1
|
Nakashima K, Shimohara H, Watanabe H, Ono M. Improvement of tumor-to-blood ratio of radioimmunoconjugates by poly(ethyleneimine)-containing chelating agent. Ann Nucl Med 2025; 39:323-333. [PMID: 39585568 DOI: 10.1007/s12149-024-02003-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2024] [Accepted: 11/10/2024] [Indexed: 11/26/2024]
Abstract
OBJECTIVE Monoclonal antibody (mAb)-based radioimmunoconjugates (RICs) exhibit marked tumor uptake in cancer imaging and therapy, although their high blood retention has limited the development of RICs. In our previous study, a trifunctional chelating agent with a cationic poly(ethyleneimine) (PEI) structure of tetraethylenepentamine (PEI4), maleimide-DOTA-PEI4 (MDI4), improved the tumor-to-blood ratio of RICs by increasing tumor retention compared with a conventional bifunctional chelating agent. In this study, we developed a novel chelating agent composed of a maleimide moiety, DOTA derivative, and two PEI4 structures as a PEI4-2 unit, maleimide-DOTA-PEI4-2 (MDI4-2), a design for a highly cationized chelating agent to synthesize RICs. The properties of MDI4-2 were compared with MDI4 to evaluate the effect of the PEI4-2 unit on the pharmacokinetics of RICs. METHODS Trastuzumab and 111In were selected as a model mAb and radiometal, respectively. Trastuzumab-based RICs were synthesized using MDI4-2 by two-step radiolabeling, wherein conjugation with mAbs is followed by radiolabeling of chelating agents, to obtain trastuzumab-[111In]In-MDI4-2 ([111In]In-TMDI4-2). The immunoreactivity and residualizing properties of [111In]In-TMDI4-2 were evaluated using human epidermal growth factor receptor 2 (HER2)/neu-expressing SK-OV-3 cells. A biodistribution assay using SK-OV-3 tumor-bearing mice was also performed for [111In]In-TMDI4-2 and the results were compared with trastuzumab-[111In]In-MDI4 ([111In]In-TMDI4). RESULTS [111In]In-TMDI4-2 was successfully synthesized by two-step radiolabeling at a radiochemical yield of 37.7%. The immunoreactivity of [111In]In-TMDI4-2 was determined as 81.7%, suggesting the maintained binding ability through radiolabeling steps. The internalization assay revealed equivalent internalizing properties of [111In]In-TMDI4-2 to [111In]In-TMDI4. In the biodistribution assay, [111In]In-TMDI4-2 exhibited lower blood retention of radioactivity to and comparable tumor uptake with [111In]In-TMDI4, resulting in an improved tumor-to-blood ratio. These in vitro and in vivo results indicate that the PEI4-2 unit largely contributed to the decrease in the blood radioactivity of RICs without compromising the tumor uptake. CONCLUSION MDI4-2 with the PEI4-2 unit exhibited favorable properties for designing RICs with an improved tumor-to-blood ratio.
Collapse
Affiliation(s)
- Kazuma Nakashima
- Department of Patho-Functional Bioanalysis, Graduate School of Pharmaceutical Sciences, Kyoto University, 46-29 Yoshida Shimoadachi-cho, Sakyo-ku, Kyoto, 606-8501, Japan
| | - Hiroki Shimohara
- Department of Patho-Functional Bioanalysis, Graduate School of Pharmaceutical Sciences, Kyoto University, 46-29 Yoshida Shimoadachi-cho, Sakyo-ku, Kyoto, 606-8501, Japan
| | - Hiroyuki Watanabe
- Department of Patho-Functional Bioanalysis, Graduate School of Pharmaceutical Sciences, Kyoto University, 46-29 Yoshida Shimoadachi-cho, Sakyo-ku, Kyoto, 606-8501, Japan
| | - Masahiro Ono
- Department of Patho-Functional Bioanalysis, Graduate School of Pharmaceutical Sciences, Kyoto University, 46-29 Yoshida Shimoadachi-cho, Sakyo-ku, Kyoto, 606-8501, Japan.
| |
Collapse
|
2
|
Wan Y, Li G, Cui G, Duan S, Chang S. Reprogramming of Thyroid Cancer Metabolism: from Mechanism to Therapeutic Strategy. Mol Cancer 2025; 24:74. [PMID: 40069775 PMCID: PMC11895238 DOI: 10.1186/s12943-025-02263-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2024] [Accepted: 02/06/2025] [Indexed: 03/15/2025] Open
Abstract
Thyroid cancer as one of the most prevalent malignancies of endocrine system, has raised public concern and more research on its mechanism and treatment. And metabolism-based therapies have advanced rapidly, for the exclusive metabolic profiling of thyroid cancer. In thyroid cancer cells, plenty of metabolic pathways are reprogrammed to accommodate tumor microenvironment. In this review, we initiatively summarize recent progress in the full-scale thyroid cancer metabolic rewiring and the interconnection of various metabolites. We also discuss the efficacy and prospect of metabolic targeted detection as well as therapy. Comprehending metabolic mechanism and characteristics of thyroid cancer roundly will be highly beneficial to managing individual patients.
Collapse
Affiliation(s)
- Yuxuan Wan
- Department of General Surgery, Xiangya Hospital Central South University, Changsha, 410008, Hunan, People's Republic of China
- Xiangya School of Medicine, Central South University, Changsha, 410008, Hunan, People's Republic of China
| | - Guoqing Li
- Department of General Surgery, Xiangya Hospital Central South University, Changsha, 410008, Hunan, People's Republic of China
- Xiangya School of Medicine, Central South University, Changsha, 410008, Hunan, People's Republic of China
| | - Gaoyuan Cui
- Xiangya School of Medicine, Central South University, Changsha, 410008, Hunan, People's Republic of China
| | - Saili Duan
- Department of General Surgery, Xiangya Hospital Central South University, Changsha, 410008, Hunan, People's Republic of China.
- Xiangya School of Medicine, Central South University, Changsha, 410008, Hunan, People's Republic of China.
- Department of Cancer Biology, University of Michigan, Ann Arbor, MI, 48109, USA.
| | - Shi Chang
- Department of General Surgery, Xiangya Hospital Central South University, Changsha, 410008, Hunan, People's Republic of China.
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Changsha, 410008, Hunan, People's Republic of China.
- Clinical Research Center for Thyroid Disease in Hunan Province, Changsha, 410008, Hunan, People's Republic of China.
- Hunan Provincial Engineering Research Center for Thyroid and Related Diseases Treatment Technology, Changsha, 410008, Hunan, People's Republic of China.
| |
Collapse
|
3
|
Salimi Asl A, Davari M, Ghorbani A, Seddighi N, Arabi K, Saburi E. Neoadjuvant immunotherapy and oncolytic virotherapy in HPV positive and HPV negative skin cancer: A comprehensive review. Int Immunopharmacol 2025; 146:113790. [PMID: 39673996 DOI: 10.1016/j.intimp.2024.113790] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2024] [Revised: 12/03/2024] [Accepted: 12/03/2024] [Indexed: 12/16/2024]
Abstract
Skin cancer is the most common new cancer among Caucasians. This cancer has different types, of which non-melanoma skin cancer is the most common type. Various factors affect this disease, one of which is viral infections, including HPV. This virus plays an important role in skin cancer, especially cSCCs. There are various options for the treatment of skin cancer, and today special attention has been paid to treatments based on therapeutic goals, immunotherapy and combination therapy. In this study, we have investigated treatments based on immunotherapy and virotherapy and the effect of HPV virus on the effectiveness of these treatments in skin cancer. Treatments based on virotherapy are performed for a long time in combination with other common treatments such as radiotherapy and chemotherapy in order to have a greater effect and lower its side effects, which include: shortness of breath, tachycardia, lowering blood pressure in the patient. Also, the most important axis of immunotherapy is to focus on PD1-PDL1, despite abundant evidence on the importance of immunotherapy, many studies investigate the use of immunotherapy inhibitors in the adjuvant and neoadjuvant setting in various cancers. Also, previous findings show conflicting evidence of the effect of HPV status on the response to immunotherapy.
Collapse
Affiliation(s)
- Ali Salimi Asl
- Student Research Committee, Faculty of Medicine, Hormozgan University of Medical Sciences, Bandar Abbas, Iran.
| | - Mohsen Davari
- Student Research Committee, Faculty of Medicine, Hormozgan University of Medical Sciences, Bandar Abbas, Iran.
| | - Atousa Ghorbani
- Department of Biology, North Tehran Branch, Islamic Azad University, Tehran, Iran; Department of Biology, East Tehran Branch, Islamic Azad University, Tehran, Iran.
| | - Narjes Seddighi
- Student Research Committee, Tabriz University of Medical Sciences, Tabriz, Iran; Hematology and Oncology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.
| | - Kimia Arabi
- Department of Biology, Mashhad Branch, Islamic Azad University, Mashhad, Iran.
| | - Ehsan Saburi
- Medical Genetics Research Center, Mashhad University of Medical Sciences, Mashhad, Iran; Medical Genetics and Molecular Medicine Department, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran.
| |
Collapse
|
4
|
Zhou Q, Liu Q, Wang Y, Chen J, Schmid O, Rehberg M, Yang L. Bridging Smart Nanosystems with Clinically Relevant Models and Advanced Imaging for Precision Drug Delivery. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2308659. [PMID: 38282076 PMCID: PMC11005737 DOI: 10.1002/advs.202308659] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/12/2023] [Indexed: 01/30/2024]
Abstract
Intracellular delivery of nano-drug-carriers (NDC) to specific cells, diseased regions, or solid tumors has entered the era of precision medicine that requires systematic knowledge of nano-biological interactions from multidisciplinary perspectives. To this end, this review first provides an overview of membrane-disruption methods such as electroporation, sonoporation, photoporation, microfluidic delivery, and microinjection with the merits of high-throughput and enhanced efficiency for in vitro NDC delivery. The impact of NDC characteristics including particle size, shape, charge, hydrophobicity, and elasticity on cellular uptake are elaborated and several types of NDC systems aiming for hierarchical targeting and delivery in vivo are reviewed. Emerging in vitro or ex vivo human/animal-derived pathophysiological models are further explored and highly recommended for use in NDC studies since they might mimic in vivo delivery features and fill the translational gaps from animals to humans. The exploration of modern microscopy techniques for precise nanoparticle (NP) tracking at the cellular, organ, and organismal levels informs the tailored development of NDCs for in vivo application and clinical translation. Overall, the review integrates the latest insights into smart nanosystem engineering, physiological models, imaging-based validation tools, all directed towards enhancing the precise and efficient intracellular delivery of NDCs.
Collapse
Affiliation(s)
- Qiaoxia Zhou
- Institute of Lung Health and Immunity (LHI), Helmholtz MunichComprehensive Pneumology Center (CPC‐M)Member of the German Center for Lung Research (DZL)85764MunichGermany
- Department of Forensic PathologyWest China School of Preclinical and Forensic MedicineSichuan UniversityNo. 17 Third Renmin Road NorthChengdu610041China
- Burning Rock BiotechBuilding 6, Phase 2, Standard Industrial Unit, No. 7 LuoXuan 4th Road, International Biotech IslandGuangzhou510300China
| | - Qiongliang Liu
- Institute of Lung Health and Immunity (LHI), Helmholtz MunichComprehensive Pneumology Center (CPC‐M)Member of the German Center for Lung Research (DZL)85764MunichGermany
- Department of Thoracic SurgeryShanghai General HospitalShanghai Jiao Tong University School of MedicineShanghai200080China
| | - Yan Wang
- Qingdao Central HospitalUniversity of Health and Rehabilitation Sciences (Qingdao Central Medical Group)Qingdao266042China
| | - Jie Chen
- Department of Respiratory MedicineNational Key Clinical SpecialtyBranch of National Clinical Research Center for Respiratory DiseaseXiangya HospitalCentral South UniversityChangshaHunan410008China
- Center of Respiratory MedicineXiangya HospitalCentral South UniversityChangshaHunan410008China
- Clinical Research Center for Respiratory Diseases in Hunan ProvinceChangshaHunan410008China
- Hunan Engineering Research Center for Intelligent Diagnosis and Treatment of Respiratory DiseaseChangshaHunan410008China
- National Clinical Research Center for Geriatric DisordersXiangya HospitalChangshaHunan410008P. R. China
| | - Otmar Schmid
- Institute of Lung Health and Immunity (LHI), Helmholtz MunichComprehensive Pneumology Center (CPC‐M)Member of the German Center for Lung Research (DZL)85764MunichGermany
| | - Markus Rehberg
- Institute of Lung Health and Immunity (LHI), Helmholtz MunichComprehensive Pneumology Center (CPC‐M)Member of the German Center for Lung Research (DZL)85764MunichGermany
| | - Lin Yang
- Institute of Lung Health and Immunity (LHI), Helmholtz MunichComprehensive Pneumology Center (CPC‐M)Member of the German Center for Lung Research (DZL)85764MunichGermany
| |
Collapse
|
5
|
Sheng J, Li T, Xu H, Xu R, Cai X, Zhang H, Ji Q, Duan X, Xia W, Yang X. Evaluation of clinical and imaging features for differentiating rhabdomyosarcoma from neuroblastoma in pediatric soft tissue. Front Oncol 2024; 14:1289532. [PMID: 38406807 PMCID: PMC10884217 DOI: 10.3389/fonc.2024.1289532] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2023] [Accepted: 01/16/2024] [Indexed: 02/27/2024] Open
Abstract
Background In this study, we developed a nomogram predictive model based on clinical, CT, and MRI parameters to differentiate soft tissue rhabdomyosarcoma (RMS) from neuroblastoma (NB) in children preoperatively. Materials and methods A total of 103 children with RMS (n=37) and NB (n=66) were enrolled in the study from December 2012 to July 2023. The clinical and imaging data (assessed by two experienced radiologists) were analyzed using univariate analysis, and significant factors were further analyzed by multivariable logistic regression using the forward LR method to develop the clinical model, radiological model, and integrated nomogram model, respectively. The diagnostic performances, goodness of fit, and clinical utility of the integrated nomogram model were assessed using the area under the curve (AUC) of the receiver operator characteristics curve (ROC) with a 95% confidence interval (95% CI), calibration curve, and decision curve analysis (DCA) curves, respectively. Diagnostic efficacy between the model and radiologists' interpretations was examined. Results The median age at diagnosis in the RMS group was significantly older than the NB group (36.0 months vs. 14.5 months; P=0.003); the fever rates in RMS patients were significantly lower than in patients with NB (0.0% vs.16.7%; P=0.022), and the incidence of palpable mass was higher in patients with RMS compared with the NB patients (89.2% vs. 34.8%; P<0.001). Compare NB on image features: RMS occurred more frequently in the head and neck and displayed homogeneous density on non-enhanced CT than NB (48.6% vs. 9.1%; 35.3% vs. 13.8%, respectively; all P<0.05), and the occurrence of characteristics such as calcification, encasing vessels, and intraspinal tumor extension was significantly less frequent in RMS children compared to children with NB (18.9% vs. 84.8%; 13.5% vs. 34.8%; 2.7% vs. 50.0%, respectively; all P <0.05). Two, three, and four features were identified as independent parameters by multivariate logistic regression analysis to develop the clinical, radiological, and integrated nomogram models, respectively. The AUC value (0.962), calibration curve, and DCA showed that the integrated nomogram model may provide better diagnostic performance, good agreement, and greater clinical net benefits than the clinical model, radiological model, and radiologists' subjective diagnosis. Conclusion The clinical and imaging features-based nomogram has potential for helping radiologists distinguish between pediatric soft tissue RMS and NB patients preoperatively, and reduce unnecessary interventions.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | - Xiujun Yang
- Department of Radiology, Shanghai Children’s Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| |
Collapse
|
6
|
Kalaba P, Sanchez de la Rosa C, Möller A, Alewood PF, Muttenthaler M. Targeting the Oxytocin Receptor for Breast Cancer Management: A Niche for Peptide Tracers. J Med Chem 2024; 67:1625-1640. [PMID: 38235665 PMCID: PMC10859963 DOI: 10.1021/acs.jmedchem.3c01089] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2023] [Revised: 12/07/2023] [Accepted: 12/20/2023] [Indexed: 01/19/2024]
Abstract
Breast cancer is a leading cause of death in women, and its management highly depends on early disease diagnosis and monitoring. This remains challenging due to breast cancer's heterogeneity and a scarcity of specific biomarkers that could predict responses to therapy and enable personalized treatment. This Perspective describes the diagnostic landscape for breast cancer management, molecular strategies targeting receptors overexpressed in tumors, the theranostic potential of the oxytocin receptor (OTR) as an emerging breast cancer target, and the development of OTR-specific optical and nuclear tracers to study, visualize, and treat tumors. A special focus is on the chemistry and pharmacology underpinning OTR tracer development, preclinical in vitro and in vivo studies, challenges, and future directions. The use of peptide-based tracers targeting upregulated receptors in cancer is a highly promising strategy complementing current diagnostics and therapies and providing new opportunities to improve cancer management and patient survival.
