen J, Sokka IK, Stockmann P, Kellert M, Imlimthan S, Sarparanta M, Johansson MP, Hey-Hawkins E, Rautio J, Ekholm FS. Synthesis and In Vitro Evaluation of a Set of 6-Deoxy-6-thio-carboranyl d-Glucoconjugates Shed Light on the Substrate Specificity of the GLUT1 Transporter. ACS OMEGA 2022; 7:30376-30388. [PMID: 36061667 PMCID: PMC9434784 DOI: 10.1021/acsomega.2c03646] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/11/2022] [Accepted: 08/04/2022] [Indexed: 05/20/2023]
Abstract
Glucose- and sodium-dependent glucose transporters (GLUTs and SGLTs) play vital roles in human biology. Of the 14 GLUTs and 12 SGLTs, the GLUT1 transporter has gained the most widespread recognition because GLUT1 is overexpressed in several cancers and is a clinically valid therapeutic target. We have been pursuing a GLUT1-targeting approach in boron neutron capture therapy (BNCT). Here, we report on surprising findings encountered with a set of 6-deoxy-6-thio-carboranyl d-glucoconjugates. In more detail, we show that even subtle structural changes in the carborane cluster, and the linker, may significantly reduce the delivery capacity of GLUT1-based boron carriers. In addition to providing new insights on the substrate specificity of this important transporter, we reach a fresh perspective on the boundaries within which a GLUT1-targeting approach in BNCT can be further refined.
Collapse
Affiliation(s)
- Jelena Matović
- Department
of Chemistry, University of Helsinki, P.O. Box 55, FI-00014 Helsinki, Finland
| | - Juulia Järvinen
- School
of Pharmacy, University of Eastern Finland, P.O. Box 1627, FI-70211 Kuopio, Finland
| | - Iris K. Sokka
- Department
of Chemistry, University of Helsinki, P.O. Box 55, FI-00014 Helsinki, Finland
| | - Philipp Stockmann
- Institute
of Inorganic Chemistry, Leipzig University, D-04103 Leipzig, Germany
| | - Martin Kellert
- Institute
of Inorganic Chemistry, Leipzig University, D-04103 Leipzig, Germany
| | - Surachet Imlimthan
- Department
of Chemistry, University of Helsinki, P.O. Box 55, FI-00014 Helsinki, Finland
| | - Mirkka Sarparanta
- Department
of Chemistry, University of Helsinki, P.O. Box 55, FI-00014 Helsinki, Finland
| | - Mikael P. Johansson
- Department
of Chemistry, University of Helsinki, P.O. Box 55, FI-00014 Helsinki, Finland
- Helsinki
Institute of Sustainability Science, HELSUS, FI-00014 Helsinki, Finland
- CSC
− IT Center for Science Ltd., P.O. Box 405, FI-02101 Espoo, Finland
| | | | - Jarkko Rautio
- School
of Pharmacy, University of Eastern Finland, P.O. Box 1627, FI-70211 Kuopio, Finland
| | - Filip S. Ekholm
- Department
of Chemistry, University of Helsinki, P.O. Box 55, FI-00014 Helsinki, Finland
| |
Collapse
|
20
|
Gazvoda M, Dhanjee HH, Rodriguez J, Brown JS, Farquhar CE, Truex NL, Loas A, Buchwald SL, Pentelute BL. Palladium-Mediated Incorporation of Carboranes into Small Molecules, Peptides, and Proteins. J Am Chem Soc 2022; 144:7852-7860. [PMID: 35438502 PMCID: PMC9881053 DOI: 10.1021/jacs.2c01932] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Carboranes represent a class of compounds with increasing therapeutic potential. However, few general approaches to readily embed carboranes into small molecules, peptides, and proteins are available. We report a strategy based on palladium-mediated C-X (X = C, S, and N) bond formation for the installation of carborane-containing moieties onto small molecules and peptides. We demonstrate the ability of Pd-based reagents with appropriate ligands to overcome the high hydrophobicity of the carborane group and enable chemoselective conjugation of cysteine residues at room temperature in aqueous buffer. Accordingly, carboranes can be efficiently installed on proteins by employing a combination of a bis-sulfonated biarylphosphine-ligated Pd reagent in an aqueous histidine buffer. This method is successfully employed on nanobodies, a fully synthetic affibody, and the antibody therapeutics trastuzumab and cetuximab. The conjugates of the affibody ZHER2 and the trastuzumab antibody retained binding to their target antigens. Conjugated proteins maintain their activity in cell-based functional assays in HER2-positive BT-474 cell lines. This approach enables the rapid incorporation of carborane moieties into small molecules, peptides, and proteins for further exploration in boron neutron capture therapy, which requires the targeted delivery of boron-dense groups.
Collapse
Affiliation(s)
| | | | - Jacob Rodriguez
- Department of Chemistry, Massachusetts, Institute of Technology, Cambridge, Massachusetts 02139, United States
| | - Joseph S. Brown
- Department of Chemistry, Massachusetts, Institute of Technology, Cambridge, Massachusetts 02139, United States
| | - Charlotte E. Farquhar
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| | - Nicholas L. Truex
- Department of Chemistry, Massachusetts, Institute of Technology, Cambridge, Massachusetts 02139, United States
| | - Andrei Loas
- Department of Chemistry, Massachusetts, Institute of Technology, Cambridge, Massachusetts 02139, United States
| | - Stephen L. Buchwald
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| | - Bradley L. Pentelute
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States,The Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, Massachusetts 02142, United States,Center for Environmental Health Sciences, Massachusetts, Institute of Technology, Cambridge, Massachusetts 02139, United States,Broad Institute of MIT and Harvard, Cambridge, Massachusetts 02142, United States
| |
Collapse
|
21
|
Berger SM, Marder TB. Applications of triarylborane materials in cell imaging and sensing of bio-relevant molecules such as DNA, RNA, and proteins. MATERIALS HORIZONS 2022; 9:112-120. [PMID: 34842251 DOI: 10.1039/d1mh00696g] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Triarylboranes have been known for more than 100 years and have found potential applications in various fields such as anion sensors and optoelectronics, for example in organic light emitting diodes (OLEDs), field effect transistors (OFETs), and organic photovoltaic devices. However, biological applications, such as bioimaging agents and biomolecule sensors have evolved much more recently. This review summarises progress in this relatively young field and highlights the potential of triarylboranes in biological applications.
Collapse
Affiliation(s)
- Sarina M Berger
- Institut für Anorganische Chemie and Institute for Sustainable Chemistry & Catalysis with Boron, Julius-Maximilians-Universität Würzburg, Am Hubland, 97074 Würzburg, Germany.
| | - Todd B Marder
- Institut für Anorganische Chemie and Institute for Sustainable Chemistry & Catalysis with Boron, Julius-Maximilians-Universität Würzburg, Am Hubland, 97074 Würzburg, Germany.
| |
Collapse
|
22
|
Abi-Ghaida F. The serendipitous integration of small boron-embedded molecules into medicinal chemistry. FUNDAMENTALS AND APPLICATIONS OF BORON CHEMISTRY 2022:321-410. [DOI: 10.1016/b978-0-12-822127-3.00006-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2025]
|
23
|
Zhang Y, Zhou Q, Chen J, Tong J, Liang T, Zhao L. Doxorubicin-conjugated <sup>10</sup>B<sub>4</sub>C nanoparticles: Preparation and application in combined boron neutron capturetherapy/chemotherapy. CHINESE SCIENCE BULLETIN-CHINESE 2021. [DOI: 10.1360/tb-2021-0902] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
24
|
Song S, Gao P, Sun L, Kang D, Kongsted J, Poongavanam V, Zhan P, Liu X. Recent developments in the medicinal chemistry of single boron atom-containing compounds. Acta Pharm Sin B 2021; 11:3035-3059. [PMID: 34729302 PMCID: PMC8546671 DOI: 10.1016/j.apsb.2021.01.010] [Citation(s) in RCA: 53] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2020] [Revised: 12/25/2020] [Accepted: 01/05/2021] [Indexed: 12/11/2022] Open
Abstract
Various boron-containing drugs have been approved for clinical use over the past two decades, and more are currently in clinical trials. The increasing interest in boron-containing compounds is due to their unique binding properties to biological targets; for example, boron substitution can be used to modulate biological activity, pharmacokinetic properties, and drug resistance. In this perspective, we aim to comprehensively review the current status of boron compounds in drug discovery, focusing especially on progress from 2015 to December 2020. We classify these compounds into groups showing anticancer, antibacterial, antiviral, antiparasitic and other activities, and discuss the biological targets associated with each activity, as well as potential future developments.
Collapse
Key Words
- ACTs, artemisinin combination therapies
- ADCs, Acinetobacter-derived cephalosporinases
- AML, acute myeloid leukemia
- AMT, aminopterin
- BLs, β-lactamases
- BNCT, boron neutron capture therapy
- BNNPs, boron nitride nanoparticles
- BNNTs, boron nitride nanotubes
- Boron-containing compounds
- CEs, carboxylesterases
- CIA, collagen-induced arthritis
- COVID-19, coronavirus disease 2019
- ClpP, casein protease P
- Covalent inhibitors
- GSH, glutathione
- HADC1, class I histone deacetylase
- HBV, hepatitis B virus
- HCV, hepatitis C virus
- HIV, human immunodeficiency virus
- LeuRS, leucyl-tRNA synthetase
- Linker components
- MBLs, metal β-lactamases
- MDR-TB, multidrug-resistant tuberculosis
- MERS, Middle East respiratory syndrome
- MIDA, N-methyliminodiacetic acid
- MM, multiple myeloma
- MTX, methotrexate
- Mcl-1, myeloid cell leukemia 1
- Mtb, Mycobacterium tuberculosis
- NA, neuraminidase
- NS5B, non-nucleoside polymerase
- OBORT, oxaborole tRNA capture
- OPs, organophosphate
- PBA, phenylboronic acid
- PDB, Protein Data Bank
- PPI, protein–protein interaction
- Prodrug
- QM, quinone methide
- RA, rheumatoid arthritis
- ROS, reactive oxygen species
- SARS-CoV-2, syndrome coronavirus 2
- SBLs, serine β-lactamases
- SERD, selective estrogen receptor downregulator
- SHA, salicyl hydroxamic acid
- SaClpP, Staphylococcus aureus caseinolytic protease P
- TB, tuberculosis
- TTR, transthyretin
- U4CR, Ugi 4-component reaction
- cUTI, complex urinary tract infection
- dCTPase, dCTPase pyrophosphatase
Collapse
Affiliation(s)
- Shu Song
- Department of Medicinal Chemistry, Key Laboratory of Chemical Biology, Ministry of Education, School of Pharmaceutical Sciences, Shandong University, Ji'nan 250012, China
| | - Ping Gao
- Department of Medicinal Chemistry, Key Laboratory of Chemical Biology, Ministry of Education, School of Pharmaceutical Sciences, Shandong University, Ji'nan 250012, China
| | - Lin Sun
- Department of Medicinal Chemistry, Key Laboratory of Chemical Biology, Ministry of Education, School of Pharmaceutical Sciences, Shandong University, Ji'nan 250012, China
| | - Dongwei Kang
- Department of Medicinal Chemistry, Key Laboratory of Chemical Biology, Ministry of Education, School of Pharmaceutical Sciences, Shandong University, Ji'nan 250012, China
| | - Jacob Kongsted
- Department of Physics, Chemistry and Pharmacy, University of Southern Denmark, Odense M. DK-5230, Denmark
| | - Vasanthanathan Poongavanam
- Department of Physics, Chemistry and Pharmacy, University of Southern Denmark, Odense M. DK-5230, Denmark
- Corresponding authors. Tel./fax: +86 531 88380270.
| | - Peng Zhan
- Department of Medicinal Chemistry, Key Laboratory of Chemical Biology, Ministry of Education, School of Pharmaceutical Sciences, Shandong University, Ji'nan 250012, China
- Corresponding authors. Tel./fax: +86 531 88380270.
| | - Xinyong Liu
- Department of Medicinal Chemistry, Key Laboratory of Chemical Biology, Ministry of Education, School of Pharmaceutical Sciences, Shandong University, Ji'nan 250012, China
- Corresponding authors. Tel./fax: +86 531 88380270.
| |
Collapse
|
25
|
Nishikawa M, Kang HG, Zou Y, Takeuchi H, Matsuno N, Suzuki M, Komatsu N. Conjugation of Phenylboronic Acid Moiety through Multistep Organic Transformations on Nanodiamond Surface for an Anticancer Nanodrug for Boron Neutron Capture Therapy. BULLETIN OF THE CHEMICAL SOCIETY OF JAPAN 2021. [DOI: 10.1246/bcsj.20210200] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Affiliation(s)
- Masahiro Nishikawa
- Graduate School of Human and Environmental Studies, Kyoto University, Sakyo-ku, Kyoto 606-8501, Japan
- Business Development Center, Daicel Corporation, 1239 Shinzaike, Aboshi-ku, Himeji, Hyogo 671-1283, Japan
| | - Heon Gyu Kang
- Graduate School of Human and Environmental Studies, Kyoto University, Sakyo-ku, Kyoto 606-8501, Japan
| | - Yajuan Zou
- Graduate School of Human and Environmental Studies, Kyoto University, Sakyo-ku, Kyoto 606-8501, Japan
| | - Hidekazu Takeuchi
- Business Development Center, Daicel Corporation, 1239 Shinzaike, Aboshi-ku, Himeji, Hyogo 671-1283, Japan
| | - Naoyoshi Matsuno
- Business Development Center, Daicel Corporation, 1239 Shinzaike, Aboshi-ku, Himeji, Hyogo 671-1283, Japan
| | - Minoru Suzuki
- Institute for Integrated Radiation and Nuclear Science, Kyoto University, 2-1010 Asashiro-nishi, Kumatori-cho, Sennan-gun, Osaka 590-0494, Japan
| | - Naoki Komatsu
- Graduate School of Human and Environmental Studies, Kyoto University, Sakyo-ku, Kyoto 606-8501, Japan
| |
Collapse
|
26
|
Nuez-Martínez M, Pedrosa L, Martinez-Rovira I, Yousef I, Diao D, Teixidor F, Stanzani E, Martínez-Soler F, Tortosa A, Sierra À, Gonzalez JJ, Viñas C. Synchrotron-Based Fourier-Transform Infrared Micro-Spectroscopy (SR-FTIRM) Fingerprint of the Small Anionic Molecule Cobaltabis(dicarbollide) Uptake in Glioma Stem Cells. Int J Mol Sci 2021; 22:9937. [PMID: 34576098 PMCID: PMC8466526 DOI: 10.3390/ijms22189937] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2021] [Revised: 09/07/2021] [Accepted: 09/10/2021] [Indexed: 12/16/2022] Open
Abstract
The anionic cobaltabis (dicarbollide) [3,3'-Co(1,2-C2B9H11)2]-, [o-COSAN]-, is the most studied icosahedral metallacarborane. The sodium salts of [o-COSAN]- could be an ideal candidate for the anti-cancer treatment Boron Neutron Capture Therapy (BNCT) as it possesses the ability to readily cross biological membranes thereby producing cell cycle arrest in cancer cells. BNCT is a cancer therapy based on the potential of 10B atoms to produce α particles that cross tissues in which the 10B is accumulated without damaging the surrounding healthy tissues, after being irradiated with low energy thermal neutrons. Since Na[o-COSAN] displays a strong and characteristic ν(B-H) frequency in the infrared range 2.600-2.500 cm-1, we studied the uptake of Na[o-COSAN] followed by its interaction with biomolecules and its cellular biodistribution in two different glioma initiating cells (GICs), mesenchymal and proneural respectively, by using Synchrotron Radiation-Fourier Transform Infrared (FTIR) micro-spectroscopy (SR-FTIRM) facilities at the MIRAS Beamline of ALBA synchrotron light source. The spectroscopic data analysis from the bands in the regions of DNA, proteins, and lipids permitted to suggest that after its cellular uptake, Na[o-COSAN] strongly interacts with DNA strings, modifies proteins secondary structure and also leads to lipid saturation. The mapping suggests the nuclear localization of [o-COSAN]-, which according to reported Monte Carlo simulations may result in a more efficient cell-killing effect compared to that in a uniform distribution within the entire cell. In conclusion, we show pieces of evidence that at low doses, [o-COSAN]- translocates GIC cells' membranes and it alters the physiology of the cells, suggesting that Na[o-COSAN] is a promising agent to BNCT for glioblastoma cells.