Collapse
Affiliation(s)
- Predrag Kalaba
- Institute
of Biological Chemistry, Faculty of Chemistry, University of Vienna, 1090 Vienna, Austria
| | | | - Andreas Möller
- QIMR
Berghofer Medical Research Institute, Brisbane, Queensland 4006, Australia
- The
Chinese University of Hong Kong, Hong Kong SAR 999077, China
| | - Paul F. Alewood
- Institute
for Molecular Bioscience, The University
of Queensland, Brisbane, Queensland 4072, Australia
| | - Markus Muttenthaler
- Institute
of Biological Chemistry, Faculty of Chemistry, University of Vienna, 1090 Vienna, Austria
- Institute
for Molecular Bioscience, The University
of Queensland, Brisbane, Queensland 4072, Australia
| |
Collapse
|
7
|
Li S, Lin Z, Chen H, Luo Q, Han S, Huang K, Chen R, Zhan Y, Chen B, Yao H. Synthesis and Application of a Near-Infrared Light-Emitting Fluorescent Probe for Specific Imaging of Cancer Cells with High Sensitivity and Selectivity. Drug Des Devel Ther 2024; 18:29-41. [PMID: 38225973 PMCID: PMC10788685 DOI: 10.2147/dddt.s439038] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2023] [Accepted: 12/21/2023] [Indexed: 01/17/2024] Open
Abstract
Background The preclinical diagnosis of tumors is of great significance to cancer treatment. Near-infrared fluorescence imaging technology is promising for the in-situ detection of tumors with high sensitivity. Methods Here, a fluorescent probe was synthesized on the basis of Au nanoclusters with near-infrared light emission and applied to fluorescent cancer cell labeling. Near-infrared methionine-N-Hydroxy succinimide Au nanoclusters (Met-NHs-AuNCs) were prepared successfully by one-pot synthesis using Au nanoclusters, methionine, and N-Hydroxy succinimide as frameworks, reductants, and stabilizers, respectively. The specific fluorescence imaging of tumor cells or tissues by fluorescent probe was studied on the basis of SYBYL Surflex-DOCK simulation model of LAT1 active site of overexpressed receptor on cancer cell surface. The results showed that Met-NHs-AuNCs interacted with the surface of LAT1, and C_Score scored the conformation of the probe and LAT1 as five. Results Characterization and in vitro experiments were conducted to explore the Met-NHs-AuNCs targeted uptake of cancer cells. The prepared near-infrared fluorescent probe (Met-NHs-AuNCs) can specifically recognize the overexpression of L-type amino acid transporter 1 (LAT1) in cancer cells so that it can show red fluorescence in cancer cells. Meanwhile, normal cells (H9c2) have no fluorescence. Conclusion The fluorescent probe demonstrates the power of targeting and imaging cancer cells.
Collapse
Affiliation(s)
- Shaoguang Li
- Department of Pharmaceutical Analysis, School of Pharmacy, Fujian Medical University, Fuzhou, FuJian, People’s Republic of China
| | - Zhan Lin
- Department of Pharmaceutical Analysis, School of Pharmacy, Fujian Medical University, Fuzhou, FuJian, People’s Republic of China
| | - Haobo Chen
- Department of Pharmaceutical Analysis, School of Pharmacy, Fujian Medical University, Fuzhou, FuJian, People’s Republic of China
| | - Qiu Luo
- Department of Pharmaceutical Analysis, School of Pharmacy, Fujian Medical University, Fuzhou, FuJian, People’s Republic of China
| | - Shengnan Han
- Department of Pharmaceutical Analysis, School of Pharmacy, Fujian Medical University, Fuzhou, FuJian, People’s Republic of China
| | - Kunlong Huang
- Department of Pharmaceutical Analysis, School of Pharmacy, Fujian Medical University, Fuzhou, FuJian, People’s Republic of China
| | - Ruichan Chen
- Department of Pharmaceutical Analysis, School of Pharmacy, Fujian Medical University, Fuzhou, FuJian, People’s Republic of China
| | - Yuying Zhan
- Department of Pharmaceutical Analysis, School of Pharmacy, Fujian Medical University, Fuzhou, FuJian, People’s Republic of China
| | - Bing Chen
- Higher Educational Key Laboratory for Nano Biomedical Technology of Fujian Province, Fujian Medical University, Fuzhou, Fujian, People’s Republic of China
| | - Hong Yao
- Department of Pharmaceutical Analysis, School of Pharmacy, Fujian Medical University, Fuzhou, FuJian, People’s Republic of China
- Higher Educational Key Laboratory for Nano Biomedical Technology of Fujian Province, Fujian Medical University, Fuzhou, Fujian, People’s Republic of China
- Fujian Key Laboratory of Drug Target Discovery and Structural and Functional Research, Fujian Medical University, Fuzhou, Fujian, People’s Republic of China
| |
Collapse
|
8
|
Kourie HR, Zouein J, Succar B, Mardirossian A, Ahmadieh N, Chouery E, Mehawej C, Jalkh N, kattan J, Nemr E. Genetic Polymorphisms Involved in Bladder Cancer: A Global Review. Oncol Rev 2023; 17:10603. [PMID: 38025894 PMCID: PMC10657888 DOI: 10.3389/or.2023.10603] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2022] [Accepted: 10/06/2023] [Indexed: 12/01/2023] Open
Abstract
Bladder cancer (BC) has been associated with genetic susceptibility. Single peptide polymorphisms (SNPs) can modulate BC susceptibility. A literature search was performed covering the period between January 2000 and October 2020. Overall, 334 articles were selected, reporting 455 SNPs located in 244 genes. The selected 455 SNPs were further investigated. All SNPs that were associated with smoking and environmental exposure were excluded from this study. A total of 197 genes and 343 SNPs were found to be associated with BC, among which 177 genes and 291 SNPs had congruent results across all available studies. These genes and SNPs were classified into eight different categories according to their function.
Collapse
Affiliation(s)
- Hampig Raphael Kourie
- Hematology-Oncology Department, Faculty of Medicine, Saint Joseph University, Beirut, Lebanon
| | - Joseph Zouein
- Hematology-Oncology Department, Faculty of Medicine, Saint Joseph University, Beirut, Lebanon
| | - Bahaa Succar
- Hematology-Oncology Department, Faculty of Medicine, Saint Joseph University, Beirut, Lebanon
| | - Avedis Mardirossian
- Hematology-Oncology Department, Faculty of Medicine, Saint Joseph University, Beirut, Lebanon
| | - Nizar Ahmadieh
- Hematology-Oncology Department, Faculty of Medicine, Saint Joseph University, Beirut, Lebanon
| | - Eliane Chouery
- Department of Human Genetics, Gilbert and Rose-Marie Chagoury School of Medicine, Lebanese American University, Beirut, Lebanon
| | - Cybel Mehawej
- Department of Human Genetics, Gilbert and Rose-Marie Chagoury School of Medicine, Lebanese American University, Beirut, Lebanon
| | - Nadine Jalkh
- Medical Genetics Unit, Faculty of Medicine, Saint Joseph University, Beirut, Lebanon
| | - Joseph kattan
- Hematology-Oncology Department, Faculty of Medicine, Saint Joseph University, Beirut, Lebanon
| | - Elie Nemr
- Urology Department, Faculty of Medicine, Saint Joseph University, Beirut, Lebanon
| |
Collapse
|
9
|
Chassé M, Pees A, Lindberg A, Liang SH, Vasdev N. Spirocyclic Iodonium Ylides for Fluorine-18 Radiolabeling of Non-Activated Arenes: From Concept to Clinical Research. CHEM REC 2023; 23:e202300072. [PMID: 37183954 DOI: 10.1002/tcr.202300072] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2023] [Revised: 04/27/2023] [Indexed: 05/16/2023]
Abstract
Positron emission tomography (PET) is a powerful imaging tool for drug discovery, clinical diagnosis, and monitoring of disease progression. Fluorine-18 is the most common radionuclide used for PET, but advances in radiotracer development have been limited by the historical lack of methodologies and precursors amenable to radiolabeling with fluorine-18. Radiolabeling of electron-rich (hetero)aromatic rings remains a long-standing challenge in the production of PET radiopharmaceuticals. In this personal account, we discuss the history of spirocyclic iodonium ylide precursors, from inception to applications in clinical research, for the incorporation of fluorine-18 into complex non-activated (hetero)aromatic rings.
Collapse
Affiliation(s)
- Melissa Chassé
- Institute of Medical Science, University of Toronto, 1 Kings College Circle, Toronto, ON M5S 1A8, Canada
- Azrieli Centre for Neuro-Radiochemistry, Brain Health Imaging Centre, Centre for Addiction and Mental Health (CAMH), 250 College Street, Toronto, ON M5T 1R8, Canada
| | - Anna Pees
- Azrieli Centre for Neuro-Radiochemistry, Brain Health Imaging Centre, Centre for Addiction and Mental Health (CAMH), 250 College Street, Toronto, ON M5T 1R8, Canada
| | - Anton Lindberg
- Azrieli Centre for Neuro-Radiochemistry, Brain Health Imaging Centre, Centre for Addiction and Mental Health (CAMH), 250 College Street, Toronto, ON M5T 1R8, Canada
| | - Steven H Liang
- Department of Radiology and Imaging Sciences, Emory University, Atlanta, GA, 30322, USA
| | - Neil Vasdev
- Institute of Medical Science, University of Toronto, 1 Kings College Circle, Toronto, ON M5S 1A8, Canada
- Azrieli Centre for Neuro-Radiochemistry, Brain Health Imaging Centre, Centre for Addiction and Mental Health (CAMH), 250 College Street, Toronto, ON M5T 1R8, Canada
- Department of Psychiatry, University of Toronto, 250 College Street, Toronto, ON M5T 1R8, Canada
| |
Collapse
|
10
|
Dhakne P, Pillai M, Mishra S, Chatterjee B, Tekade RK, Sengupta P. Refinement of safety and efficacy of anti-cancer chemotherapeutics by tailoring their site-specific intracellular bioavailability through transporter modulation. Biochim Biophys Acta Rev Cancer 2023; 1878:188906. [PMID: 37172652 DOI: 10.1016/j.bbcan.2023.188906] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Revised: 04/20/2023] [Accepted: 05/04/2023] [Indexed: 05/15/2023]
Abstract
Low intracellular bioavailability, off-site toxicities, and multi drug resistance (MDR) are the major constraints involved in cancer chemotherapy. Many anticancer molecules fail to become a good lead in drug discovery because of their poor site-specific bioavailability. Concentration of a molecule at target sites is largely varied because of the wavering expression of transporters. Recent anticancer drug discovery strategies are paying high attention to enhance target site bioavailability by modulating drug transporters. The level of genetic expression of transporters is an important determinant to understand their ability to facilitate drug transport across the cellular membrane. Solid carrier (SLC) transporters are the major influx transporters involved in the transportation of most anti-cancer drugs. In contrast, ATP-binding cassette (ABC) superfamily is the most studied class of efflux transporters concerning cancer and is significantly involved in efflux of chemotherapeutics resulting in MDR. Balancing SLC and ABC transporters is essential to avoid therapeutic failure and minimize MDR in chemotherapy. Unfortunately, comprehensive literature on the possible approaches of tailoring site-specific bioavailability of anticancer drugs through transporter modulation is not available till date. This review critically discussed the role of different specific transporter proteins in deciding the intracellular bioavailability of anticancer molecules. Different strategies for reversal of MDR in chemotherapy by incorporation of chemosensitizers have been proposed in this review. Targeted strategies for administration of the chemotherapeutics to the intracellular site of action through clinically relevant transporters employing newer nanotechnology-based formulation platforms have been explained. The discussion embedded in this review is timely considering the current need of addressing the ambiguity observed in pharmacokinetic and clinical outcomes of the chemotherapeutics in anti-cancer treatment regimens.
Collapse
Affiliation(s)
- Pooja Dhakne
- National Institute of Pharmaceutical Education and Research-Ahmedabad (NIPER-A), An Institute of National Importance, Government of India, Department of Pharmaceuticals, Ministry of Chemicals and Fertilizers, Opp. Airforce Station, Palaj, Gandhinagar 382355, Gujarat, India
| | - Megha Pillai
- National Institute of Pharmaceutical Education and Research-Ahmedabad (NIPER-A), An Institute of National Importance, Government of India, Department of Pharmaceuticals, Ministry of Chemicals and Fertilizers, Opp. Airforce Station, Palaj, Gandhinagar 382355, Gujarat, India
| | - Sonam Mishra
- National Institute of Pharmaceutical Education and Research-Ahmedabad (NIPER-A), An Institute of National Importance, Government of India, Department of Pharmaceuticals, Ministry of Chemicals and Fertilizers, Opp. Airforce Station, Palaj, Gandhinagar 382355, Gujarat, India
| | - Bappaditya Chatterjee
- SVKM's NMIMS School of Pharmacy and Management, Department of Pharmaceutics, Vaikunthlal Mehta Road, Vile Parle West, Mumbai, Maharashtra 400056, India
| | - Rakesh K Tekade
- National Institute of Pharmaceutical Education and Research-Ahmedabad (NIPER-A), An Institute of National Importance, Government of India, Department of Pharmaceuticals, Ministry of Chemicals and Fertilizers, Opp. Airforce Station, Palaj, Gandhinagar 382355, Gujarat, India
| | - Pinaki Sengupta
- National Institute of Pharmaceutical Education and Research-Ahmedabad (NIPER-A), An Institute of National Importance, Government of India, Department of Pharmaceuticals, Ministry of Chemicals and Fertilizers, Opp. Airforce Station, Palaj, Gandhinagar 382355, Gujarat, India.
| |
Collapse
|
11
|
Yao J, Tang S, Shi C, Lin Y, Ge L, Chen Q, Ou B, Liu D, Miao Y, Xie Q, Tang X, Fei J, Yang G, Tian J, Zeng X. Isoginkgetin, a potential CDK6 inhibitor, suppresses SLC2A1/GLUT1 enhancer activity to induce AMPK-ULK1-mediated cytotoxic autophagy in hepatocellular carcinoma. Autophagy 2023; 19:1221-1238. [PMID: 36048765 PMCID: PMC10012924 DOI: 10.1080/15548627.2022.2119353] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2022] [Revised: 08/24/2022] [Accepted: 08/26/2022] [Indexed: 11/02/2022] Open
Abstract
Isoginkgetin (ISO), a natural biflavonoid, exhibited cytotoxic activity against several types of cancer cells. However, its effects on hepatocellular carcinoma (HCC) cells and mechanism remain unclear. Here, we revealed that ISO effectively inhibited HCC cell proliferation and migration in vitro. LC3-II expression and autophagosomes were increased under ISO treatment. In addition, ISO-induced cell death was attenuated by treatment with chloroquine or knockdown of autophagy-related genes (ATG5 or ULK1). ISO significantly suppressed SLC2A1/GLUT1 (solute carrier family 2 member 1) expression and glucose uptake, leading to activation of the AMPK-ULK1 axis in HepG2 cells. Overexpression of SLC2A1/GLUT1 abrogated ISO-induced autophagy. Combining molecular docking with thermal shift analysis, we confirmed that ISO directly bound to the N terminus of CDK6 (cyclin-dependent kinase 6) and promoted its degradation. Overexpression of CDK6 abrogated ISO-induced inhibition of SLC2A1/GLUT1 transcription and induction of autophagy. Furthermore, ISO treatment significantly decreased the H3K27ac, H4K8ac and H3K4me1 levels on the SLC2A1/GLUT1 enhancer in HepG2 cells. Finally, ISO suppressed the hepatocarcinogenesis in the HepG2 xenograft mice and the diethylnitrosamine+carbon tetrachloride (DEN+CCl4)-induced primary HCC mice and we confirmed SLC2A1/GLUT1 and CDK6 as promising oncogenes in HCC by analysis of TCGA data and human HCC tissues. Our results provide a new molecular mechanism by which ISO treatment or CDK6 deletion promotes autophagy; that is, ISO targeting the N terminus of CDK6 for degradation inhibits the expression of SLC2A1/GLUT1 by decreasing the enhancer activity of SLC2A1/GLUT1, resulting in decreased glucose levels and inducing the AMPK-ULK1 pathway.