Collapse
Affiliation(s)
- Miquel Nuez-Martínez
- Institut de Ciència de Materials de Barcelona, ICMAB-CSIC, Campus Universitat Autònoma de Barcelona, 08193 Bellaterra, Spain; (M.N.-M.); (F.T.)
| | - Leire Pedrosa
- Laboratory of Experimental Oncological Neurosurgery, Neurosurgery Service, Hospital Clinic de Barcelona—FCRB, 08036 Barcelona, Spain; (L.P.); (D.D.); (J.J.G.)
| | - Immaculada Martinez-Rovira
- Ionizing Radiation Research Group (GRRI), Physics Department, Universitat Autònoma de Barcelona (UAB), Avinguda de l’Eix Central, Edifici C. Campus de la UAB, 08193 Cerdanyola del Vallès, Spain;
- ALBA-CELLS Synchrotron, MIRAS Beamline, Carrer de la Llum 2-26, 08290 Cerdanyola del Vallès, Spain;
| | - Ibraheem Yousef
- ALBA-CELLS Synchrotron, MIRAS Beamline, Carrer de la Llum 2-26, 08290 Cerdanyola del Vallès, Spain;
| | - Diouldé Diao
- Laboratory of Experimental Oncological Neurosurgery, Neurosurgery Service, Hospital Clinic de Barcelona—FCRB, 08036 Barcelona, Spain; (L.P.); (D.D.); (J.J.G.)
| | - Francesc Teixidor
- Institut de Ciència de Materials de Barcelona, ICMAB-CSIC, Campus Universitat Autònoma de Barcelona, 08193 Bellaterra, Spain; (M.N.-M.); (F.T.)
| | - Elisabetta Stanzani
- Laboratory of Pharmacology and Brain Pathology, IRCCS Humanitas Research Hospital, 20089 Rozzano, Italy;
| | - Fina Martínez-Soler
- Apoptosis and Cancer Unit, Department of Physiological Sciences, IDIBELL, Faculty of Medicine and Health Sciences, Universitat de Barcelona, 08907 L’Hospitalet del Llobregat, Spain; (F.M.-S.); (A.T.)
| | - Avelina Tortosa
- Apoptosis and Cancer Unit, Department of Physiological Sciences, IDIBELL, Faculty of Medicine and Health Sciences, Universitat de Barcelona, 08907 L’Hospitalet del Llobregat, Spain; (F.M.-S.); (A.T.)
| | - Àngels Sierra
- Laboratory of Experimental Oncological Neurosurgery, Neurosurgery Service, Hospital Clinic de Barcelona—FCRB, 08036 Barcelona, Spain; (L.P.); (D.D.); (J.J.G.)
| | - José Juan Gonzalez
- Laboratory of Experimental Oncological Neurosurgery, Neurosurgery Service, Hospital Clinic de Barcelona—FCRB, 08036 Barcelona, Spain; (L.P.); (D.D.); (J.J.G.)
| | - Clara Viñas
- Institut de Ciència de Materials de Barcelona, ICMAB-CSIC, Campus Universitat Autònoma de Barcelona, 08193 Bellaterra, Spain; (M.N.-M.); (F.T.)
| |
Collapse
|
27
|
Korolkov IV, Zibert AV, Lissovskaya LI, Ludzik K, Anisovich M, Kozlovskiy AL, Shumskaya AE, Vasilyeva M, Shlimas DI, Jażdżewska M, Marciniak B, Kontek R, Chudoba D, Zdorovets MV. Boron and Gadolinium Loaded Fe 3O 4 Nanocarriers for Potential Application in Neutron Capture Therapy. Int J Mol Sci 2021; 22:8687. [PMID: 34445393 PMCID: PMC8395504 DOI: 10.3390/ijms22168687] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2021] [Revised: 08/09/2021] [Accepted: 08/09/2021] [Indexed: 11/16/2022] Open
Abstract
In this article, a novel method of simultaneous carborane- and gadolinium-containing compounds as efficient agents for neutron capture therapy (NCT) delivery via magnetic nanocarriers is presented. The presence of both Gd and B increases the efficiency of NCT and using nanocarriers enhances selectivity. These factors make NCT not only efficient, but also safe. Superparamagnetic Fe3O4 nanoparticles were treated with silane and then the polyelectrolytic layer was formed for further immobilization of NCT agents. Fourier-transform infrared spectroscopy (FTIR), X-ray diffraction (XRD), energy dispersive X-ray (EDX), ultraviolet-visible (UV-Vis) and Mössbauer spectroscopies, dynamic light scattering (DLS), scanning electron microscopy (SEM), vibrating-sample magnetometry (VSM) were applied for the characterization of the chemical and element composition, structure, morphology and magnetic properties of nanocarriers. The cytotoxicity effect was evaluated on different cell lines: BxPC-3, PC-3 MCF-7, HepG2 and L929, human skin fibroblasts as normal cells. average size of nanoparticles is 110 nm; magnetization at 1T and coercivity is 43.1 emu/g and 8.1, respectively; the amount of B is 0.077 mg/g and the amount of Gd is 0.632 mg/g. Successful immobilization of NCT agents, their low cytotoxicity against normal cells and selective cytotoxicity against cancer cells as well as the superparamagnetic properties of nanocarriers were confirmed by analyses above.
Collapse
Affiliation(s)
- Ilya V. Korolkov
- The Institute of Nuclear Physics, Ibragimov Str. 1, Almaty 050032, Kazakhstan; (A.V.Z.); (L.I.L.); (A.L.K.); (D.I.S.); (M.V.Z.)