Collapse
Affiliation(s)
- Jie Yao
- Center Lab of Longhua Branch and Department of Infectious Disease, Shenzhen People’s Hospital (The Second Clinical Medical College, Jinan University; The First Affiliated Hospital, Southern University of Science and Technology), Shenzhen, Guangdong, China
- Department of Biochemistry and Molecular Biology, Medical College of Jinan University, Guangzhou, Guangdong, China
| | - Shuming Tang
- Department of Clinical Laboratory, Shenzhen People’s Hospital (The Second Clinical Medical College, Jinan University; The First Affiliated Hospital, Southern University of Science and Technology), Shenzhen, Guangdong, China
| | - Chenyan Shi
- Center Lab of Longhua Branch and Department of Infectious Disease, Shenzhen People’s Hospital (The Second Clinical Medical College, Jinan University; The First Affiliated Hospital, Southern University of Science and Technology), Shenzhen, Guangdong, China
| | - Yunzhi Lin
- Center Lab of Longhua Branch and Department of Infectious Disease, Shenzhen People’s Hospital (The Second Clinical Medical College, Jinan University; The First Affiliated Hospital, Southern University of Science and Technology), Shenzhen, Guangdong, China
| | - Lanlan Ge
- Center Lab of Longhua Branch and Department of Infectious Disease, Shenzhen People’s Hospital (The Second Clinical Medical College, Jinan University; The First Affiliated Hospital, Southern University of Science and Technology), Shenzhen, Guangdong, China
- Department of pathology(Longhua Branch), Shenzhen People’s Hospital (The Second Clinical Medical College, Jinan University; The First Affiliated Hospital, Southern University of Science and Technology), Shenzhen, Guangdong, China
| | - Qinghua Chen
- Department of Pharmacy, Shenzhen Baoan Authentic TCM Therapy Hospital, Shenzhen, Guangdong, China
| | - Baoru Ou
- Center Lab of Longhua Branch and Department of Infectious Disease, Shenzhen People’s Hospital (The Second Clinical Medical College, Jinan University; The First Affiliated Hospital, Southern University of Science and Technology), Shenzhen, Guangdong, China
| | - Dongyu Liu
- Center Lab of Longhua Branch and Department of Infectious Disease, Shenzhen People’s Hospital (The Second Clinical Medical College, Jinan University; The First Affiliated Hospital, Southern University of Science and Technology), Shenzhen, Guangdong, China
| | - Yuyang Miao
- Center Lab of Longhua Branch and Department of Infectious Disease, Shenzhen People’s Hospital (The Second Clinical Medical College, Jinan University; The First Affiliated Hospital, Southern University of Science and Technology), Shenzhen, Guangdong, China
| | - Qiujie Xie
- Center Lab of Longhua Branch and Department of Infectious Disease, Shenzhen People’s Hospital (The Second Clinical Medical College, Jinan University; The First Affiliated Hospital, Southern University of Science and Technology), Shenzhen, Guangdong, China
| | - Xudong Tang
- Key Lab for New Drug Research of TCM and Guangdong Innovative Chinese Medicine and Natural Medicine Engineering Technology Research Center, Research Institute of Tsinghua University, Shenzhen, Guangdong, China
| | - Jia Fei
- Department of Biochemistry and Molecular Biology, Medical College of Jinan University, Guangzhou, Guangdong, China
| | - Guangyi Yang
- Department of Pharmacy, Shenzhen Baoan Authentic TCM Therapy Hospital, Shenzhen, Guangdong, China
| | - Jun Tian
- College of Life Science, Jiangsu Normal University, Xuzhou, Jiangsu, China
| | - Xiaobin Zeng
- Center Lab of Longhua Branch and Department of Infectious Disease, Shenzhen People’s Hospital (The Second Clinical Medical College, Jinan University; The First Affiliated Hospital, Southern University of Science and Technology), Shenzhen, Guangdong, China
- Department of Clinical Laboratory, Shenzhen People’s Hospital (The Second Clinical Medical College, Jinan University; The First Affiliated Hospital, Southern University of Science and Technology), Shenzhen, Guangdong, China
- Guangdong Provincial Key Laboratory of Regional Immunity and Diseases, Medicine School of Shenzhen University, Shenzhen, Guangdong, China
| |
Collapse
|
12
|
Tian S, Li J, Xiang J, Peng P. The Clinical Relevance and Immune Correlation of SLC10 Family Genes in Liver Cancer. J Hepatocell Carcinoma 2022; 9:1415-1431. [PMID: 36606115 PMCID: PMC9809167 DOI: 10.2147/jhc.s392586] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2022] [Accepted: 12/15/2022] [Indexed: 12/31/2022] Open
Abstract
Background and Aim This study was aimed to reveal the clinical relevance and immune correlation of the SLC10 family genes in liver cancer. Methods A comprehensive bioinformatics analysis was utilized to determine the gene expression, genetic alterations, DNA methylation, clinical significance, survival association and immune correlation of seven SLC10 family genes in liver cancer. The multiplexed immunohistochemical technique was applied to determine the association between SLC10A3 protein expression and immune cells, and the correlation between SLC10A3 protein and immune checkpoints (PD1 and PD-L1) in a cohort of 32 individuals with liver cancer. Results The expression of SLC10 family genes was different between normal liver tissues and malignant liver tissues. SLC10A5 showed the highest alteration rate (8%), followed by SLC10A3 (2.8%). Low expression of SLC10A1 was indicative of poor tumor grade and advanced tumor stage in liver cancer. Scatter plots uncovered that expression of SLC10A3 was inversely associated with SLC10A1 and SLC10A5 expression in liver cancer. The expression of SLC10A1 and SLC10A5 was strongly associated with their DNA methylation. SLC10A1 expression was a reliable genetic biomarker for the prediction of survival outcomes in liver cancer population. Expression of SLC10 family genes was remarkably linked with the abundance of most immune infiltrating cells in liver cancer, and SLC10A3 was the most significant member. The multiplexed immunohistochemical technique confirmed that there existed the significant correlations between SLC10A3 protein expression and CD4 T cells, CD20 B cells and the close association with PD-1 in the stromal area from malignant tissues. Conclusion The expressions of SLC10 family genes were different between normal liver tissues and malignant liver tissues, and they were correlated with each other in liver cancer. SLC10A1 possesses the most significant correlation with survival outcomes. SLC10A3 exhibited the most significant relationship with immune cells, as revealed by bioinformatics analysis and multispectral imaging technique.
Collapse
Affiliation(s)
- Shan Tian
- Department of Infectious Diseases, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, People’s Republic of China
| | - Jiao Li
- Department of Gastroenterology, Renmin Hospital of Wuhan University, Wuhan, People’s Republic of China
| | - Jiankang Xiang
- Department of Gastroenterology, Renmin Hospital of Wuhan University, Wuhan, People’s Republic of China
| | - Pailan Peng
- Department of Gastroenterology, The Affiliated Hospital of Guizhou Medical University, Guiyang, People’s Republic of China,Correspondence: Pailan Peng, Department of Gastroenterology, The Affiliated Hospital of Guizhou Medical University, No. 28 Guiyi Street, Guiyang, 550000, People’s Republic of China, Email
| |
Collapse
|
13
|
Haberkorn B, Oswald S, Kehl N, Gessner A, Taudte RV, Dobert JP, Zunke F, Fromm MF, König J. Cancer-type organic anion transporting polypeptide 1B3 (Ct-OATP1B3) is localized in lysosomes and mediates resistance against kinase inhibitors. Mol Pharmacol 2022; 102:MOLPHARM-AR-2022-000539. [PMID: 36167426 DOI: 10.1124/molpharm.122.000539] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2022] [Revised: 08/30/2022] [Accepted: 09/05/2022] [Indexed: 11/22/2022] Open
Abstract
Cancer-type organic anion transporting polypeptide 1B3 (Ct-OATP1B3), a splice variant of the hepatic uptake transporter OATP1B3 (liver-type; Lt-OATP1B3), is expressed in several tumor entities including colorectal carcinoma (CRC) and breast cancer. In CRC, high OATP1B3 expression has been associated with reduced progression-free and overall survival. Several kinase inhibitors used for antitumor treatment are substrates and/or inhibitors of OATP1B3 (e.g. encorafenib, vemurafenib). The functional importance of Ct-OATP1B3 has not been elucidated so far. HEK293 cells stably overexpressing Ct-OATP1B3 protein were established and compared with control cells. Confocal laser scanning microscopy, immunoblot, and proteomics-based expression analysis demonstrated that Ct-OATP1B3 protein is intracellularly localized in lysosomes of stably-transfetced cells. Cytotoxicity experiments showed that cells recombinantly expressing the Ct-OATP1B3 protein were more resistant against the kinase inhibitor encorafenib compared to control cells [e.g. encorafenib (100 µM) survival rates: 89.5% vs. 52.8%]. In line with these findings, colorectal cancer DLD1 cells endogenously expressing Ct-OATP1B3 protein had poorer survival rates when the OATP1B3 substrate bromosulfophthalein (BSP) was coincubated with encorafenib or vemurafenib compared to the incubation with the kinase inhibitor alone. This indicates a competitive inhibition of Ct-OATP1B3-mediated uptake into lysosomes by BSP. Accordingly, mass spectrometry-based drug analysis of lysosomes showed a reduced lysosomal accumulation of encorafenib in DLD1 cells additionally exposed to BSP. These results demonstrate that Ct-OATP1B3 protein is localized in the lysosomal membrane and can mediate transport of certain kinase inhibitors into lysosomes revealing a new mechanism of resistance. Significance Statement We describe the characterization of a splice variant of the liver-type uptake transporter OATP1B3 expressed in several tumor entities. This variant is localized in lysosomes mediating resistance against kinase inhibitors which are substrates of this transport protein by transporting them into lysosomes and thereby reducing the cytoplasmic concentration of these antitumor agents. Therefore, the expression of the Ct-OATP1B3 protein is associated with a better survival of cells revealing a new mechanism of drug resistance.
Collapse
Affiliation(s)
- Bastian Haberkorn
- Institute of Experimental and Clinical Pharmacology and Toxicology, Friedrich-Alexander-Universität Erlangen-Nürnberg, Germany
| | - Stefan Oswald
- Department of Pharmacology, Rostock University Medical Center, Germany
| | - Niklas Kehl
- Institute of Experimental and Clinical Pharmacology and Toxicology, Friedrich-Alexander-Universität Erlangen-Nürnberg, Germany
| | - Arne Gessner
- Institute of Experimental and Clinical Pharmacology and Toxicology, Friedrich-Alexander-Universität Erlangen-Nürnberg, Germany
| | - R Verena Taudte
- Institute of Experimental and Clinical Pharmacology and Toxicology, Friedrich-Alexander-Universität Erlangen-Nürnberg, Germany
| | - Jan Philipp Dobert
- Department of Molecular Neurology, University Hospital Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg, Germany
| | - Friederike Zunke
- Department of Molecular Neurology, University Hospital Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg, Germany
| | - Martin F Fromm
- Institute of Experimental and Clinical Pharmacology and Toxicology, Friedrich-Alexander-Universität Erlangen-Nürnberg, Germany
| | - Jörg König
- Institute of Experimental and Clinical Pharmacology and Toxicology, Friedrich-Alexander-Universität Erlangen-Nürnberg, Germany
| |
Collapse
|
14
|
Zhou BB, Liu D, Qian JC, Tan RX. Vegetable-derived indole enhances the melanoma-treating efficacy of chemotherapeutics. Phytother Res 2022; 36:4278-4292. [PMID: 35883268 DOI: 10.1002/ptr.7565] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2022] [Revised: 06/16/2022] [Accepted: 06/17/2022] [Indexed: 11/08/2022]
Abstract
Food-drug interaction is an important but overlooked issue. For example, little is known concerning whether or not the chemotherapy of cancers is affected by the well-defined dietary chemicals such as 2-(indol-3-ylmethyl)-3,3'-diindolylmethane (LTr1) derived from daily consumed cruciferous vegetables. This work, inspired by the described melanogenesis reduction by certain indoles, presents that LTr1 mitigates the melanogenesis and thus potentiates the in vitro and in vivo anti-melanoma effectiveness of different chemotherapeutic agents including dacarbazine, vemurafenib, and sorafenib. In B16 melanoma cells, LTr1 was shown to inhibit the melanogenesis by acting towards the regulatory (R) subunit of protein kinase A (PRKAR1a) associated with the phosphorylation of cAMP-response element binding protein (CREB). This allows LTr1 to reduce the expression of melanogenesis-related enzymes such as tyrosinase (TYR), tyrosinase-related protein 1 (TYRP1), and tyrosinase-related protein 2 (TYRP2). Furthermore, LTr1 was addressed to bind to the aryl hydrocarbon receptor (AhR) and up-regulate the expression of CYP1A1 encoding cytochrome P450 1A1, leading to the escalation of reactive oxygen species (ROS) level. The increased ROS generation promotes the cysteine-to-cystine transformation to inhibit the pheomelanogenesis in melanomas. Collectively, the work identifies LTr1 as a new melanogenesis inhibitor that modulates the PKA/CREB/MITF and AhR/CYP1A1/ROS pathways, thereby providing a new option for (re)sensitizing melanomas to chemotherapeutics.
Collapse
Affiliation(s)
- Bei Bei Zhou
- State Key Laboratory Cultivation Base for Traditional Chinese Medicine Quality and Efficacy, Nanjing University of Chinese Medicine, Nanjing, China
| | - Dan Liu
- State Key Laboratory Cultivation Base for Traditional Chinese Medicine Quality and Efficacy, Nanjing University of Chinese Medicine, Nanjing, China
| | - Jia Cheng Qian
- State Key Laboratory Cultivation Base for Traditional Chinese Medicine Quality and Efficacy, Nanjing University of Chinese Medicine, Nanjing, China
| | - Ren Xiang Tan
- State Key Laboratory Cultivation Base for Traditional Chinese Medicine Quality and Efficacy, Nanjing University of Chinese Medicine, Nanjing, China.,State Key Laboratory of Pharmaceutical Biotechnology, Institute of Functional Biomolecules, Nanjing University, Nanjing, China
| |
Collapse
|
15
|
Semenova AV, Sivolobova GF, Grazhdantseva AA, Agafonov AP, Kochneva GV. Reporter Transgenes for Monitoring the Antitumor Efficacy of Recombinant Oncolytic Viruses. Acta Naturae 2022; 14:46-56. [PMID: 36348722 PMCID: PMC9611865 DOI: 10.32607/actanaturae.11719] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2022] [Accepted: 07/05/2022] [Indexed: 11/29/2022] Open
Abstract
Accurate measurement of tumor size and margins is crucial for successful oncotherapy. In the last decade, non-invasive imaging modalities, including optical imaging using non-radioactive substrates, deep-tissue imaging with radioactive substrates, and magnetic resonance imaging have been developed. Reporter genes play the most important role among visualization tools; their expression in tumors and metastases makes it possible to track changes in the tumor growth and gauge therapy effectiveness. Oncolytic viruses are often chosen as a vector for delivering reporter genes into tumor cells, since oncolytic viruses are tumor-specific, meaning that they infect and lyse tumor cells without damaging normal cells. The choice of reporter transgenes for genetic modification of oncolytic viruses depends on the study objectives and imaging methods used. Optical imaging techniques are suitable for in vitro studies and small animal models, while deep-tissue imaging techniques are used to evaluate virotherapy in large animals and humans. For optical imaging, transgenes of fluorescent proteins, luciferases, and tyrosinases are used; for deep-tissue imaging, the most promising transgene is the sodium/iodide symporter (NIS), which ensures an accumulation of radioactive isotopes in virus-infected tumor cells. Currently, NIS is the only reporter transgene that has been shown to be effective in monitoring tumor virotherapy not only in preclinical but also in clinical studies.