- Engineering Profile Laboratory, L.N. Gumilyov Eurasian National University, Satpaev Str. 5, Nur-Sultan 010008, Kazakhstan
| | - Alexandr V. Zibert
- The Institute of Nuclear Physics, Ibragimov Str. 1, Almaty 050032, Kazakhstan; (A.V.Z.); (L.I.L.); (A.L.K.); (D.I.S.); (M.V.Z.)
- Engineering Profile Laboratory, L.N. Gumilyov Eurasian National University, Satpaev Str. 5, Nur-Sultan 010008, Kazakhstan
| | - Lana I. Lissovskaya
- The Institute of Nuclear Physics, Ibragimov Str. 1, Almaty 050032, Kazakhstan; (A.V.Z.); (L.I.L.); (A.L.K.); (D.I.S.); (M.V.Z.)
- Engineering Profile Laboratory, L.N. Gumilyov Eurasian National University, Satpaev Str. 5, Nur-Sultan 010008, Kazakhstan
| | - K. Ludzik
- Department of Physical Chemistry, University of Lodz, 90-236 Lodz, Poland
- Frank Laboratory of Neutron Physics, Joint Institute for Nuclear Research, Dubna 141980, Russia; (M.J.); (D.C.)
| | - M. Anisovich
- Republican Unitary Enterprise, Scientific-Practical Centre of Hygiene, 220012 Minsk, Belarus; (M.A.); (M.V.)
| | - Artem L. Kozlovskiy
- The Institute of Nuclear Physics, Ibragimov Str. 1, Almaty 050032, Kazakhstan; (A.V.Z.); (L.I.L.); (A.L.K.); (D.I.S.); (M.V.Z.)
- Engineering Profile Laboratory, L.N. Gumilyov Eurasian National University, Satpaev Str. 5, Nur-Sultan 010008, Kazakhstan
| | - A. E. Shumskaya
- The Institute of Chemistry of New Materials, National Academy of Sciences of Belarus, 220072 Minsk, Belarus;
| | - M. Vasilyeva
- Republican Unitary Enterprise, Scientific-Practical Centre of Hygiene, 220012 Minsk, Belarus; (M.A.); (M.V.)
| | - Dmitriy I. Shlimas
- The Institute of Nuclear Physics, Ibragimov Str. 1, Almaty 050032, Kazakhstan; (A.V.Z.); (L.I.L.); (A.L.K.); (D.I.S.); (M.V.Z.)
- Engineering Profile Laboratory, L.N. Gumilyov Eurasian National University, Satpaev Str. 5, Nur-Sultan 010008, Kazakhstan
| | - Monika Jażdżewska
- Frank Laboratory of Neutron Physics, Joint Institute for Nuclear Research, Dubna 141980, Russia; (M.J.); (D.C.)
- Faculty of Physics, Adam Mickiewicz University, 61-614 Poznan, Poland
| | - Beata Marciniak
- Laboratory of Cytogenetics, Faculty of Biology and Enviromental Protection, University of Lodz, 90-231 Lodz, Poland; (B.M.); (R.K.)
| | - Renata Kontek
- Laboratory of Cytogenetics, Faculty of Biology and Enviromental Protection, University of Lodz, 90-231 Lodz, Poland; (B.M.); (R.K.)
| | - Dorota Chudoba
- Frank Laboratory of Neutron Physics, Joint Institute for Nuclear Research, Dubna 141980, Russia; (M.J.); (D.C.)
- Faculty of Physics, Adam Mickiewicz University, 61-614 Poznan, Poland
| | - Maxim V. Zdorovets
- The Institute of Nuclear Physics, Ibragimov Str. 1, Almaty 050032, Kazakhstan; (A.V.Z.); (L.I.L.); (A.L.K.); (D.I.S.); (M.V.Z.)
- Engineering Profile Laboratory, L.N. Gumilyov Eurasian National University, Satpaev Str. 5, Nur-Sultan 010008, Kazakhstan
- Department of Intelligent Information Technologies, Ural Federal University, Mira Str. 19, Ekaterinburg 620002, Russia
| |
Collapse
|
28
|
Gubanova NV, Tsygankova AR, Zavjalov EL, Romashchenko AV, Orlov YL. Biodistribution of 10B in Glioma Orthotopic Xenograft Mouse Model after Injection of L-para-Boronophenylalanine and Sodium Borocaptate. Biomedicines 2021; 9:biomedicines9070722. [PMID: 34201895 PMCID: PMC8301403 DOI: 10.3390/biomedicines9070722] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2021] [Revised: 06/16/2021] [Accepted: 06/21/2021] [Indexed: 12/12/2022] Open
Abstract
Boron neutron capture therapy (BNCT) is based on the ability of the boron-10 (10B) isotope to capture epithermal neutrons, as a result of which the isotope becomes unstable and decays into kinetically active elements that destroy cells where the nuclear reaction has occurred. The boron-carrying compounds—L-para-boronophenylalanine (BPA) and sodium mercaptoundecahydro-closo-dodecaborate (BSH)—have low toxicity and, today, are the only representatives of such compounds approved for clinical trials. For the effectiveness and safety of BNCT, a low boron content in normal tissues and substantially higher content in tumor tissue are required. This study evaluated the boron concentration in intracranial grafts of human glioma U87MG cells and normal tissues of the brain and other organs of mice at 1, 2.5 and 5 h after administration of the boron-carrying compounds. A detailed statistical analysis of the boron biodistribution dynamics was performed to find a ‘window of opportunity’ for BNCT. The data demonstrate variations in boron accumulation in different tissues depending on the compound used, as well as significant inter-animal variation. The protocol of administration of BPA and BSH compounds used did not allow achieving the parameters necessary for the successful course of BNCT in a glioma orthotopic xenograft mouse model.
Collapse
Affiliation(s)
- Natalya V. Gubanova
- Institute of Cytology and Genetics, Siberian Branch Russian Academy of Sciences, 630090 Novosibirsk, Russia; (E.L.Z.); (A.V.R.); (Y.L.O.)
- Correspondence:
| | - Alphiya R. Tsygankova
- Nikolaev Institute of Inorganic Chemistry, Siberian Branch Russian Academy of Sciences, 630090 Novosibirsk, Russia;
- Department of Natural Sciences, Novosibirsk State University, 630090 Novosibirsk, Russia
| | - Evgenii L. Zavjalov
- Institute of Cytology and Genetics, Siberian Branch Russian Academy of Sciences, 630090 Novosibirsk, Russia; (E.L.Z.); (A.V.R.); (Y.L.O.)
| | - Alexander V. Romashchenko
- Institute of Cytology and Genetics, Siberian Branch Russian Academy of Sciences, 630090 Novosibirsk, Russia; (E.L.Z.); (A.V.R.); (Y.L.O.)
| | - Yuriy L. Orlov
- Institute of Cytology and Genetics, Siberian Branch Russian Academy of Sciences, 630090 Novosibirsk, Russia; (E.L.Z.); (A.V.R.); (Y.L.O.)
- Department of Natural Sciences, Novosibirsk State University, 630090 Novosibirsk, Russia
- Agrarian and Technological Institute, Peoples’ Friendship University of Russia, 117198 Moscow, Russia
- The Digital Health Institute, I.M. Sechenov First Moscow State Medical University of the Ministry of Health of the Russian Federation, 119911 Moscow, Russia
| |
Collapse
|
29
|
Abstract
"There's plenty of room at the bottom" (Richard Feynman, 1959): an invitation for (metalla)carboranes to enter the (new) field of nanomedicine. For two decades, the number of publications on boron cluster compounds designed for potential applications in medicine has been constantly increasing. Hundreds of compounds have been screened in vitro or in vivo for a variety of biological activities (chemotherapeutics, radiotherapeutics, antiviral, etc.), and some have shown rather promising potential for further development. However, until now, no boron cluster compounds have made it to the clinic, and even clinical trials have been very sparse. This review introduces a new perspective in the field of medicinal boron chemistry, namely that boron-based drugs should be regarded as nanomedicine platforms, due to their peculiar self-assembly behaviour in aqueous solutions, and treated as such. Examples for boron-based 12- and 11-vertex clusters and appropriate comparative studies from medicinal (in)organic chemistry and nanomedicine, highlighting similarities, differences and gaps in physicochemical and biological characterisation methods, are provided to encourage medicinal boron chemists to fill in the gaps between chemistry laboratory and real applications in living systems by employing bioanalytical and biophysical methods for characterising and controlling the aggregation behaviour of the clusters in solution.
Collapse
Affiliation(s)
- Marta Gozzi
- Institute of Inorganic ChemistryFaculty of Chemistry and MineralogyLeipzig UniversityJohannisallee 2904103LeipzigGermany
- Institute of Analytical ChemistryFaculty of Chemistry and MineralogyLeipzig UniversityLinnéstr. 304103LeipzigGermany
- Institute of Medicinal Physics and BiophysicsFaculty of MedicineLeipzig UniversityHärtelstr. 16–1804107LeipzigGermany
| | - Benedikt Schwarze
- Institute of Medicinal Physics and BiophysicsFaculty of MedicineLeipzig UniversityHärtelstr. 16–1804107LeipzigGermany
| | - Evamarie Hey‐Hawkins
- Institute of Inorganic ChemistryFaculty of Chemistry and MineralogyLeipzig UniversityJohannisallee 2904103LeipzigGermany
| |
Collapse
|
30
|
Lin YC, Chou FI, Liao JW, Liu YH, Hwang JJ. The Effect of Low-Dose Gamma Irradiation on the Uptake of Boronophenylalanine to Enhance the Efficacy of Boron Neutron Capture Therapy in an Orthotopic Oral Cancer Model. Radiat Res 2021; 195:347-354. [PMID: 33513230 DOI: 10.1667/rade-20-00102.1] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2020] [Accepted: 12/18/2020] [Indexed: 11/03/2022]
Abstract
The success of boron neutron capture therapy (BNCT) mainly depends on the boron concentration in the tumor and a high tumor/normal tissue (T/N) boron ratio or a high tumor/blood (T/B) boron ratio. Therefore, the effective enhancement of boron ratios is the first priority. Our study investigated whether a low-dose of γ-radiation (LDR) could improve boron ratios and enhance the therapeutic effects of BNCT in an orthotopic human oral squamous cell carcinoma-bearing animal model. SAS/luc cells were used to establish the orthotopic tumor-bearing model. The pharmacokinetics of boronophenylalanine (BPA) administration with 400 mg/kg of body weight both alone and in combination with LDR (0.1 Gy) was evaluated, and BNCT was performed at the Tsing Hua Open-pool Reactor (THOR). The radiation doses were evaluated using a treatment planning system. Moreover, tumor growth and metastasis were monitored via bioluminescence imaging (BLI). The therapeutic effects after BNCT were evaluated using BLI, histopathological findings and the overall survival rate. LDR increased the BPA accumulation in tumors by 52.2%. T/N and T/B ratios were enhanced from 3.77 to 5.31 and from 3.47 to 4.46, respectively. Radiation dose was increased by 44.3%. Notably, tumor recurrence and cervical lymph node metastasis were observed in the BNCT group, which had a survival rate of 50%. Complete responses were found in the combined-treatment group, which had a survival rate of 100%. No toxicity was found according to the histopathological findings. Conclusively, LDR increased BPA accumulation in the tumor and the T/N and T/B ratios, resulting in BNCT efficacy improvement and the overall survival rate extension.
Collapse
Affiliation(s)
- Yu-Chuan Lin
- Nuclear Science and Technology Development Center, National Tsing Hua University, Hsinchu, Taiwan
| | - Fong-In Chou
- Nuclear Science and Technology Development Center, National Tsing Hua University, Hsinchu, Taiwan
| | - Jiunn-Wang Liao
- Graduate Institute of Veterinary Pathobiology, National Chung Hsing University, Taichung, Taiwan
| | - Yuan-Hao Liu
- Department of Nuclear Science and Engineering, Nanjing University of Aeronautics and Astronautics, Nanjing, China
| | - Jeng-Jong Hwang
- Department of Medical Imaging, Chung Shan Medical University Hospital, Taichung, Taiwan
| |
Collapse
|
31
|
Gruzdev DA, Levit GL, Krasnov VP, Charushin VN. Carborane-containing amino acids and peptides: Synthesis, properties and applications. Coord Chem Rev 2021. [DOI: 10.1016/j.ccr.2020.213753] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
32
|
Feiner IVJ, Pulagam KR, Uribe KB, Passannante R, Simó C, Zamacola K, Gómez-Vallejo V, Herrero-Álvarez N, Cossío U, Baz Z, Caffarel MM, Lawrie CH, Vugts DJ, Rejc L, Llop J. Pre-targeting with ultra-small nanoparticles: boron carbon dots as drug candidates for boron neutron capture therapy. J Mater Chem B 2021; 9:410-420. [PMID: 33367431 DOI: 10.1039/d0tb01880e] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Boron neutron capture therapy (BNCT) is a promising cancer treatment exploiting the neutron capture capacity and subsequent fission reaction of boron-10. The emergence of nanotechnology has encouraged the development of nanocarriers capable of accumulating boron atoms preferentially in tumour cells. However, a long circulation time, required for high tumour accumulation, is usually accompanied by accumulation of the nanosystem in organs such as the liver and the spleen, which may cause off-target side effects. This could be overcome by using small-sized boron carriers via a pre-targeting strategy. Here, we report the preparation, characterisation and in vivo evaluation of tetrazine-functionalised boron-rich carbon dots, which show very fast clearance and low tumour uptake after intravenous administration in a mouse HER2 (human epidermal growth factor receptor 2)-positive tumour model. Enhanced tumour accumulation was achieved when using a pretargeting approach, which was accomplished by a highly selective biorthogonal reaction at the tumour site with trans-cyclooctene-functionalised Trastuzumab.