Collapse
Affiliation(s)
- A. V. Semenova
- Federal Budgetary Research Institution «State Research Center of Virology and Biotechnology «Vector», Koltsovo, Novosibirsk region, 630559, Russia
| | - G. F. Sivolobova
- Federal Budgetary Research Institution «State Research Center of Virology and Biotechnology «Vector», Koltsovo, Novosibirsk region, 630559, Russia
| | - A. A. Grazhdantseva
- Federal Budgetary Research Institution «State Research Center of Virology and Biotechnology «Vector», Koltsovo, Novosibirsk region, 630559, Russia
| | - A. P. Agafonov
- Federal Budgetary Research Institution «State Research Center of Virology and Biotechnology «Vector», Koltsovo, Novosibirsk region, 630559, Russia
| | - G. V. Kochneva
- Federal Budgetary Research Institution «State Research Center of Virology and Biotechnology «Vector», Koltsovo, Novosibirsk region, 630559, Russia
| |
Collapse
|
16
|
Personalized Diagnosis in Differentiated Thyroid Cancers by Molecular and Functional Imaging Biomarkers: Present and Future. Diagnostics (Basel) 2022; 12:diagnostics12040944. [PMID: 35453992 PMCID: PMC9030409 DOI: 10.3390/diagnostics12040944] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2022] [Revised: 04/04/2022] [Accepted: 04/08/2022] [Indexed: 11/17/2022] Open
Abstract
Personalized diagnosis can save unnecessary thyroid surgeries, in cases of indeterminate thyroid nodules, when clinicians tend to aggressively treat all these patients. Personalized diagnosis benefits from a combination of imagery and molecular biomarkers, as well as artificial intelligence algorithms, which are used more and more in our timeline. Functional imaging diagnosis such as SPECT, PET, or fused images (SPECT/CT, PET/CT, PET/MRI), is exploited at maximum in thyroid nodules, with a long history in the past and a bright future with many suitable radiotracers that could properly contribute to diagnosing malignancy in thyroid nodules. In this way, patients will be spared surgery complications, and apparently more expensive diagnostic workouts will financially compensate each patient and also the healthcare system. In this review we will summarize essential available diagnostic tools for malignant and benignant thyroid nodules, beginning with functional imaging, molecular analysis, and combinations of these two and other future strategies, including AI or NIS targeted gene therapy for thyroid carcinoma diagnosis and treatment as well.
Collapse
|
17
|
Liu X, Ge W. The Emerging Role of Ultrasonic Nanotechnology for Diagnosing and Treatment of Diseases. Front Med (Lausanne) 2022; 9:814986. [PMID: 35273976 PMCID: PMC8901503 DOI: 10.3389/fmed.2022.814986] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2021] [Accepted: 01/25/2022] [Indexed: 12/13/2022] Open
Abstract
Nanotechnology has been commonly used in a variety of applications in recent years. Nanomedicine has also gotten a lot of attention in the medical and treatment fields. Ultrasonic technology is already being used in research as a powerful tool for manufacturing nonmaterial and in the decoration of catalyst supports for energy applications and material processing. For the development of nanoparticles and the decoration of catalytic assisted powders with nanoparticles, low or high-frequency Ultrasonic are used. The Ultrasonic is frequently used in joint venture with the nanotechnology from the past few years and bring tremendous success in various diseases diagnosing and treatment. Numerous kinds of nanoparticles are fabricated with desired capabilities and targeted toward different targets. This review first highlights the Ultrasonic Treatment and processing of Nanoparticles for Pharmaceuticals. Next, we explain various nanoparticles with ultrasonic technology for different diagnosing and treatment of various diseases. Finally, we explain the challenges face by current approaches for their translation in clinics.
Collapse
Affiliation(s)
- Xinying Liu
- Department of Ultrasonography, Zhejiang Provincial People's Hospital, Affiliated People's Hospital, Medical College, Hangzhou, China
| | - Weidong Ge
- Department of Ultrasonography, Zhejiang Provincial People's Hospital, Affiliated People's Hospital, Medical College, Hangzhou, China
| |
Collapse
|
18
|
A combinatory algorithm for identifying genes in childhood acute lymphoblastic leukemia. GENE REPORTS 2022. [DOI: 10.1016/j.genrep.2021.101433] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
19
|
Lopez Quiñones AJ, Vieira LS, Wang J. Clinical Applications and the Roles of Transporters in Disposition, Tumor Targeting, and Tissue Toxicity of meta-Iodobenzylguanidine (mIBG). Drug Metab Dispos 2022; 50:DMD-MR-2021-000707. [PMID: 35197314 PMCID: PMC9488973 DOI: 10.1124/dmd.121.000707] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2021] [Revised: 02/01/2022] [Accepted: 02/17/2022] [Indexed: 11/22/2022] Open
Abstract
Transporters on the plasma membrane of tumor cells are promising molecular "Trojan horses" to deliver drugs and imaging agents into cancer cells. Radioiodine-labeled meta-iodobenzylguanidine (mIBG) is used as a diagnostic agent (123I-mIBG) and a targeted radiotherapy (131I-mIBG) for neuroendocrine cancers. mIBG enters cancer cells through the norepinephrine transporter (NET) where the radioactive decay of 131I causes DNA damage, cell death, and tumor necrosis. mIBG is predominantly eliminated unchanged by the kidney. Despite its selective uptake by neuroendocrine tumors, mIBG accumulates in several normal tissues and leads to tissue-specific radiation toxicities. Emerging evidences suggest that the polyspecific organic cation transporters play important roles in systemic disposition and tissue-specific uptake of mIBG. In particular, human organic cation transporter 2 (hOCT2) and toxin extrusion proteins 1 and 2-K (hMATE1/2-K) likely mediate renal secretion of mIBG whereas hOCT1 and hOCT3 may contribute to mIBG uptake into normal tissues such as the liver, salivary glands, and heart. This mini-review focuses on the clinical applications of mIBG in neuroendocrine cancers and the differential roles of NET, OCT and MATE transporters in mIBG disposition, response and toxicity. Understanding the molecular mechanisms governing mIBG transport in cancer and normal cells is a critical step for developing strategies to optimize the efficacy of 131I-mIBG while minimizing toxicity in normal tissues. Significance Statement Radiolabeled mIBG has been used as a diagnostic tool and as radiotherapy for neuroendocrine cancers and other diseases. NET, OCT and MATE transporters play differential roles in mIBG tumor targeting, systemic elimination, and accumulation in normal tissues. The clinical use of mIBG as a radiopharmaceutical in cancer diagnosis and treatment can be further improved by taking a holistic approach considering mIBG transporters in both cancer and normal tissues.
Collapse
Affiliation(s)
| | | | - Joanne Wang
- Dept. of Pharmaceutics, University of Washington, United States
| |
Collapse
|
20
|
Li B, Kang H, Xiao Y, Du Y, Xiao Y, Song G, Zhang Y, Guo Y, Yang F, He F, Yang S. LncRNA GAL promotes colorectal cancer liver metastasis through stabilizing GLUT1. Oncogene 2022; 41:1882-1894. [PMID: 35149838 DOI: 10.1038/s41388-022-02230-z] [Citation(s) in RCA: 36] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Revised: 01/20/2022] [Accepted: 02/02/2022] [Indexed: 12/12/2022]
Abstract
Colorectal cancer liver metastasis (CRLM) is the leading cause of colorectal cancer-related deaths and remains a clinical challenge. Enhancement of glucose uptake is involved in CRLM; however, whether long noncoding RNAs (lncRNAs) participate in these molecular events remains largely unclear. Here, we report an lncRNA, GAL (glucose transporter 1 (GLUT1) associated lncRNA), that was upregulated in CRLM tissues compared with primary colorectal cancer (CRC) tissues or matched normal tissues and was associated with the overall survival rates of CRLM patients. Functionally, GAL served as an oncogene because it promoted CRC cell migration and invasion in vitro and enhanced the ability of CRC cells to metastasize from the intestine to the liver in vivo. Mechanistically, GAL interacted with the GLUT1 protein to increase GLUT1 SUMOylation, inhibiting the effect of the ubiquitin-proteasome system on the GLUT1 protein. GLUT1-knockout (-/+) repressed the GAL-mediated increase in CRC cell uptake of glucose, migrate, and invade in vitro, as well as metastasis from the intestine to the liver in vivo, and enforced expression of GLUT1 rescued GAL knockout-induced biological functions in CRC cells. Taken together, our findings demonstrated that GAL promotes CRLM by stabilizing GLUT1, suggesting that the GAL-GLUT1 complex may act as a potential therapeutic target for CRLM.
Collapse
Affiliation(s)
- Bosheng Li
- Department of Biochemistry and Molecular Biology, College of Basic Medical Sciences, Army Medical University, Chongqing, 400038, China.,Department of Gastroenterology, Xinqiao Hospital, Army Medical University, Chongqing, 400037, China
| | - Houyi Kang
- Department of Radiology, Daping Hospital, Army Medical University, Chongqing, 400042, China
| | - Yufeng Xiao
- Department of Gastroenterology, Xinqiao Hospital, Army Medical University, Chongqing, 400037, China
| | - Yexiang Du
- Department of Gastroenterology, Xinqiao Hospital, Army Medical University, Chongqing, 400037, China
| | - Yunhua Xiao
- Department of Radiology, Southwest Hospital, Army Medical University, Chongqing, 400038, China
| | - Guojing Song
- Department of Urology, Southwest Hospital, Army Medical University, Chongqing, 400038, China
| | - Yan Zhang
- Department of Biochemistry and Molecular Biology, College of Basic Medical Sciences, Army Medical University, Chongqing, 400038, China
| | - Yu Guo
- Department of Radiology, Daping Hospital, Army Medical University, Chongqing, 400042, China
| | - Fan Yang
- Department of Biochemistry and Molecular Biology, College of Basic Medical Sciences, Army Medical University, Chongqing, 400038, China
| | - Fengtian He
- Department of Biochemistry and Molecular Biology, College of Basic Medical Sciences, Army Medical University, Chongqing, 400038, China.
| | - Shiming Yang
- Department of Gastroenterology, Xinqiao Hospital, Army Medical University, Chongqing, 400037, China.
| |
Collapse
|
21
|
He T, Sun J, Wu J, Wang H, Liang C, Wang H, Li S, Su S. PET-CT versus MRI in the diagnosis of lymph node metastasis of cervical cancer: A meta-analysis. Microsc Res Tech 2022; 85:1791-1798. [PMID: 34981608 DOI: 10.1002/jemt.24039] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2021] [Revised: 08/28/2021] [Accepted: 11/30/2021] [Indexed: 11/06/2022]
Abstract
To compare the clinical application value of positron emission tomography-computed tomography (PET-CT) and magnetic resonance imaging (MRI) in the diagnosis of cervical cancer lymph node metastasis. We searched PubMed and other databases for the studies comparing the use of PET-CT and MRI for the diagnosis of cervical cancer lymph node metastasis up to January 20, 2021. We strictly followed the inclusion and exclusion criteria to screen the literature and extract the data. Quality Assessment of Diagnostic Accuracy Studies (QUADAS)-2 tool was used for quality evaluation of included studies, and Revman 5.3 and Stata 15.0 software were used for evaluating heterogeneity, synthesize sensitivity (SEN), specificity (SPE), positive likelihood ratio, negative likelihood ratio, diagnostic odds ratio (DOR), and the area under the curve (AUC) and comparing the pretest and posttest probabilities. Finally, 11 studies were included for meta-analysis. The synthesized results indicated that the SEN value of PET-CT was 0.65 (0.60 ~ 0.69) and SPE was 0.93 (0.91 ~ 0.94), and the SEN value of MRI was 0.58 (0.54 ~ 0.63) and SPE was 0.91 (0.90 ~ 0.92). AUC of PET-CT was 0.824, which was significantly higher than that of MRI (AUC = 0.702; p < .05). The subgroup analysis showed that the AUC value of the study based on study design and use of blinding methods was not statistically significant (all p > .05). There was no obvious publication bias in the synthesized analysis of the diagnostic value of PET-CT and MRI (all p > .05). HIGHLIGHTS: To compare positron emission tomography-computed tomography (PET-CT) and magnetic resonance imaging (MRI) in diagnosis of cervical cancer lymph node metastasis. Synthesize sensitivity value of PET-CT was comparable with that of MRI. Area under the curve of PET-CT was significantly higher than that of MRI. There was no obvious publication bias in synthesized analysis.
Collapse
Affiliation(s)
- Tao He
- Department of Nuclear Medicine, Panzhihua Central Hospital, Panzhihua, China
| | - Jiangming Sun
- Department of Nuclear Medicine, Panzhihua Central Hospital, Panzhihua, China
| | - Jie Wu
- Department of Nuclear Medicine, Panzhihua Central Hospital, Panzhihua, China
| | - Hui Wang
- Department of Nuclear Medicine, Panzhihua Central Hospital, Panzhihua, China
| | - Changping Liang
- Department of Nuclear Medicine, Panzhihua Central Hospital, Panzhihua, China
| | - Huan Wang
- Department of Nuclear Medicine, Panzhihua Central Hospital, Panzhihua, China
| | - Shujun Li
- Department of Nuclear Medicine, Panzhihua Central Hospital, Panzhihua, China
| | - Shunbing Su
- Department of Nuclear Medicine, Panzhihua Central Hospital, Panzhihua, China
| |
Collapse
|
22
|
PET imaging in breast cancer. Nucl Med Mol Imaging 2022. [DOI: 10.1016/b978-0-12-822960-6.00124-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022] Open
|
23
|
Barca C, Griessinger CM, Faust A, Depke D, Essler M, Windhorst AD, Devoogdt N, Brindle KM, Schäfers M, Zinnhardt B, Jacobs AH. Expanding Theranostic Radiopharmaceuticals for Tumor Diagnosis and Therapy. Pharmaceuticals (Basel) 2021; 15:13. [PMID: 35056071 PMCID: PMC8780589 DOI: 10.3390/ph15010013] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2021] [Revised: 12/16/2021] [Accepted: 12/16/2021] [Indexed: 02/06/2023] Open
Abstract
Radioligand theranostics (RT) in oncology use cancer-type specific biomarkers and molecular imaging (MI), including positron emission tomography (PET), single-photon emission computed tomography (SPECT) and planar scintigraphy, for patient diagnosis, therapy, and personalized management. While the definition of theranostics was initially restricted to a single compound allowing visualization and therapy simultaneously, the concept has been widened with the development of theranostic pairs and the combination of nuclear medicine with different types of cancer therapies. Here, we review the clinical applications of different theranostic radiopharmaceuticals in managing different tumor types (differentiated thyroid, neuroendocrine prostate, and breast cancer) that support the combination of innovative oncological therapies such as gene and cell-based therapies with RT.
Collapse
Affiliation(s)
- Cristina Barca
- European Institute for Molecular Imaging, University of Münster, D-48149 Münster, Germany; (A.F.); (D.D.); (M.S.); (B.Z.)
| | - Christoph M. Griessinger
- Roche Innovation Center, Early Clinical Development Oncology, Roche Pharmaceutical Research and Early Development, CH-4070 Basel, Switzerland;
| | - Andreas Faust
- European Institute for Molecular Imaging, University of Münster, D-48149 Münster, Germany; (A.F.); (D.D.); (M.S.); (B.Z.)