Collapse
Affiliation(s)
- Irene V J Feiner
- CIC biomaGUNE, Basque Research and Technology Alliance (BRTA), San Sebastian, Spain.
| | - Krishna R Pulagam
- CIC biomaGUNE, Basque Research and Technology Alliance (BRTA), San Sebastian, Spain.
| | - Kepa B Uribe
- CIC biomaGUNE, Basque Research and Technology Alliance (BRTA), San Sebastian, Spain.
| | - Rossana Passannante
- CIC biomaGUNE, Basque Research and Technology Alliance (BRTA), San Sebastian, Spain.
| | - Cristina Simó
- CIC biomaGUNE, Basque Research and Technology Alliance (BRTA), San Sebastian, Spain.
| | - Kepa Zamacola
- CIC biomaGUNE, Basque Research and Technology Alliance (BRTA), San Sebastian, Spain.
| | - Vanessa Gómez-Vallejo
- CIC biomaGUNE, Basque Research and Technology Alliance (BRTA), San Sebastian, Spain.
| | | | - Unai Cossío
- CIC biomaGUNE, Basque Research and Technology Alliance (BRTA), San Sebastian, Spain.
| | - Zuriñe Baz
- CIC biomaGUNE, Basque Research and Technology Alliance (BRTA), San Sebastian, Spain.
| | - María M Caffarel
- Biodonostia Health Research Institute, San Sebastian, Spain and IKERBASQUE, Basque Foundation for Science, Bilbao, Spain
| | - Charles H Lawrie
- Biodonostia Health Research Institute, San Sebastian, Spain and IKERBASQUE, Basque Foundation for Science, Bilbao, Spain and Radcliffe Department of Medicine, University of Oxford, Oxford, UK
| | - Danielle J Vugts
- Amsterdam UMC, Vrije Universiteit Amsterdam, Dept. Radiology & Nuclear Medicine, The Netherlands
| | - Luka Rejc
- CIC biomaGUNE, Basque Research and Technology Alliance (BRTA), San Sebastian, Spain. and University of Ljubljana, Faculty of Chemistry and Chemical Technology, Večna pot 113, 1000 Ljubljana, Slovenia
| | - Jordi Llop
- CIC biomaGUNE, Basque Research and Technology Alliance (BRTA), San Sebastian, Spain. and Centro de Investigación Biomédica en Red, Enfermedades Respiratorias - CIBERES, Madrid, Spain
| |
Collapse
|
33
|
Torresan V, Guadagnini A, Badocco D, Pastore P, Muñoz Medina GA, Fernàndez van Raap MB, Postuma I, Bortolussi S, Bekić M, Čolić M, Gerosa M, Busato A, Marzola P, Amendola V. Biocompatible Iron-Boron Nanoparticles Designed for Neutron Capture Therapy Guided by Magnetic Resonance Imaging. Adv Healthc Mater 2021; 10:e2001632. [PMID: 33369251 DOI: 10.1002/adhm.202001632] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2020] [Revised: 11/04/2020] [Indexed: 12/13/2022]
Abstract
The combination of multiple functions in a single nanoparticle (NP) represents a key advantage of nanomedicine compared to traditional medical approaches. This is well represented by radiotherapy in which the dose of ionizing radiation should be calibrated on sensitizers biodistribution. Ideally, this is possible when the drug acts both as radiation enhancer and imaging contrast agent. Here, an easy, one-step, laser-assisted synthetic procedure is used to generate iron-boron (Fe-B) NPs featuring the set of functions required to assist neutron capture therapy (NCT) with magnetic resonance imaging. The Fe-B NPs exceed by three orders of magnitude the payload of boron isotopes contained in clinical sensitizers. The Fe-B NPs have magnetic properties of interest also for magnetophoretic accumulation in tissues and magnetic hyperthermia to assist drug permeation in tissues. Besides, Fe-B NPs are biocompatible and undergo slow degradation in the lysosomal environment that facilitates in vivo clearance through the liver-spleen-kidneys pathway. Overall, the Fe-B NPs represent a new promising tool for future exploitation in magnetic resonance imaging-guided boron NCT at higher levels of efficacy and tolerability.
Collapse
Affiliation(s)
- Veronica Torresan
- Department of Chemical Sciences University of Padova Via Marzolo 1 Padova I‐35131 Italy
| | - Andrea Guadagnini
- Department of Chemical Sciences University of Padova Via Marzolo 1 Padova I‐35131 Italy
| | - Denis Badocco
- Department of Chemical Sciences University of Padova Via Marzolo 1 Padova I‐35131 Italy
| | - Paolo Pastore
- Department of Chemical Sciences University of Padova Via Marzolo 1 Padova I‐35131 Italy
| | - Guillermo Arturo Muñoz Medina
- Physics Institute of La Plata (IFLP‐CONICET) Physics Department, Faculty of Exact Sciences National University of La Plata La Plata 1900 Argentina
| | - Marcela B. Fernàndez van Raap
- Physics Institute of La Plata (IFLP‐CONICET) Physics Department, Faculty of Exact Sciences National University of La Plata La Plata 1900 Argentina
| | - Ian Postuma
- INFN (National Institute of Nuclear Physics) Pavia Via Bassi 6 Pavia 27100 Italy
| | - Silva Bortolussi
- INFN (National Institute of Nuclear Physics) Pavia Via Bassi 6 Pavia 27100 Italy
- Department of Physics University of Pavia Pavia 27100 Italy
| | - Marina Bekić
- Institute for the Application of Nuclear Energy University of Belgrade Belgrade 11080 Serbia
| | - Miodrag Čolić
- Institute for the Application of Nuclear Energy University of Belgrade Belgrade 11080 Serbia
- Medical Faculty Foča University of East Sarajevo Republika Srpska Foča 73300 Bosnia and Herzegovina
| | - Marco Gerosa
- Department of Computer Science University of Verona Verona 37134 Italy
| | - Alice Busato
- Department of Computer Science University of Verona Verona 37134 Italy
| | - Pasquina Marzola
- Department of Computer Science University of Verona Verona 37134 Italy
| | - Vincenzo Amendola
- Department of Chemical Sciences University of Padova Via Marzolo 1 Padova I‐35131 Italy
| |
Collapse
|
34
|
Hirose K, Konno A, Hiratsuka J, Yoshimoto S, Kato T, Ono K, Otsuki N, Hatazawa J, Tanaka H, Takayama K, Wada H, Suzuki M, Sato M, Yamaguchi H, Seto I, Ueki Y, Iketani S, Imai S, Nakamura T, Ono T, Endo H, Azami Y, Kikuchi Y, Murakami M, Takai Y. Boron neutron capture therapy using cyclotron-based epithermal neutron source and borofalan ( 10B) for recurrent or locally advanced head and neck cancer (JHN002): An open-label phase II trial. Radiother Oncol 2021; 155:182-187. [PMID: 33186684 DOI: 10.1016/j.radonc.2020.11.001] [Citation(s) in RCA: 117] [Impact Index Per Article: 29.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2020] [Revised: 11/02/2020] [Accepted: 11/03/2020] [Indexed: 02/08/2023]
Abstract
BACKGROUND AND PURPOSE Boron neutron capture therapy (BNCT) can be performed without reactors due to development of cyclotron-based epithermal neutron source (C-BENS), which is optimized for treatment for deeper-seated tumors. The purpose of this study was to evaluate efficacy and safety of cyclotron-based BNCT with borofalan (10B) for recurrent or locally advanced head and neck cancer. MATERIALS AND METHODS In this open-label, phase II JHN002 trial of BNCT using C-BENS with borofalan (10B), patients with recurrent squamous cell carcinoma (R-SCC) or with recurrent/locally advanced non-squamous cell carcinoma (R/LA-nSCC) of the head and neck were intravenously administered 400 mg/kg borofalan (10B), followed by neutron irradiation. The tumor dose was determined passively as the mucosal maximum dose of 12 Gy-Eq. The primary endpoint was the objective response rate (ORR). Post-trial observational JHN002 Look Up study was planned for evaluating locoregional progression-free survival (LRPFS). RESULTS Eight R-SCC and 13 R/LA-nSCC patients were enrolled. All R-SCC patients had prior radiotherapy with a median dose of 65.5 Gy (range, 59.4-76.0 Gy). The ORR for all patients was 71%, and complete response/partial response were 50%/25% in R-SCC and 8%/62% in R/LA-nSCC. The 2-year overall survival for R-SCC and R/LA-nSCC were 58% and 100%, respectively. The median LRPFS was 11.5 months for R-SCC. Frequently observed adverse events included alopecia (95%), hyperamylasemia (86%), and nausea (81%). CONCLUSION These data suggest that BNCT using C-BENS with borofalan (10B) is a promising treatment option for patients with R-SCC or R/LA-nSCC of the head and neck.
Collapse
Affiliation(s)
- Katsumi Hirose
- Southern Tohoku BNCT Research Center, Koriyama, Japan; Department of Radiation Oncology, Southern Tohoku General Hospital, Koriyama, Japan; Department of Radiation Oncology, Hirosaki University Graduate School of Medicine, Japan.
| | - Akiyoshi Konno
- Department of Otorhinolaryngology, Southern Tohoku General Hospital, Koriyama, Japan
| | - Junichi Hiratsuka
- Department of Radiation Oncology, Kawasaki Medical School, Kurashiki, Japan
| | - Seiichi Yoshimoto
- Department of Head and Neck Surgery, National Cancer Center Hospital, Tokyo, Japan
| | - Takahiro Kato
- Southern Tohoku BNCT Research Center, Koriyama, Japan; Department of Radiation Oncology, Southern Tohoku General Hospital, Koriyama, Japan; Southern Tohoku Proton Therapy Center, Koriyama, Japan; Preparing Section for New Faculty of Medical Science, Fukushima Medical University, Japan
| | - Koji Ono
- Kansai BNCT Medical Center, Osaka Medical College, Japan
| | - Naoki Otsuki
- Department of Otolaryngology, Kindai University, Faculty of Medicine, Osaka, Japan
| | - Jun Hatazawa
- Department of Nuclear Medicine and Tracer Kinetics, Osaka University Graduate School of Medicine, Japan
| | - Hiroki Tanaka
- Institute for Integrated Radiation and Nuclear Science, Kyoto University, Kumatori, Japan
| | - Kanako Takayama
- Department of Radiation Oncology, Southern Tohoku General Hospital, Koriyama, Japan; Southern Tohoku Proton Therapy Center, Koriyama, Japan
| | - Hitoshi Wada
- Department of Radiation Oncology, Southern Tohoku General Hospital, Koriyama, Japan; Southern Tohoku Proton Therapy Center, Koriyama, Japan
| | - Motohisa Suzuki
- Department of Radiation Oncology, Southern Tohoku General Hospital, Koriyama, Japan; Southern Tohoku Proton Therapy Center, Koriyama, Japan
| | - Mariko Sato
- Southern Tohoku BNCT Research Center, Koriyama, Japan; Department of Radiation Oncology, Southern Tohoku General Hospital, Koriyama, Japan; Department of Radiation Oncology, Hirosaki University Graduate School of Medicine, Japan
| | - Hisashi Yamaguchi
- Department of Radiation Oncology, Southern Tohoku General Hospital, Koriyama, Japan; Southern Tohoku Proton Therapy Center, Koriyama, Japan
| | - Ichiro Seto
- Department of Radiation Oncology, Southern Tohoku General Hospital, Koriyama, Japan; Southern Tohoku Proton Therapy Center, Koriyama, Japan
| | - Yuji Ueki
- Department of Otorhinolaryngology, Southern Tohoku General Hospital, Koriyama, Japan
| | - Susumu Iketani
- Department of Oral and Maxillofacial Surgery, Southern Tohoku General Hospital, Koriyama, Japan
| | - Shigeki Imai
- Department of Radiology, Southern Tohoku General Hospital, Koriyama, Japan
| | - Tatsuya Nakamura
- Department of Radiation Oncology, Southern Tohoku General Hospital, Koriyama, Japan; Southern Tohoku Proton Therapy Center, Koriyama, Japan
| | - Takashi Ono
- Department of Radiation Oncology, Southern Tohoku General Hospital, Koriyama, Japan; Southern Tohoku Proton Therapy Center, Koriyama, Japan
| | - Hiromasa Endo
- Department of Radiation Oncology, Southern Tohoku General Hospital, Koriyama, Japan; Southern Tohoku Proton Therapy Center, Koriyama, Japan
| | - Yusuke Azami
- Department of Radiation Oncology, Southern Tohoku General Hospital, Koriyama, Japan; Southern Tohoku Proton Therapy Center, Koriyama, Japan; Department of Medical Oncology, School of Medicine, Fukushima Medical University, Japan
| | - Yasuhiro Kikuchi
- Department of Radiation Oncology, Southern Tohoku General Hospital, Koriyama, Japan; Southern Tohoku Proton Therapy Center, Koriyama, Japan
| | - Masao Murakami
- Department of Radiation Oncology, Southern Tohoku General Hospital, Koriyama, Japan; Southern Tohoku Proton Therapy Center, Koriyama, Japan
| | - Yoshihiro Takai
- Southern Tohoku BNCT Research Center, Koriyama, Japan; Department of Radiation Oncology, Southern Tohoku General Hospital, Koriyama, Japan
| |
Collapse
|
35
|
Abstract
This review describes the latest polymeric systems used as boron transporters for boron neutron capture therapy.
Collapse
Affiliation(s)
- Anaïs Pitto-Barry
- School of Chemistry and Biosciences
- University of Bradford
- Bradford BD7 1DP
- UK
| |
Collapse
|
36
|
BNCT for primary synovial sarcoma. Appl Radiat Isot 2020; 169:109407. [PMID: 33444907 DOI: 10.1016/j.apradiso.2020.109407] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2019] [Revised: 08/18/2020] [Accepted: 09/01/2020] [Indexed: 01/17/2023]
Abstract
Synovial sarcoma is a rare tumor requiring new treatment methods. A 46-year-old woman with primary monophasic synovial sarcoma in the left thigh involving the sciatic nerve, declining surgery because of potential dysfunction of the affected limbs, received two courses of BNCT. The tumor thus reduced was completely resected with no subsequent recurrence. The patient is now able to walk unassisted, and no local recurrence has been observed, demonstrating the applicability of BNCT as adjuvant therapy for synovial sarcoma. Further study and analysis with more experience accumulation are needed to confirm the real impact of BNCT efficacy for its application to synovial sarcoma.
Collapse
|
37
|
Matović J, Järvinen J, Sokka IK, Imlimthan S, Raitanen JE, Montaser A, Maaheimo H, Huttunen KM, Peräniemi S, Airaksinen AJ, Sarparanta M, Johansson MP, Rautio J, Ekholm FS. Exploring the Biochemical Foundations of a Successful GLUT1-Targeting Strategy to BNCT: Chemical Synthesis and In Vitro Evaluation of the Entire Positional Isomer Library of ortho-Carboranylmethyl-Bearing Glucoconjugates. Mol Pharm 2020; 18:285-304. [PMID: 33390018 DOI: 10.1021/acs.molpharmaceut.0c00917] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
Boron neutron capture therapy (BNCT) is a noninvasive binary therapeutic modality applicable to the treatment of cancers. While BNCT offers a tumor-targeting selectivity that is difficult to match by other means, the last obstacles preventing the full harness of this potential come in the form of the suboptimal boron delivery strategies presently used in the clinics. To address these challenges, we have developed delivery agents that target the glucose transporter GLUT1. Here, we present the chemical synthesis of a number of ortho-carboranylmethyl-substituted glucoconjugates and the biological assessment of all positional isomers. Altogether, the study provides protocols for the synthesis and structural characterization of such glucoconjugates and insights into their essential properties, for example, cytotoxicity, GLUT1-affinity, metabolism, and boron delivery capacity. In addition to solidifying the biochemical foundations of a successful GLUT1-targeting approach to BNCT, we identify the most promising modification sites in d-glucose, which are critical in order to further develop this strategy toward clinical use.