- Department of Nuclear Medicine, University Hospital Münster, D-48149 Münster, Germany
| | - Dominic Depke
- European Institute for Molecular Imaging, University of Münster, D-48149 Münster, Germany; (A.F.); (D.D.); (M.S.); (B.Z.)
| | - Markus Essler
- Department of Nuclear Medicine, University Hospital Bonn, D-53127 Bonn, Germany;
| | - Albert D. Windhorst
- Department Radiology & Nuclear Medicine, Amsterdam UMC, Vrije Universiteit, De Boelelaan 1117, 1081HV Amsterdam, The Netherlands;
| | - Nick Devoogdt
- In Vivo Cellular and Molecular Imaging Laboratory, Vrije Universiteit Brussel, B-1090 Brussel, Belgium;
| | - Kevin M. Brindle
- Cancer Research UK Cambridge Institute, University of Cambridge, Cambridge CB2 ORE, UK;
| | - Michael Schäfers
- European Institute for Molecular Imaging, University of Münster, D-48149 Münster, Germany; (A.F.); (D.D.); (M.S.); (B.Z.)
- Department of Nuclear Medicine, University Hospital Münster, D-48149 Münster, Germany
| | - Bastian Zinnhardt
- European Institute for Molecular Imaging, University of Münster, D-48149 Münster, Germany; (A.F.); (D.D.); (M.S.); (B.Z.)
- Department of Nuclear Medicine, University Hospital Münster, D-48149 Münster, Germany
- Biomarkers and Translational Technologies, Pharma Research and Early Development, F. Hoffmann-La Roche Ltd., CH-4070 Basel, Switzerland
| | - Andreas H. Jacobs
- European Institute for Molecular Imaging, University of Münster, D-48149 Münster, Germany; (A.F.); (D.D.); (M.S.); (B.Z.)
- Department of Geriatrics and Neurology, Johanniter Hospital, D-53113 Bonn, Germany
- Centre of Integrated Oncology, University Hospital Bonn, D-53127 Bonn, Germany
| |
Collapse
|
24
|
Yang H, Zhang MZH, Sun HW, Chai YT, Li X, Jiang Q, Hou J. A Novel Microcrystalline BAY-876 Formulation Achieves Long-Acting Antitumor Activity Against Aerobic Glycolysis and Proliferation of Hepatocellular Carcinoma. Front Oncol 2021; 11:783194. [PMID: 34869036 PMCID: PMC8636331 DOI: 10.3389/fonc.2021.783194] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2021] [Accepted: 10/15/2021] [Indexed: 12/17/2022] Open
Abstract
BAY-876 is an effective antagonist of the Glucose transporter type 1 (GLUT1) receptor, a mediator of aerobic glycolysis, a biological process considered a hallmark of hepatocellular carcinoma (HCC) together with cell proliferation, drug-resistance, and metastasis. However, the clinical application of BAY-876 has faced many challenges. In the presence study, we describe the formulation of a novel microcrystalline BAY-876 formulation. A series of HCC tumor models were established to determine not only the sustained release of microcrystalline BAY-876, but also its long-acting antitumor activity. The clinical role of BAY-876 was confirmed by the increased expression of GLUT1, which was associated with the worse prognosis among advanced HCC patients. A single dose of injection of microcrystalline BAY-876 directly in the HCC tissue achieved sustained localized levels of Bay-876. Moreover, the single injection of microcrystalline BAY-876 in HCC tissues not only inhibited glucose uptake and prolonged proliferation of HCC cells, but also inhibited the expression of epithelial-mesenchymal transition (EMT)-related factors. Thus, the microcrystalline BAY-876 described in this study can directly achieve promising localized effects, given its limited diffusion to other tissues, thereby reducing the occurrence of potential side effects, and providing an additional option for advanced HCC treatment.
Collapse
Affiliation(s)
- Hua Yang
- Department of Medical Oncology, Affiliated Hospital of Hebei University, Hebei Key Laboratory of Cancer Radiotherapy and Chemotherapy, Baoding, China
| | - Mu-Zi-He Zhang
- Department of Pharmacy, Medical Security Center of PLA General Hospital, Beijing, China
| | - Hui-Wei Sun
- Department of Infectious Disease, Institute of Infectious Disease, The Fifth Medical Center of Chinese PLA General Hospital, Beijing, China
| | - Yan-Tao Chai
- Department of Infectious Disease, Institute of Infectious Disease, The Fifth Medical Center of Chinese PLA General Hospital, Beijing, China
| | - Xiaojuan Li
- Department of Infectious Disease, Institute of Infectious Disease, The Fifth Medical Center of Chinese PLA General Hospital, Beijing, China
| | - Qiyu Jiang
- Department of Infectious Disease, Institute of Infectious Disease, The Fifth Medical Center of Chinese PLA General Hospital, Beijing, China
| | - Jun Hou
- Department of Infectious Disease, Institute of Infectious Disease, The Fifth Medical Center of Chinese PLA General Hospital, Beijing, China
| |
Collapse
|
25
|
Xie J, Zhu Z, Cao Y, Ruan S, Wang M, Shi J. Solute carrier transporter superfamily member SLC16A1 is a potential prognostic biomarker and associated with immune infiltration in skin cutaneous melanoma. Channels (Austin) 2021; 15:483-495. [PMID: 34254872 PMCID: PMC8279094 DOI: 10.1080/19336950.2021.1953322] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2021] [Revised: 06/14/2021] [Accepted: 07/02/2021] [Indexed: 12/13/2022] Open
Abstract
Melanoma is a type of cancer with a relatively poor prognosis. The development of immunotherapy for the treatment of patients with melanoma has drawn considerable attention in recent years. It is of great clinical significance to identify novel promising prognostic biomarkers and to explore their roles in the immune microenvironment. The solute carrier (SLC) superfamily is a group of transporters predominantly expressed on the cell membrane and are involved in substance transport. SLC16A1 is a member of the SLC family, participating in the transport of lactate, pyruvate, amino acids, ketone bodies, etc. The role of SLC16A1 in tumor immunity has been recently elucidated, while its role in melanoma remains unclear. In this study, bioinformatics analysis was performed to explore the role of SLC16A1 in melanoma. The results showed that high SLC16A1 expression was correlated with decreased overall survival in patients with melanoma. The genes co-expressed with SLC16A1 were significantly enriched in metabolic regulation, protein ubiquitination, and substance localization. Moreover, SLC16A1 was correlated with the infiltration of immune cells. In conclusion, SLC16A1 is a robust prognostic biomarker for melanoma and may be used as a novel target in immunotherapy.
Collapse
Affiliation(s)
- Jiaheng Xie
- Department of Burn and Plastic Surgery, The First Hospital Affiliated to Nanjing Medical University, Nanjing, China
| | - Zhechen Zhu
- Department of Burn and Plastic Surgery, The First Hospital Affiliated to Nanjing Medical University, Nanjing, China
| | - Yuan Cao
- The Forth School of Clinical Medicine, Nanjing Medical University, Nanjing, China
| | - Shujie Ruan
- Department of Burn and Plastic Surgery, The First Hospital Affiliated to Nanjing Medical University, Nanjing, China
| | - Ming Wang
- Department of Burn and Plastic Surgery, The First Hospital Affiliated to Nanjing Medical University, Nanjing, China
| | - Jingping Shi
- Department of Burn and Plastic Surgery, The First Hospital Affiliated to Nanjing Medical University, Nanjing, China
| |
Collapse
|
26
|
de Salazar L, Segarra I, López-Román FJ, Torregrosa-García A, Pérez-Piñero S, Ávila-Gandía V. Increased Bioavailability of β-Alanine by a Novel Controlled-Release Powder Blend Compared to a Slow-Release Tablet. Pharmaceutics 2021; 13:1517. [PMID: 34575593 PMCID: PMC8467909 DOI: 10.3390/pharmaceutics13091517] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2021] [Revised: 09/03/2021] [Accepted: 09/13/2021] [Indexed: 11/25/2022] Open
Abstract
BACKGROUND β-Alanine is a sport supplement with increasing popularity due to its consistent ability to improve physical performance, with the downside of requiring several weeks of supplementation as imposed to the maximum daily and single dose tolerated without side effects (i.e., paresthesia). To date, the only alternative to overcome this problem has been use of a sustained-release tablet, while powders are the most commonly used format to deliver several grams of amino acids in a single dose. In this study we assessed the bioavailability, pharmacokinetics and paresthesia effect of β-alanine after administration in a novel controlled-released powder blend (test) versus a sustained-release tablet (reference). METHODS Twelve subjects (25.6 ± 3.2 y, 50% female) participated in a randomized, single-blind, crossover study. Each participant was administered orally the test (β-alanine 8 g, l-histidine 300 mg, carnosine 100 mg) or the reference product (10 tablets to reach β-alanine 8 g, Zinc 20 mg) with a 1-week washout period. β-Alanine plasma concentrations (0-8 h) were determined by LC-MS/MS and model-independent pharmacokinetic analysis was carried out. Paresthesia intensity was evaluated using a Visual Analog Score (VAS) and the categorical Intensity Sensory Score (ISS). RESULTS The CMAX and AUC0→∞ increased 1.6- and 2.1-fold (both p < 0.001) in the test product, respectively, which yielded 2.1-fold higher bioavailability; Ka decreased in the test (0.0199 ± 0.0107 min-1) versus the reference (0.0299 ± 0.0121 min-1) product (p = 0.0834) as well as V/F and Cl/F (both p < 0.001); MRT0→last increased in the test (143 ± 19 min) versus reference (128 ± 16 min) formulation (p = 0.0449); t1/2 remained similar (test: 63.5 ± 8.7 min, reference: 68.9 ± 9.8 min). Paresthesia EMAX increased 1.7-fold using the VAS (p = 0.086) and the ISS (p = 0.009). AUEC increased 1.9-fold with the VAS (p = 0.107) and the ISS (p = 0.019) reflecting scale intrinsic differences. Pharmacokinetic-pharmacodynamic analysis showed a clockwise hysteresis loop without prediction ability between CMAX, AUC0→∞ and EMAX or AUEC. No side effects were reported (except paresthesia). CONCLUSIONS The novel controlled-release powder blend shows 100% higher bioavailability of β-alanine, opening a new paradigm that shifts from chronic to short or mid-term supplementation strategies to increase carnosine stores in sports nutrition.
Collapse
Affiliation(s)
- Lydia de Salazar
- Sports Physiology Department, Faculty of Health Sciences, UCAM Universidad Católica San Antonio de Murcia, 30107 Guadalupe, Spain; (L.d.S.); (S.P.-P.); (V.Á.-G.)
| | - Ignacio Segarra
- Department of Pharmacy, Faculty of Health Sciences, UCAM Universidad Católica San Antonio de Murcia, 30107 Guadalupe, Spain;
- Pharmacokinetics, Patient Care and Translational Bioethics Research Group, UCAM Universidad Católica San Antonio de Murcia, 30107 Guadalupe, Spain
| | - Francisco Javier López-Román
- Health Sciences Department, UCAM Universidad Católica San Antonio de Murcia, 30107 Guadalupe, Spain;
- Biomedical Research Institute of Murcia (IMIB-Arrixaca), 30120 Murcia, Spain
| | - Antonio Torregrosa-García
- Sports Physiology Department, Faculty of Health Sciences, UCAM Universidad Católica San Antonio de Murcia, 30107 Guadalupe, Spain; (L.d.S.); (S.P.-P.); (V.Á.-G.)
- Health Sciences PhD Program, Campus de los Jerónimos N° 135, UCAM Universidad Católica San Antonio de Murcia, 30107 Guadalupe, Murcia, Spain
| | - Silvia Pérez-Piñero
- Sports Physiology Department, Faculty of Health Sciences, UCAM Universidad Católica San Antonio de Murcia, 30107 Guadalupe, Spain; (L.d.S.); (S.P.-P.); (V.Á.-G.)
| | - Vicente Ávila-Gandía
- Sports Physiology Department, Faculty of Health Sciences, UCAM Universidad Católica San Antonio de Murcia, 30107 Guadalupe, Spain; (L.d.S.); (S.P.-P.); (V.Á.-G.)
| |
Collapse
|
27
|
Huang F, Wang H, Xiao J, Shao C, Zhou Y, Cong W, Gong M, Sun J, Shan L, Hao Z, Wang L, Ding S, Yu Z, Liu J, Jia H. SLC34A2 Up-regulation And SLC4A4 Down-regulation Correlates With Invasion, Metastasis, And The MAPK Signaling Pathway In Papillary Thyroid Carcinomas. J Cancer 2021; 12:5439-5453. [PMID: 34405007 PMCID: PMC8364650 DOI: 10.7150/jca.56730] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2020] [Accepted: 06/28/2021] [Indexed: 12/27/2022] Open
Abstract
Papillary thyroid carcinoma (PTC) is one of the fastest growing endocrine system malignant carcinomas detected over the past decade. Unfortunately, more than 25% of PTC patients are characterized by their aggressiveness and subsequent metastasis; these characteristics usually indicate poor prognosis. Recently, increasing evidence has suggested that solute carrier (SLC) transporters may play a pivotal role in the initiation, invasion and metastasis of human carcinoma. However, the expression and clinicopathological significance of SLC transporters in patients with PTC remains undetermined. In this study, we aimed to elucidate how the differential expression of SLC transporters affects clinicopathological features, as well as determine the possible regulatory signaling pathways involved. Three differentially expressed SLC transporters were screened from the Gene Expression Omnibus (GEO) and The Cancer Genome Atlas (TCGA) database using a bioinformatics approach. The results indicated that high SLC34A2 and low SLC4A4 protein expression exhibited a higher percentage of capsular invasion and extra-thyroid metastasis in patients. Logistic regression analysis showed that high SLC34A2 expression in tumors was identified as an independent risk factor for capsular invasion [odds ratio (OR)=11.400, 95% confidence interval (CI)=1.733-74.995, P=0.011] and extra-thyroid metastasis (OR=4.920, 95%CI=1.234-19.623, P=0.024), while low SLC4A4 expression in tumors was only identified as independent risk factors for extra-thyroid metastasis (OR=8.568, 95%CI =1.186-61.906, P=0.033). Specifically, for tumors with capsular invasion and extra-thyroid metastasis, the protein expression staining of SLC34A2 was markedly enhanced in the cytoplasm of follicular epithelial cells, contrastingly, SLC4A4 expression was notably weakened in the cytomembrane and nucleus. Intriguingly, both high SLC34A2 and low SLC4A4 protein expression were significantly linked to a high urinary iodine concentration in patients with PTC. Mechanistically, compared with adjacent normal thyroids, p-ERK was significantly up-regulated by 17.8% in the invading tumor; p-ERK, p-JNK, and p-P38 were markedly up-regulated by 29.2%, 67.1%, and 38.9% for metastatic tumors, respectively. Importantly, SLC4A4 negatively correlated with p-JNK (r=-0.696, P= 0.004) and p-P38 (r=-0.534, P=0.049). In conclusion, we suggest that up-regulated SLC34A2 (mainly in the cytoplasm) and down-regulated SLC4A4 (mainly in the cytomembrane and nucleus), which might be attributed to excess iodine intake, were closely linked to extra-thyroid metastasis in PTCs. Furthermore, this effect of SLC4A4 may be through the activation of JNK/P38 MAPK signaling pathway. Future in vivo and in vitro gain- or loss-of-function experiments are needed to verify these findings and further elucidate the deeper molecular mechanisms.
Collapse
Affiliation(s)
- Fengyan Huang
- Department of Epidemiology and Health Statistics, School of Public Health, Cheeloo College of Medicine, Shandong University, Jinan, Shandong 250012, P.R. China
| | - Haitao Wang
- Department of pathology, The Second Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong 250033, P.R. China
| | - Juan Xiao
- Evidence based medicine, The Second Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong 250033, P.R. China
| | - Chunchun Shao
- Evidence based medicine, The Second Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong 250033, P.R. China
| | - Yong Zhou
- Medical laboratory center, The Second Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong 250033, P.R. China
| | - Wei Cong
- Department of Thyroid Surgery, The Second Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong 250033, P.R. China
| | - Maosong Gong
- Department of Thyroid Surgery, The Second Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong 250033, P.R. China
| | - Jingfu Sun
- Department of Thyroid Surgery, The Second Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong 250033, P.R. China
| | - Liqun Shan
- Department of Thyroid Surgery, The Second Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong 250033, P.R. China
| | - Zhanyu Hao
- Department of Thyroid Surgery, The Second Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong 250033, P.R. China
| | - Lihua Wang
- Department of Epidemiology and Health Statistics, School of Public Health, Cheeloo College of Medicine, Shandong University, Jinan, Shandong 250012, P.R. China
| | - Shouluan Ding
- Evidence based medicine, The Second Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong 250033, P.R. China
| | - Zhigang Yu
- Department of Breast Surgery, The Second Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong 250033, P.R. China
| | - Jianing Liu
- Department of Thyroid Surgery, The Second Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong 250033, P.R. China
| | - Hongying Jia
- Department of Epidemiology and Health Statistics, School of Public Health, Cheeloo College of Medicine, Shandong University, Jinan, Shandong 250012, P.R. China.,Evidence based medicine, The Second Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong 250033, P.R. China
| |
Collapse
|
28
|
Guo S, Wang X, Li Z, Pan D, Dai Y, Ye Y, Tian X, Gu Z, Gong Q, Zhang H, Luo K. A nitroxides-based macromolecular MRI contrast agent with an extraordinary longitudinal relaxivity for tumor imaging via clinical T1WI SE sequence. J Nanobiotechnology 2021; 19:244. [PMID: 34391417 PMCID: PMC8364710 DOI: 10.1186/s12951-021-00990-6] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2021] [Accepted: 08/05/2021] [Indexed: 02/08/2023] Open
Abstract
BACKGROUND Macromoleculization of nitroxides has been an effective strategy to improve low relaxivities and poor in vivo stability, however, nitroxides-based metal-free magnetic resonance imaging (MRI) macromolecular contrast agents (mCAs) are still under-performed. These mCAs do not possess a high nitroxides content sufficient for a cumulative effect. Amphiphilic nanostructures in these mCAs are not stable enough for highly efficient protection of nitroxides and do not have adequate molecular flexibility for full contact of the paramagnetic center with the peripheral water molecules. In addition, these mCAs still raise the concerns over biocompatibility and biodegradability due to the presence of macromolecules in these mCAs. RESULTS Herein, a water-soluble biodegradable nitroxides-based mCA (Linear pDHPMA-mPEG-Ppa-PROXYL) was prepared via covalent conjugation of a nitroxides (2,2,5,5-tetramethyl-1-pyrrolidinyl-N-oxyl, PROXYL) onto an enzyme-sensitive linear di-block poly[N-(1, 3-dihydroxypropyl) methacrylamide] (pDHPMA). A high content of PROXYL up to 0.111 mmol/g in Linear pDHPMA-mPEG-Ppa-PROXYL was achieved and a stable nano-sized self-assembled aggregate in an aqueous environment (ca. 23 nm) was formed. Its longitudinal relaxivity (r1 = 0.93 mM- 1 s- 1) was the highest compared to reported nitroxides-based mCAs. The blood retention time of PROXYL from the prepared mCA in vivo was up to ca. 8 h and great accumulation of the mCA was realized in the tumor site due to its passive targeting ability to tumors. Thus, Linear pDHPMA-mPEG-Ppa-PROXYL could provide a clearly detectable MRI enhancement at the tumor site of mice via the T1WI SE sequence conventionally used in clinical Gd3+-based contrast agents, although it cannot be compared with DTPA-Gd in the longitudinal relaxivity and the continuous enhancement time at the tumor site of mice. Additionally, it was demonstrated to have great biosafety, hemocompatibility and biocompatibility. CONCLUSIONS Therefore, Linear pDHPMA-mPEG-Ppa-PROXYL could be a potential candidate as a substitute of metal-based MRI CAs for clinical application.
Collapse
Affiliation(s)
- Shiwei Guo
- Laboratory of Stem Cell Biology, and Huaxi MR Research Center (HMRRC), Department of Radiology, Frontiers Science Center for Disease-Related Molecular Network, State Key Laboratory of Biotherapy, West China Hospital, National Clinical Research Center for Geriatrics, Sichuan University, 610041, Chengdu, China
- Department of Pharmacy of the Affiliated Hospital of Southwest Medical University, Southwest Medical University, Luzhou, 646000, Sichuan, People's Republic of China
- Nuclear Medicine and Molecular Imaging Key Laboratory of Sichuan Province, Luzhou, 646000, People's Republic of China
| | - Xiaoming Wang
- Laboratory of Stem Cell Biology, and Huaxi MR Research Center (HMRRC), Department of Radiology, Frontiers Science Center for Disease-Related Molecular Network, State Key Laboratory of Biotherapy, West China Hospital, National Clinical Research Center for Geriatrics, Sichuan University, 610041, Chengdu, China
- Department of Radiology, Chongqing General Hospital, University of Chinese Academy of Sciences (UCAS), No.104 Pipashan Main Street, Yuzhong District, Chongqing, 400014, China
| | - Zhiqian Li
- Laboratory of Stem Cell Biology, and Huaxi MR Research Center (HMRRC), Department of Radiology, Frontiers Science Center for Disease-Related Molecular Network, State Key Laboratory of Biotherapy, West China Hospital, National Clinical Research Center for Geriatrics, Sichuan University, 610041, Chengdu, China
| | - Dayi Pan
- Laboratory of Stem Cell Biology, and Huaxi MR Research Center (HMRRC), Department of Radiology, Frontiers Science Center for Disease-Related Molecular Network, State Key Laboratory of Biotherapy, West China Hospital, National Clinical Research Center for Geriatrics, Sichuan University, 610041, Chengdu, China
| | - Yan Dai
- Department of Pharmacy of the Affiliated Hospital of Southwest Medical University, Southwest Medical University, Luzhou, 646000, Sichuan, People's Republic of China
| | - Yun Ye
- Department of Pharmacy of the Affiliated Hospital of Southwest Medical University, Southwest Medical University, Luzhou, 646000, Sichuan, People's Republic of China
| | - Xiaohe Tian
- Laboratory of Stem Cell Biology, and Huaxi MR Research Center (HMRRC), Department of Radiology, Frontiers Science Center for Disease-Related Molecular Network, State Key Laboratory of Biotherapy, West China Hospital, National Clinical Research Center for Geriatrics, Sichuan University, 610041, Chengdu, China
| | - Zhongwei Gu
- Laboratory of Stem Cell Biology, and Huaxi MR Research Center (HMRRC), Department of Radiology, Frontiers Science Center for Disease-Related Molecular Network, State Key Laboratory of Biotherapy, West China Hospital, National Clinical Research Center for Geriatrics, Sichuan University, 610041, Chengdu, China
| | - Qiyong Gong
- Laboratory of Stem Cell Biology, and Huaxi MR Research Center (HMRRC), Department of Radiology, Frontiers Science Center for Disease-Related Molecular Network, State Key Laboratory of Biotherapy, West China Hospital, National Clinical Research Center for Geriatrics, Sichuan University, 610041, Chengdu, China
- Functional and Molecular Imaging Key Laboratory of Sichuan Province, Research Unit of Psychoradiology, Chinese Academy of Medical Sciences, Chengdu, 610041, China
| | - Hu Zhang
- Amgen Bioprocessing Centre, Keck Graduate Institute, Claremont, CA, 91711, USA
| | - Kui Luo
- Laboratory of Stem Cell Biology, and Huaxi MR Research Center (HMRRC), Department of Radiology, Frontiers Science Center for Disease-Related Molecular Network, State Key Laboratory of Biotherapy, West China Hospital, National Clinical Research Center for Geriatrics, Sichuan University, 610041, Chengdu, China.
- Functional and Molecular Imaging Key Laboratory of Sichuan Province, Research Unit of Psychoradiology, Chinese Academy of Medical Sciences, Chengdu, 610041, China.
| |
Collapse
|
29
|
Wang X, Guo S, Li Z, Luo Q, Dai Y, Zhang H, Ye Y, Gong Q, Luo K. Amphiphilic branched polymer-nitroxides conjugate as a nanoscale agent for potential magnetic resonance imaging of multiple objects in vivo. J Nanobiotechnology 2021; 19:205. [PMID: 34243760 PMCID: PMC8272293 DOI: 10.1186/s12951-021-00951-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2021] [Accepted: 07/01/2021] [Indexed: 02/08/2023] Open
Abstract
BACKGROUND In order to address the potential toxicity of metal-based magnetic resonance imaging (MRI) contrast agents (CAs), a concept of non-metallic MRI CAs has emerged. Currently, paramagnetic nitroxides (such as (2,2,5,5-tetramethylpyrrolidine-1-oxyl, PROXYL), (2,2,6,6-tetramethylpiperidine-1-oxide, TEMPO), etc.) are being extensively studied because their good stability and imaging mechanism are similar to metal-based contrast agents (such as Gd3+ chelate-based clinical CAs). However, a lower relaxivity and rapid in vivo metabolism of nitroxides remain to be addressed. Previous studies have demonstrated that the construction of macromolecular nitroxides contrast agents (mORCAs) is a promising solution through macromolecularization of nitroxides (i.e., use of large molecules to carry nitroxides). Macromolecular effects not only increase the stability of nitroxides by limiting their exposure to reductive substances in the body, but also improve the overall 1H water relaxation by increasing the concentration of nitroxides and slowing the molecular rotation speed. RESULTS Branched pDHPMA-mPEG-Ppa-PROXYL with a high molecular weight (MW = 160 kDa) and a nitroxides content (0.059 mmol/g) can form a nanoscale (~ 28 nm) self-assembled aggregate in a water environment and hydrophobic PROXYL can be protected by a hydrophilic outer layer to obtain strong reduction resistance in vivo. Compared with a small molecular CA (3-Carboxy-PROXYL (3-CP)), Branched pDHPMA-mPEG-Ppa-PROXYL displays three prominent features: (1) its longitudinal relaxivity (0.50 mM- 1 s- 1) is about three times that of 3-CP (0.17 mM- 1 s- 1); (2) the blood retention time of nitroxides is significantly increased from a few minutes of 3-CP to 6 h; (3) it provides long-term and significant enhancement in MR imaging of the tumor, liver, kidney and cardiovascular system (heart and aortaventralis), and this is the first report on nitroxides-based MRI CAs for imaging the cardiovascular system. CONCLUSIONS As a safe and efficient candidate metal-free magnetic resonance contrast agent, Branched pDHPMA-mPEG-Ppa-PROXYL is expected to be used not only in imaging the tumor, liver and kidney, but also the cardiovascular system, which expands the application scope of these CAs.
Collapse
Affiliation(s)
- Xiaoming Wang
- Huaxi MR Research Center (HMRRC), Department of Radiology, National Clinical Research Center for Geriatrics, Frontiers Science Center for Disease-Related Molecular Network, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, 610041, Chengdu, China
- Department of Radiology, Chongqing General Hospital, University of Chinese Academy of Sciences (UCAS), No. 104 Pipashan Main Street, Yuzhong District, 400014, Chongqing, China
| | - Shiwei Guo
- Department of Pharmacy of the Affiliated Hospital of Southwest Medical University, Southwest Medical University, Sichuan Province, 646000, Luzhou, People's Republic of China
- Nuclear Medicine and Molecular Imaging Key Laboratory of Sichuan Province, 646000, Luzhou, People's Republic of China
| | - Zhiqian Li
- Huaxi MR Research Center (HMRRC), Department of Radiology, National Clinical Research Center for Geriatrics, Frontiers Science Center for Disease-Related Molecular Network, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, 610041, Chengdu, China
| | - Qiang Luo
- Huaxi MR Research Center (HMRRC), Department of Radiology, National Clinical Research Center for Geriatrics, Frontiers Science Center for Disease-Related Molecular Network, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, 610041, Chengdu, China
| | - Yan Dai
- Department of Pharmacy of the Affiliated Hospital of Southwest Medical University, Southwest Medical University, Sichuan Province, 646000, Luzhou, People's Republic of China
- Nuclear Medicine and Molecular Imaging Key Laboratory of Sichuan Province, 646000, Luzhou, People's Republic of China
| | - Hu Zhang
- Amgen Bioprocessing Centre, Keck Graduate Institute Claremont, 91711, Claremont, CA, USA
| | - Yun Ye
- Department of Pharmacy of the Affiliated Hospital of Southwest Medical University, Southwest Medical University, Sichuan Province, 646000, Luzhou, People's Republic of China
| | - Qiyong Gong
- Huaxi MR Research Center (HMRRC), Department of Radiology, National Clinical Research Center for Geriatrics, Frontiers Science Center for Disease-Related Molecular Network, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, 610041, Chengdu, China
- Functional and Molecular Imaging Key Laboratory of Sichuan Province, Research Unit of Psychoradiology, Chinese Academy of Medical Sciences, 610041, Chengdu, China
| | - Kui Luo
- Huaxi MR Research Center (HMRRC), Department of Radiology, National Clinical Research Center for Geriatrics, Frontiers Science Center for Disease-Related Molecular Network, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, 610041, Chengdu, China.
- Functional and Molecular Imaging Key Laboratory of Sichuan Province, Research Unit of Psychoradiology, Chinese Academy of Medical Sciences, 610041, Chengdu, China.
| |
Collapse
|
30
|
Concilio SC, Russell SJ, Peng KW. A brief review of reporter gene imaging in oncolytic virotherapy and gene therapy. Mol Ther Oncolytics 2021; 21:98-109. [PMID: 33981826 PMCID: PMC8065251 DOI: 10.1016/j.omto.2021.03.006] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Reporter gene imaging (RGI) can accelerate development timelines for gene and viral therapies by facilitating rapid and noninvasive in vivo studies to determine the biodistribution, magnitude, and durability of viral gene expression and/or virus infection. Functional molecular imaging systems used for this purpose can be divided broadly into deep-tissue and optical modalities. Deep-tissue modalities, which can be used in animals of any size as well as in human subjects, encompass single photon emission computed tomography (SPECT), positron emission tomography (PET), and functional/molecular magnetic resonance imaging (f/mMRI). Optical modalities encompass fluorescence, bioluminescence, Cerenkov luminescence, and photoacoustic imaging and are suitable only for small animal imaging. Here we discuss the mechanisms of action and relative merits of currently available reporter gene systems, highlighting the strengths and weaknesses of deep tissue versus optical imaging systems and the hardware/reagents that are used for data capture and processing. In light of recent technological advances, falling costs of imaging instruments, better availability of novel radioactive and optical tracers, and a growing realization that RGI can give invaluable insights across the entire in vivo translational spectrum, the approach is becoming increasingly essential to facilitate the competitive development of new virus- and gene-based drugs.
Collapse
Affiliation(s)
| | | | - Kah-Whye Peng
- Department of Molecular Medicine, Mayo Clinic, Rochester, MN 55905, USA
| |
Collapse
|
31
|
Jin Y, Liu B, Younis MH, Huang G, Liu J, Cai W, Wei W. Next-Generation Molecular Imaging of Thyroid Cancer. Cancers (Basel) 2021; 13:3188. [PMID: 34202358 PMCID: PMC8268517 DOI: 10.3390/cancers13133188] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2021] [Revised: 06/20/2021] [Accepted: 06/22/2021] [Indexed: 12/15/2022] Open
Abstract
An essential aspect of thyroid cancer (TC) management is personalized and precision medicine. Functional imaging of TC with radioiodine and [18F]FDG has been frequently used in disease evaluation for several decades now. Recently, advances in molecular imaging have led to the development of novel tracers based on aptamer, peptide, antibody, nanobody, antibody fragment, and nanoparticle platforms. The emerging targets-including HER2, CD54, SHP2, CD33, and more-are promising targets for clinical translation soon. The significance of these tracers may be realized by outlining the way they support the management of TC. The provided examples focus on where preclinical investigations can be translated. Furthermore, advances in the molecular imaging of TC may inspire the development of novel therapeutic or theranostic tracers. In this review, we summarize TC-targeting probes which include transporter-based and immuno-based imaging moieties. We summarize the most recent evidence in this field and outline how these emerging strategies may potentially optimize clinical practice.
Collapse
Affiliation(s)
- Yuchen Jin
- Department of Nuclear Medicine, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, 1630 Dongfang Rd., Shanghai 200127, China; (Y.J.); (G.H.); (J.L.)