Collapse
Affiliation(s)
- Jelena Matović
- Department of Chemistry, University of Helsinki, P.O. Box 55, FI-00014 Helsinki, Finland
| | - Juulia Järvinen
- School of Pharmacy, University of Eastern Finland, P.O. Box 1627, FI-70211 Kuopio, Finland
| | - Iris K Sokka
- Department of Chemistry, University of Helsinki, P.O. Box 55, FI-00014 Helsinki, Finland
| | - Surachet Imlimthan
- Department of Chemistry, University of Helsinki, P.O. Box 55, FI-00014 Helsinki, Finland
| | - Jan-Erik Raitanen
- Department of Chemistry, University of Helsinki, P.O. Box 55, FI-00014 Helsinki, Finland
| | - Ahmed Montaser
- School of Pharmacy, University of Eastern Finland, P.O. Box 1627, FI-70211 Kuopio, Finland
| | - Hannu Maaheimo
- VTT Technical Research Centre of Finland Ltd., P.O. Box 1000, FI-02044 VTT, Finland
| | - Kristiina M Huttunen
- School of Pharmacy, University of Eastern Finland, P.O. Box 1627, FI-70211 Kuopio, Finland
| | - Sirpa Peräniemi
- School of Pharmacy, University of Eastern Finland, P.O. Box 1627, FI-70211 Kuopio, Finland
| | - Anu J Airaksinen
- Department of Chemistry, University of Helsinki, P.O. Box 55, FI-00014 Helsinki, Finland.,Turku PET Centre, Department of Chemistry, University of Turku, P.O. Box 52, FI-20521 Turku, Finland
| | - Mirkka Sarparanta
- Department of Chemistry, University of Helsinki, P.O. Box 55, FI-00014 Helsinki, Finland
| | - Mikael P Johansson
- Department of Chemistry, University of Helsinki, P.O. Box 55, FI-00014 Helsinki, Finland.,Helsinki Institute of Sustainability Science, HELSUS, FI-00014 Helsinki, Finland.,CSC-IT Center for Science Ltd., P.O. Box 405, FI-02101 Espoo, Finland
| | - Jarkko Rautio
- School of Pharmacy, University of Eastern Finland, P.O. Box 1627, FI-70211 Kuopio, Finland
| | - Filip S Ekholm
- Department of Chemistry, University of Helsinki, P.O. Box 55, FI-00014 Helsinki, Finland
| |
Collapse
|
38
|
Jones B. Clinical Radiobiology of Fast Neutron Therapy: What Was Learnt? Front Oncol 2020; 10:1537. [PMID: 33042798 PMCID: PMC7522468 DOI: 10.3389/fonc.2020.01537] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2020] [Accepted: 07/17/2020] [Indexed: 11/22/2022] Open
Abstract
Neutron therapy was developed from neutron radiobiology experiments, and had identified a higher cell kill per unit dose and an accompanying reduction in oxygen dependency. But experts such as Hal Gray were sceptical about clinical applications, for good reasons. Gray knew that the increase in relative biological effectiveness (RBE) with dose fall-off could produce marked clinical limitations. After many years of research, this treatment did not produce the expected gains in tumour control relative to normal tissue toxicity, as predicted by Gray. More detailed reasons for this are discussed in this paper. Neutrons do not have Bragg peaks and so did not selectively spare many tissues from radiation exposure; the constant neutron RBE tumour prescription values did not represent the probable higher RBE values in late-reacting tissues with low α/β values; the inevitable increase in RBE as dose falls along a beam would also contribute to greater toxicity than in a similar megavoltage photon beam. Some tissues such as the central nervous system white matter had the highest RBEs partly because of the higher percentage hydrogen content in lipid-containing molecules. All the above factors contributed to disappointing clinical results found in a series of randomised controlled studies at many treatment centres, although at the time they were performed, neutron therapy was in a catch-up phase with photon-based treatments. Their findings are summarised along with their technical aspects and fractionation choices. Better understanding of fast neutron experiments and therapy has been gained through relatively simple mathematical models—using the biological effective dose concept and incorporating the RBEmax and RBEmin parameters (the limits of RBE at low and high dose, respectively—as shown in the Appendix). The RBE itself can then vary between these limits according to the dose per fraction used. These approaches provide useful insights into the problems that can occur in proton and ion beam therapy and how they may be optimised. This is because neutron ionisations in living tissues are mainly caused by recoil protons of energy proportional to the neutron energy: these are close to the proton energies that occur close to the Bragg peak region. To some extent, neutron RBE studies contain the highest RBE ranges found within proton and ion beams near Bragg peaks. In retrospect, neutrons were a useful radiobiological tool that has continued to inform the scientific and clinical community about the essential radiobiological principles of all forms of high linear energy transfer therapy. Neutron radiobiology and its implications should be taught on training courses and studied closely by clinicians, physicists, and biologists engaged in particle beam therapies.
Collapse
Affiliation(s)
- Bleddyn Jones
- Gray Laboratory, Department of Oncology, University of Oxford, Oxford, United Kingdom.,Green Templeton College, University of Oxford, Oxford, United Kingdom.,University College Department of Medical Physics & Biomedical Engineering, London, United Kingdom
| |
Collapse
|
39
|
Lutz MR, Flieger S, Colorina A, Wozny J, Hosmane NS, Becker DP. Carborane-Containing Matrix Metalloprotease (MMP) Ligands as Candidates for Boron Neutron-Capture Therapy (BNCT). ChemMedChem 2020; 15:1897-1908. [PMID: 32720425 DOI: 10.1002/cmdc.202000470] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2020] [Indexed: 12/11/2022]
Abstract
Based on the previously reported potent and selective sulfone hydroxamate inhibitors SC-76276, SC-78080 (SD-2590), and SC-77964, potent MMP inhibitors have been designed and synthesized to append a boron-rich carborane cluster by employing click chemistry to target tumor cells that are known to upregulate gelatinases. Docking against MMP-2 suggests binding involving the hydroxamate zinc-binding group, key H-bonds by the sulfone moiety with the peptide backbone residues Leu82 and Leu83, and a hydrophobic interaction with the deep P1' pocket. The more potent of the two triazole regioisomers exhibits an IC50 of 3.7 nM versus MMP-2 and IC50 of 46 nM versus MMP-9.
Collapse
Affiliation(s)
- Marlon R Lutz
- Biosynthetic Technologies, 6320 Intech Way, Indianapolis, IN 46278, USA
| | - Sebastian Flieger
- Department of Chemistry and Biochemistry, Loyola University Chicago, Chicago, IL 60660, USA
| | - Andre Colorina
- Regis Technologies, Inc., 8210 Austin Ave., Morton Grove, Illinois 60053, USA
| | - John Wozny
- Department of Chemistry and Biochemistry, Northern Illinois University, DeKalb, IL 60115, USA
| | - Narayan S Hosmane
- Department of Chemistry and Biochemistry, Northern Illinois University, DeKalb, IL 60115, USA
| | - Daniel P Becker
- Department of Chemistry and Biochemistry, Loyola University Chicago, Chicago, IL 60660, USA
| |
Collapse
|