- Department of Nuclear Medicine, Shanghai Sixth People’s Hospital Affiliated to Shanghai Jiao Tong University, Shanghai 200233, China
- Human Oncology and Pathogenesis Program, Memorial Sloan-Kettering Cancer Center, New York, NY 10065, USA
| | - Beibei Liu
- Institute of Diagnostic and Interventional Radiology, Shanghai Sixth People’s Hospital Affiliatede to Shanghai Jiao Tong University, Shanghai 200233, China;
| | - Muhsin H. Younis
- Departments of Radiology and Medical Physics, University of Wisconsin–Madison, Madison, WI 53705-2275, USA;
| | - Gang Huang
- Department of Nuclear Medicine, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, 1630 Dongfang Rd., Shanghai 200127, China; (Y.J.); (G.H.); (J.L.)
| | - Jianjun Liu
- Department of Nuclear Medicine, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, 1630 Dongfang Rd., Shanghai 200127, China; (Y.J.); (G.H.); (J.L.)
| | - Weibo Cai
- Departments of Radiology and Medical Physics, University of Wisconsin–Madison, Madison, WI 53705-2275, USA;
- Carbone Cancer Center, University of Wisconsin, Madison, WI 53705, USA
| | - Weijun Wei
- Department of Nuclear Medicine, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, 1630 Dongfang Rd., Shanghai 200127, China; (Y.J.); (G.H.); (J.L.)
| |
Collapse
|
32
|
Eskuri M, Kemi N, Kauppila JH. Monocarboxylate Transporters 1 and 4 and MTCO1 in Gastric Cancer. Cancers (Basel) 2021; 13:cancers13092142. [PMID: 33946786 PMCID: PMC8124264 DOI: 10.3390/cancers13092142] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2021] [Revised: 04/16/2021] [Accepted: 04/27/2021] [Indexed: 01/03/2023] Open
Abstract
Simple Summary The expression of monocarboxylate transporters (MCTs) are reported in a variety of cancers and suggested as a therapeutic target for cancer treatment. However, previous study results in gastric cancer are contradictory. In this study, we evaluated the expression of MCT1, MCT4, and Mitochondrial cytochrome c oxidase (MTCO1) and their association with clinicopathological parameters and prognostic significance in a cohort of 568 surgically treated gastric cancer patients. The results suggest that monocarboxylate transporters and MTCO1 are associated with gastric cancer progression but have no independent prognostic relevance. Abstract Background: Monocarboxylate transporters (MCTs) appear to play an important role in tumor development and aggressiveness. The present study aimed to evaluate associations between cytoplasmic MCT1, MCT4, and mitochondrial cytochrome c oxidase (MTCO1) expression and clinicopathological variables or survival in gastric cancer. Material and methods: A total of 568 gastric adenocarcinoma patients were included in this retrospective cohort study. Protein expressions were detected by immunohistochemical staining. The patients were divided into low expression and high expression groups by median value. The Chi-squared test was used to compare categorical variables. The T-test was used to compare continuous variables. Expressions were analyzed in relation to 5-year survival and overall survival. Cox regression provided HRs and 95% CIs, adjusted for confounders. Results: High cytoplasmic MCT1 expression was associated statistically significantly with higher T-class (p = 0.020). High cytoplasmic MCT4 expression was associated statistically significantly with positive lymph node status (p = 0.005) and was more common in Lauren’s intestinal type (p < 0.001). Low cytoplasmic MTCO1 expression was associated statistically significantly with positive distant metastases (p = 0.030), and high cytoplasmic MTCO1 expression was associated more often with intestinal type (p = 0.044). However, MCT1, MCT4, and MTCO1 were not associated with survival. Conclusions: Monocarboxylate receptors seem to be associated with gastric cancer progression but have no independent prognostic relevance.
Collapse
Affiliation(s)
- Maarit Eskuri
- Cancer and Translational Medicine Research Unit, Medical Research Center, University of Oulu and Oulu University Hospital, 90014 Oulu, Finland;
- Correspondence: ; Tel.: +358-294-480-000
| | - Niko Kemi
- Cancer and Translational Medicine Research Unit, Medical Research Center, University of Oulu and Oulu University Hospital, 90014 Oulu, Finland;
| | - Joonas H. Kauppila
- Surgery Research Unit, Medical Research Center, University of Oulu and Oulu University Hospital, 90014 Oulu, Finland;
- Upper Gastrointestinal Surgery, Department of Molecular Medicine and Surgery, Karolinska Institutet and Karolinska University Hospital, 17177 Stockholm, Sweden
| |
Collapse
|
33
|
Tian W, Liu X, Wang L, Zheng B, Jiang K, Fu G, Feng W. Deciphering the selective binding mechanisms of anaplastic lymphoma kinase-derived neuroblastoma tumor neoepitopes to human leukocyte antigen. J Mol Model 2021; 27:134. [PMID: 33899124 DOI: 10.1007/s00894-021-04754-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2020] [Accepted: 04/15/2021] [Indexed: 12/14/2022]
Abstract
Neuroblastoma (NB), as a metastatic form of solid tumor, has a high fatality rate found in early childhood. The two anaplastic lymphoma kinase (ALK) neoepitopes nonamer and decamer used in cancer immunotherapy against NB cancer can selectively bind to the human leukocyte antigen (HLA-B*15:01) groove with high affinities, whereas the native self-peptide is unable to interact with the HLA-B*15:01. Here, we performed molecular dynamics (MD) simulations and subsequent molecular mechanics-generalized born surface area (MM-GBSA) binding free energy calculations to explore the selective binding mechanisms of nonamer and decamer to the HLA-B*15:01 against the self-peptide. MD simulations revealed the significant conformational dynamics of the self-peptide in the HLA-B*15:01 groove against the nonamer and decamer. Binding free energy calculations showed that the binding affinities of HLA-B*15:01-neoepitope complexes were followed in the order decamer > nonamer > self-peptide. Detailed analysis of HLA-B*15:01-neoepitope structural complexes showed that compared to the nonamer, the self-peptide tended to move outward to the solvent, whereas the decamer moved deep to the HLA-B*15:01 groove. These different dynamic observations of the ALK neoepitopes can explain the distinct binding affinities of self-peptide, nonamer, and decamer to the HLA-B*15:01. The results may be useful for the design of more selective ALK neoepitopes.
Collapse
Affiliation(s)
- Wenchao Tian
- Pediatric Surgery, Binzhou Medical University Hospital, Binzhou, 256603, Shandong, China
| | - Xianxian Liu
- Department of Infectious Diseases, Binzhou Medical University Hospital, Binzhou, 256603, Shandong, China
| | - Lulu Wang
- Department of Critical Care Medicine, Binzhou Medical University Hospital, Binzhou, 256603, Shandong, China
| | - Bufeng Zheng
- Pediatric Surgery, Binzhou Medical University Hospital, Binzhou, 256603, Shandong, China
| | - Kun Jiang
- Pediatric Surgery, Binzhou Medical University Hospital, Binzhou, 256603, Shandong, China
| | - Guoyong Fu
- Pediatric Surgery, Binzhou Medical University Hospital, Binzhou, 256603, Shandong, China
| | - Wenyu Feng
- Pediatric Surgery, Binzhou Medical University Hospital, Binzhou, 256603, Shandong, China.
| |
Collapse
|
34
|
Qiao T, Xiong Y, Feng Y, Guo W, Zhou Y, Zhao J, Jiang T, Shi C, Han Y. Inhibition of LDH-A by Oxamate Enhances the Efficacy of Anti-PD-1 Treatment in an NSCLC Humanized Mouse Model. Front Oncol 2021; 11:632364. [PMID: 33859941 PMCID: PMC8042335 DOI: 10.3389/fonc.2021.632364] [Citation(s) in RCA: 54] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2020] [Accepted: 03/15/2021] [Indexed: 12/24/2022] Open
Abstract
Immunotherapy is a curable treatment for certain cancers, but it is still only effective in a small subset of patients, partly because of the lack of sufficient immune cells in the tumor. It is reported that targeted lactate dehydrogenase (LDH) to reduce lactic acid production can promote the infiltration and activity of immune cells and turn tumors into hot tumors. Therefore, we constructed a humanized mouse model to evaluate the efficacy of using classical LDH inhibitor oxamate and pembrolizumab alone or in combination in non-small cell lung cancer (NSCLC). We found that both oxamate and pembrolizumab monotherapy significantly delayed tumor growth; moreover, combination therapy showed better results. Immunofluorescence analysis showed that oxamate treatment increased the infiltration of activated CD8+ T cells in the tumor, which might have enhanced the therapeutic effects of pembrolizumab. Treatment of the humanized mice with anti-CD8 abrogated the therapeutic effects of oxamate, indicating CD8+ T cells as the main force mediating the effect of oxamate. In conclusion, Our preclinical findings position that oxamate not only inhibits tumor growth at a high safe dose but also enhances the efficacy of pembrolizumab in Hu-PBMC-CDX mice. Our study also provides a preclinical model for exploring the efficacy of other immune-based combination therapies for NSCLC.
Collapse
Affiliation(s)
- Tianyun Qiao
- Department of Thoracic Surgery, Tangdu Hospital, The Fourth Military Medical University, Xi'an, China
| | - Yanlu Xiong
- Department of Thoracic Surgery, Tangdu Hospital, The Fourth Military Medical University, Xi'an, China
| | - Yangbo Feng
- Department of Thoracic Surgery, Tangdu Hospital, The Fourth Military Medical University, Xi'an, China
| | - Wenwen Guo
- School of Basic Medical Sciences, Medical College of Yan'an University, Yanan, China
| | - Yongsheng Zhou
- Department of Thoracic Surgery, Tangdu Hospital, The Fourth Military Medical University, Xi'an, China
| | - Jinbo Zhao
- Department of Thoracic Surgery, Tangdu Hospital, The Fourth Military Medical University, Xi'an, China
| | - Tao Jiang
- Department of Thoracic Surgery, Tangdu Hospital, The Fourth Military Medical University, Xi'an, China
| | - Changhong Shi
- Laboratory Animal Center, The Fourth Military Medical University, Xi'an, China
| | - Yong Han
- Department of Thoracic Surgery, Tangdu Hospital, The Fourth Military Medical University, Xi'an, China.,Department of Thoracic Surgery, Air Force Medical Center, Beijing, China
| |
Collapse
|
35
|
Kataoka H, Nishie H, Tanaka M, Sasaki M, Nomoto A, Osaki T, Okamoto Y, Yano S. Potential of Photodynamic Therapy Based on Sugar-Conjugated Photosensitizers. J Clin Med 2021; 10:jcm10040841. [PMID: 33670714 PMCID: PMC7922816 DOI: 10.3390/jcm10040841] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2021] [Revised: 02/08/2021] [Accepted: 02/12/2021] [Indexed: 02/06/2023] Open
Abstract
In 2015, the Japanese health insurance approved the use of a second-generation photodynamic therapy (PDT) using talaporfin sodium (TS); however, its cancer cell selectivity and antitumor effects of TS PDT are not comprehensive. The Warburg effect describes the elevated rate of glycolysis in cancer cells, despite the presence of sufficient oxygen. Because cancer cells absorb considerable amounts of glucose, they are visible using positron emission tomography (PET). We developed a third-generation PDT based on the Warburg effect by synthesizing novel photosensitizers (PSs) in the form of sugar-conjugated chlorins. Glucose-conjugated (tetrafluorophenyl) chlorin (G-chlorin) PDT revealed significantly stronger antitumor effects than TS PDT and induced immunogenic cell death (ICD). ICD induced by PDT enhances cancer immunity, and a combination therapy of PDT and immune checkpoint blockers is expected to synergize antitumor effects. Mannose-conjugated (tetrafluorophenyl) chlorin (M-chlorin) PDT, which targets cancer cells and tumor-associated macrophages (TAMs), also shows strong antitumor effects. Finally, we synthesized a glucose-conjugated chlorin e6 (SC-N003HP) that showed 10,000-50,000 times stronger antitumor effects than TS (IC50) in vitro, and it was rapidly metabolized and excreted. In this review, we discuss the potential and the future of next-generation cancer cell-selective PDT and describe three types of sugar-conjugated PSs expected to be clinically developed in the future.
Collapse
Affiliation(s)
- Hiromi Kataoka
- Department of Gastroenterology and Metabolism, Nagoya City University Graduate School of Medical Sciences, Nagoya 467-8601, Japan; (H.N.); (M.T.); (M.S.)
- Correspondence:
| | - Hirotada Nishie
- Department of Gastroenterology and Metabolism, Nagoya City University Graduate School of Medical Sciences, Nagoya 467-8601, Japan; (H.N.); (M.T.); (M.S.)
| | - Mamoru Tanaka
- Department of Gastroenterology and Metabolism, Nagoya City University Graduate School of Medical Sciences, Nagoya 467-8601, Japan; (H.N.); (M.T.); (M.S.)
| | - Makiko Sasaki
- Department of Gastroenterology and Metabolism, Nagoya City University Graduate School of Medical Sciences, Nagoya 467-8601, Japan; (H.N.); (M.T.); (M.S.)
| | - Akihiro Nomoto
- Department of Applied Chemistry, Graduate School of Engineering, Osaka Prefecture University, Osaka 599-8531, Japan;
| | - Tomohiro Osaki
- Joint Department of Veterinary Clinical Medicine, Faculty of Agriculture, Tottori University, Tottori 680-8553, Japan; (T.O.); (Y.O.)
| | - Yoshiharu Okamoto
- Joint Department of Veterinary Clinical Medicine, Faculty of Agriculture, Tottori University, Tottori 680-8553, Japan; (T.O.); (Y.O.)
| | - Shigenobu Yano
- KYOUSEI Science Center for Life and Nature, Nara Women’s University, Kitauoyahigashi-machi, Nara 630-8506, Japan;
| |
Collapse
|
36
|
Zhang Q, Dai X, Zhang H, Zeng Y, Luo K, Li W. Recent advances in development of nanomedicines for multiple sclerosis diagnosis. Biomed Mater 2021; 16:024101. [PMID: 33472182 DOI: 10.1088/1748-605x/abddf4] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Multiple sclerosis (MS) is a neurodegenerative disease with a high morbidity and disease burden. It is characterized by the loss of the myelin sheath, resulting in the disruption of neuron electrical signal transmissions and sensory and motor ability deficits. The diagnosis of MS is crucial to its management, but the diagnostic sensitivity and specificity are always a challenge. To overcome this challenge, nanomedicines have recently been employed to aid the diagnosis of MS with an improved diagnostic efficacy. Advances in nanomedicine-based contrast agents in magnetic resonance imaging scanning of MS lesions, and nanomedicine-derived sensors for detecting biomarkers in the cerebrospinal fluid biopsy, or analyzing the composition of exhaled breath gas, have demonstrated the potential of using nanomedicines in the accurate diagnosis of MS. This review aims to provide an overview of recent advances in the application of nanomedicines for the diagnosis of MS and concludes with perspectives of using nanomedicines for the development of safe and effective MS diagnostic nanotools.
Collapse
Affiliation(s)
- Qin Zhang
- Department of Radiology, Department of Postgraduate Students, and Department of Respiratory and Critical Care Medicine, West China Hospital, Sichuan University, Chengdu 610041, People's Republic of China. West China School of Medicine, Sichuan University, Chengdu 610041, People's Republic of China. These authors contributed equally to this work
| | | | | | | | | | | |
Collapse
|
37
|
Han R, Sun W, Zhang H. Identification of a Signature Comprising 5 Soluble Carrier Family Genes to Predict the Recurrence of Papillary Thyroid Carcinoma. Technol Cancer Res Treat 2021; 20:15330338211036314. [PMID: 34590520 PMCID: PMC8489750 DOI: 10.1177/15330338211036314] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2020] [Revised: 03/23/2021] [Accepted: 04/19/2021] [Indexed: 01/03/2023] Open
Abstract
RNA-sequencing data and relevant clinical data in The Cancer Genome Atlas for 502 samples of papillary thyroid cancer (PTC) were analyzed to determine the prognostic value of soluble carrier family genes in PTC. We analyzed soluble carrier family gene expression and function in the samples. Clustering identified 2 clusters in the data. Risk characteristics were identified using LASSO and Univariate Cox regression analysis, which divided the patients into low and high-risk groups. The expression levels of 88 soluble carrier genes were significantly different between tumors and normal tissue. The 2 PTC clusters had different clinical outcomes and distributions of gene expression. The expression levels of SFXN1, SLC12A4, SLC35A1, SLC35E1, and SLCO1C1 were markedly different between the 2 groups. The high risk and low risk groups had significant different prognoses (P < 0.05). Significant differences were identified for disease free survival (DFS), sex and T stage between the 2 subgroups. The risk score was identified as an independent prognostic variable (P < 0.05) and as a predictor of clinicopathological variables. In patients with PTC, solute carrier gene expression showed differential associations with clinicopathological variables. The 5 genes could be used as prognostic factors for PTC, particularly to predict PTC recurrence.
Collapse
Affiliation(s)
- Rui Han
- Department of Thyroid Surgery, The First Hospital of China Medical University, Shenyang, People’s Republic of China
- Rui Han and Wei Sun contributed equally to this article
| | - Wei Sun
- Department of Thyroid Surgery, The First Hospital of China Medical University, Shenyang, People’s Republic of China
- Rui Han and Wei Sun contributed equally to this article
| | - Hao Zhang
- Department of Thyroid Surgery, The First Hospital of China Medical University, Shenyang, People’s Republic of China
| |
Collapse
|
38
|
Wang X, Qiu Y, Wang M, Zhang C, Zhang T, Zhou H, Zhao W, Zhao W, Xia G, Shao R. Endocytosis and Organelle Targeting of Nanomedicines in Cancer Therapy. Int J Nanomedicine 2020; 15:9447-9467. [PMID: 33268987 PMCID: PMC7701161 DOI: 10.2147/ijn.s274289] [Citation(s) in RCA: 64] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2020] [Accepted: 09/25/2020] [Indexed: 12/15/2022] Open
Abstract
Nanomedicines (NMs) have played an increasing role in cancer therapy as carriers to efficiently deliver therapeutics into tumor cells. For this application, the uptake of NMs by tumor cells is usually a prerequisite to deliver the cargo to intracellular locations, which mainly relies on endocytosis. NMs can enter cells through a variety of endocytosis pathways. Different endocytosis pathways exhibit different intracellular trafficking routes and diverse subcellular localizations. Therefore, a comprehensive understanding of endocytosis mechanisms is necessary for increasing cellular entry efficiency and to trace the fate of NMs after internalization. This review focuses on endocytosis pathways of NMs in tumor cells, mainly including clathrin- and caveolae-mediated endocytosis pathways, involving effector molecules, expression difference of those molecules between normal and tumor cells, as well as the intracellular trafficking route of corresponding endocytosis vesicles. Then, the latest strategies for NMs to actively employ endocytosis are described, including improving tumor cellular uptake of NMs by receptor-mediated endocytosis, transporter-mediated endocytosis and enabling drug activity by changing intracellular routes. Finally, active targeting strategies towards intracellular organelles are also mentioned. This review will be helpful not only in explicating endocytosis and the trafficking process of NMs and elucidating anti-tumor mechanisms inside the cell but also in rendering new ideas for the design of highly efficacious and cancer-targeted NMs.
Collapse
Affiliation(s)
- Xiaowei Wang
- Institute of Medicinal Biotechnology, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, People’s Republic of China
| | - Yuhan Qiu
- Institute of Medicinal Biotechnology, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, People’s Republic of China
| | - Mengyan Wang
- Institute of Medicinal Biotechnology, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, People’s Republic of China
| | - Conghui Zhang
- Institute of Medicinal Biotechnology, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, People’s Republic of China
| | - Tianshu Zhang
- Institute of Medicinal Biotechnology, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, People’s Republic of China
| | - Huimin Zhou
- Institute of Medicinal Biotechnology, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, People’s Republic of China
| | - Wenxia Zhao
- Institute of Medicinal Biotechnology, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, People’s Republic of China
| | - Wuli Zhao
- Institute of Medicinal Biotechnology, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, People’s Republic of China
| | - Guimin Xia
- Institute of Medicinal Biotechnology, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, People’s Republic of China
| | - Rongguang Shao
- Institute of Medicinal Biotechnology, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, People’s Republic of China
| |
Collapse
|
39
|
Pictorial review of the clinical applications of MIBG in neuroblastoma: current practices. Clin Transl Imaging 2020. [DOI: 10.1007/s40336-020-00392-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
40
|
Altea‐Manzano P, Cuadros AM, Broadfield LA, Fendt S. Nutrient metabolism and cancer in the in vivo context: a metabolic game of give and take. EMBO Rep 2020; 21:e50635. [PMID: 32964587 PMCID: PMC7534637 DOI: 10.15252/embr.202050635] [Citation(s) in RCA: 69] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2020] [Revised: 07/08/2020] [Accepted: 09/04/2020] [Indexed: 12/12/2022] Open
Abstract
Nutrients are indispensable resources that provide the macromolecular building blocks and energy requirements for sustaining cell growth and survival. Cancer cells require several key nutrients to fulfill their changing metabolic needs as they progress through stages of development. Moreover, both cell-intrinsic and microenvironment-influenced factors determine nutrient dependencies throughout cancer progression-for which a comprehensive characterization remains incomplete. In addition to the widely studied role of genetic alterations driving cancer metabolism, nutrient use in cancer tissue may be affected by several factors including the following: (i) diet, the primary source of bodily nutrients which influences circulating metabolite levels; (ii) tissue of origin, which can influence the tumor's reliance on specific nutrients to support cell metabolism and growth; (iii) local microenvironment, which dictates the accessibility of nutrients to tumor cells; (iv) tumor heterogeneity, which promotes metabolic plasticity and adaptation to nutrient demands; and (v) functional demand, which intensifies metabolic reprogramming to fuel the phenotypic changes required for invasion, growth, or survival. Here, we discuss the influence of these factors on nutrient metabolism and dependence during various steps of tumor development and progression.
Collapse
Affiliation(s)
- Patricia Altea‐Manzano
- Laboratory of Cellular Metabolism and Metabolic RegulationVIB‐KU Leuven Center for Cancer BiologyVIBLeuvenBelgium
- Laboratory of Cellular Metabolism and Metabolic RegulationDepartment of OncologyKU Leuven and Leuven Cancer Institute (LKI)LeuvenBelgium
| | - Alejandro M Cuadros
- Laboratory of Cellular Metabolism and Metabolic RegulationVIB‐KU Leuven Center for Cancer BiologyVIBLeuvenBelgium
- Laboratory of Cellular Metabolism and Metabolic RegulationDepartment of OncologyKU Leuven and Leuven Cancer Institute (LKI)LeuvenBelgium
| | - Lindsay A Broadfield
- Laboratory of Cellular Metabolism and Metabolic RegulationVIB‐KU Leuven Center for Cancer BiologyVIBLeuvenBelgium
- Laboratory of Cellular Metabolism and Metabolic RegulationDepartment of OncologyKU Leuven and Leuven Cancer Institute (LKI)LeuvenBelgium
| | - Sarah‐Maria Fendt
- Laboratory of Cellular Metabolism and Metabolic RegulationVIB‐KU Leuven Center for Cancer BiologyVIBLeuvenBelgium
- Laboratory of Cellular Metabolism and Metabolic RegulationDepartment of OncologyKU Leuven and Leuven Cancer Institute (LKI)LeuvenBelgium
| |
Collapse
|
41
|
Li H, Zeng Y, Zhang H, Gu Z, Gong Q, Luo K. Functional gadolinium-based nanoscale systems for cancer theranostics. J Control Release 2020; 329:482-512. [PMID: 32898594 DOI: 10.1016/j.jconrel.2020.08.064] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2020] [Revised: 08/25/2020] [Accepted: 08/30/2020] [Indexed: 02/07/2023]
Abstract
Cancer theranostics is a new strategy for combating cancer that integrates cancer imaging and treatment through theranostic agents to provide an efficient and safe way to improve cancer prognosis. Design and synthesis of these cancer theranostic agents are crucial since these agents are required to be biocompatible, tumor-specific, imaging distinguishable and therapeutically efficacious. In this regard, several types of gadolinium (Gd)-based nanomaterials have been introduced to combine different therapeutic agents with Gd to enhance the efficacy of therapeutic agents. At the same time, the entire treatment procedure could be monitored via imaging tools due to incorporation of Gd ions, Gd chelates and Gd/other imaging probes in the theranostic agents. This review aims to overview recent advances in the Gd-based nanomaterials for cancer theranostics and perspectives for Gd nanomaterial-based cancer theranostics are provided.
Collapse
Affiliation(s)
- Haonan Li
- Huaxi MR Research Center (HMRRC), Department of Radiology, Functional and Molecular Imaging Key Laboratory of Sichuan Province, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Yujun Zeng
- Huaxi MR Research Center (HMRRC), Department of Radiology, Functional and Molecular Imaging Key Laboratory of Sichuan Province, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Hu Zhang
- Amgen Bioprocessing Centre, Keck Graduate Institute, Claremont, CA 91711, USA
| | - Zhongwei Gu
- Huaxi MR Research Center (HMRRC), Department of Radiology, Functional and Molecular Imaging Key Laboratory of Sichuan Province, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Qiyong Gong
- Huaxi MR Research Center (HMRRC), Department of Radiology, Functional and Molecular Imaging Key Laboratory of Sichuan Province, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Kui Luo
- Huaxi MR Research Center (HMRRC), Department of Radiology, Functional and Molecular Imaging Key Laboratory of Sichuan Province, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu 610041, China.
| |
Collapse
|
42
|
Gyimesi G, Pujol-Giménez J, Kanai Y, Hediger MA. Sodium-coupled glucose transport, the SLC5 family, and therapeutically relevant inhibitors: from molecular discovery to clinical application. Pflugers Arch 2020; 472:1177-1206. [PMID: 32767111 PMCID: PMC7462921 DOI: 10.1007/s00424-020-02433-x] [Citation(s) in RCA: 67] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2020] [Revised: 06/24/2020] [Accepted: 07/02/2020] [Indexed: 02/06/2023]
Abstract
Sodium glucose transporters (SGLTs) belong to the mammalian solute carrier family SLC5. This family includes 12 different members in human that mediate the transport of sugars, vitamins, amino acids, or smaller organic ions such as choline. The SLC5 family belongs to the sodium symporter family (SSS), which encompasses transporters from all kingdoms of life. It furthermore shares similarity to the structural fold of the APC (amino acid-polyamine-organocation) transporter family. Three decades after the first molecular identification of the intestinal Na+-glucose cotransporter SGLT1 by expression cloning, many new discoveries have evolved, from mechanistic analysis to molecular genetics, structural biology, drug discovery, and clinical applications. All of these advances have greatly influenced physiology and medicine. While SGLT1 is essential for fast absorption of glucose and galactose in the intestine, the expression of SGLT2 is largely confined to the early part of the kidney proximal tubules, where it reabsorbs the bulk part of filtered glucose. SGLT2 has been successfully exploited by the pharmaceutical industry to develop effective new drugs for the treatment of diabetic patients. These SGLT2 inhibitors, termed gliflozins, also exhibit favorable nephroprotective effects and likely also cardioprotective effects. In addition, given the recent finding that SGLT2 is also expressed in tumors of pancreas and prostate and in glioblastoma, this opens the door to potential new therapeutic strategies for cancer treatment by specifically targeting SGLT2. Likewise, further discoveries related to the functional association of other SGLTs of the SLC5 family to human pathologies will open the door to potential new therapeutic strategies. We furthermore hope that the herein summarized information about the physiological roles of SGLTs and the therapeutic benefits of the gliflozins will be useful for our readers to better understand the molecular basis of the beneficial effects of these inhibitors, also in the context of the tubuloglomerular feedback (TGF), and the renin-angiotensin system (RAS). The detailed mechanisms underlying the clinical benefits of SGLT2 inhibition by gliflozins still warrant further investigation that may serve as a basis for future drug development.
Collapse
Affiliation(s)
- Gergely Gyimesi
- Membrane Transport Discovery Lab, Department of Nephrology and Hypertension, and Department of Biomedical Research, Inselspital, University of Bern, Kinderklinik, Office D845, Freiburgstrasse 15, CH-3010, Bern, Switzerland
| | - Jonai Pujol-Giménez
- Membrane Transport Discovery Lab, Department of Nephrology and Hypertension, and Department of Biomedical Research, Inselspital, University of Bern, Kinderklinik, Office D845, Freiburgstrasse 15, CH-3010, Bern, Switzerland
| | - Yoshikatsu Kanai
- Department of Bio-system Pharmacology, Graduate School of Medicine, Osaka University, Osaka, Japan
| | - Matthias A Hediger
- Membrane Transport Discovery Lab, Department of Nephrology and Hypertension, and Department of Biomedical Research, Inselspital, University of Bern, Kinderklinik, Office D845, Freiburgstrasse 15, CH-3010, Bern, Switzerland.
| |
Collapse
|
43
|
Azevedo ÍM, Macedo Filho R, Rocha KBF, Oliveira CN, Medeiros AC. Diagnostic accuracy of 18F-FDG-PET in abdominal sepsis in rats. Acta Cir Bras 2020; 35:e202000505. [PMID: 32578672 PMCID: PMC7310585 DOI: 10.1590/s0102-865020200050000005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2020] [Accepted: 04/09/2020] [Indexed: 12/02/2022] Open
Abstract
Purpose The objective of this study was to investigate the accuracy of 18F-FDG-PET in the diagnosis of multibacterial abdominal sepsis by cecum ligation and puncture (CLP) in rats. Methods Adult Wistar rats ( Rattus norvegicus ), weighing 227±35g, were allocated into a sepsis group by CLP (n=10) and sham group (n=10). 18F-FDG-PET using microPET was performed on all rats after 24 hours. Results All animals survived for postoperative 24h. The abdomen/liver ratio of the standardized uptake value (SUV) percentage was significantly higher in the sepsis group than in the sham (p=0.004). The ROC curve showed an accuracy of 18F-FDG-PET to detect abdominal sepsis of 88.9% (p=0.001), sensitivity of 90% and specificity of 88.9%. When a cut-off point of 79% of the ratio between the SUV on the abdominal region and liver was established, the sensitivity was 90%, specificity of 88.9%; positive and negative predictive values of 90.0% and 88.9%, respectively. Conclusions The diagnostic accuracy of 18F-FDG-PET in rats with abdominal sepsis was significantly high. It was also demonstrated the predictive ability of the abdomen/liver SUV ratio to diagnose abdominal sepsis. These findings may have implications for the clinical setting, locating septic foci with PETscan.
Collapse
|
44
|
Jia Y, Wen X, Gong Y, Wang X. Current scenario of indole derivatives with potential anti-drug-resistant cancer activity. Eur J Med Chem 2020; 200:112359. [PMID: 32531682 DOI: 10.1016/j.ejmech.2020.112359] [Citation(s) in RCA: 55] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2020] [Revised: 04/09/2020] [Accepted: 04/16/2020] [Indexed: 02/07/2023]
Abstract
Cancer chemotherapy is frequently hampered by drug resistance, so the resistance to anticancer agents represents one of the major obstacles for the effective cancer treatment. Indole derivatives have the potential to act on diverse targets in cancer cells and exhibit promising activity against drug-resistant cancers. Moreover, some indole-containing compounds such as Semaxanib, Sunitinib, Vinorelbine, and Vinblastine have already been applied in clinics for various kinds of cancer even drug-resistant cancer therapy. Thus, indole derivatives are one of significant resources for the development of novel anti-drug-resistant cancer agents. This review focuses on the recent development of indole derivatives with potential therapeutic application for drug-resistant cancers, and the mechanisms of action, the critical aspects of design as well as structure-activity relationships, covering articles published from 2010 to 2020.
Collapse
Affiliation(s)
- Yanshu Jia
- Chongqing Institute of Engineering, Chongqing, 400056, China
| | - Xiaoyue Wen
- The Institute of Infection and Inflammation, China Three Gorges University, Yichang, Hubei, 443000, China
| | - Yufeng Gong
- The Second Affiliated Hospital of Mudanjiang Medical University, Mudanjiang, 157000, China
| | - Xuefeng Wang
- Department of Surgery, Zhuji Affiliated Hospital of Shaoxing University, Zhejiang Province, 311800, China.
| |
Collapse
|